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Abstract

Magnetism and Excitations in Praseodymium Compounds

Carol Gardiner, St. Hugh’s College, Oxford

DPhil Thesis, Hilary Term 2003

In this thesis I describe measurements of the magnetic properties of
PrBa2Cu3O6+x and PrO2 using neutron scattering and a variety of other
bulk measurement techniques.

I have measured the dispersion relations of the Cu spin-waves and the
low energy crystal field excitations of the Pr ion in oxidised PrBa2Cu3O6+x

(x ≈ 6.93), and have compared my findings with similar measurements made
previously on oxygen deficient PrBa2Cu3O6+x (x ≈ 0.2) and YBa2Cu3O6. I
have also probed the phonon dispersion relations in oxygen deficient
PrBa2Cu3O6+x (x ≈ 0.2).

The local environment of the Pr ion in PrO2 is similar to that in
PrBa2Cu3O6+x, so I initially hoped that the two compounds might share
some common properties. However, it turns out that the ionisation state of
the Pr ion is +4 in PrO2, whereas it is +3 in PrBa2Cu3O6+x, so analogies
are difficult to draw. Nevertheless, I have found that PrO2 has a wealth of
interesting properties in its own right, including a large static Jahn-Teller
distortion, strong magnetoelastic coupling and a field-induced irreversible
magnetic phase transition. I have developed simple models for the crystallo-
graphic and magnetic structure of PrO2, as well as a model for the excitation
spectrum based on magnetoelastic coupling. Finally, I speculate that the
static Jahn-Teller distortion is due to orbital ordering.
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Chapter 1

Introduction

1.1 Unconventional superconductivity

There are two classes of superconducting materials. Those whose proper-
ties can be accounted for by the Bardeen-Cooper-Schrieffer (BCS) theory
[1] are termed “conventional” superconductors, and these tend to be metals
or simple metallic alloys with low superconducting transition temperatures
(Tc < 40 K). In recent years, however, a whole new class of superconduc-
tors has emerged, whose properties cannot be explained by the BCS theory,
and which continue to confound theorists to this day. These are known as
“unconventional” superconductors, and the class is rather broad, containing
a number of different families of compounds, each with a different set of
unusual properties.

The first observation of unconventional superconductivity occurred in
1986 when Bednorz and Müller discovered the family of cuprate, or high-
temperature superconductors [2]. A feature that is common to all these
compounds is the copper-oxide (CuO2) layer, consisting of a plane of copper
and oxygen atoms. The unit cell of a cuprate superconductor contains one,
two or three CuO2 layers, with intermetallic or rare-earth atoms such as yt-
trium, barium or Lanthanum sandwiched between. The cuprate materials
gave rise to a revolution in the field of superconductivity, with transition
temperatures above the boiling point of liquid nitrogen being reached. How-
ever, they also created a huge puzzle for theorists, since radical new thinking
was required to understand their unusual properties.

More recently, several other families of superconductors have come to
prominence, including crystalline organic superconductors, ruthenates and

1



1.2. Superconductivity in YBa2Cu3O6+x and other cuprates 2

ferromagnetic superconductors. In general, these have much lower supercon-
ducting transition temperatures than the cuprates, but they display a wealth
of unusual behaviour which theorists and experimentalists are still battling
to chart and comprehend.

1.2 Superconductivity in YBa2Cu3O6+x and

other cuprates

The research described in this thesis centres around the subset of cuprate
superconductors typified by YBa2Cu3O6+x. Here I will give an overview of
the properties of this compound. I will describe its phase diagram and discuss
some of the general features of cuprate superconductivity.

The crystal structure of YBa2Cu3O6+x is shown in Figure 1.1. At zero
oxygen doping (x = 0) the O(4) and O(5) sites are empty, but as the doping
is increased, oxygen atoms start to appear randomly on these sites. For
low levels of doping (x < 0.4), neither the O(4) or O(5) site is preferred,
so with nothing to distinguish between the a and b directions the structure
is tetragonal. However, if the doping is increased to x > 0.4, the oxygens
start to prefer the O(4) sites, and CuO chains begin to form along the b-axis.
The preference of O(4) over O(5) sites breaks the symmetry of the ab plane,
and causes the crystal to undergo a change of structure from tetragonal to
orthorhombic.

As well as changing the crystal structure, oxygen doping causes the con-
ductivity of YBa2Cu3O6+x to change. It is instructive to take a look at the
formal valence states of the ions in the YBa2Cu3O6+x unit cell. There is one
Y3+ ion, two Ba2+ ions, three Cu2+ ions and (6 + x) O2− ions. If all the
valences are added together, we are left with 1 − 2x. As x increases, the
total valence decreases, and when x > 0.5 it becomes negative, meaning that
there is a deficit of electrons. The oxygen ions thus act as acceptor impuri-
ties, soaking up electrons, and adding holes to the crystal. Some of the holes
are located on the CuO2 planes, and it is these that are thought to cause the
changes in conductivity.

Each unit cell of YBa2Cu3O6+x contains two CuO2 planes, and it is be-
lieved that these play a crucial role in the conductivity and superconductivity
of the compound. The electrical resistivity of YBa2Cu3O6+x in its normal
state has been found to be highly anisotropic, being much higher for current
flow along the c-axis than in the ab plane. This can be taken as evidence
that conduction is predominantly due to motion of charge carriers within the
CuO2 planes. Experiments have shown that for x < 0.4 the compound is
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Figure 1.1: Unit cell of YBa2Cu3O6+x. Five symmetry-inequivalent oxygen sites
and two copper sites are identified. If x = 0 the O(4) and O(5) sites are both
empty. If x < 0.4 the O(4) and O(5) sites are randomly occupied and the structure
is tetragonal. If x > 0.4 the O(4) sites are preferred, and the structure becomes
orthorhombic. In the tetragonal phase the lattice parameters are a = b = 3.86 Å, c
= 11.82 Å, and there are no CuO chains. However, in the orthorhombic phase the
occupation of the O(4) sites allows CuO chains to form. The lattice parameters

become a ∼ 3.88 Å, b ∼ 3.82 Å, c ∼ 11.64 Å.

an insulator. However, for x > 0.4 it is a metal, and at low temperatures
it becomes a superconductor. The superconducting critical temperature Tc

increases with doping, reaching a maximum of 92 K at x ≈ 0.95. At higher
doping values, Tc decreases again, and for values of x > 1.6 superconductivity
ceases altogether.

Figure 1.2 shows the phase diagram of YBa2Cu3O6+x as it is currently
known. This is typical of all cuprate superconductors. In its insulating
phase, the compound is antiferromagnetic (AFM). Each Cu2+ ion has nine
d-electrons in its outer shell, giving it a total spin of S = 1/2. The Cu(2)
ions order antiferromagnetically at a Néel temperature TN that is just over
400 K at x = 0 and decreases with doping. The Cu(1) ions do not order,
and remain as free spins. At x ≈ 0.4 the antiferromagnetic phase disappears
altogether and the superconducting phase begins.

The mechanism that gives rise to the superconducting phase in the cuprates
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Figure 1.2: Phase diagram of YBa2Cu3O6+x. The thick black lines indicate the
Néel temperature TN of the antiferromagnetic phase and the critical temperature
Tc of the superconducting phase. The dashed lines give a rough indication of
where the pseudogap and Fermi liquid phases merge into the non-Fermi liquid
phase. The dotted line indicates the maximum superconducting critical tempera-

ture Tc = 92 K, which occurs at an oxygen doping of x ≈ 0.95.

is fundamentally different to that of conventional superconductors. The
BCS theory, which accounts for conventional superconductivity, revolves
around the central concept of electron pairing, in which two electrons are
able to overcome their mutual Coulomb repulsion by the exchange of a vir-
tual phonon. Since these “Cooper pairs” have integral spin, they can un-
dergo Bose-Einstein condensation into a single quantum-mechanical state,
and this is what causes superconductivity. We know that Cooper pairs are
also responsible for superconductivity in the cuprates, but there is much con-
troversy over the pairing mechanism. One fundamental difference between
the Cooper pairs in conventional and cuprate superconductors is that in con-
ventional materials the total orbital angular momentum of the two electrons
is l = 0 (an s-wave state), while in the cuprates the pairs have a total an-
gular momentum of l = 2 (a d-wave state). Theorists have tried to come up
with a pairing mechanism, based on electron-phonon coupling, which pre-
dicts a d-wave state, but have so far met with little success. Although other
theories abound, such as those which involve magnetic fluctutations or spin
and charge separation, the mechanism underlying cuprate superconductivity
remains controversial.

Above the superconducting critical temperature Tc, YBa2Cu3O6+x enters
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its “normal” metallic phase. However, the properties of this phase are not at
all ordinary. In fact they are even more exceptional than those of the super-
conducting phase, and their understanding requires the creation of radically
new physical concepts.

In the overdoped region of the phase diagram, i.e. that in which x is
much larger than the optimum required to maximise Tc, the behaviour of the
compound can be described using Landau-Fermi liquid theory. This involves
the treatment of conduction electrons, not as individual particles, but as a
correlated sea in which local disturbances can form. These disturbances are
known as “quasiparticles”. One of the basic assumptions made in much of
condensed matter theory is that the interactions between electrons are weak,
allowing them to be treated independently. However, in many real systems,
including the cuprates, the interactions are strong enough that they can’t be
ignored. Landau-Fermi liquid theory allows this to be taken into account, by
modelling the properties of metals on the residual weak interactions between
quasiparticles.

Although Landau-Fermi liquid theory describes part of the phase diagram
well, it cannot account for the behaviour of the metallic phase at lower oxygen
doping. In this region of the phase diagram the temperature dependence of
each of the compound’s transport properties (such as resistivity and thermal
conductivity) follows a simple, but unusual power law. This behaviour cannot
be explained using the concepts of independent electrons or quasiparticles,
and in fact the distinction between electrons and holes themselves becomes
blurred. There are no clear boundaries between the Fermi liquid and non-
Fermi liquid regions of the phase diagram, and these just merge into each
other gradually.

Finally, in the underdoped region of the phase diagram, i.e. below the
optimum doping required to maximise Tc, even more unusual behaviour oc-
curs. Below a certain characteristic temperature Tp, which lies above Tc, but
depends on the property being measured, the properties of the compound
undergo a change in behaviour that is indicative of the opening of an energy
gap. This region of the phase diagram is therefore known as the “pseudo-
gap” phase. It has been investigated in a number of cuprate materials, and
there is some evidence that, as in the non-Fermi liquid region of the phase
diagram, the distinction between electrons and holes is somewhat blurred.
Interestingly, measurements of the size of the pseudogap using angle-resolved
photoemission spectroscopy show that it goes to zero in four directions, giv-
ing it the same symmetry as the energy gap in the d-wave superconducting
phase. This could be a vital clue as to the origins of cuprate superconduc-
tivity.

A large number of theories have been put forward in attempts to ac-
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count for the behaviour of the cuprates. Among them are ideas such as
spin-charge separation, antiferromagnetic fluctuations and dynamic spin and
charge stripes. However, none of these theories are able to account for the
unusual properties found in all regions of the cuprate phase diagrams. Much
work is still to be done to investigate the properties of the different regions,
to confirm or refute existing theories and to produce new ideas to explain
the behaviour observed.

1.3 Suppression of superconductivity by pra-

seodymium

One way to investigate the unusual properties of cuprate materials is to study
a mechanism that destroys rather than creates superconductivity. Such a
mechanism is provided by the gradual substitution of praseodymium into
YBa2Cu3O7 to form Y1−zPrzBa2Cu3O7. As the Pr content increases, the
superconducting critical temperature falls, and for values of z greater than
≈ 0.55 the compound doesn’t superconduct at all (a review of the properties
of Y1−zPrzBa2Cu3O7 has been written by Radousky [3]). This is surprising
because the substitution of other rare-earth elements for yttrium does little
to alter the critical temperature.

To gain an understanding of why praseodymium has such a drastic ef-
fect on superconductivity, much research has focussed on the fully substi-
tuted compound PrBa2Cu3O6+x. Its magnetic and electronic properties have
been studied extensively, and a comprehensive review has been written by
Boothroyd [4]. I will now provide a short summary of the main points.

1.3.1 The magnetic structure of PrBa2Cu3O6+x

The crystallographic and magnetic structure of PrBa2Cu3O6+x have been
thoroughly characterised by neutron diffraction over a range of oxygen dop-
ing. The crystallographic unit cell of PrBa2Cu3O6+x is identical in appear-
ance to that of YBa2Cu3O6+x (see Figure 1.1), except that the Y3+ ion is
replaced by Pr3+. A tetragonal to orthorhombic structural transition1 occurs
at an oxygen concentration of x ≈ 0.6, but there is no superconductivity in
the orthorhombic phase. The compound remains semiconducting across the
whole range of oxygen doping from x = 0 to x = 1.

1In the tetragonal phase (x < 0.6) the lattice parameters are a = b = 3.91 Å, c =
11.82 Å, while in the orthorhombic phase (x > 0.6) they are a = 3.93 Å, b = 3.88 Å, c =
11.72 Å.



1.3. Suppression of superconductivity by praseodymium 7

The magnetic properties of PrBa2Cu3O6+x are similar to those of un-
derdoped YBa2Cu3O6+x. In both compounds the Cu2+ ions on the Cu(2)
sites order antiferromagnetically at a temperature TN close to room tem-
perature. However, a major difference between the rare-earth cuprates and
YBa2Cu3O6+x is that antiferromagnetic ordering of the rare-earth sublattice
also occurs at much lower temperatures. In most rare-earth cuprates this
ordering coexists with superconductivity, but in PrBa2Cu3O6+x the ordering
of the Pr sublattice occurs at a temperature an order of magnitude larger
than in any of the other rare-earth cuprates, and superconductivity is absent
at all levels of oxygen doping.

The phase diagram of PrBa2Cu3O6+x is shown in Figure 1.3. At x = 0,
antiferromagnetic ordering of the Cu ions occurs at TN ≈ 330 K. TN decreases
with oxygen doping, reaching ∼ 270 K at x = 1. The region of the phase
diagram in which only the Cu spins are ordered is called the AFI phase. At
a lower temperature TPr the Pr sublattice also orders antiferromagnetically.
At x = 0, TPr = 10.5 K, and this increases with doping to TPr = 17 K at
x = 1. An important feature of the magnetic structure of PrBa2Cu3O6+x is
that the ordering of the Pr sublattice is accompanied by a reorientation of
the Cu spins. This part of the phase diagram is known as the AFIII phase2,
and it has two parts: an incommensurate phase, known as AFIII(i), which
occurs over a temperature range T2 < T < TPr, and a commensurate phase,
known as AFIII(ii), which exists below T2. At x = 0.93, T2 ≈ 12 K.

The magnetic structure of PrBa2Cu3O6+x in each of the phases AFI,
AFIII(i) and AFIII(ii) is illustrated in Figure 1.4. In the AFI phase the
Cu spins form a collinear arrangement in which nearest neighbours point in
opposite directions. This causes the magnetic unit cell to be doubled along
the a and b directions with respect to the crystallographic unit cell. The
AFIII phase is more complex. The Pr spins are oriented at an angle of
θ ≈ 45◦ to the c-axis, and the Cu spins rotate in the ab plane through an
angle of φ ≈ 20◦ as indicated in the diagrams. In the AFIII(i) phase, where
both the Pr and Cu magnetic structures are incommensurate, the Pr spins
reverse direction along the a and b directions, but do not reverse along the c
direction, so the magnetic unit cell is no larger than it is in the AFI phase.
Over a period of ∼ 600 Å the Pr spins rotate in the ac plane giving rise to
either cycloids (wavevector along a direction) or spirals (wavevector along b

2In certain crystals a phase known as AFII appears at some temperature below TN.
However, there is strong evidence that it is associated with the presence of impurities
such as Al3+ which substitute onto the Cu(1) or Ba sites, causing a disruption of the
CuO chains, and altering the Cu magnetic structure. The AFIII phase is not observed in
crystals that exhibit the AFII phase.
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Figure 1.3: Phase diagram of PrBa2Cu3O6+x. The dashed lines give an approx-
imate indication of the temperatures TN and TPr at which the Cu and Pr spins
order respectively. In the AFI phase the Cu spins form a collinear structure, but
in the AFIII phase the ordering of the Pr spins is accompanied by a reorientation

of the Cu spins to a non-collinear structure. The y-axis is not to scale.

direction)3, while the Cu spins perform harmonic oscillations in the ab plane.
In the commensurate AFIII(ii) phase the Pr spins reverse direction along all
three crystal axes, causing the magnetic unit cell to be doubled along the a, b
and c directions with respect to the crystallographic unit cell. The directions
of the Cu spin twists follow the pattern made by the Pr spins, as shown in
Figure 1.4(c).

1.3.2 Magnetic excitations in PrBa2Cu3O6+x

To gain a detailed understanding of the magnetic exchange interactions that
give rise to the magnetic structures described above, it is important to study
the magnetic excitations of the system. In a simple picture, these can be sep-
arated into two categories: local excitations of the Pr 4f electrons under the
influence of the crystalline electric field (CEF), and highly dispersive, anti-
ferromagnetic spin-wave excitations of the Cu sublattice. But the high value
of TPr, compared to the ordering temperature of the rare-earth sublattice in
other cuprates, indicates that the magnetic coupling between neighbouring
Pr ions is strong, and this creates dispersion in the Pr crystal field exci-

3It is impossible to distinguish between cycloids and spirals due to structural/magnetic
twinning in the available crystals.
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Figure 1.4: Magnetic structure of PrBa2Cu3O6+x. The magnetic unit cell is shown
for each magnetic phase. In (a) and (b) the magnetic cell is twice the crystallo-
graphic cell along the a and b directions. In (c) the magnetic cell is doubled along
all three directions. In the AFIII(i) and AFIII(ii) phases the Pr spins are oriented
at an angle of θ ≈ 45◦ to the c-axis, while the Cu spins are rotated by an angle of

φ ≈ 20◦ in the ab plane.
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tations. The correlation between the antiferromagnetic ordering of the Pr
sublattice and the reorientation of the Cu spins at TPr also suggests strong
Pr-Cu coupling. This indicates that the magnetic excitations of the Pr and
Cu sublattices are not entirely independent.

The exchange constants between the different magnetic ions can be de-
duced from measurements of the dispersion of the magnetic excitations. Mea-
surements of the exchange constants between the Cu ions in the CuO2 layers
can be used to make quantitative comparisons between the properties of
YBa2Cu3O6+x, RBa2Cu3O6+x (where R is a rare-earth) and PrBa2Cu3O6+x,
and since the Cu superexchange mechanism is mediated by the oxygen ions,
we can also use the Cu exchange constants to quantify the effects of oxygen
doping.

The most suitable technique for measuring the dispersion of the mag-
netic excitations is inelastic neutron scattering. This requires sizeable, high-
quality, single crystals, which have only become available in recent years. The
dispersion relations of the Cu spin-waves and the low energy crystal field ex-
citations of the Pr ions in oxygen-deficient PrBa2Cu3O6+x (x ≈ 0.2) have now
been characterised and successfully modelled using a pseudo-dipolar coupling
between the Pr and Cu ions [5]. The authors found that the dispersion of
the low energy Pr excitations was significantly affected by coupling to the Cu
spin-waves at the Brillouin zone centre. However, away from the zone centre
the energy scales of the Cu and Pr excitations were so different that they
could be considered independent. Values for the principal exchange constants
were determined from the experimental data and the fitted parameters of the
model. These showed that (i) while the intralayer Cu-Cu exchange J‖ (see
Figure 1.5) was similar in YBa2Cu3O6.2 and PrBa2Cu3O6.2, the interlayer
Cu-Cu exchange J⊥ was significantly lower in PrBa2Cu3O6.2, (ii) the Pr-Pr
exchange was large compared to R-R exchange in RBa2Cu3O6.2, and (iii)
the Cu-Pr exchange was large enough to significantly enhance the ordering
temperature TPr of the Pr sublattice, as well as causing coupling between the
low energy excitations of the Pr and Cu sublattices.

These measurements provided a useful comparison of the properties of
PrBa2Cu3O6.2, YBa2Cu3O6.2 and other oxygen-deficient rare-earth cuprates,
but to quantify the effects of oxygen doping in PrBa2Cu3O6+x, a repeat study
was required using an oxidised crystal. This work is described in this thesis.

1.3.3 Phonons in PrBa2Cu3O6+x

Besides investigating the magnetic properties of PrBa2Cu3O6+x, it is also in-
teresting to study the phonon modes and compare these with similar modes
in YBa2Cu3O6+x. In general, phonon spectra in high temperature supercon-
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Figure 1.5: Cu-Cu exhange constants between the CuO2 layers in PrBa2Cu3O6+x.
J‖ is the intralayer exhange constant, and J⊥ is the interlayer exhange constant.

ductors tend to be softer, i.e. they occur at lower frequencies, than those
of non-superconducting reference systems (a review has been written by Re-
ichardt [6]), so it would be interesting to check this in PrBa2Cu3O6+x.

An attempt has been made to model the phonon dispersion curves in
YBa2Cu3O6+x using a “common interaction potential”, based primarily on
ionic bonding [7]. This has met with a certain degree of success, but dis-
crepancies between the measured and calculated dispersion curves suggest
that electron-phonon coupling and covalent bonding may also be important.
Application of a similar model to the phonon modes in PrBa2Cu3O6+x might
provide clues relating to the absence of superconductivity.

Measurements of phonon dispersion relations can be done by inelastic
neutron scattering, but large single crystals are required, so it is only in recent
years that this has become possible in PrBa2Cu3O6+x. In this thesis I will
describe measurements of the phonon dispersion curves in oxygen-deficient
PrBa2Cu3O6+x (x ≈ 0.2).

1.3.4 Theories for superconductivity suppression

Several theories have been put forward to explain the absence of supercon-
ductivity in PrBa2Cu3O6+x. These can be summarised as follows:

Hole filling

Since the Y ion in YBa2Cu3O6+x has an ionisation state of +3, we expect
to find Pr3+ ions in PrBa2Cu3O6+x. However, if, in reality, the Pr ions have
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an ionisation state of +4, this would mean that an extra electron would be
placed on the CuO2 planes, neutralising any doped holes, and suppressing
both superconductivity and normal state conductivity. This hypothesis is
referred to as “hole filling”. It has been largely refuted by experimental
measurements of the magnetic susceptibility and the crystal field excitations
of the compound, which show the Pr ionisation state to be predominantly
+3 [3]. However, an alternative possibility is that Pr3+ ions on the Ba2+ site
could cause hole filling.

Hole localisation

Currently, the most influential model for the suppression of superconductivity
in PrBa2Cu3O6+x is that of Fehrenbacher and Rice [8]. They have proposed
a hybrid state which contains stable Pr3+ as well as an intermediate valence
Pr(IV) state consisting of a linear combination of Pr4+ and Pr3+L states,
where L denotes a ligand4 hole in the neighbouring O 2p orbitals.

In YBa2Cu3O6+x and other RBa2Cu3O6+x compounds the Cu 3d orbitals
hybridise5 with the O 2p orbitals, giving rise to a conduction band. However,
the proposition of Fehrenbacher and Rice is that in PrBa2Cu3O6+x the Pr
4f orbitals hybridise with the O 2p orbitals. This prevents the Cu and O
orbitals from overlapping, which means that any holes on the CuO2 planes
become localised, causing the compound to become an insulator.

According to the model, the probability of a Pr ion being in the Pr4+ state
is ≈ 0.2, so the average charge on each Pr ion is ≈ +3.2. This provides a
good explanation for why measurements of the magnetisation and the crystal
field levels indicate an ionisation state of +3 for the Pr ion.

Hybridisation of the Pr and O orbitals can also mediate superexchange
between neighbouring Pr atoms, and this could be partially responsible for
the high TPr value observed in PrBa2Cu3O6+x. Evidence for Pr-O superex-
change is provided by the observed variation of TPr with oxygen doping. In
other RBa2Cu3O6+x compounds TR shows hardly any change with oxygen
concentration.

4Ligand ions are the negatively charged ions that surround a positively charged 3d
transition metal or 4f rare-earth ion in an oxide or fluoride compound. They give rise to
the crystalline electric field at the site of the positive ion, and there is generally a small
amount of electron sharing between them and the positive ion, which is ignored in crystal
field theory.

5Hybridisation occurs when the orbitals of neighbouring atoms overlap, so that electron
sharing can occur.
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Pair breaking

The third possibility is that magnetic coupling between the Pr spins and the
spins of the superconducting quasiparticles destroys the attractive interac-
tion that allows the Cooper pairs to form. This phenomenon is known as
“pair breaking” [9]. In conventional superconductors it occurs when magnetic
impurity ions are present. However, in high temperature superconducting
cuprates the rare-earth ions are spatially separated from the CuO2 layers in
which the superconductivity is thought to occur, so it is not clear whether a
strong coupling exists between the rare-earth moment and the quasiparticle
spins.

1.4 Unusual magnetic properties of PrO2

The extensive literature on PrBa2Cu3O6+x provides plenty of evidence that
the properties of the compound are not easy to understand. This is due
in part to the complex nature of the interactions between all the different
atoms. A helpful way of simplifying the problem is to study a compound
which contains only a subset of these atoms, to see how they interact in
isolation.

One such compound is PrO2. This crystallises in the cubic fluorite struc-
ture, so each Pr ion is surrounded by a cube of eight oxygen ions (see Figure
1.6). Since the local environment of the Pr ion is very similar to that in
PrBa2Cu3O6+x, one might expect the two compounds to have some common
properties.

1.4.1 The magnetic structure of PrO2

An early neutron scattering study on PrO2 by Kern et al. [10] suggested type-
I antiferromagnetic ordering6 below a Néel temperature TN = 14 K. However,
due to the likely existence, under ambient conditions, of symmetry-equivalent
magnetic domains, the data does not allow us to distinguish between single-
q, double-q and triple-q type-I structures such as those depicted in Figure
1.7. This is because they all give rise to the same magnetic Bragg intensities.

The ordered moment of the Pr ion was found to be µ = 0.6 ± 0.1µB.
The ground state multiplet of the Pr4+ 4f 1 configuration within the Russell-
Saunders coupling scheme is 2F5/2 with J = 5/2, g = 6/7. In the cubic crystal
field provided by the oxygen ions this multiplet splits into a Γ8 quartet and

6A type-I AFM structure has the same fcc unit cell as the crystallographic structure.
The ordering wavevector is q = 2π

a (100), where a is the lattice parameter.
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Figure 1.6: (a) The unit cell of PrO2 at room temperature. The large blue spheres
are praseodymium ions and the small red spheres are oxygen ions. The lattice
parameter is a = 5.392 Å. (b) By plotting two adjacent unit cells we can see that

each Pr ion is surrounded by a cube of eight oxygen ions.

single-q double-q triple-q

Figure 1.7: Transverse multi-q magnetic structures for PrO2. The spheres are Pr
ions (the oxygen ions are not shown in this diagram). Transverse structures have
spins perpendicular to the ordering wavevectors. Longitudinal structures are ruled
out by comparison of their structure factors with the measured Bragg intensities.

a Γ7 doublet. Susceptibility measurements [11, 12] and point charge calcula-
tions indicate that Γ8 is the ground state, although this cannot be inferred
directly from the neutron scattering measurements. But a Γ8 ground state
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would lead to ordered moments of 1.59µB, 1.41µB or 1.29µB for single-q,
double-q and triple-q structures respectively. All these values are signifi-
cantly larger than the observed moment of 0.6 ± 0.1µB. Since no evidence
of an external7 lattice distortion had been found in powder diffraction ex-
periments either with neutrons or x-rays, Kern et al. [10] proposed that a
dynamic Jahn-Teller effect would account for the small moment by lifting
the degeneracy of the quartet via a quadrupole interaction.

In this thesis I present new measurements of the crystallographic and
magnetic structure of PrO2. These provide new insight into the nature of
the magnetic interactions in the compound, and help to explain the small
value of the Pr moment.

1.4.2 Controversy over the ground state of PrO2

For many years the electronic ground state of PrO2 has been controversial.
The traditional picture of the Pr4+ ion with a single, localised 4f electron has
been challenged by core-level x-ray photoemission and absorption spectrosp-
copies, which have been interpreted differently by different authors. Some
have suggested a ground state of mixed valence8, in which the Pr 4f electrons
exist in a mixture of localised 4f 1 and 4f 2L states, where L denotes a ligand
hole in the oxygen 2p valence band [14, 15, 16, 17], such that the average
number of electrons per Pr ion is ∼ 1.6. Others have proposed a single Pr
4f electron in a localised 4f 1 configuration, but with hybridised, extended
states of f symmetry in the oxygen 2p valence band [18, 19, 20, 21]. Both
interpretations suggest a degree of covalent bonding, and both are in general
agreement with band structure calculations which predict an average of 1.58
electrons per Pr ion [22]. However, the character of the 4f states is perceived
quite differently in the two pictures. The mixed valence argument visualises
the number of electrons per Pr ion as fluctuating between 1 and 2, so this
averages to ∼ 1.6 over time. The other argument suggests that the number
of electrons localised on each Pr ion is 1, but when averaged over all space,
the number of 4f electrons per Pr ion comes to ∼ 1.6 due to the hybridised,
extended states in the oxygen 2p valence band.

7An external lattice distortion is one in which the shape of the whole unit cell is altered.
An internal distortion is one in which the basis atoms displace from their original positions,
but the overall shape and size of the unit cell are unchanged.

8The terms “mixed valence”, “fluctuating valence” and “intermediate valence” are all
used to describe the same phenomenon, in which the wavefunction of the 4f electrons
consists of a linear combination of two ionisation states of the rare-earth ion, e.g. +3
(4f2) and +4 (4f1) in the case of Pr. A review of mixed valence compounds has been
given by Varma [13].
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Measurements of the excitation spectrum of PrO2 presented in this thesis
help to resolve the controversy between the two pictures.

1.5 Scope of this thesis

The purpose of the experimental research presented in this thesis is to provide
a contribution to the existing bodies of data in the fields of praseodymium
suppression of superconductivity and magnetic properties of rare-earth ox-
ides.

It is hoped that the measurements of magnetic and phonon excitations in
single crystal PrBa2Cu3O6+x will be used to help refine existing models and
to provide evidence when testing the predictions of new theories.

The work presented on PrO2 aims to improve our understanding of the
crystallographic structure of the compound, its ground state and excitation
spectrum, its magnetic structure and its bulk properties. It is hoped that
the results will be of some relevance to the ongoing problem of the suppres-
sion of superconductivity by praseodymium, and thus to the search for the
mechanism of high temperature superconductivity.



Chapter 2

Neutron Scattering Techniques

Neutron scattering is a popular and versatile technique for the study of con-
densed matter. Diffraction, or elastic scattering, can be used to determine
the structure and magnetic ordering in crystalline solids, while inelastic scat-
tering can be used to probe vibrational and magnetic excitations.

For the research described in this thesis, neutrons were used in preference
to x-rays. There were a number of reasons for this. Firstly, neutrons scatter
directly from the atomic nuclei, via the nuclear strong force, whereas x-rays
scatter from the charge clouds surrounding the nuclei, via the electromagnetic
interaction. This means that the strength with which an atom scatters x-
rays depends on the number of electrons it possesses, whereas the strength
with which it scatters neutrons depends on its nuclear scattering length,
a parameter which varies randomly across the periodic table. The nuclear
scattering length is independent of ionisation state, so neutron scattering is
extremely useful in the study of ionic solids, especially those containing light
elements. Secondly, neutrons possess an intrinsic magnetic moment which
causes them to scatter from the spins of unpaired electrons. This allows
them to be used as a probe of magnetic structure and excitations. Finally,
neutrons interact with matter much more weakly than x-rays, so while x-rays
penetrate only the surface layer of a sample, neutrons penetrate to a depth
of several centimetres, allowing the bulk of the sample to be probed.

2.1 Neutron sources

High flux neutron beams can be obtained either from nuclear reactors or
from spallation sources. In a nuclear reactor the process of nuclear fission

17
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provides a continuous flux of neutrons from the reactor core. However, a
spallation source produces discrete pulses of neutrons when proton pulses
from a synchotron are smashed into a heavy metal target1. Both types of
source use moderators2 to cool the neutrons before they are channelled into
beams for experimental use. Spallation sources tend to have a higher peak
flux than reactor sources, but because they are pulsed, the mean flux is lower.

2.2 Instruments and equipment

A large variety of instruments and equipment has been developed for neu-
tron scattering at reactors and spallation sources. Instrument operation and
data collection are computer-controlled, and the specifications of individual
instruments are complex. Here I shall give a few brief, general descriptions
of the instrument types used for the research presented in this thesis.

2.2.1 Single crystal diffractometers

Single crystal diffraction is used for accurate crystallographic and magnetic
structure determination. The aim is to measure the intensities of as many
Bragg reflections as possible to enable the structure to be identified without
ambiguity. Since crystals are often small, a high intensity neutron beam is
required, and this means that most single crystal diffraction is performed
at reactor sources, using a monochromatic incident beam and movable de-
tector. Most diffractometers adopt either the “double-axis” or “four-circle”
configuration.

Figure 2.1 shows the double-axis configuration. A single neutron wave-
length is selected by Bragg reflections from the monochromating crystal (this
is usually pyrolytic graphite or copper). The beam then strikes the sample

1The principle of a spallation source is as follows: H− ions are created by an electrical
discharge in hydrogen gas. These are then accelerated in a linear accelerator, before being
passed through a thin layer of aluminium oxide foil which strips off their electrons. The
resulting protons are injected into a synchotron, where they are accelerated before being
released as a pulse. Since the heavy elements in the metal target contain a large ratio
of neutrons to protons, the impact of the proton pulse causes a burst of neutrons to be
released.

2Moderation is the process in which the very energetic neutrons that leave the reac-
tor core are passed through a medium (moderator), maintained at a certain temperature,
which cools them to a usuable energy range. A hot graphite moderator provides neu-
trons with a characteristic energy range of 100–500 meV, while water (H2O or D2O) at
room temperature produces “thermal” neutrons with an energy range of 5–100 meV. Cold
neutrons are obtained with a liquid hydrogen (or deuterium) moderator, which provides
neutrons with an energy range of 0.1–10 meV.
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crystal, and if the Bragg condition is satisfied, the neutrons scatter through
an angle 2θS, where θS is the Bragg angle. The scattered beam is then col-
lected by a detector. In order to satisfy the Bragg condition it is necessary
to rotate the crystal to the correct orientation. The entire sample platform
on which the crystal is mounted can be rotated through an angle ω about
its vertical axis to achieve this. In order to detect the scattered beam, the
detector must be rotated through the scattering angle 2θS, in an arc centred
on the crystal.

Neutron source

Sample

Monochromator

Detector

w

q2

q2

ki

kf

M

S

Figure 2.1: Double-axis diffractometer. The incident neutron beam is monochro-
mated before hitting the sample. Bragg reflections from the sample crystal can
be located by rotating the crystal about its axis (ω) and moving the detector in
an arc (2θS) centred on the crystal. ki and kf are the wavevectors of the incident
and scattered neutron beams respectively, and θM is the Bragg angle of the chosen

monochromator reflection.

The main limitation of the double axis configuration is that the sample
can only be rotated about its vertical axis, so the volume of reciprocal space
that can be accessed is restricted. It is also often the case that the detector
can only move within the horizontal plane containing the incident beam (the
scattering plane). This means that the crystal must be aligned vertically such
that certain desired symmetry directions lie within the plane. A goniometer
built into the sample platform allows the crystal to be tipped in two mutually
perpendicular directions to achieve this.

The four-circle configuration is identical to the double-axis configuration,
except that an addition is made to the sample platform, which allows the
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crystal to be positioned in any desired orientation, giving access to a much
larger volume of reciprocal space. The most popular such crystal orienter
is the Eulerian cradle (see Figure 2.2). The crystal is mounted on a spike
which can rotate about the circumference of the cradle (the χ-circle). The
spike can also rotate through an angle φ about its axis, and the whole cradle
can rotate with the sample platform through angle ω about its vertical axis.
The detector in a four-circle diffractometer can usually be moved out of the
scattering plane, but due to the versatility of the Eulerian cradle this is not
absolutely necessary. In fact, to ease data analysis, the detector is usually
kept within the scattering plane3, and to avoid obstruction of the neutron
beams by the cradle’s χ-circle, the “bisecting setting” is often used, where ω
is set equal to the Bragg angle θS (see Figure 2.2(c)).

A four-circle diffractometer is ideal for crystal structure determination
under ambient conditions or over a range of temperatures. However, if an
experiment requires the use of bulky sample environment equipment such as
a cryomagnet, the Eulerian cradle must be dispensed with, and the simpler
double-axis configuration used.

2.2.2 Triple axis spectrometers

Triple axis spectrometers are often used for inelastic scattering, to probe
excitations such as phonons and spin-waves, but they can also be used for
elastic scattering when high resolution is required.

A triple-axis spectrometer consists of three sections (see Figure 2.3), a
monochromator crystal, a sample platform and an analyser crystal. The anal-
yser improves the resolution of the scattered beam and reduces the amount of
background scattering, e.g. from sample environment equipment, that gets
into the detector.

Inelastic scattering experiments measure the difference in energy and
wavevector between the incident and scattered neutrons. This allows the
energy and momentum imparted to the sample to be deduced. When con-
figuring a triple-axis spectrometer for inelastic scattering, the experimenter
chooses whether to keep the incident wavevector constant while varying the
scattered wavevector, or vice versa. If the incident wavevector is kept con-
stant, then the analyser must move through the scattering angle 2θS to col-
lect the desired scattered beam. The detector then rotates through angle 2θA

about the analyser to satisfy the analyser’s Bragg condition. If the scattered
wavevector is kept constant, then the entire spectrometer must be rotated

3If the detector is kept within the scattering plane, the Lorentz factor used to correct
Bragg reflection intensities is always 1/sin 2θS (see Appendix A).
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Figure 2.2: Eulerian cradle. (a) The crystal can be rotated about its axis (φ) and
around the circumference of the cradle (χ). The whole cradle can be rotated about
its axis (ω). (b) Side view: the detector can be angled out of the scattering plane
(ν). (c) Plan view: the cradle is usually placed in the bisecting setting (ω = θS)

to avoid obstructing the incident and scattered beams.

about the monochromating crystal in order to vary the incident wavevector.
This configuration is the one most often used for the following reason. The
neutron scattering cross section (see Section 2.3.1) for inelastic scattering can
be expressed in its most general form as

d2σ

dΩ dE
∝ kf

ki

S(Q, ω), (2.1)

where ki and kf are the magnitudes of the wavevectors of the incident and
scattered neutron beams respectively and S(Q, ω) is known as the response
function (ω is the angular frequency of the excitation here, rather than the
rotation angle of the crystal, and Q is the neutron scattering wavevector
(see Section 2.3.2)). The scattering cross section is proportional to the ratio
of scattered neutron intensity (measured by the detector) to incident beam
intensity (measured by a low efficiency beam monitor placed in the incident
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Figure 2.3: Triple-axis spectrometer. ki and kf are the wavevectors of the incident
and scattered neutron beams respectively. For elastic scattering the instrument
is constrained such that ki = kf . θM and θA are the Bragg angles of the chosen
monochromator and analyser reflections respectively. θS is the Bragg angle of the
sample reflection, and ω is the rotation angle of the sample about its vertical axis.

beam). The monitor efficiency is proportional to 1/ki, so the relationship
between cross section and scattered-to-incident beam ratio is actually

d2σ

dΩ dE
∝ detector counts

ki × monitor counts
∝ kf

ki

S(Q, ω). (2.2)

The factor of ki cancels out. Hence, if kf is kept constant the ratio of detector
counts to monitor counts is proportional to the response function S(Q, ω).

2.2.3 Powder diffractometers

Powder diffraction is a useful tool for the identification of previously un-
known structures, and for the refinement of structures in compounds that
are difficult to grow as large single crystals.
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There are two types of powder diffractometer: constant wavelength and
constant angle. The constant wavelength technique requires a monochromat-
ing crystal to select a single neutron wavelength from the incoming beam,
and is usually used at reactors. After striking the sample, the neutrons are
diffracted into rings. These are detected by an array of detectors that covers
a wide range of scattering angles. In contrast, the constant angle technique
utilises the whole of the polychromatic, “white” neutron beam, and is usually
used at spallation sources. Detectors are placed at specific, fixed angles, and
time of flight analysis is used to convert the neutron arrival time to lattice
spacing of the sample.

A schematic diagram of a constant angle powder diffractometer is shown
in Figure 2.4. Several banks of detectors are employed to optimise different
aspects of the diffraction pattern. Due to the wavelength distribution of the
neutron pulse, Bragg reflections at large lattice spacings can only be detected
at small scattering angles. However, the resolution of the instrument is best
at large scattering angles. Low efficiency beam monitors are placed before
and after the sample, to allow normalisation of the scattered intensity to the
incident flux.

Neutron source
Incident

beam
monitor

Transmitted
beam

monitorSample

Detector banks

White
neutron
beam

Figure 2.4: Constant angle powder diffractometer.

2.2.4 Chopper spectrometers

Chopper spectrometers are used to probe excitations such as spin-waves and
phonons, using inelastic scattering. A chopper is employed to select a single
incident neutron energy from the white beam, and time of flight analysis is
used to deduce the energy transferred to the sample from the arrival times
of the neutrons at the detectors.

A schematic diagram of a chopper spectrometer, typical of those used at
pulsed sources, is shown in Figure 2.5. A Fermi chopper is used to monochro-
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mate the incident beam. This consists of a rotating drum, synchronised to
the neutron pulse, which is covered with strips that alternate between a ma-
terial that is transparent to neutrons (e.g. aluminium) and a material that
is highly absorbing (e.g. boron). The strips lie parallel to the direction of
the beam, but are curved slightly to optimise transmission. Only a narrow
band of neutrons with energies close to the desired energy can pass through
the chopper, since faster or slower neutrons hit the absorbing strips. After
passing through the chopper, the monochromatic neutron beam strikes the
sample, and is scattered into the detectors. The detector banks are posi-
tioned over a wide range of angles to allow the angular dependence of the
scattered intensity to be measured. This is necessary, for example to distin-
guish between magnetic and nuclear scattering.

Neutron source
Incident

beam
monitor

Transmitted
beam

monitorSample

Detector banks

White
neutron
beam

Sample
monitor

Fermi Chopper
(Monochromates beam)

Figure 2.5: Chopper spectrometer.

2.2.5 Filters

Use of a monochromator crystal requires the use of a filter to remove sec-
ond and higher orders of diffraction which contaminate the monochromatic
beam. Popular types of filter are made from polycrystalline beryllium or sin-
gle crystal graphite, both of which scatter neutrons strongly. Beryllium has
a minimum lattice spacing of d ≈ 2 Å, so neutrons with wavelengths λ > 2d
cannot undergo Bragg scattering, and pass straight through the filter. This
gives rise to a step transmission function4. A graphite filter, on the other
hand, has a transmission function which dips at the wavelengths correspond-
ing to its Bragg reflections. This means that if it is set up to deflect second
order scattering from the monochromator, it automatically deflects all higher
orders as well.

4Note that a Beryllium filter must be cooled with liquid nitrogen to reduce the thermal
motion of the atoms and maximise the scattering of the unwanted neutrons.
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2.2.6 Optimisation of resolution and intensity

In neutron scattering experiments there is always a play-off between instru-
mental resolution and beam intensity.

Resolution may be improved by inserting collimators into the beam.
These consist of flat strips of absorbing material (e.g. cadmium), placed
parallel or at a small diverging angle to the beam direction. The strips soak
up any neutrons that are not moving parallel to the main beam. However,
this naturally reduces the beam intensity.

Instruments that utilise arrays of mononchromator or analyser crystals
can enhance the beam intensity by curving the array. This creates a fo-
cussing effect, increasing the beam intensity at the focal point (the sample
or detector), but at the expense of resolution.

2.2.7 Background reduction

To reduce the quantity of stray scattering that gets into the detector, and to
improve the signal to background ratio, shutters can be employed. These are
usually inserted before and after the sample stage, and before the detector.
While monitoring a strong Bragg reflection, the shutter jaws are tightened
until the intensity begins to drop. After tightening the shutters, it is a good
idea to take a neutron photograph with a polaroid camera to make sure that
the crystal is in the middle of the beam. The crystal should also be rotated
to ensure that it doesn’t precess outside the shutter window.

2.2.8 Detectors

One of the main advantages of neutrons as a probe of condensed matter sys-
tems is that they interact weakly with matter. However, this means that
they are also difficult to detect. Since a neutron has no charge, it cannot
be detected in an ionisation chamber. Instead, it must be made to undergo
a reaction which produces either secondary charged particles, which can be
detected by ionisation, or gamma rays, which can be detected with a scintil-
lation counter.

One of the most popular neutron detectors is the 3He gas proportional
counter. This consists of a chamber filled with 3He gas, across which a voltage
of ∼ 2 kV is applied. When a thermal neutron enters, the following reaction
takes place:

n + 3He → p + 3H + 0.77 MeV.
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After the reaction, the moving, charged products ionise the surrounding gas,
giving rise to a pulse of current. The size of the pulse is proportional to the
reaction energy, 0.77 MeV, allowing the detector electronics to distinguish
between neutrons and stray gamma rays. Finally the 3H particle decays to
produce another 3He particle and an electron.

On some instruments the detectors are arranged in an array, allowing
the positions at which the neutrons strike the array to be recorded. Such
a position-sensitive detector (psd) allows the background to be reduced to
a minimum by masking out elements that contain background or spurious
counts.

2.2.9 Sample environment

To perform neutron scattering over a range of temperature, with a magnetic
field or under other conditions, the sample must be placed inside a piece
of equipment capable of providing the required enivronment. This piece
of equipment is secured onto the sample platform of the instrument, and is
tilted or rotated with the sample. The low temperature work described in this
thesis utilised variable temperature helium cryostats or closed cycle helium
refrigerators. When a magnetic field was required, a helium cryomagnet
containing a vertical superconducting magnet was subsituted.

2.3 Concepts of Scattering Theory

Here I will give a brief introduction to some of the central concepts of neu-
tron scattering theory and quote the main formulae used in the analysis of
experimental data.

2.3.1 Neutron scattering cross section

An important concept in the field of neutron scattering is that of the scatter-
ing cross section. It is a measure of scattering probability, and is proportional
to the number of neutrons scattered. The total cross section can be considered
the probability that a neutron will undergo a collision, and is proportional
to the number of incident neutrons that are scattered. It is defined as

σ =
(total number of neutrons scattered per unit time)

Φ
(2.3)

where Φ is the flux of incident neutrons, i.e. the number per unit area per
unit time. The differential cross section can be considered the probability
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that the collision will have a certain outcome, and is proportional to the
number of neutrons that are scattered in a certain direction. It is typically
defined as

dσ

dΩ
=

(number of neutrons scattered per unit
time into solid angle dΩ in the direction

θ, φ)

Φ dΩ
(2.4)

where θ and φ are polar coordinates describing the direction of the scattered
beam (the direction of the incident beam is taken as the polar axis). The
double differential cross section can be considered the probability that the
collision will have a certain range of outcomes, and is proportional to the
number of neutrons that are scattered in a certain direction with a particular
range of energies. It is typically defined as

d2σ

dΩ dE
=

(number of neutrons scattered per unit
time into solid angle dΩ in the direction

θ, φ with final energy between E and
E + dE)

Φ dΩ dE
(2.5)

Each of these three terms is often referred to loosely as “the scattering cross
section”. The scattering cross sections for elastic, inelastic, nuclear and mag-
netic scattering processes can be derived from first principles by considering
the initial and final quantum mechanical states of the scattering system (i.e.
the crystal), and the matrix elements (or transition probabilities) between
them. This is covered rigorously in texts by Squires [23] and Lovesey [24].
In this chapter I will just quote some of the best known results and explain
how they are used in the analysis of experimental data.

2.3.2 The scattering triangle

Another useful concept in neutron scattering is the scattering triangle, which
is depicted in Figure 2.6. The scattering vector Q is defined as the vector
difference between the incident and scattered neutron wavevectors ki and kf .

2.3.3 Nuclear elastic scattering cross section

The nuclear elastic scattering cross section for a particular Bragg reflection
is given by
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Figure 2.6: The scattering triangle. ki and kf are the wavevectors of the incident
and scattered neutron, Q = ki−kf is the scattering vector, and 2θS is the scattering

angle (twice the Bragg angle).

dσ

dΩ
= N

(2π)3

V0

|FN(Q)|2 , (2.6)

where N is the number of unit cells in the crystal, V0 is the volume of the
unit cell and FN(Q) is the nuclear unit cell structure factor, given by

FN(Q) =
∑

j

b̄je
iQ.rje−Wj(Q,T ). (2.7)

The summation index j runs over all the atoms in the unit cell, b̄j is the
nuclear scattering length of the jth atom averaged over all of its isotopes,
rj is the position of the jth atom within the unit cell, and e−Wj(Q,T ) is the
Debye-Waller factor (see Section 2.3.6), which is due to the thermal motion
of the jth atom about its lattice site.

2.3.4 Magnetic elastic scattering cross section

The magnetic elastic scattering cross section for a particular Bragg reflection
is given by

dσ

dΩ
= Nm

(2π)3

V0m

(γr0

2

)2 ∑

αβ

〈(

δαβ − Q̂αQ̂β

)

F α(Q)F β(Q)
〉

, (2.8)

where Nm is the number of magnetic unit cells in the crystal, V0m is the
volume of the magnetic unit cell, γ is the gyromagnetic ratio (= 1.91), r0 is
the classical electron radius (= 2.82×10−15 m), the summation indices α and
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β run over the cartesian co-ordinates x, y and z, δαβ is the Kronecker delta,

Q is the scattering vector, Q̂α is the α-component of the unit scattering
vector, F α(Q) is the α-component of the magnetic unit cell structure factor
and 〈〉 denotes an average over all symmetry-equivalent magnetic domains.
The components of the magnetic unit cell structure factor are given by

F α(Q) =
∑

j

µα
j fj(Q)eiQ.rje−Wj(Q,T ), (2.9)

where the summation index j runs over all the magnetic atoms in the mag-
netic unit cell, µα

j is the α-component of the magnetic moment of the jth
magnetic atom, rj is the position of the jth magnetic atom within the mag-
netic unit cell, fj(Q) is the magnetic form factor of the jth atom (see Section
2.3.7), and e−Wj(Q,T ) is the Debye-Waller factor of the jth magnetic atom (see
Section 2.3.6).

(N.B. The value of the constant ( γr0

2
)2 is 72.4 mb or 7.24 fm2.)

2.3.5 Magnetic inelastic scattering cross section

In the dipole approximation (see Section 2.3.7) the magnetic inelastic scat-
tering cross section for a particular Bragg reflection is given by

d2σ

dΩ dE
=

(γr0

2

)2

f 2(Q)e−2W (Q,T ) kf

ki

S(Q, ω), (2.10)

where γ is the gyromagnetic ratio (= 1.91), r0 is the classical electron radius
(= 2.82 × 10−15 m), f(Q) is the magnetic form factor of the ion, ki and kf

are the magnitudes of the initial and final neutron wavevectors, e−2W (Q,T ) is
the Debye-Waller factor of the ion, Q is the scattering vector and S(Q, ω) is
the response function of the ion. For localised excitations with sharp energy
levels, the response function is given by

S(Q, ω) =
∑

ij

ρi | 〈j| µ̂⊥| i〉|2 δ(Ei − Ej − h̄ω), (2.11)

where | i〉 and | j〉 are the initial and final eigenfunctions of the system corre-
sponding to the eigenvalues Ei and Ej, µ̂⊥ is the component of the magnetic
moment operator perpendicular to Q, ρi is the thermal population factor of
the initial state (ρi = e−βEi

Z
where β = 1

kBT
and Z =

∑

i gie
−βEi) and h̄ω is

the energy loss of the scattered neutron. Note that this formula is only valid
for unpolarised neutrons. None of the experiments described in this thesis
used polarised neutrons.
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2.3.6 Debye-Waller factor

The Debye-Waller factor arises from thermal motion of the atoms about their
lattice sites. For the jth atom in the unit cell of a cubic crystal it is given
by e−Wj(Q,T ), where

Wj(Q, T ) =
1

2

〈

(

Q.uj(T )
)2

〉

. (2.12)

The vector uj(T ) is the thermal displacement of the jth atom from its lat-
tice site (units Å), and Q is the scattering vector (units Å−1). In Rietveld
refinement routines an alternative definition is often used:

Wj(Q, T ) =
Q2Uj(T )

2
, (2.13)

where Uj(T ) is called the thermal parameter of the jth atom (units Å2). At
low temperatures the thermal displacements of the atoms are close to zero, so
for most of the experiments described in this thesis the Debye-Waller factor
can be set equal to 1.

2.3.7 Magnetic form factor

Atomic nuclei are treated as point particles in the derivation of the nuclear
scattering cross section. This is justified, because the range of the nuclear
strong force (10−14–10−15 m) is much smaller than the wavelength of the
neutron (≈ 10−10 m for thermal neutrons), so the scattered wave is spherical.
However, the spatial extent of the electron distribution around an atom is
comparable to the neutron wavelength, so when neutrons scatter from un-
paired electron spins the scattered wave is not necessarily spherical. This
affects the derivation of the magnetic scattering cross section.

Fortunately, for 4f electrons, which reside deep within the core of the
atom, the scattering is approximately spherically symmetric, so the spatial
extent of the electron distribution can be accounted for by the introduction of
a Q-dependent scaling factor called the magnetic form factor. This technique
is known as the dipole approximation, and it allows the magnetic scattering
cross section to be expressed in a similar form to the nuclear scattering cross
section. The dipole approximation is valid when Q−1 � 〈r〉, where 〈r〉 is
the mean radius of the orbital wavefunction of the unpaired electrons. The
magnetic form factor is given by

f(Q) = J0 +
gL

gS + gL

J2, (2.14)
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where gS = 1 +
S(S + 1) − L(L + 1)

J(J + 1)
(2.15)

and gL =
1

2
+

L(L + 1) − S(S + 1)

2J(J + 1)
. (2.16)

The functions J0 and J2 are spherical Bessel functions, which can be approx-
imated by series expansion as follows:

J0 = A exp(−as2) + B exp(−bs2) + C, (2.17)

J2 = s2(A exp(−as2) + B exp(−bs2) + C), (2.18)

where s = sin θ
λ

(N.B. for elastic scattering, s = Q
4π

). The coefficients A, a, B,
b and C have been tabulated for a number of rare-earth ions [25].

2.4 Experimental techniques

In this section I will give a brief overview of some of the experimental tech-
niques that utilise the instruments, equipment and theory described above.

2.4.1 Time of flight analysis

Time of flight analysis is used for data collected on instruments that utilise a
pulsed beam. When the trajectory followed by a neutron through an instru-
ment is known, and the distance travelled is measured accurately, the time of
flight of the neutron from the start of the pulse to its arrival at the detector
bank can be converted into quantities such as lattice spacing of the sample
or energy imparted by the neutron. At reactor sources a pulsed beam can be
produced with a chopper, while at spallation sources the beam is naturally
pulsed.

For a constant angle powder diffractometer at a spallation source (see
Section 2.2.3) the lattice spacing of the sample can be obtained from the
neutron time of flight as follows. First, we note that the de Broglie wavelength
λ of a neutron is given by

λ =
h

p
=

h

mv
, (2.19)

where h is Planck’s constant, p is the neutron’s momentum, m is its mass,
and v is its velocity. We also note that



2.4. Experimental techniques 32

v =
D

t
, (2.20)

where t is the time of flight of the neutron between the spallation target and
the detector bank, and D is the total distance travelled. Substituting (2.20)
into (2.19) we have

λ =
ht

mD
. (2.21)

To reach the detector bank the neutron wavelength must satisfy the Bragg
condition

λ = 2d sin θ, (2.22)

where d is the sample lattice spacing and θ is the Bragg angle (half the
angle at which the detector is situated with respect to the incident beam).
Substituting (2.22) into (2.21) and rearranging, we arrive at

d =
h

2mD sin θ
t, (2.23)

which gives the lattice spacing in terms of the neutron time of flight.
For a chopper spectrometer (see Section 2.2.4), the energy transferred

from the neutron to the sample can be obtained from the time of flight as
follows. First, conservation of energy transferred must be

h̄ω = Ei − Ef , (2.24)

where ω is the angular frequency of the excitation created in the sample,
and Ei and Ef are the initial and final kinetic energies of the neutron. Ei is
determined by the chopper speed, while Ef is given by

Ef =
1

2
mv2, (2.25)

where v is the velocity of the scattered neutron, which can be found from
the relation

v =
D

t
. (2.26)

Substituting (2.25) and (2.26) into (2.24) we arrive at

h̄ω = Ei −
mD2

2t2
, (2.27)
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where, D and t are the distance and time of flight from the sample to the
detector bank. (Note that for a powder diffractometer, D and t are the
distance and time of flight from the target to the detector bank.)

2.4.2 Single crystal structure determination

Elastic scattering is used for crystallographic and magnetic structure deter-
mination. This can be done on single crystal or powder diffractometers. The
aim is to measure as many Bragg reflections as possible, and use their relative
intensities to deduce the locations of the atoms or spins within the unit cell.

The Bragg condition can be expressed as Q = τ , where Q is the neutron
scattering vector, and τ is a reciprocal lattice vector. A perfect crystal would
give rise to Bragg reflections of infinitessimal width, i.e. if Q were slightly
larger or smaller than τ the scattering intensity would drop to zero. However,
real crystals actually consist of a number of small crystallites that are slightly
misaligned with respect to one another (see Figure 2.7). The angular spread
of their crystal axes causes the Bragg reflections to have angular width, and
the full-width at half maximum (FWHM) is referred to as the “mosaicity”.
When measuring the intensities of a sample’s Bragg reflections the resolution
of the instrument also contributes to the angular widths of the reflections. In
order to measure the total intensity of a given Bragg reflection, it is therefore
necessary to measure the scattered neutron intensity over a small range of
angles that covers the width of the reflection. In a single crystal diffraction
experiment this is done by rotating the crystal about its vertical axis—the
angle ω on a diffractometer. The measured intensity profile is referred to as
an “ω-scan”, and the total intensity I of the Bragg reflection is obtained by
integrating across this profile.

The integrated intensity of a Bragg reflection is proportional to the scat-
tering cross section for that reflection (see Sections 2.3.3 and 2.3.4), and
therefore to the square of the nuclear or magnetic structure factor for that
reflection. However, when comparing the relative intensities of several re-
flections, a number of correction factors must be applied before a direct
comparison can be made. These are necessary to take into account real pro-
cesses, such as multiple scattering within the crystal, thermal motion of the
atoms and factors arising from the geometry of the instrument, which can
be different for different reflections.

The integrated intensity I of a general Bragg reflection (nuclear or mag-
netic) is related to its scattering cross section dσ

dΩ
as follows:

I ∝ dσ

dΩ
AETL, (2.28)
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Figure 2.7: (a) A perfect crystal gives rise to Bragg reflections of infinitessimal
width. (b) Real crystals consist of small crystallites, slightly misaligned with

respect to one another. These give the Bragg reflections angular width.

where A is the absorption factor, T is the correction factor for thermal diffuse
scattering, E is the correction factor for exctinction and L is the Lorentz
factor. Therefore, the structure factor F (Q) is related to the integrated
intensity by

|F (Q)|2 ∝ I

AETL
. (2.29)

Absorption factor

The absorption factor depends only on the thickness of the crystal, and
provided the crystal is approximately spherical, this factor remains constant
throughout an experiment.

Correction for thermal diffuse scattering

The intensity profile of a Bragg reflection measured by ω-scan is superim-
posed on a background of incoherent scattering and inelastic phonon scatter-
ing from the sample. The incoherent scattering varies slowly through recip-
rocal space, so this can be removed by background subtraction. However, the
inelastic phonon scattering, also known as thermal diffuse scattering, peaks
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at the same positions as the Bragg reflections. Correction for this generally
requires knowledge of the elastic constants of the sample, and since the cor-
rection is very small at low temperatures it will be ignored in the experiments
described in this thesis.

Correction for extinction

Extinction is a phenomenon that occurs in very good crystals, i.e. those that
have an almost perfect crystal lattice. A perfect lattice allows the Bragg
condition to be satisfied more than once by a particular neutron, so the neu-
tron may undergo more than one scattering event and miss the detector.
There are two forms of extinction. Primary extinction occurs when the crys-
tallites that make up the crystal are sufficiently large that extinction can
occur within each one. However, few crystals contain crystallites this large.
Secondary extinction occurs when a large number of small crystallites exist,
and these are misaligned with respect to one another. In such a crystal, a
neutron is likely to pass through several crystallites that are close enough in
orientation to allow it to scatter more than once. The correction factor for
secondary extinction is given by [26]

E = (1 + α + α2 + . . .)−
1

2 , (2.30)

where

α = 32π2 t̄

V 2
λg∗ |F (Q)|2

Q2
, (2.31)

where t̄ is the mean path length of the neutron for a particular Bragg reflec-
tion (this depends on the size and shape of the crystal), V is the volume of
the unit cell and g∗ is the extinction parameter (this is related to the mosaic-
ity of the crystal). Extinction can be reduced by decreasing the wavelength
of the incident neutrons or by reducing the size of the crystal.

Lorentz factor

The Lorentz factor corrects for a geometrical effect that causes different Bragg
reflections to have different angular widths. It is derived in Appendix A, but
here I will just quote it. In the case of an ω-scan, for a given reflection

L =
1

sin 2θS

, (2.32)

where θS is the Bragg angle of the reflection.
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Structure refinement routines are available for the processing of both
powder and single crystal data. These take the integrated intensities of
the Bragg reflections and correct them for the factors described above to
obtain the nuclear and magnetic structure factors. The Lorentz factor can
be calculated, but parameters such as A, E and the thermal parameters Uj

must be refined using a least squares technique. The values obtained for
these parameters often provide useful information about the structure under
investigation.

2.4.3 Measurement of dispersion relations

The dispersion relations of excitations such as phonons or spin-waves can
be measured by inelastic neutron scattering. The most common technique
is to perform a series of constant Q energy scans through the dispersion
curves at positions across the Brillouin zone. Figure 2.8(a) shows a typical
energy scan, where kf and Q are kept constant, but ki is changed to vary the
incident neutron energy. Peaks are seen in the scattered neutron intensity at
the points where the scan crosses the dispersion curves. The magnitude and
direction of Q determines whether longitudinal or transverse excitations are
created. A longitudinal excitation has displacements that are parallel to the
propagation wavevector q, whereas a transverse excitation has displacements
perpendicular to q. From the principle of conservation of momentum it can
be shown that

h̄ki = h̄kf + h̄(q + τ ) (2.33)

⇒ Q = q + τ , (2.34)

where ki and kf are the wavevectors of the incident and scattered neutron
respectively and q is the wavevector of the excitation, which has been trans-
lated back to the first Brillouin zone by the reciprocal lattice vector τ .

Conservation of momentum requires that the atoms or spins are displaced
along the direction of Q, but the wave created does not necessarily propagate
along this direction. The periodicity of the crystal allows the wavevector of
the excitation to be translated back into the first Brillouin zone, which means
that q can be in a completely different direction to Q. Thus, longitudinal
excitations can be created if q is parallel to Q, while transverse excitations
can be created if q is perpendicular to Q. Figure 2.8(b) shows a typical
scattering plane in the reciprocal space of the crystal. The Q-directions used
to excite longitudinal (red) and transverse (green) excitations are indicated.
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Figure 2.8: (a) A typical energy scan. h̄ω is the energy transferred from the neutron
to the crystal, i.e. the energy of the excitation created, and q is the wavevector of
the excitation. The incident neutron energy is varied by scanning ki while kf and Q

are kept constant. (b) If q is parallel to Q (red arrows), longitudinal excitations are
created, whereas if q is perpendicular to Q (green arrows), transverse excitations

are created.



Chapter 3

Bulk Measurement Techniques

In this chapter I describe the techniques and equipment used for the mea-
surements presented in this thesis of bulk properties such as magnetic sus-
ceptibility, heat capacity and electrical conductivity.

3.1 Magnetic susceptibility

Both AC and DC techniques have been used for the magnetic suscepti-
bility measurements described in this thesis. The DC measurements were
performed with a SQUID (Superconducting Quantum Interference Device)
magnetometer, while the AC measurements were taken with an AC suscep-
tometer. Both techniques have advantages and disadvantages. The high
sensitivity SQUID has very low noise, allowing it to be used to detect very
small changes in susceptibility. However, the equipment is easily magnetised,
making the absolute value of the susceptibility unreliable at low fields. The
AC susceptometer uses much smaller applied fields, so does not suffer from
this problem. However, it is noisier than the SQUID, so it is not so good at
measuring the susceptibility of very small samples, especially if they are an-
tiferromagnetic. AC susceptometry is a useful probe of frequency-dependent
magnetism (e.g. in spin-glasses), but this capability was not exploited for
the measurements presented in this thesis.

3.1.1 SQUID magnetometer

The SQUID magnetometer used for the measurements described here is a
Quantum Design model MPMS XL. It incorporates a helium cryostat with

38
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a base temperature of ∼ 2 K and a superconducting magnet capable of pro-
viding a vertical magnetic field of 7 T. Operation and data collection are
controlled by computer.

To make a susceptibility measurement, a magnetic field must be applied
to the sample. The field creates a net magnetisation in the sample, and
this induces currents in three sensing coils, which are coupled to a SQUID
loop. The sample is typically mounted in a plastic drinking straw, which can
be moved up and down through the coils (see Figure 3.1). A small plastic
capsule is often used to hold the sample, and this is wedged near to the
midpoint of the straw.

plastic
drinking

straw

plastic
capsule

main
coil

sensing
coils

to SQUID loop

Figure 3.1: SQUID sensing coils and sample holder.

Several techniques can be used to measure the sample magnetisation,
but the most common (and the one used for the measurements described
in this thesis) is the Reciprocating Sample Option (RSO). For this type of
measurement the sample is oscillated about the centre of the main sensing
coil, and the SQUID output is recorded as a function of sample position
(see Figure 3.2). A theoretical curve, based on the response function of the
sensing coils for a point sample, is then fitted to the data, and the amplitude
of the central peak is taken as the sample magnetisation. This technique
has two advantages over a direct SQUID measurement. Firstly, the sample
does not have to be positioned exactly at the centre of the main sensing
coil. Secondly, any signal from the straw sample holder is uniform across the
whole range of the oscillation, so the amplitude of the peak is due entirely
to the sample1.

1If a plastic capsule is used to hold the sample, and its height is smaller than the
amplitude of the oscillation, there may be a small diamagnetic contribution to the signal.
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A

Figure 3.2: Typical SQUID output, plotted as a function of sample position. The
circles represent the curve mapped out by the sample as it passes through the main
sensing coil, and the line represents the theoretical response curve of all three coils.
A is the amplitude of the central peak, which is taken as the sample magnetisation.

To obtain the molar susceptibility2, the magnetisation must be divided
by the sample mass and the applied magnetic field, then multiplied by the
molar mass of the sample.

3.1.2 AC susceptometer

The AC susceptometer consists of a coil assembly and movable sample holder,
which are mounted on a cylindrical probe designed for use with an orange
helium cryostat (see Figure 3.3). Measurements can be made over a temper-
ature range of 1.5–300 K. Operation of the equipment and data collection are
controlled by computer.

The coil assembly consists of a primary coil and two counter-wound sec-
ondary coils. The secondary coils both have the same number of turns, but
are wound in opposite directions, so that if both coils experience a constant
magnetic field, the voltage induced across the pair is approximately zero.
There may be a small imbalance due to slight differences between the coils,
but this can be eliminated from the measurement as described below. A
lockin amplifier is used to supply AC current to the primary coil. To ensure
that the current through the primary coil is not affected by the response of
the secondary coils, a current-limiting resistor (R = 1 kΩ) is connected in
series with the primary coil. A smoothing capacitor is connected in parallel

2It is conventional to express the molar susceptiblity in cgs units (emu mol−1). This
requires the applied field to be expressed in Oe (1 T = 10000 Oe).
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Figure 3.3: (a) The AC susceptometer insert for the cryostat. The flange is bolted
to the top of the cryostat, forming a vacuum seal. Stepper motors position the
sample at the centre of one of the two secondary coils. (b) Schematic diagram of
the primary and secondary coils. The two secondary coils are wound in opposite
directions. The lockin amplifier measures the voltage A − B across the secondary

coils and drives the primary coil through its AC output.

with the resistor to eliminate spikes.
The AC magnetic field provided by the primary coil creates an oscillating

magnetisation in the sample, and this induces a voltage across the secondary
coil in which it rests. A stepper motor is used to position the sample in
the top coil, and a reading of the voltage across the pair of secondary coils
is taken. The sample is then moved to the bottom coil and the voltage is
read again. By subtracting the two readings any imbalance voltage due to
differences between the two coils is eliminated, but since the coils are wound
in opposite directions the voltage induced by the sample is retained. This is
illustrated mathematically below.
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When no sample is present in either coil, the voltage induced across the
pair is the imbalance voltage VI. When the sample is positioned at the centre
of the top coil, the voltage induced across the pair is

Vtop = VI + VS, (3.1)

where VS is the voltage induced by the sample. When the sample is positioned
in the bottom coil, the voltage induced across the pair is

Vbottom = VI − VS. (3.2)

Subtracting the two readings gives

Vtop − Vbottom = 2VS. (3.3)

The voltage VS is related to the magnetic susceptibility of the sample as
follows:

VS ∝ dM

dt

∝ dM

dH

dH

dt

∝ χ
dH

dt
, (3.4)

where M is the magnetisation of the sample, H is the magnetic field supplied
by the primary coil and χ is the differential magnetic susceptibility of the
sample. The oscillating field H takes the form

H = H0 exp(jωt), (3.5)

where ω is the angular frequency of the AC voltage driving the primary coil.
Taking the time derivative, we obtain

dH

dt
= jωH0 exp(jωt) = jωH. (3.6)

Substituting (3.6) into (3.4) we obtain

VS ∝ jχωH, (3.7)

and since H is proportional to the current I through the primary coil, we
have

VS ∝ jχωI. (3.8)
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The differential susceptibility is a complex quantity, with an imaginary part
which arises through dissipative effects such as domain rotation and the mo-
tion of domain walls near a phase transition. Both the real and imaginary
parts of the susceptibility can be measured using a lockin amplifier. This
piece of equipment is capable of detecting very small oscillating signals amid
high amplitude noise if the frequency of the signal is known (see Appendix B
for a description of a lockin amplifier). By detecting signals that are in phase
with or 90◦ out of phase with the AC driving voltage, the real and imagi-
nary parts of the susceptibility can be measured. The complex differential
susceptibility is

χ = χreal + jχimag, (3.9)

so the voltage across the secondary coils is

VS ∝ −χimagωI + jχrealωI. (3.10)

This means that the signal that is in phase with the driving voltage is pro-
portional to the imaginary part of the susceptibility, while the signal that is
90◦ out of phase is proportional to the real part. The constant of propor-
tionality includes factors which are difficult to quantify, such as the winding
density and factors due to the geometry of the coils. Therefore, the abso-
lute susceptibility of the sample is obtained by measuring the response of a
paramagnetic salt of known susceptibility3, and using this to calibrate the
system. Since the voltage induced across the secondary coils is proportional
to the frequency and amplitude of the AC current through the primary coil,
the calibration must be performed under identical conditions to the sample
measurements. For the measurements presented in this thesis, a current of
5 mA at a frequency of 84.3 Hz was used. The AC gain of the lockin amplifier
was 80 dB and the time constant was 500 ms.

3.2 Heat capacity

The calorimeter used for the heat capacity measurements described in this
thesis is designed for use with an orange helium cryostat, allowing measure-
ments to be made over a temperature range of 1.5–300 K. Operation of the
equipment and data collection are controlled by computer. A non-adiabatic
technique, known as the “relaxation method” [27], is used to determine the

3The salt used to calibrate the system for the experiments described in this thesis was
Gd2(SO4)3.8H2O. The Gd3+ ion has J = S = 7/2 and gJ = 2.
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heat capacity of the sample from its temperature relaxation rate after appli-
cation of a small heat pulse.

3.2.1 Calorimeter

The calorimeter consists of a sample platform of low heat capacity and high
thermal conductivity, which is connected, via a weak thermal link, to a heat
reservoir maintained at constant temperature. Figure 3.4 shows a diagram
of the calorimeter. A block of sapphire (dimensions 10 × 10 × 0.5 mm)
forms the sample platform, and the copper frame from which it is suspended
forms the heat reservoir. An evaporated NiCr metal track on the surface of
the sapphire platform forms the sample heater, and the wires that connect
this to the copper frame provide the weak thermal link between the sample
platform and heat reservoir. The threads that suspend the platform from
the copper frame are made from nylon, which has low thermal conductivity,
and the frame and platform are both enclosed in an evacuated container to
minimise heat transfer by convection. The sample is mounted on the opposite
side of the sapphire substrate to the heater track, using Apiezon grease (high
thermal conductivity grease).

The sample and reservoir temperatures are measured with cernox sen-
sors4. A lockin amplifier is used to supply DC current to the reservoir sensor
and the sample heater. Sensitive multimeters are used to make four-terminal
measurements of the resistance of the reservoir sensor (for comparison with a
temperature calibration) and the power dissipated by the heater. The lockin
amplifier is used to make a four-terminal measurement of the resistance of
the sample sensor. AC current is supplied from its internal oscillator, and
the phase-locked voltage is measured using the oscillator frequency for its
reference.

3.2.2 The relaxation method

The relaxation method is a popular technique for measuring the heat capac-
ity of small samples. A pulse of heat is applied to the sample, causing its
temperature to increase by an amount ∆T . When the heater is switched
off, the sample temperature decays exponentially, via the weak thermal link,
until it reaches the temperature T0 of the surrounding heat reservoir (see
Figure 3.5). By analogy with electrical circuit theory, the time constant of
the decay is τ = RC, where C is the combined heat capacity of the sample

4Cernox censors are useful because of their small size, and also because they are not
affected by magnetic fields.
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Figure 3.4: (a) The calorimeter insert for the cryostat. The flange is bolted to the
top of the cryostat, forming a vacuum seal. The sample container is evacuated
to a high level, using a turbo pump. (b) The copper heat reservoir and sapphire

sample platform.

and platform, and R is the thermal resistance5 of the wires that form the
weak thermal link. The thermal resistance is related to the heater power P
and the temperature difference between the sample and reservoir as follows6:

5The thermal resistance R of a wire is related to the more familiar thermal conductivity
κ as follows. R = 1/k, where k = thermal conductance. k = κA/l, where A is the cross
sectional area of the wire, and l is its length. The thermal conductance of a bunch of wires
is equal to the sum of the conductances of each wire, so the thermal resistances should be
added in parallel.

6Continuing the electrical analogy, the temperature difference ∆T replaces the voltage,
and the heating power P replaces the current (I = dQ/dt, where Q is charge, and P =
∆Q/∆t, where ∆Q is heat supplied in time ∆t).
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R =
∆T

P
, (3.11)

where ∆T is the temperature difference between the sample and heat reser-
voir once the system has reached steady state, i.e. the same amount of heat
is flowing into the sample as is flowing out. The heating power is given by
P = IV , where I and V are the current and voltage through the heater, so
the heat capacity C is given by

C =
IV τ

∆T
, (3.12)

where τ , I, V and ∆T are all quantities that can be measured experimen-
tally. It must be noted that C is the heat capacity of the sample and the
sapphire platform combined, so to obtain the heat capacity of the sample
alone, the heat capacity of the sample platform must be measured separately
and subtracted from the combined measurement.

t

T

DT

T0

0

heater pulse

steady state

Figure 3.5: Temperature relaxation curve of the sample (upper trace), following
the application of a pulse of heat (lower trace).

3.2.3 τ2 effects

In the above section the relaxation of the sample temperature was assumed
to be a pure exponential with a single time constant:

T = ∆T exp

(

− t

τ

)

+ T0. (3.13)

This assumption is only valid under the following conditions:
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1. The wires that form the weak thermal link between the sample platform
and heat reservoir have negligible heat capacity.

2. The grease that binds the sample to the sapphire platform has infinite
thermal conductivity, and forms a good thermal bond between sample
and platform.

3. The sample has infinite thermal conductivity, so temperature gradients
do not exist within the sample.

4. No heat escapes from the free surface of the sample.

However, no system is ideal, and often several of these conditions are vio-
lated. The first condition is not too important, as a measurement of the
heat capacity of the sample platform will include any contribution from the
heat capacity of the wires, so this can be subtracted from the final measure-
ment. The second condition, however, is much much more critical. If it is
not satisfied, the relaxation curve of the sample temperature will contain two
exponentials [28]:

T = A1 exp

(

− t

τ1

)

+ A2 exp

(

− t

τ2

)

+ T0, (3.14)

where τ2 is the time constant of the relaxation of the sample temperature
to the temperature of the sapphire platform, τ1 is the time constant of the
relaxation of the platform temperature to the reservoir temperature and A1+
A2 = ∆T . This is known as the “lumped τ2 effect”. The combined heat
capacity of the sample and platform is given by

C =
1

R

(

A1τ1 + A2τ2

A1 + A2

)

. (3.15)

However, if A2τ2 << A1τ1 the following approximation can be made:

C ≈ A1τ1

R∆T
, (3.16)

and since R = ∆T/IV , we obtain

C ≈ IV A1τ1

(∆T )2
. (3.17)

If the third condition is not satisfied, temperature gradients exist within
the sample, and this gives rise to a “distributed τ2 effect”. It is possible to
obtain the heat capacity of the sample if this is the case, but the analysis is
quite complicated [27]. Since the samples measured in this thesis were thin
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pellets of pressed powder, it was assumed that the distributed τ2 effect would
be negligible.

The final condition is that heat cannot escape from the free surface of the
sample, and this was satisfied for the experiments described in this thesis,
since the sample container was evacuated to ∼ 10−6 mbar.

3.2.4 Data analysis

The heat capacity measurements described in this thesis were taken over a
range of temperatures. At each temperature a pulse of heat was applied,
and the sample temperature relaxation curve measured. To ensure that the
reservoir temperature was constant throughout each pulse, care was taken to
allow the temperature to equilibriate whenever a new reservoir temperature
was set. To eliminate any residual drift from the measurement, the reservoir
temperature was logged throughout the heat pulse, and was then subtracted
from the sample temperature relaxation curve.

The data presented in this thesis indicated the presence of a small lumped
τ2 effect. This could be seen as a sharp drop in the sample temperature
immediately after the heater was switched off (see Figure 3.6). However, it
was clear that τ2 << τ1 and A2 << A1, so it was possible to use equation
(3.17) to calculate the heat capacity of the sample and platform.
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Figure 3.6: The observed τ2 effect. The crosses are the data points, and the solid
line is the fitted exponential, extrapolated back to the time at which the heater
was switched off. The dashed line indicates the end of the region excluded from

the fit (first 50 s).
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Since it is not necessary to know τ2 and A2 to use equation (3.17), the
simplest way of analysing the data was to fit a single exponential to the
sample temperature relaxation curve, but to ignore data taken in the first
few seconds after switching the heater off, thus allowing the small τ2 effect to
die away. This was done using a non-linear least squares curve fitting routine,
and the amplitude A1 was obtained by extrapolating the single exponential
back to the time at which the heater was switched off.

When the heat capacity of the sapphire sample platform was measured
by itself no τ2 effect was observed, so a single exponential was used to analyse
the data, and equation (3.12) was used.

The method of data analysis used for the data displaying the small lumped
τ2 effect was estimated to be accurate to ∼ 5%. To check the accuracy of
the experimental setup, the specific heat capacity of a thin disc of copper
(mass 245 mg) was measured over a temperature range T = 5–21 K. The
data agreed well with accepted values of the specific heat of copper in this
temperature range [29], allowing an upper limit of 10% to be placed on the
experimental uncertainty (see Figure 3.7).
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Figure 3.7: Comparison between the measured and accepted values of the specific
heat capacity of copper.
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3.3 Electrical conductivity

The electrical conductivity measurements described in this thesis were made
with a simple probe designed for use with an orange helium cryostat (see
Figure 3.8). The probe allowed four-terminal resistance measurements to
be made over a temperature range T = 1.5–300 K. The current and voltage
were measured by sensitive multimeters, and the temperature was controlled
with a PID temperature controller. Operation of the equipment and data
collection were controlled by computer.

(a)

(b)

Figure 3.8: (a) Heat capacity probe (left), AC susceptometry probe (middle)
and electrical conductivity probe (right). (b) Orange helium cryostat, into which

probes can be inserted.



Chapter 4

Excitations in PrBa2Cu3O6+x

In this chapter I describe measurements of the phonon and magnetic excita-
tions in PrBa2Cu3O6+x by inelastic neutron scattering. These form part of an
ongoing study to establish the effect of oxygen doping in the PrBa2Cu3O6+x

system and the effect of Pr substitution for Y in YBa2Cu3O6+x. I present
measurements of the phonon dispersion curves made with an oxygen-deficient
single crystal of PrBa2Cu3O6+x (x ≈ 0.2), and compare these with similar
measurements made on single crystals of YBa2Cu3O6. The magnetic exci-
tations of the Pr and Cu sublattices have already been measured using the
same oxygen-deficient crystal of PrBa2Cu3O6+x, so in this chapter I present
repeat measurements performed on the crystal after oxidation (x ≈ 0.93)
and discuss the changes observed.

4.1 Sample preparation and mounting

The single crystal of PrBa2Cu3O6+x used in all the experiments described in
this chapter had a mass of ∼ 2 g, and was prepared by top seeding a flux [30].
Its original oxygen content was x ≈ 0.2, but it was later oxidised to increase
this to x ≈ 0.93. The oxidation process involved annealing the crystal in
pure oxygen for approximately 60 days, while cooling in steps from 600◦C to
450◦C, with progressively longer dwell times at each step as the temperature
decreased [31].

When aligned with the [11̄0] direction vertical, the oxygen deficient crystal
was glued onto an aluminium mount using Oxford Intruments G.E. varnish,
and held securely in place with aluminium wire (see Figure 4.1). Between
experiments it was stored in a vacuum desicator to minimise deterioration

51
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through exposure to water vapour. However, during a period of a few weeks
before oxidation, when it was not stored correctly and became exposed to
the air, its mosaic increased from ∼ 1◦ to ∼ 2◦ and a few small fragments
broke off. After oxidation the crystal was remounted in the same orientation
as before, but due to its increased fragility no aluminium wire was used
to secure it. The aluminium support arm was also made thinner, and the
amount of G.E. varnish used was kept to a minimum to reduce background
scattering.

Side view

crystal

support arm G.E. varnish

wire

mount

[110]

[110]

[110]

[001]

Front view

Figure 4.1: PrBa2Cu3O6+x crystal on aluminium mount, held in place with G.E.
varnish and aluminium wire. The [11̄0] direction is vertical.

4.2 Phonon dispersion curves in PrBa2Cu3O6.2

In this section I describe an inelastic neutron scattering experiment to probe
the high energy phonon dispersion curves in single crystal PrBa2Cu3O6.2.
The results, along with previous measurements of the low energy phonon
dispersion curves, are interpreted using a model based on a common inter-
atomic potential, and are compared with similar measurements performed
on single crystals of YBa2Cu3O6.
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4.2.1 Experimental details

The experiment was performed on the IN1 triple-axis spectrometer at the
Institut Laue-Langevin1. The spectrometer configuration was as follows: flat
copper (200) monochromator, pyrolitic graphite (200) analyser with horizon-
tal and slight vertical focussing, no collimation before the monochromator,
60′ collimator between the monochromator and sample, pyrolitic graphite
filter between the sample and analyser to eliminate contamination of the
beam by second and higher order reflections from the monochromator. The
spectrometer was set up to keep the scattered neutron wavevector constant,
corresponding to a final energy of 35.1 meV. Low efficiency beam monitors
were placed before the monochromator and between the filter and the anal-
yser. The former, referred to as monitor 1, was used to gauge the incident
beam intensity, while the latter, referred to as monitor 2 was used to check
for accidental Bragg scattering2.

The crystal was mounted inside a displex refridgerator, and aligned so
that the [110] and [001] directions lay within the scattering plane. All mea-
surements were performed at T = 12 K (the base temperature of the displex).

4.2.2 Measurements

The phonon dispersion relations in PrBa2Cu3O6.2 were measured by per-
forming a series of constant Q energy scans at positions across the Brillouin
zone, as described in Section 2.4.3. Scans were performed from h̄ω = 30–
90 meV, with Q = (3±h 3±h 0) for longitudinal modes, and Q = (h h 15)
for transverse modes. Large values of Q were chosen to maximise the phonon
scattering cross section (which is proportional to Q2), while minimising the
cross section for magnetic crystal field excitations (which scales with the
magnetic form factor, falling off at high Q). Some typical scans are shown
in Figure 4.2. The peaks are quite broad because of the horizontal focussing
of the analyser, but since the modes are quite widely spaced in the energy
range probed, there is no difficulty in resolving them.

1The Institut Laue-Langevin operates a reactor source of neutrons.
2In an ideal inelastic scattering experiment, the Bragg condition in the sample should

not be satisfied for neutrons in the incident beam. Also, only neutrons which have un-
dergone the specific inelastic collisions that the spectrometer has been set up to detect
should make it through the analyser into the detector. However, due to misaligned grains
within the sample and small amounts of second order scattering from the monochromator,
certain combinations of spectrometer angles can allow neutrons in the incident beam to
undergo Bragg reflection in the sample. Due to imperfect resolution of the spectrometer
and incoherent scattering at the analyser, some of these will make it into the detector,
contaminating the measurement. This is called accidental Bragg scattering.
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Figure 4.2: Typical longitudinal and transverse phonon scans. Both scans have q

= (0.2 0.2 0). The value of Q is shown at the top of each graph. The circles are the
raw neutron scattering data (averaged over several runs with different, overlapping
energy ranges), and the lines are a fits consisting of three Gaussians superimposed

on a constant background.

The intensity of a given mode is determined by the dynamical structure
factor, which varies within each Brillouin zone and also between different
zones. This means that some modes have a measureable intensity only at
certain points within each Brillouin zone. In such cases, or when a scan was
contaminated by accidental Bragg scattering, energy scans were performed
in neighbouring (±h) Brillouin zones to determine the dispersion curves as
fully as possible.

4.2.3 Fitting and modelling of data

Each energy scan was fitted with a lineshape constructed from several gaus-
sians superimposed on a constant background. The centres, amplitudes and
linewidths of the gaussians and the height of the background were refined
using a least squares method, which allowed the dispersion of the observed
phonon modes to be determined in an unbiased way. The peak centres were
plotted as a function of q to obtain the transverse and longitudinal dispersion
curves shown in Figure 4.3.

A model based on a common interaction potential has been developed for
the phonon dispersion curves in YBa2Cu3O6 by Reichardt and co-workers [7].
By inserting the appropriate lattice parameters, atomic masses and nuclear
scattering lengths, he was able to adapt his model for PrBa2Cu3O6 [32]. The
model was used to calculate the dynamical structure factors of the phonon
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Figure 4.3: Longitudinal and transverse phonon dispersion curves in
PrBa2Cu3O6.2. The circles are the longitudinal modes measured at Q = (3±h
3±h 0), and the triangles are the transverse modes measured at (h h 15). The
lines are the calculated dispersion curves from the common interaction potential
model. Each branch is numbered for reference. All the modes have Σ1 symme-
try. The y-axis is labelled with phonon energy (meV) on the right, and phonon
frequency (THz) on the left. The x-axis is labelled with the h value of q = (hh0)

in reciprocal lattice units (rlu).

modes in the Brillouin zones in which our measurements were performed, and
comparison of these with the observed Q-variation of the mode intensities
allowed the different branches to be identified.

Figure 4.3 compares the measured phonon dispersion curves with the
curves calculated from the model. All the phonon branches identified were
of Σ1 symmetry. This was clear from the dynamical structure factor calcu-
lations, which indicated that at Q = (3±h 3±h 0) and Q = (h h 15) the Σ1

modes were the only modes with non-zero intensity.
Three of the Σ1 branches are well described by the model. However, the

frequency of branch 4 is overestimated by ∼ 2.5 THz over the whole of the
Brillouin zone, and the frequency of branch 1 is overestimated by ∼ 2 THz at
the zone centre. The relative motions of the atoms in the unit cell for these
branches are shown in Figure 4.4, and it can be seen that they are dominated
by the motion of the copper and oxygen atoms in the CuO2 planes. Both
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branches change character somewhat between the centre and edge of the
Brillouin zone, so the diagrams indicate the motions of the atoms at both
of these positions in reciprocal space. The vibrational amplitudes3 of the
atoms dominating each branch are given in table 4.1. Branches 1 and 4 in
YBa2Cu3O6 are described well by the common interaction potential model,
so the frequency discrepancies between the model and the data for these
branches in PrBa2Cu3O6.2 suggest the existence of more complex interations
within the CuO2 planes in the latter compound.

Amplitude (Å)

Atom Branch 1 Branch 4

(0 0 0) (0.5 0.5 0) (0 0 0) (0.5 0.5 0)

x 0.231 0 0.118 0.246
Cu(2) y 0.231 0 0.118 0.246

z 0 0 0 0

x 0.175 0 0.528 0.509
O(1) y 0.175 0 0.528 0.509

z 0 0.313 0 0

x 1.144 1.230 0.179 0
O(2) y 0 0 1.064 0

z 0 0 0 1.021

x 0 0 1.064 0
O(3) y 1.144 1.230 0.179 0

z 0 0 0 1.021

Table 4.1: Vibrational amplitudes of anomalous phonon branches at positions (0 0
0) and (0.5 0.5 0) in the Brillouin zone. The magnitudes of the x, y and z compo-
nents of the atomic displacements are given. The directions of the displacements

are shown in Figure 4.4.

4.2.4 Low energy phonons in PrBa2Cu3O6.2

Measurements of the low-energy phonon dispersion curves were undertaken
by A.T. Boothroyd and co-workers. The experiments were performed on the
IN22 triple axis spectrometer at the Institut Laue-Langevin using similar

3The vibrational amplitudes are the coefficients of the eigenvectors produced by the
model.
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Figure 4.4: Anomalous Σ1 phonon modes. Branches 1 and 4 are shown at the
Brillouin zone centre (0 0 0) and edge (0.5 0.5 0). The length and thickness of the
arrows are approximately proportional to the magnitudes of the displacements.
(For the sake of clarity the Cu and O atoms in the CuO2 planes have been drawn
at the same height in the unit cell, although in reality they are at slightly different

heights.)
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methods to those described above (over a range of temperatures from 1.5 K
to 100 K). Figure 4.5 shows the observed dispersion curves and the calculated
curves obtained from Reichardt’s common interaction potential model. It was
difficult to assign some of the observed peaks near h̄ω = 20 meV to particular
phonon branches, due to the close spacing of the branches in this energy
range. This was complicated by occaisional, accidental detection of out-of-
plane modes due to the vertical curvature of the monochromator. However,
despite these problems the agreement between the data and the model is
good, with no significant discrepancies.
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Figure 4.5: Low energy phonon modes. The longitudinal Σ1 modes were measured
at (2–h 2–h 0). The transverse Σ4 modes were measured at (h h 7): triangles and
(h h 8): circles. The longitudinal Λ1 and transverse Λ5 modes were measured at
(0 0 7+l) and (2 2 l) respectively. The blue circles in the Λ1 plot, that are marked
with a question mark, indicate modes that could not be indexed by comparison
with the model. These are probably out-of-plane modes of different symmetry
which have been detected due to the vertical curvature of the monochromator.

4.2.5 Discussion

Figure 4.6 shows a comparison of YBa2Cu3O6 phonon data with a com-
mon interaction potential model. The agreement between the calculated
and observed phonon branches is generally good in both YBa2Cu3O6 and
PrBa2Cu3O6.2. However, in PrBa2Cu3O6.2, significant discrepancies are ob-
served in certain branches. In particular, the model overestimates the fre-
quency of the Σ1 no.1 branch by ∼ 2 THz at the Brillouin zone centre and
the frequency of the Σ1 no.4 branch by ∼ 2.5 THz throughout the Brillouin
zone. These branches are dominated by vibrations of the oxygen ions in the
CuO2 planes, so the discrepancies between the model and data suggest that
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the Pr ion bonds to its surrounding oxygen ions in a different way to the
Y ion. The common interaction potential model assumes that the binding
mechanism is predominantly ionic, so the discrepancies are consistent with
the hybridisation of the Pr 4f and O 2p orbitals proposed by Fehrenbacher
and Rice [8].

Figure 4.6: YBa2Cu3O6 phonon modes measured and modelled by Reichardt and
co-workers [7]. Figure reproduced from “Neutron Scattering in Layered Copper-

Oxide Superconductors” (ed. A. Furrer, 1998).

4.3 Dispersion of Pr crystal field excitations

in PrBa2Cu3O6.93

In this section I describe measurements which probe the magnetic structure
of oxidised PrBa2Cu3O6+x (x ≈ 0.93) in the AFIII phase and the dispersion
of the low energy crystal field excitations of the Pr ion in this phase. The
results are compared with similar measurements made on the same crystal
in its underdoped phase (x ≈ 0.2) [5] to establish the effect of hole-doping.

4.3.1 Experimental details

The experiment was performed on the IN14 triple-axis spectrometer at the
Institut Laue-Langevin. The spectrometer configuration was as follows: ver-
tically curved pyrolitic graphite (002) monochromator, horizontally focussing
pyrolitic graphite (002) analyser, no collimators, beryllium filter between the
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sample and analyser to eliminate contamination of the beam by second and
higher order reflections from the monochromator. For inelastic scattering
measurements the spectrometer was set up to keep the scattered neutron
wavevector constant, corresponding to a final energy of 5.0 meV. A low ef-
ficiency beam monitor was placed before the monochromator, and another
between the filter and the analyser to check for accidental Bragg scattering.

The crystal was mounted inside a variable temperature orange cryostat,
and aligned so that the [110] and [001] directions lay within the scattering
plane.

4.3.2 Magnetic structure investigation

To investigate the magnetic structure of the crystal in its oxidised state,
the spectrometer was configured for elastic scattering, and several magnetic
Bragg reflections were measured at peak centre as a function of temperature.
Figure 4.7 shows the intensity variation with temperature for each reflection.
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Figure 4.7: Intensities of four magnetic Bragg reflections in PrBa2Cu3O6.93, mea-
sured at peak centre. The circles, squares, diamonds and triangles are the
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reflections respectively.

The reflections measured were chosen to represent different components
of the magnetic structure (e.g. the Cu component or the Pr component). The
contribution of each component to the intensity of a given Bragg reflection
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can be found by calculating the magnetic structure factor using equations
(2.8) and (2.9). Such calculations show that in the AFI phase the Cu(2)
spins give rise to reflections with Miller indices

(

h + 1
2
, k + 1

2
, l

)

. Due to the
presence of two antiferromagnetically coupled CuO2 layers in the unit cell,
the intensities of these reflections are proportional to sin2(πlz), where z is
the distance between the layers. z is expressed as a fraction of the unit
cell height, and is equal to 0.30 in PrBa2Cu3O6+x. In the incommensurate
AFIII(i) phase both the Pr and the Cu(2) spins give rise to reflections at
(

h + 1
2
, k + 1

2
, l

)

4. However, in the commensurate AFIII(ii) phase only the
antiferromagnetic (AFM) component of the Cu(2) structure gives rise to
peaks at these positions, while the Pr structure and the ferromagnetic (FM)
component of the Cu(2) structure (the component due to the Cu spin twists)
give rise to peaks at

(

h + 1
2
, k + 1

2
, l + 1

2

)

. The intensities of the AFM Cu(2)
reflections are proportional to sin2(πlz), while the intensities of the FM Cu(2)
reflections are proportional to cos2(πlz).

The reflections measured were
(

1
2

1
2
0
)

,
(

1
2

1
2

1
2

)

,
(

1
2

1
2
1
)

and
(

1
2

1
2

3
2

)

. The
(

1
2

1
2
0
)

reflection contains contributions from the Pr structure and the FM
component of the Cu(2) structure in the AFIII(i) phase. The AFM com-
ponent of the Cu(2) structure does not contribute because its intensity is
proportional to sin2(πlz), which is equal to zero at l = 0. We therefore ex-
pect the intensity of the

(

1
2

1
2
0
)

reflection to be zero in the AFI and AFIII(ii)
phases. Figure 4.7 shows that the peak appears at TPr = 17.5 ± 0.5 K, and
its intensity increases as the temperature falls to T2 = 12.5 ± 0.5 K. Below
this temperature the intensity starts to fall again, indicating the start of the
reorientation of the magnetic structure into the AFIII(ii) phase. Below ∼
7 K the intensity starts to increase again, indicating a partial re-entry to the
AFIII(i) phase.

Above TPr the
(

1
2

1
2
1
)

reflection contains intensity only from the AFI Cu(2)
structure. However, in the AFIII(i) phase both the Cu(2) and Pr spins
contribute. In the AFIII(ii) phase we expect the contributions from the Pr
structure and the FM component of the Cu(2) structure to disappear, while
the contribution from the AFM component of the Cu(2) structure remains.
The intensity from the FM component of the Cu(2) structure is small, since
cos2(πlz) = 0.35 at l = 1, and the Cu spin twist angle is small (∼ 20◦).
Therefore, we expect the

(

1
2

1
2
1
)

intensity to be dominated by contributions
from the Pr structure and the AFM component of the Cu(2) structure. In
Figure 4.7 we see the Pr contribution as an increase in the intensity below

4Resonant x-ray diffraction experiments have shown that there is a long range modula-
tion of the magnetic structure in the ab-plane, with a period of ∼ 600 Å[33], but neutron
diffraction cannot be performed at high enough resolution to detect the incommensurate
satellites.
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TPr. Below T2 this decreases again, returning the intensity to its value in the
AFI phase. This suggests that the Pr spins do fully enter the AFIII(ii) phase
below T2. However, below ∼ 7 K the intensity increases again, suggesting a
partial re-entry of the Pr spins to the AFIII(i) phase.

The
(

1
2

1
2

1
2

)

and
(

1
2

1
2

3
2

)

reflections contain contributions only from the Pr
structure and the FM component of the Cu(2) structure in the AFIII(ii)
phase. At l = 1/2, cos2(πlz) = 0.8, but at l = 3/2, cos2(πlz) = 0.02, so the
(

1
2

1
2

3
2

)

reflection is totally dominated by the Pr contribution. It can be seen
from Figure 4.7 that both peaks appear only below T2, and the

(

1
2

1
2

3
2

)

curve
indicates that the Pr spins fully enter the AFIII(ii) phase before undergoing
a partial reorientation to the AFIII(i) phase.

My interpretation of the failure of the
(

1
2

1
2
0
)

intensity to disappear below
T2 is that the Cu(2) spin twists never fully enter the AFIII(ii) phase.

4.3.3 Measurement of Pr crystal field level dispersion

The crystal field levels of the Pr ion in PrBa2Cu3O7 have been investigated
previously using neutron scattering from powder samples [34, 35], but have
never before been measured with a single crystal. The powder measurements
revealed a series of broadened crystal field transitions, and were analysed us-
ing a model based on Pr ions in a +3 ionisation state [35]. In orthorhombic
symmetry the model predicted three closely spaced, low-lying energy lev-
els (often referred to as a quasitriplet), with a significant energy gap (∼
50 meV) between these and the next group of excited levels. The low energy
quasitriplet would be expected to give rise to two crystal field transitions,
but the measured excitation spectrum revealed three features at energies of
1.4, 3.5 and 5 meV. By comparing the intensities of these with the model,
the higher energy features at 3.5 and 5 meV were assigned to the crystal
field transitions of the Pr3+ ion, while no clear explanation was given for the
1.4 meV feature. The two crystal field transitions were measured at a range
of temperatures above and below TPr, and it was clear from these measure-
ments that the transition between the two lowest members of the quasitriplet
(3.5 meV) was affected by the magnetic ordering of the Pr sublattice.

The measurements decribed here on single crystal PrBa2Cu3O6.93 aim
to quantify the dispersion of the 3.5 meV crystal field excitation. With the
spectrometer in the fixed final energy configuration for inelastic scattering,
the dispersion of this excitation was measured at T = 1.6 K by performing a
series of energy scans at constant Q (the same method as used to measure
the phonon dispersion curves—see Section 2.4.3). The scans were performed
over an energy range of h̄ω = -1.5–7.0 meV, at Q = (hh0), for h = 0.525 0.55,
0.65, 0.75, 0.85, 0.9, 0.95, 0.975 and 1.05. For h = 0.5 and 1.0, the scans
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were performed at non-zero l, since (0.5 0.5 0) and (1.0 1.0 0) correspond
to magnetic and nuclear Bragg reflections respectively. To justify measuring
at non-zero l, scans were performed at Q = (0.75 0.75 l) for l = 0, 0.25
and 0.5, which confirmed that the dispersion along the c-axis was negligible.
Finally, a scan was made at Q = (0 0 2.5) to compare with data taken on
PrBa2Cu3O6.2. Q was chosen to be as small as possible throughout to max-
imise the magnetic contribution to the scattering cross section and minimise
the phonon contribution.
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Figure 4.8: Energy scans at fixed values of Q, showing low energy crystal field
transitions in PrBa2Cu3O6.93. The red and blue points show data taken at Q =
(0.75 0.75 0) and (1.05 1.05 0) respectively. The black points were taken with
a single crystal of YBa2Cu3O6.93 (YBCO) at Q = (0.75 0.75 0). The solid lines
are fits to the PrBa2Cu3O6.93 data, and the dashed red lines indicate the three
damped harmonic oscillator functions used to construct the fitted lineshape for

Q = (0.75 0.75 0).

Figure 4.8 shows some typical energy scans, taken at Q = (0.75 0.75 0)
and (1.05 1.05 0) at T = 1.6 K. A single crystal of YBa2Cu3O6.93, prepared in
exactly the same way as the PrBa2Cu3O6.93 crystal and of similar mass, was
used to provide an estimate of the non-magnetic background signal (plotted
in black). This was measured at Q = (0.75 0.75 0) and used as an estimate
of the background at all Q values.

The PrBa2Cu3O6.93 single crystal spectra closely resemble the data taken
previously on powder samples, revealing three features at energies of ap-
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proximately 2.2, 3.5 and 5.2 meV5. The upper and lower features show no
measurable dispersion with Q, but the middle peak varies in energy between
3.1 and 3.8 meV. To determine the dispersion of this peak in an unbiased
way, a lineshape was constructed from three damped harmonic oscillator
functions6 of the form

I =
AΓω

(1 − exp(− h̄ω
kBT

))((ω2 − ω2
0)

2 + Γ2ω2)
, (4.1)

where I is the scattered intensity (counts), A is the amplitude of the peak, Γ is
the linewidth, h̄ω is the neutron energy transfer, kB is Boltzmann’s constant,
T is the temperature and h̄ω0 is the energy of the excitation (peak centre).
In order to make the lineshape match the data as closely as possible, these
were superimposed on a linear background determined by fitting a straight
line through the YBa2Cu3O6.93 data. The centres, widths and amplitudes of
the upper and lower peaks, and the width of the middle peak were chosen
to give good visual agreement with the energy scans at all Q-values. The
lineshape was then fitted to the data at each value of Q, using a non-linear
least squares curve fitting routine which varied the centre and amplitude of
the middle peak. The fits to the data are shown as solid lines in Figure 4.8.

The dispersion curve of the middle peak was obtained by plotting the
fitted centre as a function of q, as shown in Figure 4.9.

The curve is seen to exhibit sharp minima in the vicinity of the points (0.5
0.5 0) and (1 1 0). Similar, but less well pronounced minima were observed
in the dispersion of the lowest crystal field transition in oxygen-deficient
PrBa2Cu3O6+x (x ≈ 0.2) [5].

4.3.4 Discussion

The single crystal data agree well with previous data taken on powder sam-
ples. The existence of three features in the low energy excitation spectrum
is confirmed, and the upper two are attributed to crystal field transitions
between the ground state and the two excited states of the quasitriplet. The

5Due to the symmetry of the crystal field levels, the upper feature was most visible in
the scan at Q = (0 0 2.5), allowing its energy to be determined more clearly than would
be possible from the scans shown in Figure 4.8.

6The choice of lineshape is somewhat arbitrary, and there is no obvious connection
between crystal field transitions and damped harmonic oscillators. However, it is necessary
to find a peak shape that fits the data so that the centres, widths and amplitudes of the
excitations can be pinpointed. The damped harmonic oscillator function is convenient
because it can easily be made to fit features which exhibit lifetime broadening.
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obtained by fitting a lineshape constructed from damped harmonic oscillator func-
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feature observed at ∼ 2.2 meV is more difficult to explain, but could be ac-
counted for in a number of ways. For example, it is quite probable that some
of the Pr3+ ions experience different local environments, giving rise to differ-
ent crystal field splittings. This could be due to different concentrations of
oxygen atoms surrounding the Pr site, or Pr ions sitting on the Ba site, or
the presence of holes localised around some Pr sites. Another possibility is
that, due to mixed valence, the Pr ion has an ionisation state of +4 for part
of the time. The ground state of the Pr4+ ion, which is a quartet in cubic
symmetry, would split into two doublets in orthorhombic symmetry, and the
transition between these could explain the anomalous feature.

The single crystal measurements have shown that the middle peak of the
low energy excitation spectrum is strongly Q-dependent, and its dispersion
has been plotted along the [110] direction. By analogy with the results from
oxygen-deficient PrBa2Cu3O6.2, the sharp dips observed at the (0.5 0.5 0)
and (1 1 0) positions are likely to be due to coupling between the excitations
of the Pr sublattice and the highly dispersive Cu spin-waves. The fact that
these are deeper in PrBa2Cu3O6.93 might suggest that hole doping leads to
stronger Pr-Cu coupling. However, since the overall shape of the dispersion
curve is quite different in the two phases, detailed modelling of the dispersion
curve in the oxidised phase would be required to verify this.

Finally, it is important to mention the broadening of the observed exci-
tation peaks. The middle peak has an intrinsic width of 1.5 meV (FWHM),
which considerably exceeds the spectrometer resolution of 0.3 meV. It is also
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larger than the width of the lowest crystal field transition in PrBa2Cu3O6.2

(1 meV). An increase in broadening with oxygen doping had previously been
observed with powder samples, but the single crystal measurements enable
us to separate this from the effect of dispersion. The large observed broad-
ening supports the theory proposed by Fehrenbacher and Rice [8], in which
the Pr 4f electronic orbitals are strongly hybridised with the O 2p orbitals.
However, we cannot rule out a contribution to the broadening from other
processes such as local disorder due to doping or presence of Pr on the Ba
site.

4.4 Cu optic spin-wave gap in PrBa2Cu3O6.93

In this section I describe an experiment designed to measure the Cu optic spin
wave energy gap in single crystal PrBa2Cu3O6+x (x ≈ 0.93) at the Brillouin
zone centre in the AFI phase. This is compared with a similar measurement
made on the same crystal in its underdoped phase (x ≈ 0.2) [5].

4.4.1 Experimental details

The experiment was performed on the IN1 triple-axis spectrometer at the
Institut Laue-Langevin. The spectrometer configuration was as follows: ver-
tically curved copper (200) monochromator, vertically and horizontally fo-
cussing pyrolitic graphite (002) analyser, 60′ collimator between the monochro-
mator and sample, graphite filter between the sample and analyser. The
spectrometer was set up to keep the scattered neutron wavevector constant,
corresponding to a final energy of 35.1 meV.

The crystal was mounted inside a variable temperature orange cryostat,
and aligned so that the [110] and [001] directions lay within the scattering
plane.

4.4.2 Measurements

Due to the steepness of the Cu spin-wave dispersion curves, the optic mode
gap was measured using a series of constant energy q-scans at energies from
0–75 meV. Figure 4.10 shows a typical scan in the hh-direction. Scans per-
formed at energies below the gap energy exhibited no peak at the scan centre,
but once the neutron energy transfer was large enough to excite the optic
spin-wave mode, a peak appeared. Although the scan passed through the
dispersion curve twice, the resolution of the spectrometer was sufficiently
low that only a single peak was detected.
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Figure 4.10: Schematic diagram of q-scans through the Cu spin-wave dispersion
curves. When the energy transfer h̄ω is less than the optic mode gap, the q-scan
has no peak at its centre. At energies above the gap, a peak is seen at the centre

of the scan as it crosses the optic mode dispersion curves.

4.4.3 Results

Figure 4.11(a) shows typical q-scans taken at T = 19 K at energy transfers
above and below the optic mode energy gap. The scans were performed in
the [h h 0] direction, centred at (0.5 0.5 6.75). The l-value of 6.75 was chosen
to be close to the position at which the intensities of the optic and acoustic
modes reach a maximum and minimum respectively. Figure 4.11(b) shows
a plot of the amplitude of the peak (determined by fitting a gaussian) as a
function of neutron energy transfer. The onset of the optic mode appears to
be a step function, and taken as the midpoint of the step, the gap energy is
found to be 54± 1 meV.

4.4.4 Discussion

The Cu optic mode gap in oxidised PrBa2Cu3O6+x (x ≈ 0.93) is found to be
very similar to the gap measured in oxygen-deficient PrBa2Cu3O6+x (x ≈ 0.2)
[5]. These are 54± 1 meV and 53± 2 meV respectively. This suggests that
hole doping has little effect on the magnetic ordering of the Cu sublattice.
However, the optic mode gap in YBa2Cu3O6.2, estimated from the available
data [36, 37], is 70± 5 meV. This indicates that the substitution of Pr for Y
has a much larger effect on the Cu magnetic ordering in PrBa2Cu3O6+x than
hole doping.

A simple spin-wave model developed for YBa2Cu3O6+x [38], shows that
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Figure 4.11: Cu optic mode gap. (a) shows typical q-scans below and above the
neutron energy transfer h̄ω required to excite the optic spin-wave mode. (b) shows

the amplitude of Gaussian fits to the q-scans as a function of energy transfer.

the Cu optic mode gap energy is given by 2
√

J‖J⊥, where J‖ and J⊥ are
the exchange constants for nearest neighbour Cu spins within and between
the CuO2 planes respectively (see Figure 1.5). J‖ has been measured in
PrBa2Cu3O6.2 by neutron scattering, and is found to be 127± 10 meV [5]. Re-
cent measurements have shown that the value is very similar in PrBa2Cu3O6.93

[39]. In YBa2Cu3O6.2, J‖ = 125± 5 meV. The fact that hole doping has
little effect on either the Cu optic mode gap or J‖ in PrBa2Cu3O6+x sug-
gests that the Cu-Cu exchange mechanism doesn’t involve the oxygen ions.
However, the difference between the optic mode gap in PrBa2Cu3O6+x and
YBa2Cu3O6.2 indicates a difference in the values of J⊥. This suggests that the
substitution of Pr for Y has more effect on the Cu-Cu exchange interactions
than oxygen doping.

4.5 Conclusion

In this chapter I have described inelastic neutron scattering measurements of
the phonon dispersion curves in a single crystal of PrBa2Cu3O6+x (x ≈ 0.2).
I have also presented measurements of the dispersion of magnetic excita-
tions in the same crystal after oxidation (x ≈ 0.93). The results of both
studies have been compared with similar measurements made on single crys-
tals of YBa2Cu3O6, and the measurements of the magnetic excitations in
PrBa2Cu3O6+x (x ≈ 0.93) have been compared with those in PrBa2Cu3O6+x
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(x ≈ 0.2).
The most striking result from the investigation of the phonon dispersion

curves in PrBa2Cu3O6.2 is that the frequencies of branches dominated by oxy-
gen motion in the CuO2 planes were considerably overestimated by a model
based on a common interaction potential and ionic bonding. In YBa2Cu3O6,
however, the observed frequencies of these branches agreed well with the
model. The discrepancy in PrBa2Cu3O6.2 is interpreted as indirect evidence
for hybridisation of the Pr 4f and O 2p orbitals.

Measurement of the dispersion of low-energy crystal field transitions of
the Pr3+ ion in PrBa2Cu3O6.93 revealed sharp dips in the energy near the
(0.5 0.5 0) and (1 1 0) points in reciprocal space. These appeared to be
deeper than those observed before oxygenation, suggesting stronger Pr-Cu
magnetic coupling. Also, the overall shape of the dispersion curve differed
with oxygen doping level, suggesting that the Pr-Pr exchange is affected
by oxygen concentration. In combination with the observation that TPr is
enhanced with oxygen doping, this is consistent with hybridisation of the Pr
4f and O 2p orbitals.

The measurement of the Cu optic spin-wave gap in PrBa2Cu3O6.93 re-
vealed that it was unaffected by oxygen doping to within the experimental
uncertainty. Other neutron scattering measurements have suggested that the
intralayer Cu-Cu exchange constant J‖ is also unaffected by oxygen doping
[5, 39]. These observations, when combined, suggest that the mechanism of
Cu-Cu exchange in PrBa2Cu3O6+x does not involve oxygen ions.

Although the dispersion of the low-energy Pr crystal field transitions in
oxygen-deficient PrBa2Cu3O6+x (x ≈ 0.2) was successfully modelled using
a pseudodipolar model for the Pr-Cu coupling [5], attempts to model the
dispersion in oxidised PrBa2Cu3O6+x (x ≈ 0.93) using a similar coupling have
failed [40]. This highlights the need for improved models of the electronic
system. Comparison of the predictions of such models with the increasing
body of data on the magnetic exchange constants and the effects of oxygen
doping will lead to a better understanding of the mechanisms underlying the
suppression of superconductivity by Pr in the cuprates.



Chapter 5

Bulk Properties of PrO2

In this chapter I present measurements of the specific heat capacity, electrical
conductivity and magnetic susceptibility of PrO2.

5.1 Sample preparation

Several different samples of PrO2 were used in the experiments described in
this chapter. A powder sample was used for the specific heat capacity and
magnetic susceptibility measurements. This was prepared by oxidation of
commercially obtained Pr6O11. The starting material was baked in air at
1000◦C for 11 hours, then annealed in flowing oxygen at 280◦C for 30 days.
The powder was ground approximately once a week during this process. X-
ray diffraction showed that the final product contained no detectable trace
of residual Pr6O11. This allowed an upper limit of 1% to be placed on the
amount of Pr6O11 remaining in the sample.

For the conductivity measurements a single crystal was used. This was
selected from a batch of crystals prepared by McKelvy using a hydrothermal
procedure [41]. All the crystals were very small, with masses of < 1 mg, and
irregularly shaped. The crystal selected for the conductivity measurement
had a diameter of 0.3 mm.

5.2 Magnetic susceptibility

The magnetic susceptibility of PrO2 was measured with a SQUID magne-
tometer (see Section 3.1.1 for a description of the SQUID and measurement
technique), using a powder sample of mass 270 mg.

70
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5.2.1 Measurements

The measurements were made using the reciprocating sample oscillation
(RSO) mode, with an applied field of H = 1 T. Data were taken while cooling
in steps from T = 350 K to T = 2 K, with a delay to allow temperature equi-
libriation at each step. A plot of the molar susceptibility is shown in Figure
5.1. The inset shows the inverse molar susceptibility. Two features are evi-
dent. Firstly, there is a peak characteristic of antiferromagnetic ordering at
TN = 14 K. This is in excellent agreement with previous measurements [12].
Secondly, there is a small discontinuity, followed by a change in gradient at
T ∗ = 122± 2 K. This can be seen most clearly in the inverse susceptibility.
The discontinuity has not been noticed before, due to the large amount of
intrinsic noise present in previous measurements.

The upturn in the susceptibility for T < 6 K is probably due to the pres-
ence of a small amount of Pr6O11 in the sample. Figure 5.2 shows a plot
of the magnetic susceptibility of Pr6O11, measured by AC susceptometry
(see Section 3.1.2 for a description of the AC susceptometer and measure-
ment technique), which reveals a transition at T = 2.5 K. At 6 K the molar
susceptibility of Pr6O11 is ten times as large as that of PrO2, so at this tem-
perature even the presence of a small amount of Pr6O11 would affect the PrO2

susceptibility. It is unlikely that the discontinuity at T ∗ is due to Pr6O11, as
there is no feature in the Pr6O11 susceptibility at this temperature.

The susceptibility of PrO2 was also measured by AC susceptometry, and
the data agreed well with the data taken with the SQUID at low temperatures
(T < 50 K). At higher temperatures the sample temperature took a long time
to equilibriate, and the small signal became difficult to measure reliably. No
appreciable signal was seen in the imaginary part of the susceptibility at any
temperature.

5.2.2 Data analysis

It is instructive to calculate the effective paramagnetic moment of the Pr ion
from the PrO2 inverse susceptibility data. This can be done by assuming
that the susceptibility obeys the Curie-Weiss law at high temperatures. The
Curie-Weiss law for an antiferromagnet is given by

χSI =
C

T + θ
, (5.1)

where χSI is the susceptibility in SI units, θ is the Weiss constant and C is the
Curie constant. C can be expressed as a product of several other constants:
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Figure 5.1: Magnetic susceptibility of PrO2 powder. Molar susceptibility is plotted
in the main graph and inverse molar susceptibility is shown in the inset.

C =
nµ0µ

2
eff

3kB

, (5.2)

where µ0 is the permeability of free space, n is the number of magnetic
ions per unit volume, kB is Boltzmann’s constant and µeff is the effective
paramagnetic moment of the Pr ion1.

It is conventional to work with the molar susceptibility χmol, and to use
cgs units (where the susceptibility has units emu mol−1), rather than SI units
(where the susceptibility is dimensionless), so we use the conversion

χmol =
NA

10nµ0

χSI, (5.3)

where NA is Avogadro’s number. Substituting equations (5.1) and (5.2) into
equation (5.3) we arrive at

χmol =
µ2

eff NA

30kB(T + θ)
. (5.4)

So the gradient of a plot of inverse molar susceptibility against temperature
is equal to 30kB/µ2

eff NA, allowing µeff to be extracted.

1For a free ion the effective paramagnetic moment is given by µeff = gJµB

√

J(J + 1).
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5.2.3 Results

The value obtained for the effective paramagnetic moment of PrO2 in the
temperature range T = 250–350 K is µeff = 2.32µB. This is close to the
value of 2.54µB expected for a free Pr4+ ion and is much lower than the value
of 3.58µB expected for a free Pr3+ ion2, indicating that the Pr ions have
a predominant ionisation state of +4. This contradicts the mixed valence
hypothesis (see Section 1.4.2).

Below T ∗ the gradient of the inverse susceptibility increases, causing µeff

to decrease. This indicates a reduction in the magnetic degrees of freedom,
which could be caused by a lifting of the degeneracy of the Γ8 crystal field
ground state (see section 1.4.1 for a description of the PrO2 ground state).

2The ground state multiplet of the Pr4+ ion in the Russell-Saunders coupling scheme is
2F5/2, so with S = 1/2, L = 3, J = 5/2 and gJ = 3J(J+1)+S(S+1)−L(L+1)

2J(J+1) = 6/7, we arrive

at µeff = gJµB

√

J(J + 1) = 2.54 µB for the free Pr4+ ion. The ground state multiplet of
the Pr3+ ion in the Russell-Saunders coupling scheme is 3H4, so with S = 1, L = 5, J =
4 and gJ = 4/5, we arrive at µeff = gJµB

√

J(J + 1) = 3.58 µB for the free Pr3+ ion.
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The fact that there is a discontinuity at T ∗, rather than a continuous change
in gradient, suggests that a phase transition takes place at this temperature.
One possibility is that the Pr 4f orbitals order, and that this is accompa-
nied by a cooperative Jahn-Teller distortion, lifting the degeneracy of the Γ8

ground state below 122 K. I will come back to this later (see Section 6.3).

5.3 Specific heat capacity

The specific heat capacity of PrO2 was measured using a calorimeter designed
specifically for measuring the heat capacity of small samples (see Section 3.2
for a description of the calorimeter and measurement technique). A disc-
shaped pressed pellet of PrO2 powder of diameter 10 mm, thickness 1 mm and
mass 83 mg was mounted on the sapphire sample platform of the calorimeter
using a small amount of Apiezon grease (high thermal conductivity grease).

5.3.1 Measurements

The measurements were made over a temperature range from 2.4 K to 23 K.
First, the heat capacity of the sapphire platform was measured. Then the
combined heat capacity of the sample and platform was measured. The heat
capacity of the platform was subtracted from this to obtain the heat capacity
of the sample alone. Finally, the sample heat capacity was divided by the
sample mass to obtain the specific heat capacity.

Figure 5.3 shows a plot of the specific heat capacity of PrO2 versus tem-
perature. The experimental uncertainty is estimated to be ∼ 5%. A lambda
point is observed, due to the antiferromagnetic ordering, and this peaks be-
tween 13.1 K and 14.0 K. It is superimposed on the contribution to the specific
heat from vibrations of the crystal lattice.

The specific heat capacity of a pressed pellet of CeO2 powder (commer-
cially obtained) was also measured. This sample had a mass of 81 mg and
was of similar shape to the PrO2 sample. Since CeO2 is non-magnetic, but
has the same crystal structure and a similar lattice parameter to PrO2, it
provides a good estimate of the contribution of the crystal lattice to the PrO2

specific heat. The CeO2 data is plotted with the PrO2 data in Figure 5.3.

5.3.2 Data analysis and results

A useful quantity that can be derived from the PrO2 specific heat data is the
change in magnetic entropy of the sample after passing through the magnetic



5.3. Specific heat capacity 75

0

10

20

30

40

50

60

70

0 5 10 15 20 25

S
p

e
c
if
ic

h
e
a
t
c
a
p
a
c
it
y

(J
K

-1
k
g

-1
)

Temperature (K)

PrO
2

CeO
2

Figure 5.3: Specific heat capacity of PrO2 and CeO2. The circles are the PrO2

data, and the crosses are the CeO2 data. The CeO2 data provides a good estimate
of the phonon contribution to the PrO2 specific heat.

transition. This can be used to calculate the degeneracy of the ground state.
The specific entropy is related to the specific heat by the formula

s(T ) =

∫ T

0

c

T
dT, (5.5)

where c is the specific heat and s is the change in specific entropy between T
= 0 and a finite temperature T . The total specific entropy of PrO2 (magnetic
entropy + lattice contribution) was obtained from the specific heat data by
dividing by T, then integrating by trapezium rule. This gave

∆stotal =

∫ 23

0

c(PrO2)

T
dT = 32.9 JK−1kg−1. (5.6)

To obtain the change in magnetic entropy it was necessary to subtract off
the lattice contribution. This was estimated using the CeO2 data:

∆slattice =

∫ 23

0

c(CeO2)

T
dT = 1.7 JK−1kg−1. (5.7)

By subtracting (5.7) from (5.6) the change in magnetic entropy was obtained:

∆smagnetic = ∆stotal − ∆slattice = 31.2 JK−1kg−1. (5.8)
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Boltzmann’s law states that

S = kB ln Ω, (5.9)

where S is the total entropy of a given system, kB is Boltzmann’s constant
and Ω is the statistical weight, i.e. the number of possible microstates of the
system. For a system of N spins, each of which can be oriented in g different
ways, where g is the degeneracy of the ground state, the statistical weight is

Ω = gN . (5.10)

Substituting this into equation (5.9), and exploiting the properties of loga-
rithms we arrive at

Smagnetic = NkB ln g. (5.11)

In the paramagnetic phase, the PrO2 ground state has degeneracy g (Pr4+

has a single 4f electron, so it must have a Kramers degeneracy of at least
2). However, in the antiferromagnetic phase the degeneracy is lifted by the
molecular magnetic field. This causes the entropy to increase when the sam-
ple is warmed through the magnetic transition. The change in magnetic
entropy is given by

∆Smagnetic = Smagnetic(T > TN) − Smagnetic(T < TN)

= NkB ln g − NkB ln 1

= NkB ln g, (5.12)

where TN is the Néel temperature. The specific entropy is equal to the entropy
per unit mass, so the change in specific entropy is

∆smagnetic = nkB ln g, (5.13)

where n is the number of magnetic ions per unit mass. For PrO2 this is given
by

n =
1

mass of PrO2 molecule
= 3.48 × 1024 kg−1. (5.14)

Therefore, if the ground state is a quartet (g = 4), the theory predicts an
entropy change of ∆smagnetic = 66.7 JK−1kg−1, but if it is a doublet (g =
2), the theory predicts ∆smagnetic = 33.3 JK−1kg−1. The measured change
in magnetic entropy is ∆smagnetic = 31.2 JK−1kg−1, so this suggests that the
ground state is a doublet. The discrepancy between measured and theoretical
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values is probably due to insufficient data points near the peak of the lambda
point in the specific heat, leading to an underestimate of the magnetic entropy
change.

5.4 Electrical conductivity

The electrical conductivity of PrO2 was measured as a function of tempera-
ture using a simple probe designed for use with a helium cryostat (see Section
3.3 for a description of the probe and measurement technique). Two thin gold
wires were attached to opposite sides of a tiny single crystal of PrO2 (mass
< 1 mg) using silver DAG paint3 (see Figure 5.4). The crystal was glued to
the copper base of the probe with Oxford Instruments GE varnish to ensure
good thermal contact.

Figure 5.4: Single crystal of PrO2 (black). Gold wires have been attached with
silver paint. A steel rule with half-millimetre graduations indicates the size of the

crystal.

3Attempts to attach four wires to the tiny crystals were unsuccessful, due to the dif-
ficulty in achieving good electrical contact with the crystal while keeping the contacts
separate. However, a two-wire measurement is adequate, since the resistance of the crys-
tal is much greater than the resistance of the gold wires.
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5.4.1 Measurements

Four-terminal measurements of the sample resistance were made over a tem-
perature range from 5.8 K to 288 K. The temperature was increased in steps,
allowing the sample to equilibriate at each new setpoint. Figure 5.5 shows
a plot of current against temperature at a voltage of 3 V. Below T ∼ 120 K
the current became so small that it was comparable to the meter noise. The
absolute value of the electrical conductivity could not be determined because
the dimensions of the crystal were not known exactly, but the conductivity
is proportional to the current when measured at constant voltage, and this
is sufficient to determine the band gap.
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Figure 5.5: Current I through a single crystal of PrO2 at a constant voltage of
3 V. The conductivity is proportional to I. The inset shows ln I against 1/T .

5.4.2 Data analysis and results

For a pure, intrinsic semiconductor, in which the scattering processes are
dominated by lattice vibrations rather than impurities, the conductivity is
expected to display activated behaviour of the form

σ = σ0 exp

(

− Eg

2kBT

)

, (5.15)

where σ is the conductivity and Eg is the semiconducting band gap [42].
Since σ ∝ I we can also use
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I = I0 exp

(

− Eg

2kBT

)

, (5.16)

where I is the current. Rearranging this, we obtain

ln I = ln I0 −
Eg

2kBT
. (5.17)

Therefore, the gradient of a plot of ln I against 1/T is equal to −Eg/2kB,
enabling Eg to be extracted. The band gap of PrO2 was calculated in this
way for several runs, each measured at a different constant voltage (between
-5 and +5 V). Taking the mean and standard deviation of these values gave
the result Eg = 0.524± 0.006 eV for temperatures between 180 K and 288 K.

5.5 Discussion

The transition at T ∗ = 122 K in the magnetic susceptibility is very interest-
ing. Although a discontinuity had not been noticed in previous experiments,
the curvature of the susceptibility trace below this temperature had been
measured previously by Kern [11], and when attempting a crystal field anal-
ysis, he found that his data could not be fitted well with a crystal field of
cubic symmetry.

He proposed that the oxygen ions surrounding the Pr ion did not in fact
form a cube, but the two at opposite ends of the body diagonal were displaced
outwards along the (111) direction, causing the Γ8 crystal field level to split
into two doublets. Using this modified structure, he was able to obtain a good
fit to his data over the whole temperature range 0–300 K. He calculated the
splitting of the Γ8 level to be 28.8 meV, and the energy of the next excited
crystal field level (Γ7) to be 115.8 meV.

The significance of these results was later dismissed [12], because the
sample used did not exhibit a clear antiferromagnetic transition. Although
a discontinuity was observed at 14 K, this was small, and the susceptibility
continued to rise at lower temperatures. The sample had been prepared from
a starting material of Pr6O11 by annealing at a temperature of 360◦C under 5
atmospheres of oxygen pressure. These conditions lie close to the border, on
a temperature-pressure diagram, of the regions in which the PrO2 and Pr6O11

phases are stable, so it seemed likely that the sample was not single phase
PrO2. However, x-ray diffraction showed that it had a lattice parameter
of 5.393± 0.007 Å, which agrees well with the accepted value for PrO2 of
5.393± 0.001 Å, and is much less than the value for Pr6O11 of 5.468 Å [43].
This suggests that the sample was mostly PrO2, but contained enough of the
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Pr6O11 phase to partially obscure the antiferromagnetic transition. Since my
susceptibility measurements are in agreement with those obtained by Kern,
apart from the low temperature region near TN, I believe that the original
conclusion regarding the distortion of the oxygen sublattice could be valid,
at least for T < T ∗. In Chapter 6 I present evidence for this distortion, and
although the displacements of the oxygen ions are not quite as described by
Kern, the splitting of the Γ8 crystal field ground state below T ∗ is likely to
be similar to his predicted value of 28.8 meV.

The result of the specific heat capacity measurement supports a distortion
of the crystal structure, since the observed change in magnetic entropy when
passing through TN indicates a doublet ground state. In the light of the
susceptibility experiments, it would be interesting to measure the specific
heat capacity up to room temperature, to see if an anomaly occurs at 122 K.

The value obtained for the band gap of PrO2 is interesting, since it is much
smaller than that predicted by band structure calculations [22]. The theory
predicted a gap of ∼ 2.5 eV between the 4f band and the conduction band,
whereas the observed gap is Eg = 0.524± 0.006 eV. There could be many
reasons for this. Firstly, the single crystal used was very small, so only a very
small amount of silver DAG paint could be used to attach the gold wires.
It was therefore difficult to make a good connection before the paint dried.
I believe the wires were attached reasonably well, and the contacts were
separate as far as I could see through the microscope, but it is possible that
poor contacts affected the measurement. Some repeat measurements with
larger single crystals or pressed pellets of powder would be useful to improve
confidence in the result. It would also be useful to make a measurement with
a sample large enough to provide a measureable signal below 120 K, to look
for anomalies around 122 K.

Secondly, the conductivity may not be purely electronic. Compounds
with the fluorite structure often exhibit ionic conduction when vacancies
caused by Shottky or Frenkel defects allow the oxygen ions to hop from site
to site. However, the number of defects at room temperature is very small4, so
the ionic conductivity near room temperature should be negligible for PrO2.
The structure of Pr6O11 (cubic fluorite with one oxygen vacancy for every
six Pr ions) is more conducive to ionic conductivity, but neutron diffraction
experiments show no detectable trace of Pr6O11 in the PrO2 crystals, so it
is unlikely that such an impurity phase could have affected the conductivity
measurement.

Finally, the presence of donor or acceptor impurities in the crystal would

4The number of defects only becomes significant at temperatures comparable to the
melting point of the compound.
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drastically affect the conductivity. The purity of the crystals is not well
established, so this cannot be ruled out. However, for small numbers of
impurity atoms, the conductivity should saturate once all the impurities are
ionised, and since no plateaux were observed, I believe the band gap measured
to be the intrinsic gap of PrO2.



Chapter 6

Crystallographic and Magnetic
Structure of PrO2

In this chapter I present two neutron diffraction experiments to investigate
the crystallographic and magnetic structure of PrO2 (one with a powder
sample and the other with a single crystal).

6.1 Powder diffraction

The aim of the powder diffraction experiment was to check the crystallo-
graphic and magnetic structure of PrO2 at low temperatures.

6.1.1 Sample preparation

The powder sample used for this experiment was prepared by exactly the
same technique as described in Chapter 5.

6.1.2 Experimental details

The experiment was performed on the POLARIS powder diffractometer at
the ISIS facility1 at the Rutherford-Appleton Laboratory. POLARIS is a con-
stant angle powder diffractometer, with detector banks at scattering angles of
14◦, 35◦, 90◦ and 145◦. The 14◦ bank was not used for this experiment. The
others are referred to as the low angle bank, the 90◦ bank and the backscat-
tering bank respectively. The detector banks are resolution focussed, which

1The ISIS facility is a spallation source.
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means that all the detectors within each bank have approximately the same
resolution. The backscattering bank has the highest resolution, and the low
angle bank the lowest. The maximum d-spacing that can be reached by the
low angle bank is 7 Å, but the backscattering bank can only reach 3.2 Å.

A powder sample of mass 6.579 g was inserted into a cylindrical vanadium
can that was 76 mm long and 10 mm in diameter. This was mounted inside
a variable temperature orange helium cryostat with a vanadium tail.

6.1.3 Measurements

In order to identify the magnetic Bragg peaks the diffraction pattern was
measured both above and below the Néel temperature, at T = 15 K and T
= 4 K respectively. Measurements were not made at higher temperatures
because the feature in the magnetic susceptibility at T ∗ = 122 K had not yet
been discovered at the time of the experiment.

The raw data were normalised using a three step process. First, the time-
of-flight spectra from all the detectors in each bank were added together to
improve counting statistics2. Next, the instrumental background was sub-
tracted, and finally the spectrum from each detector bank was divided by
a vanadium spectrum. This normalised the data to the energy distribution
of the incident neutron flux, and also took into account the variation of the
detector efficiency with neutron energy3. The vanadium and background
measurements were made at the start of the ISIS cycle (experimentation
period) in which the experiment was performed.

6.1.4 Results

The diffraction patterns measured above and below TN were analysed by Ri-
etveld refinement [44], using the computer program GSAS (General Structure
Analysis System). For the refinement, PrO2 was assumed to have a fluorite
crystallographic structure, and, for simplicity, the magnetic structure was
assumed to be single-q, type-I antiferromagnetic (see Section 1.4.1). Such a
structure would give rise to mutually exclusive nuclear and magnetic Bragg
reflections. The nuclear reflections would occur at positions in reciprocal
space that satisfied the selection rules for a fcc lattice (h, k and l all even or
all odd), while the magnetic reflections would occur at all other positions.

2Because the detector banks were resolution focussed, the spectra were first converted
to d-spacing before being added.

3The incoherent scattering cross section of vanadium is much larger than the coherent
cross section, so it can be used to compare the efficiencies of different detectors within a
bank and to check for noisy or broken detectors.
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The diffraction patterns collected by the three detector banks were fitted
simultaneously. Figure 6.1 shows a graph of the fitted diffraction pattern
at T = 4 K for the low angle bank. Reasonable fits were achieved both
above and below TN by refining the lattice parameter a, the background
(using a cosine Fourier series with 10 terms), the thermal parameters UPr

and UO, the magnetic moment µ of the Pr ion, the profile coefficients σ
and γ (these model the instrumental lineshape), and the absorption coeffi-
cients for Pr and O (in that order). At T = 4 K the lattice parameter was
found to be a = 5.38559± 0.00002 Å and the magnetic moment was found
to be µ = 0.572± 0.012µB. The thermal parameters were found to be UPr

= 0.00192± 0.00006 Å2 and UO = 0.00480± 0.00005 Å2. At T = 15 K the
lattice parameter was found to be a = 5.38552± 0.00001 Å and the ther-
mal parameters were found to be UPr = 0.00220± 0.00005 Å2 and UO =
0.00522± 0.00005 Å2.
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Figure 6.1: The diffraction pattern of PrO2 measured at T = 4 K in the low angle
detector bank. (100) and (110) are magnetic reflections, while (111), (200), (220)

and (422) are structural reflections.

Although the fits were reasonably good, the strongest structural reflec-
tions showed discepancies in intensity of 5–10 %. At both T = 4 K and T =
15 K the (200) reflection was underestimated in the low angle and backscat-
tering banks, while the (111) and (220) reflections were overestimated in the
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90◦ and backscattering banks.
On closer examination of the spectrum measured at T = 4 K, small peaks

were found at “half-integer” positions. These were positions that did not
correspond to the assumed crystallographic and magnetic structures, but
could be indexed as

(

h + 1
2
, k, l

)

. The peaks appeared to obey the selection
rule k = odd, l = even.

The spectrum measured at T = 15 K also revealed half-integer peaks, but
the

(

1
2
10

)

, and
(

3
2
10

)

peaks seen at T = 4 K were not present, suggesting their
origin to be magnetic (see Figure 6.2). The rest of the peaks were present
with approximately the same intensities as observed at T = 4 K, suggesting
their origin to be structural.
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Figure 6.2: Top left: Spectrum from the low angle detector bank, revealing a
peak at

(

1
210

)

between the integer magnetic peaks (100) and (110). Bottom left:
Spectrum from the 90◦ bank, revealing a peak at

(

3
210

)

. At T = 15 K (above TN)
neither

(

1
210

)

or
(

3
210

)

are present, indicating that these are magnetic in origin.
Top and bottom right: Spectrum from the backscattering detector bank, revealing
peaks at

(

1
212

)

and
(

1
214

)

. These are present both above and below TN, suggesting
that they are structural in origin. Many other structural half-integer peaks were

observed, but these are some of the clearest.
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6.1.5 Discussion

The presence of half-integer structural and magnetic peaks in the neutron
diffraction patterns suggests that both the crystallographic and magnetic
unit cells of PrO2 are doubled along one crystal axis. Similar measurements
performed on an identical sample of PrO2 powder using high-resolution x-
ray powder diffraction [45] have also revealed half-integer peaks at the same
positions as observed in the neutron diffraction data. The high-resolution x-
ray data shows no sign of splitting of the integer reflections, which indicates
that there is no external lattice distortion. Instead, it is likely that the
doubling is caused by an internal distortion of the oxygen sublattice. The
doubling of the magnetic unit cell suggests that the magnetic ordering is
influenced by the configuration of the oxygen ions.

The Rietveld refinement of the neutron diffraction pattern could be im-
proved by altering the assumed structure to incorporate the internal oxygen
distortion and the doubled magnetic structure. This would probably resolve
the discepancies between the fit and the data for the strongest structural
reflections, and also return a larger value for the ordered magnetic moment
of the Pr ion. However, before a refinement is attempted, the displacements
of the oxygen ions and praseodymium spins must be known approximately.
It is difficult to deduce this information from the intensities of the powder
diffraction peaks because many reflections coincide. Also, it is not possible to
be certain whether particular half-integer reflections are structural or mag-
netic without checking the Q-dependence. These problems can be resolved
by performing a neutron diffraction experiment on a single crystal.

6.2 Single crystal diffraction

The object of the single crystal diffraction experiment was firstly to look for
evidence of structural and magnetic half-integer peaks, as seen in the pow-
der diffraction experiment, and secondly, to look for structural or magnetic
anomalies near T ∗ = 122 K, where a discontinuity was seen in the magnetic
susceptibility data.

6.2.1 Sample preparation

The single crystal sample used for this experiment was prepared by exactly
the same technique as described in Chapter 5.
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6.2.2 Experimental details

The experiment was performed on the D10 four-circle single crystal diffrac-
tometer at the Institut Laue-Langevin. A position-sensitive detector was
used, and this was kept within the scattering plane at all times. The Eulerian
cradle was configured to use a bisecting setting whenever possible, although
non-bisecting settings were allowed to enable access to awkward positions in
reciprocal space. A vertically curved Cu (200) monochromator was used in
combination with a pyrolitic graphite filter. No collimators were used, but a
circular aperture of diameter 6 mm was placed in the incident beam before
the sample, and a 20 mm × 25 mm rectangular aperture was placed before
the detector. Incident neutron wavelengths of 2.3575 Å and 1.2579 Å were
used for the crystallographic structure measurements, but only the former
was used for the magnetic structure measurements.

The largest single crystal of PrO2 was selected from the batch (see Figure
6.3(a)) and mounted on a thin aluminium pin (see Figure 6.4). The crystal
was aligned such that the [11̄0] direction lay along the axis of the pin, and
the mount was carefully shielded with a piece of cadmium (this was attached
with Kwikfill glue). The mount was attached to the φ-axis of the Eulerian
cradle, and a helium flow cryostat was used to enable temperatures in the
range 2–300 K to be reached. The χ angle of the cradle was constrained to
be positive at all times, to prevent the cadmium shielding on the mount from
obscuring the crystal.

(b)(a)

Figure 6.3: (a) A sketch of the single crystal of PrO2 used for neutron diffraction.
The arrow indicates the flat (111) face. (b) A photograph of another crystal
of PrO2 from the same batch. Both crystals are of similar volume and mass
(∼ 0.1 mm3, < 1 mg), and are temporarily mounted on pieces of green plasticine.
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Figure 6.4: Single crystal of PrO2, mounted for neutron diffraction.

6.2.3 Measurements

The quality of the crystal was checked by performing ω-scans of the strongest
nuclear reflections at room temperature. The crystal was found to be of good
quality, although the peak that was least affected by instrumental broaden-
ing revealed the presence of two small secondary crystallites in addition to
the main single crystal grain (see Figure 6.5). The mosaicity of the main
crystal grain was found to be 0.17◦, while the secondary grains were mis-
aligned by angles of 0.2◦ and 0.3◦ with respect to this. For most reflections,
the secondary grains were obscured by broadening due to the instrumental
resolution.

Crystallographic structure

The crystallographic structure of PrO2 was probed at a series of fixed tem-
peratures between 2 K and room temperature using neutron wavelengths of
λ = 2.3575 Å and λ = 1.2579 Å. The larger wavelength provided greater flux,
while the smaller wavelength provided greater coverage of reciprocal space.
At each temperature the intensities of all accessible nuclear reflections, and as
many as possible4 of their symmetry-equivalents, were measured by ω-scan.
At λ = 2.3575 Å, scans were collected at temperatures of 2 K, 90 K, 150 K

4At λ = 1.2579 Å time constraints prohibited the measurement of all possible symmetry-
equivalents, so three were chosen for each reflection.
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Figure 6.5: ω-scans of two typical nuclear reflections at room temperature. The
(311) reflection reveals two secondary crystallites, but these cannot be resolved in
the broader (111) reflection. For the sake of clarity, a lineshape has been fitted to

the (311) peak. This consists of a superposition of three Gaussians.

and 300 K, while at λ = 1.2579 Å, scans were collected at temperatures of
20 K, 150 K and 300 K.

At room temperature the relative intensities of the weaker reflections
were in reasonable agreement with those expected for a fluorite structure.
However, the strongest reflections were much smaller than expected. The
discrepancy was most pronounced at the higher neutron wavelength, so it is
likely that this was caused by extinction. At lower temperatures the reflec-
tions were all found to increase in intensity. The change was most pronounced
at the higher wavelength, and was largest for the strongest reflections. This
suggests that the increase in intensity was caused by a decrease in extinction,
and since there was no change in the mosaicity, this could only be due to a
lowering of symmetry.

Figure 6.6 illustrates the above points. The (400) reflection is one of the
strongest nuclear reflections. The square of its structure factor is approxi-
mately twelve times that of the (111) reflection. However, at room temper-
ature (300 K), using an incident wavelength of λ = 2.3575 Å, the integrated
intensity5 of the (400) reflection after correction for the Lorentz factor (see
section 2.4.2) is only four times that of the (111) reflection. At the same
wavelength, but at T = 2 K, the integrated intensity of the (400) reflection
is eight times that of the (111) reflection. At the lower wavelength of λ =
1.2579 Å the integrated intensity of the (400) reflection is eight times that
of the (111) reflection at room temperature, and is eleven times that of the

5The ω-scans were integrated by trapezium rule.
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Figure 6.6: The effect of extinction on strong and weak nuclear reflections. The
upper graphs show the (400) and (111) reflections, measured at an incident neutron
wavelength of λ = 2.3575 Å. The lower graphs show the same reflections, measured
at λ = 1.2579 Å. For the sake of clarity the data points have been joined by straight
lines. The effect of extinction is greatest for strong reflections at large wavelengths.
Since the increase in the measured intensities of the nuclear reflections on cooling
from 300 K to 2 K is also greatest for strong reflections at large wavelengths, it is

likely that this is due to a decrease in extinction.

To conduct a more careful investigation of the intensity changes exhibited
by the strong nuclear reflections, the intensity of the (220) reflection was
measured at λ = 2.3575 Å over the temperature range 2–300 K by ω-scan.
Figure 6.7 shows the integrated intensity as a function of temperature. A

6A complete set of nuclear reflections was not collected at T = 2 K at the lower wave-
length, but other scans showed that the nuclear intensities changed very little between 2 K
and 20 K.
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discontinuity can be seen at T = 120 K. This is very close to the temperature
at which a discontinuity was observed in the magnetic susceptibility (T ∗ =
122 K).

A departure from cubic symmetry can only cause a decrease in the nu-
clear structure factor, so a sudden lowering of symmetry cannot be directly
responsible for the sharp increase in the intensity of the (220) reflection at
T = 120 K. However, it can affect the intensity indirectly by decreasing the
extinction.

A slight change in intensity is also seen at ∼ 200 K, but no anomalies
have been observed in any of the physical properties of PrO2 at this temper-
ature, and it could be that this feature is simply due to poor temperature
equilibriation at high temperatures.
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Figure 6.7: Temperature dependence of the (220) reflection.

To prove conclusively that the sudden intensity change at T = 120 K was
due to a change in extinction, caused by a sudden lowering of symmetry,
the temperature dependence of the (220) intensity was also measured at the
lower neutron wavelength λ = 1.2579 Å. At each temperature the intensity
measured at the larger wavelength was divided by the intensity measured at
the smaller wavelength. When plotted as a function of T , this intensity ratio
showed a discontinuity at T = 120 K (see Figure 6.8).

The discontinuity can be accounted for as follows. As mentioned in Sec-
tion 2.4.2, the integrated intensity I of a reflection is proportional to the
square of its nuclear structure factor:
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I ∝ |F (Q)|2ATEL, (6.1)

where F (Q) is the nuclear structure factor, A is the absorption factor, T is
the correction for thermal diffuse scattering, E is the extinction correction
and L is the Lorentz factor. Of these factors, the only one that depends
on wavelength is the extinction correction E. Therefore, if the intensity of a
reflection is measured at two different wavelengths λ1 and λ2, the ratio of the
two intensities is proportional to the ratio of the two extinction corrections:

I(λ1)

I(λ2)
∝ E(λ1)

E(λ2)
. (6.2)

The extinction correction is given by

E = (1 + α + α2 + . . .)−
1

2 , (6.3)

where

α = κλ|F (Q)|2, (6.4)

and κ includes the constants of proportionality specified in equation (2.31).
Using the binomial expansion, and discarding terms of second and higher
order, the expression for E can be simplified to
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E ≈ 1 − κλ|F (Q)|2
2

. (6.5)

Substituting this into (6.2), we obtain

I(λ1)

I(λ2)
∝ 2 − κλ1|F (Q)|2

2 − κλ2|F (Q)|2 . (6.6)

If λ1 > λ2, any decrease in F (Q), due to a lowering of symmetry on cooling
through 120 K, will result in a larger increase in the numerator than in the
denominator of (6.6), causing the intensity ratio to increase.

Temperature dependence of the lattice parameter

It is possible to determine the temperature dependence of the lattice param-
eter by measuring the variation of the Bragg angle with temperature for a
particular reflection. The lattice parameter a is related to the Bragg angle
θS by the formula

a =
λ
√

h2 + k2 + l2

2 sin θS

, (6.7)

where h, k and l are the Miller indices of the reflection and λ is the neutron
wavelength. As θS changes with temperature, the crystal must be rotated
through an angle ∆ω = ∆θS in order to continue satisfying the Bragg condi-
tion. ∆ω can easily be measured by performing ω-scans of a chosen reflection
at a series of temperatures and recording the change in peak centre7.

It must be noted that the absolute value of the lattice parameter obtained
by this method is somewhat inaccurate, as it relies on the crystal being
perfectly aligned. A more accurate method would be to measure several
reflections at each temperature and use these to perform a least squares
refinement of the lattice parameter. However, the method described above is
faster, and gives a good qualitative indication of the way the lattice parameter
changes with temperature.

The temperature dependence of the PrO2 lattice parameter was measured
by performing ω-scans of the (400) reflection at a series of temperatures
between 2 K and 300 K, using the same UB matrix8 at all temperatures. The

7This method requires the crystal alignment to be left unaltered while the temperature
is changed. Hence, the detector remains at a fixed angle to the incident beam. The method
only works if the change in Bragg angle ∆θS is less than the angular width of the detector.

8The UB matrix is used for crystal alignment. It transforms from the coordinate system
of the crystal (defined by its crystal axes) to the coordinate system of the diffractometer
(usually defined by the beam direction) [46].
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(400) reflection was chosen for this measurement because of its large width.
This allowed the peak centre to be determined by fitting a single gaussian.

Figure 6.9 shows the resulting temperature dependence of the lattice pa-
rameter a. When warming, the lattice parameter undergoes a sudden, small
increase at ∼ 18 K. It then remains constant up to 135 K, above which it
rises linearly. However, when cooling, the lattice parameter decreases in an
approximately linear fashion from 300 K to 2 K, with a change in gradient at
∼ 140 K. It is possible that the difference between warming and cooling is
due to poorer temperature equilibriation when cooling.
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Figure 6.9: Temperature dependence of the PrO2 lattice parameter, measured by
neutron diffraction.

Figure 6.10 shows a plot of the temperature dependence of the PrO2

lattice parameter that was obtained by Rietveld refinement of x-ray powder
diffraction data taken at the European Synchotron Radiation Facility (ESRF)
[45]. Although there are only a few points, the overall shape of the trace
agrees well with my data.

Magnetic structure

To check the magnetic structure, the crystal was cooled to T = 2 K, and ω-
scans were made at all the accessible reciprocal lattice positions correspond-
ing to the type-I antiferromagnetic structure. The larger neutron wavelength
of λ = 2.3575 Å was used, as this provided greater flux than the smaller wave-
length. Some typical scans are shown in Figure 6.11. The integrated intensi-
ties of the reflections were in good agreement with those expected for a type-I
antiferromagnetic structure, except for the (321), (322) and (411) reflections,
which were found to be 15–20% larger than predicted. Time constraints pre-
vented the measurement of symmetry-equivalents for all reflections, but scans
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Figure 6.10: Temperature dependence of the PrO2 lattice parameter, measured by
x-ray diffraction [45]. The solid lines are a guide to the eye. They cross at a T =

137 K, in good agreement with my data.

of the symmetry-equivalents of the (100) reflection indicated that all possible
magnetic domains were equally populated to within 10%.

0

100

200

300

400

500

12 12.5 13

(100)

C
o

un
ts

(m
o
n

ito
r

=
1

0
00

0
00

)

Omega (º)

T = 2 K

l = 2.3575 Å

0

100

200

300

400

500

32 32.5 33

(211)

C
o

u
n

ts
(m

o
n

ito
r

=
1

0
0
0

0
0
0

)

Omega (º)

T = 2 K

l = 2.3575 Å

Figure 6.11: ω-scans of typical magnetic peaks.

Half-integer reflections

One of the main aims of the single crystal diffraction experiment was to
check for the presence reflections at half-integer positions, as observed in the
powder diffraction data. Using the larger neutron wavelength λ = 2.3575 Å at
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T = 2 K, reflections were found to occur at positions satisfying the selection
rule h = n + 1/2, k = odd, l = even, where n, k and l are integers. At T =
20 K (above TN), reflections were found at the same positions, but those with
l = 0 were no longer present (ω-scans of some typical reflections are shown
in Figure 6.12).
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Figure 6.12: ω-scans of typical half-integer peaks. Those with l = 0 are absent
above TN.

The peak intensity of the
(

1
2
10

)

reflection was measured as a function of
temperature between 2 K and 20 K. Figure 6.13 compares the temperature
dependence of the peak intensity for the

(

1
2
10

)

and (100) reflections9. The
(100) reflection was found to disappear at TN = 13.41 ± 0.04 K, while the
(

1
2
10

)

reflection disappeared at T = 13.5 ± 0.2 K. Since both reflections
disappear at the same temperature, to within the experimental uncertainty,
they must both be associated with the magnetic ordering.

The intensity of the
(

1
2
14

)

reflection was measured by ω-scan at a series
of temperatures between 2 K and 150 K. The reflection was found to disap-
pear at TD = 120± 2 K (see Figure 6.14). This strongly suggests that it is
structural, and that a lowering of symmetry causes the crystallographic unit
cell to double.

To confirm that the half-integer reflections with l = 0 were magnetic and
that the remainder were structural, it was necessary to measure their Q-
dependence. To do this, the

(

1
2
10

)

,
(

3
2
30

)

,
(

1
2
12

)

and
(

3
2
36

)

reflections were
measured by ω-scan. Both pairs of reflections lie on straight lines that pass
through the origin of reciprocal space (see Figure 6.15).

9The temperature dependence of the (100) intensity was actually measured during a
previous experiment performed on the same crystal. The same instrument was used, but
the sample environment was a cryomagnet, instead of a helium flow cryostat.
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Figure 6.13: The temperature dependence of the
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)

and (100) intensities. Order
parameter curves of the form I ∝ (TN − T )2β (red lines) have been fitted to
the data to determine TN. Note that the intensities of the two reflections must
not be compared directly because the crystal was mounted in different sample

environments for each measurement.
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Figure 6.14: Left: ω-scans of the
(

1
214

)

reflection at T = 2 K and T = 150 K. Right:
The temperature dependence of the

(

1
214

)

intensity. An order parameter curve of
the form I ∝ (TD − T )2β (red line) has been fitted to the data to determine TD.

To access the
(

3
2
30

)

and
(

3
2
36

)

reflections it was necessary to measure

at the lower neutron wavelength of λ = 1.2579 Å. In order to compare the
intensities measured at the different neutron wavelengths, the intensity of
each half-integer reflection was normalised to the intensity of a single nuclear
reflection measured at the same wavelength. The (311) reflection was chosen
for this purpose, as it was one of the weakest nuclear reflections accessible at
both wavelengths, and was therefore little affected by extinction. The inten-
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Figure 6.15: Map of reciprocal space. The black dots indicate reciprocal lattice
positions for the cubic fluorite crystal lattice, while the grey dots indicate positions
with half-integer indices. The

(

1
210

)

position is circled in red, and the
(

3
230

)

position is circled in green. Both lie on a straight line that passes through the
origin.

sities of the
(

1
2
10

)

and
(

3
2
30

)

reflections were found to follow the square of
the magnetic form factor f 2(Q) of the Pr4+ ion (see Appendix E), confirm-
ing their origin to be magnetic, while the intensities of the

(

1
2
12

)

and
(

3
2
36

)

reflections were found to be proportional to Q2, as expected for a structural
distortion (see Figure 6.16).

6.2.4 Crystallographic structure analysis

To identify the nature of the structural distortion below TD = 120 K it was
necessary to perform a detailed analysis of the intensities of the observed
integer and half-integer structural reflections. In this section I describe how
possible structures were identified by an informed trial and error approach.
The informed part utilised the fact that previous x-ray diffraction studies
showed no splitting of the integer reflections between 2 K and 300 K [45]. It
could therefore be assumed that the Pr lattice remained unchanged, and that
the distortion was due to a rearrangement of the oxygen ions. The wavevector
of the oxygen modulation was obtained from the reciprocal lattice vector
connecting the origin of reciprocal space to the closest half-integer structural
reflection,

(

1
2
12

)

.
A model for the distorted structure was constructed by placing two of the



6.2. Single crystal diffraction 99

0

0.4

0.8

1.2

1.6

0 2 4 6 8 10

In
te

g
ra

te
d

In
te

n
si

ty
(C

o
u

n
ts

.º
)

Q (Å-1)

(1/2, 1, 0)

(3/2, 3, 0)

I µ f 2(Q)

0

10

20

30

40

50

60

70

0 2 4 6 8 10

In
te

g
ra

te
d

In
te

n
si

ty
(C

o
u

n
ts

.º
)

Q (Å-1)

(1/2, 1, 2)

(3/2 3 6)

I µ Q2

Figure 6.16: Q-dependence of half-integer peaks. Left: The intensities of
(

1
210

)

and
(

3
230

)

are proportional to f 2(Q). Right: The intensities of
(

1
212

)

and
(

3
236

)

are proportional to Q2, as expected for a structural distortion. The blue circles
are the integrated intensities of the peaks, normalised to the intensity of the (311)

reflection, while the red lines show the variation of Q2 and f2(Q) with Q.

cubic unit cells of the fluorite lattice end to end and displacing the oxygen
ions. The relative directions and magnitudes of the oxygen displacements
were varied by trial and error until the calculated structure factors (see Ap-
pendix C for an outline of the calculation) matched the selection rules and
relative intensities of the observed reflections. Once a structure was iden-
tified, the magnitudes of the oxygen displacements were refined by a least
squares method to obtain the best possible agreement between the calculated
structure factors and observed intensities.

Data analysis

The intensities of the observed reflections were obtained by integrating each
ω-scan by trapezium rule. The background was minimised by using only
the area of the position sensitive detector required to cover the beam cross
section. The residual background was estimated by fitting a straight line
through the background points on either side of the peak, and this was sub-
tracted from the integrated intensity.

The intensity of each reflection was corrected for the Lorentz factor as
described in Section 2.4.2 and multiplied by a wavelength-dependent scale
factor to enable direct comparison between the observed intensities and cal-
culated structure factors. The scale factor for each neutron wavelength was
obtained from the (311) reflection by dividing its structure factor by its inte-
grated intensity (after correction for the Lorentz factor). The (311) reflection
was chosen for this purpose because its structure factor does not contain a
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contribution from the oxygen ions, so it is unaffected by the distortion. It is
also one of the weakest nuclear reflections, so it is little affected by extinction.

The corrected and scaled integrated intensities were averaged10 over sym-
metry-equivalents to obtain the final intensity values for comparison with
the calculated structure factors. Table 6.1 lists the intensities of the integer
structural reflections measured at λ = 1.2579 Å, T = 20 K and compares
them with the nuclear structure factors |FN(Q)|2 expected for an undistorted
fluorite structure.

Although the integrated intensities of the weaker reflections agree well
with the structure factors of the fluorite structure, the intensities of the
stronger reflections are significantly smaller than expected. This is partly
due to extinction, but a distortion of the oxygen sublattice is also expected
to cause small changes in the structure factors of the stronger reflections. The
discrepancy increases at high Q. This is because the Debye-Waller factor and
the extinction correction both depend on Q (the integrated intensities listed
in the table have not been corrected for exctinction, and the structure factor
calculation assumes that the Debye-Waller factor is equal to 1).

Simple distorted structure

The simplest structure I have found which has structure factors in agreement
with the relative intensities of the half-integer structural reflections is shown
in Figure 6.17. The oxygen ions are each displaced by 0.07260 Å along a
direction perpendicular to the direction along which the unit cell is doubled.
The oxygen cubes in the two halves of the doubled unit cell are sheared in
opposite senses. Figure 6.18(a) shows a plan view of the distorted structure,
this time with displacements to scale. Figure 6.18(b) shows two unit cells of
the undistorted fluorite structure for comparison.

Faber and Lander [47] originally proposed an identical shearing of the
oxygen cube for an internal distortion they observed in UO2. However, there
was no evidence for a doubling of the unit cell of UO2. It is now accepted that
the oxygen configuration in UO2 forms a triple-Q structure [48]. However,
there is currently no reason to assume that the same is true in PrO2. In
UO2 the oxygen ions are displaced by 0.014 Å, so the oxygen displacements
in PrO2 are five times as large, and this is reflected in the high value of the
transition temperature.

Tables 6.2 and 6.3 compare the nuclear structure factors of the PrO2 dis-
torted structure with the intensities of the observed integer and half-integer

10Averaging over symmetry-equivalent reflections ensures that a chance uneven distri-
bution in symmetry-equivalent structural or magnetic domain populations does not affect
the measured intensity of a given reflection.
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|FN(Q)|2 for fluorite

Reflection structure (fm2) Intensity (fm2)

(111) 335.6 350.3 ± 9.2

(200) 790.7 821.6 ± 14.3

(220) 4193.9 3727.3 ± 29.6

(222) 790.7 794.3 ± 16.9

(311) 335.6 335.6 ± 10.8

(331) 335.6 336.1 ± 12.5

(333) 335.6 329.6 ± 15.0

(400) 4193.9 3561.6 ± 37.1

(420) 790.7 644.9 ± 16.6

(422) 4193.9 3582.4 ± 44.5

(442) 790.7 590.9 ± 22.9

(444) 4193.9 3395.9 ± 64.8

(511) 335.6 336.7 ± 15.0

(531) 335.6 327.1 ± 16.8

(533) 335.6 325.4 ± 20.0

(551) 335.6 272.2 ± 21.8

(553) 335.6 312.4 ± 24.3

(600) 790.7 645.7 ± 23.7

(620) 4193.9 3292.5 ± 56.7

(622) 790.7 575.5 ± 25.8

(640) 790.7 468.0 ± 26.6

(642) 4193.9 3159.7 ± 66.7

(711) 335.6 273.0 ± 21.0

(731) 335.6 308.4 ± 24.6

(800) 4193.9 2957.9 ± 65.3

Table 6.1: Comparison between |FN(Q)|2 for the fluorite structure and the inte-
grated intensities of the integer structural reflections, measured at λ = 1.2579 Å,
T = 20 K. The integrated intensity of each reflection has been corrected for the
Lorentz factor and multiplied by a scale factor A = 3.2352 fm2 to allow direct

comparison with |FN(Q)|2.



6.2. Single crystal diffraction 102

y

z

Figure 6.17: A simple distorted structure. The large blue circles are praseodymium
ions and the small red circles are oxygen ions. The oxygen cubes in the two halves
of the doubled unit cell are sheared in opposite senses, but both have a shearing
vector that is perpendicular to the direction in which the cell is doubled. The

displacements of the oxygen ions have been exaggerated for clarity.

(a) (b)

a

a

y

x

Figure 6.18: (a) Scale diagram showing the distorted structure in plan view. The
large blue circles are praseodymium ions and the small red circles are oxygen ions.
Each oxygen ion is displaced by 0.0135a = 0.0726 Å. (b) Two unit cells of the

undistorted fluorite structure for comparison.

structural reflections respectively.
The agreement between the calculated structure factors and the observed

intensities is good, both for the integer and half-integer reflections, although
the intensities of the larger reflections are mostly lower than the calculated
values, due to extinction and the Debye-Waller factor, both of which increase
with Q.

It is interesting to note that there are two distinct Pr sites in the distorted
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Reflection |FN(Q)|2 (fm2) Intensity (fm2)

(111) 335.6 350.3 ± 9.2

(200) 778.4 821.6 ± 14.3

(220) 4136.6 3727.3 ± 29.6

(222) 753.7 794.3 ± 16.9

(311) 335.6 335.6 ± 10.8

(331) 335.6 336.1 ± 12.5

(333) 335.6 329.6 ± 15.0

(400) 4081.9 3561.6 ± 37.1

(420) 731.1 644.9 ± 16.6

(422) 4024.6 3582.4 ± 44.5

(442) 683.8 590.9 ± 22.9

(444) 3858.0 3395.9 ± 64.8

(511) 335.6 336.7 ± 15.0

(531) 335.6 327.1 ± 16.8

(533) 335.6 325.4 ± 20.0

(551) 335.6 272.2 ± 21.8

(553) 335.6 312.4 ± 24.3

(600) 691.9 645.7 ± 23.7

(620) 3922.7 3292.5 ± 56.7

(622) 667.3 575.5 ± 25.8

(640) 644.7 468.0 ± 26.6

(642) 3810.7 3159.7 ± 66.7

(711) 335.6 273.0 ± 21.0

(731) 335.6 308.4 ± 24.6

(800) 3785.0 2957.9 ± 65.3

Table 6.2: Comparison between |FN(Q)|2 for the distorted structure and the inte-
grated intensities of the integer structural reflections, measured at λ = 1.2579 Å,
T = 20 K. The integrated intensity of each reflection has been corrected for the
Lorentz factor and multiplied by a scale factor A = 3.2352 fm2 to allow direct

comparison with |FN(Q)|2.
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Reflection |FN(Q)|2 (fm2) Intensity (fm2)
(

1
2
12

)

5.12 5.46 ± 0.30
(

3
2
12

)

5.12 4.96 ± 0.34
(

5
2
12

)

5.12 4.84 ± 0.47
(

7
2
12

)

5.12 4.76 ± 0.60
(

1
2
23

)

5.12 5.16 ± 0.56
(

3
2
23

)

5.12 7.13 ± 0.60
(

1
2
14

)

19.91 16.55 ± 0.86
(

3
2
36

)

42.67 45.56 ± 2.97
(

1
2
16

)

42.67 42.34 ± 2.33
(

1
2
25

)

5.12 6.88 ± 1.24
(

1
2
27

)

5.12 12.40 ± 2.19
(

1
2
34

)

19.91 17.70 ± 1.47
(

3
2
14

)

19.91 20.50 ± 1.23
(

3
2
34

)

19.91 22.02 ± 1.50
(

5
2
23

)

5.12 7.09 ± 1.03
(

5
2
25

)

5.12 8.70 ± 1.58
(

7
2
23

)

5.12 6.30 ± 1.14
(

7
2
25

)

5.12 4.88 ± 1.77

Table 6.3: Comparison between |FN(Q)|2 for the distorted structure and the
integrated intensities of the half-integer structural reflections, measured at λ =
1.2579 Å, T = 20 K. The integrated intensity of each reflection has been corrected
for the Lorentz factor and multiplied by a scale factor A = 3.2352 fm2 to allow

direct comparison with |FN(Q)|2.

structure, each of which occurs with equal frequency. The two sites have
different surrounding oxygen configurations, which are shown in Figure 6.19.
At one site the oxygens form a parallelohedron (a polyhedron with two square
faces, two rectangluar faces and two parallelogram faces), while at the other
they form a polyhedron with four parallelogram faces and four triangular
faces.

The distorted structure described here is the simplest structure consis-
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Figure 6.19: Different Pr sites in distorted structure. The black circles are oxy-
gen ions and the white circles are praseodymium ions. (i) Parallelohedron. (ii)

Polyhedron with four parallelogram faces and four triangular faces.

tent with the intensities of the observed reflections. However, more complex
structures cannot be ruled out. For example, if the oxygen ions are further
displaced by 0.0212 Å in a direction mutually perpendicular to their initial
displacement and to the doubling axis, following the pattern shown in Figure
6.20 the agreement between the observed intensities and calculated structure
factors is actually slightly improved.

z

x

Figure 6.20: Further possible displacement of the oxygen ions in the doubled unit
cell.

Also, a superposition of two structures identical to the structure shown
in Figure 6.17, but with oxygen displacements of 0.05106 Å in mutually per-
pendicular directions, gives good agreement between the calculated structure
factors and observed intensities. The overall displacement of each oxygen ion
in this case is

√
2 × 0.05106 = 0.07220 Å.

However, due to the short counting times necessitated by the timescale
of the experiment, the uncertainties on the observed intensities of the half-
integer reflections are between 5% and 35%. It is therefore difficult to justify
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a complex model for the structure, and it is felt that little insight is gained
by doing so.

6.2.5 Magnetic structure analysis

The presence of half-integer magnetic reflections alongside stronger integer
magnetic reflections indicates that the magnetic structure consists of two
components: one with the same unit cell as the cubic fluorite structure, and
another with a doubled unit cell. This picture fits well with the model of the
crystallographic structure, in which the Pr lattice remains undistorted, but
the oxygen sublattice undergoes an internal distortion which gives rise to a
component of the structure with a doubled unit cell.

The easiest way to analyse the magnetic structure is to consider the two
components separately, so that the overall structure can be visualised by per-
forming a vector addition of the two components of the magnetic moment for
each Pr ion in the doubled unit cell. The type-I antiferromagnetic structure,
which gives rise to the integer magnetic reflections, remains unchanged, so it
is only necessary to deduce the magnetic structure of the doubled component,
which gives rise to the half-integer reflections.

The search for possible magnetic structures consistent with the relative
intensities of the observed magnetic half-integer reflections was conducted
in a very similar way to the search for possible distorted structures. The
observed selection rule provided the wavevector of the structure,

(

1
2
10

)

, and
the search proceeded by trial and error from there.

It is impossible to conceive of a magnetic structure that would give rise to
reflections at l = 0 alone. Symmetry requires that if a structure gives rise to
reflections at l = 0 it will also give rise to reflections at all positions with l =
even. This means that many of the magnetic half-integer reflections coincide
with the structural ones. However, since little difference is observed in the
intensities of the structural half-integer reflections above and below TN, it
can be assumed that the magnetic intensities at these positions are small in
comparison.

The number of possible magnetic structures consistent with the observed
intensities of the half-integer magnetic reflections is quite large. Two of the
simplest possible structures are shown in Figure 6.21. Note that the moments
of the Pr ions in these structures all point along directions perpendicular to
the direction along which the unit cell is doubled. Similar structures in which
some or all of the moments point along the doubling direction give poorer
agreement with the relative intensities of the observed reflections.
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(a) (b)

y

x

z

a

a

Figure 6.21: Possibilities for the doubled component of the magnetic structure.
The colours are used to highlight alternate planes of Pr ions in the direction along
which the unit cell is doubled. (a) All moments point along the y-axis. (b) Half
the moments point along the y-axis and half along the z-axis. These structures
have identical magnetic structure factors, but the arrangement of the moments
in structure (b) is particularly pleasing, because the Pr ions situated at the two
distinct sites identified in the distorted structure have moments that point in

different directions.

Magnetic moment of the Pr ion

The magnetic moment of the Pr ion can be calculated for each of the two
components of the magnetic structure as follows:

µ =

√

IM(Q1)|FN(Q2)|2
(

γr0

2

)2
IN(Q2)|FM(Q1)|2

(6.8)

where µ is the magnetic moment of the Pr ion in one component of the mag-
netic structure, IM(Q1) is the integrated intensity of a particular magnetic
reflection with reciprocal lattice vector Q1, |FM(Q1)|2 is the magnetic struc-
ture factor of this reflection (see Appendix C for the definition of |FM(Q)|2),
IN(Q2) is the integrated intensity of a particular nuclear reflection with re-
ciprocal lattice vector Q2 and |FN(Q2)|2 is the nuclear structure factor of
this reflection (see Appendix C for the definition of |FN(Q)|2). The factor
(γr0/2)

2 is the constant of proportionality between the magnetic structure
factor and the scattering cross section for magnetic elastic scattering (see
Section 2.3.4). The magnetic moment of the Pr ion can be calculated from
the integrated intensity of any magnetic reflection. The values obtained for
all the observed relflections can be averaged to reduce the uncertainty on the
final value.
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Table 6.4 compares the observed intensities of the integer magnetic re-
flections with the magnetic structure factors for the type-I aniferromagnetic
structure (the calculation of the magnetic structure factors is outlined in Ap-
pendix C, Section C.2). Note that the definition of the magnetic structure
factor FM(Q) does not contain µ, so the calculated magnetic structure factors
and observed intensities cannot be compared in absolute terms. Instead, the
relative values of the structure factors and intensities should be compared.

Reflection |FM(Q)|2 Intensity (fm2)

(100) 5.06 14.88 ± 0.31

(110) 2.40 7.15 ± 0.24

(210) 2.49 8.15 ± 0.30

(211) 3.31 10.87 ± 0.40

(221) 1.93 5.42 ± 0.29

(300) 3.47 10.76 ± 0.55

(310) 1.66 4.65 ± 0.32

(320) 2.48 7.52 ± 0.43

(321) 1.81 7.81 ± 0.47

(322) 1.90 8.42 ± 0.67

(411) 2.26 8.75 ± 0.69

Table 6.4: Comparison between |FM(Q)|2 for the type-I AFM structure and the
integrated intensities of the integer magnetic reflections, measured at λ = 2.3575 Å,
T = 2 K. The intensity of each reflection has been corrected for the Lorentz factor

and multiplied by a scale factor A = 1.4637 fm2.

Table 6.5 compares the observed intensities of the half-integer magnetic
reflections with the calculated magnetic structure factors for the structures
shown in Figure 6.21 (both have identical magnetic structure factors). It
should be mentioned that the

(

5
2
10

)

reflection had a high and rather sloping
background, due to its proximity in reciprocal space to an aluminium powder
line, so the intensity of this reflection is somewhat unreliable.

The intensities of the magnetic reflections listed in table 6.4 lead to a
value of µ1 = 0.654± 0.002µB for the magnetic moment of the Pr ion in the
type-I AFM component of the magnetic structure. The intensities listed in
table 6.5 lead to a value of µ2 = 0.354± 0.002µB (disregarding the intensity
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Reflection |FM(Q)|2 Intensity (fm2)
(

1
2
10

)

1.50 1.38 ± 0.09
(

3
2
10

)

1.91 1.66 ± 0.11
(

5
2
10

)

1.75 0.86 ± 0.12
(

1
2
30

)

0.88 1.08 ± 0.21
(

3
2
30

)

0.95 1.08 ± 0.15

Table 6.5: Comparison between |FM(Q)|2 for the doubled component of the mag-
netic structure and the integrated intensities of the half-integer magnetic reflec-
tions, measured at λ = 2.3575 Å, T = 2 K. The intensity of each reflection has been
corrected for the Lorentz factor and multiplied by a scale factor A = 1.4637 fm2.

of the
(

5
2
10

)

reflection) for the magnetic moment of the Pr ion in the doubled
component of the magnetic structure.

6.3 Discussion

The neutron diffraction experiments described in this chapter have revealed
an internal distortion of the oxygen sublattice in PrO2, which occurs at
TD = 120± 2 K. To within experimental uncertainty this is the same as the
temperature T ∗ = 122± 2 K at which a discontinuity was observed in the
magnetic susceptibility, suggesting that the two effects have a common origin.
In Chapter 5, Section 5.2.3, I suggested that ordering of the Pr 4f orbitals
could occur at T ∗. This would provide an explanation for the discontinuity in
the susceptibility, and could also cause a breaking of cubic symmetry which
would permit the lattice to undergo a cooperative Jahn-Teller distortion.

The displacements of the oxygen ions in the distorted phase of PrO2

are five times as large as those observed in UO2 [47], and this is reflected
in the high value of the transition temperature. Although the distortion
does not occur at the same temperature as the antiferromagnetic ordering,
the observation that the unit cells of both the distorted structure and the
magnetic structure are doubled in PrO2 suggests that the displacement of
the oxygen ions affects the magnetic ordering of the Pr sublattice.

It is also interesting to note that the temperature T = 135 K, at which
the discontinuity in the PrO2 lattice parameter was observed, is somewhat
higher than the temperature T = 120 K at which the half-integer structural
peaks disappeared.
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The discovery of the doubled component of the magnetic structure has
revealed that the overall size of the Pr ordered moment is slightly larger
than was once thought (see Section 1.4.1). Also, the distortion of the oxygen
sublattice reflects a lowering of symmetry that splits the Γ8 crystal field
ground state into two doublets, resulting in a reduction in the expected
value for the ordered moment. These two observations clear up much of the
controversy surrounding the magnitude of the Pr ordered moment.



Chapter 7

Crystal Field Levels and
Magnetoelastic Coupling in

PrO2

In this chapter, I describe measurements of the excitation spectrum of PrO2

made by inelastic neutron scattering. Measurements have been made previ-
ously by Kern et al. [10] and Longmore [49]. However, the studies by Kern
et al. suffered from low neutron intensity, which prohibited the measure-
ment of the higher crystal field excitations, and the studies by Longmore
were hampered by sample contamination, which complicated the spectrum
with impurity features. The measurements described here benefit from a
high intensity neutron source, improved spectrometer resolution and a clean
sample.

The excitation spectrum of PrO2 reveals sharp peaks characteristic of
crystal field transitions of the Pr ion, as well as a broad band of scattering
which is interpreted as evidence for magnetoelastic coupling (coupling be-
tween phonons and crystal field levels). Analysis of the sharp peaks allows
the ionisation state of the Pr ion to be determined, thus resolving the con-
troversy surrounding the PrO2 ground state (see section 1.4.2) which arose
following core-level x-ray absorption and photoemission studies1. A simple
model is presented, based on magnetoelastic coupling, which accounts qual-
itatively for the other main features of the excitation spectrum.

1Thermal neutrons are an ideal probe of the excitation spectrum because they have
much lower energies (< 1.5 eV) than the x-rays used for core-level studies. They are also
more weakly coupled to the angular momentum of the electrons, which means that they
can be used to probe the excitation spectrum without altering the ground state.

111



7.1. Sample Preparation 112

7.1 Sample Preparation

The PrO2 sample used for this experiment was a fine-grained powder of mass
9.814 g which was prepared by oxidation of commercially obtained Pr6O11.
The starting material was baked in air at 1000◦C for several hours to re-
move hydroxide and carbonate impurities, then annealed in flowing oxygen
at 280◦C for approximately 20 days. The resulting product was checked by
x-ray diffraction and no trace of residual Pr6O11 was detected, allowing an
upper limit of 1% to be placed on the amount of Pr6O11 remaining in the
sample.

7.2 Experimental Details

The experiment was performed on the High Energy Transfer (HET) chopper
spectrometer at the ISIS Facility. A Fermi chopper was used to provide a
monochromatic incident neutron beam, and the scattered neutron intensity
was recorded as a function of time of flight (see Section 2.4.1 for an outline
of time of flight analysis) in banks of detectors surrounding the sample. The
detector banks were positioned over a range of scattering angles to enable
measurement of the Q-dependence of the excitation spectrum. Coverage
was almost continuous over the range 2θS = 3–29◦, and there were also two
high-angle banks centred at scattering angles of 115◦ and 133◦. The powder
sample was enclosed in an aluminium foil package, and mounted in contact
with the cold head of a closed-cyle refrigerator. Spectra were collected at
incident neutron energies Ei = 30, 180, 450, 750 and 1200 meV. These were
each chosen to optimise the spectrometer resolution over particular regions
of interest in the energy spectrum (the resolution decreases as the incident
energy increases).

The excitation spectrum of a 10 g powder sample of CeO2 was measured
under identical conditions to provide an estimate of the contribution from
non-magnetic2 scattering to the PrO2 spectrum. CeO2 is a good choice of
material for this purpose because it has the same structure as PrO2 at room
temperature (cubic fluorite structure) and a similar lattice parameter. The
nuclear scattering lengths of Pr and Ce differ by only 20%, but the Ce atom
gives up all its 4f electrons in bonding to the oxygens, leaving a non-magnetic
Ce4+ ion.

2Non-magnetic scattering could be due to phonon scattering or multiple scattering
events.



7.3. Data Analysis 113

7.3 Data Analysis

Several corrections were applied to the PrO2 and CeO2 spectra recorded by
the detectors. White beam vanadium spectra, measured before and after the
experiment, were used to identify noisy or dead detectors, and mask them
out. Monochromatic vanadium spectra, measured at each of the incident
energies used in the experiment, were used to normalise the spectra, so that
the intensity could be compared directly with the inelastic scattering cross
section (see Section 2.3.5). The spectra were also corrected for absorption
and self-shielding (these corrections increased the raw intensity by 6% at
Ei = 30 meV, 4% at Ei = 180 meV, and < 1% at other incident energies)
and divided by the factor kf

ki
, where ki and kf are the initial and final neutron

wavevectors respectively, to simplify comparison between measurement and
theory. Finally, to eliminate the non-magnetic contribution to the scattering
intensity, the CeO2 spectra were subtracted from the PrO2 spectra.

Because the spectra were recorded at constant 2θS, the scattering vector Q

varied with energy transfer E across each measured spectrum: h̄2Q2/2m =
2Ei − E − 2 cos 2θS

√

Ei(Ei − E). In order to compare spectra measured
at different incident energies, and to simplify comparison with theory, it
was necessary to extrapolate each spectrum to Q = 0. This was achieved
by calculating the variation of the magnetic form factor3 f(Q) with energy
across each spectrum, and dividing each spectrum by f 2(Q).

7.4 Results

Figure 7.1(a) shows the excitation spectra of PrO2 and CeO2 measured with
an incident energy Ei = 180 meV at T = 10 K, before extrapolation to Q = 0.
The data have been averaged over the angular ranges φ = 9–19◦ (〈φ〉 = 14◦)
and φ = 125–139◦ (〈φ〉 = 133◦), where φ = 2θS. At high angles the scattering
is dominated by one-phonon processes, so the spectra measured at 〈φ〉 =
133◦ effectively measure the phonon density of states. The PrO2 and CeO2

data are similar at this scattering angle, but some of the peaks in the PrO2

spectrum occur at lower energies than in CeO2, most noticeably for E <
30 meV. At low scattering angles more marked differences are observed. The
PrO2 data contains a sharp peak at 131 meV and a broad peak centred at ∼
30 meV, extending from 10 meV to 100 meV. The non-magnetic background

3Note that the dipole approximation (see Section 2.3.7) was not valid at the highest
energy transfers, so a more rigourous calculation, based on the shell model was used [50].
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obtained from the CeO2 spectrum4, however, contains no sharp features, and
lies below the PrO2 spectrum at all energies.
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Figure 7.1: Excitation spectrum of PrO2, measured by inelastic neutron scattering
at a temperature of 10 K. The open circles are the PrO2 data, and the closed circles
are an estimate of the non-magnetic background obtained from CeO2. (a) shows
the spectra measured at Ei = 180 meV, at low and high scattering angles φ. (b)
and (c) show intermultiplet crystal field transitions (2F5/2 → 2F7/2) measured with
Ei = 750 meV and 1200 meV respectively. The solid lines represent the scattering
cross section calculated from the CEF model as described in the text. The peak

widths have been chosen to match the instrumental resolution.

The peak at 131 meV had been observed previously [10], but the broad
peak had not. Both peaks decrease in intensity with increasing φ, as would
be expected for magnetic scattering, which follows the square of the magnetic

4At incident energies of Ei = 30, 450, 750 and 1200 meV the CeO2 spectrum is feature-
less, so can be used directly as a measure of the non-magnetic background. However, at
Ei = 180 meV the low-angle CeO2 spectrum contains small features associated with peaks
in the phonon density of states. Since the phonon peaks in the PrO2 spectrum occur at
slightly different positions, the background for the low-angle PrO2 spectrum measured at
Ei = 180 meV was calculated by multiplying the low-angle CeO2 data by the ratio of the
high-angle spectra of PrO2 and CeO2. The background obtained this way is shown in the
lower half of Figure 7.1(a).
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form factor f 2(Q). The decrease in intensity of the 131 meV peak agrees well
with the φ-dependence of the magnetic form factor, but the broad peak is
found to decrease more rapidly. Conversely, the background obtained from
the CeO2 spectrum increases systematically with φ, confirming that it is
non-magnetic.

The PrO2 spectra measured with Ei = 750 meV and 1200 meV reveal
another two magnetic features. These are shown in Figures 7.1(b) and (c).
The peak centred near 350 meV is significantly broader than the spectrometer
resolution (determined from the width of the elastic peak), which suggests
that it actually consists of two unresolved peaks. In contrast, the peak
centred at 730 meV is resolution-limited, so it is likely to originate from a
single transition.

Figure 7.2 shows data taken from several spectra measured at different
incident energies, after subtraction of the non-magnetic scattering (estimated
from the CeO2 data) and extrapolation to Q = 0 (as described in Section
7.3).
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Figure 7.2: PrO2 excitation spectrum after subtraction of the non-magnetic back-
ground and correction for the Q-dependent magnetic form factor. The data pre-
sented in the main part of the figure were taken at Ei = 30 and 180 meV. The
data displayed in the inset were taken at Ei = 450 meV, showing the shoulder to

the 131 meV peak.

The PrO2 spectrum measured at Ei = 30 meV reveals yet another mag-
netic feature, centred at 3 meV. This is found to move to lower energies as
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the temperature is raised, and becomes quasielastic above ∼15 K, indicating
that it is due to spin wave excitations of the antiferromagnetically ordered
ground state.

The broad band of magnetic scattering from 10–100 meV can be seen
clearly in Figure 7.2, while the spectrum measured at Ei = 450 meV reveals
a shoulder of scattering above the 131 meV peak, centred at ∼ 160 meV
(shown in inset).

Confirmation of the purity of the PrO2 sample can be obtained through
comparison of the neutron scattering excitation spectra of Pr6O11 and PrO2.
The former contains sharp peaks at 7.3 meV and 18.5 meV [51, 39], but there
is no observable trace of these peaks in the PrO2 spectrum.

7.5 Interpretation of Results

To interpret the results described above, we must consider the effect of the
crystalline electric field (CEF) on the energy levels of the Pr ion.

The ground state multiplet of the Pr4+ 4f 1 configuration within the
Russell-Saunders coupling scheme is 2F5/2 and the first excited multiplet
is 2F7/2. In the cubic crystal field provided by the oxygen ions, for T > TD,
the ground state multiplet splits into a Γ8 quartet and a Γ7 doublet, while
the excited multiplet splits into a Γ′

8 quartet, a Γ′
7 doublet and a Γ′

6 dou-
blet (see Figure 7.3). These levels are primed to distinguish them from the
lower energy levels arising from the ground state multiplet. Previous studies
[11, 12] have indicated that the ground state is the Γ8 level. Below TD the
oxygen sublattice undergoes a distortion, which causes both the Γ8 and Γ′

8

levels to split into two doublets.
The crystal field levels shown in Figure 7.3 are in good agreement with

the high energy features observed in the excitation spectrum, provided that
the 350 meV peak encompasses the Γ′

6 level and the two doublets arising
from the Γ′

8 level (this explains the large width of the peak compared to
the instrumental resolution). The peaks at 131 meV and 730 meV can be
attributed to the Γ8 → Γ7 and Γ8 → Γ′

7 transitions respectively. However, it
is more difficult to explain the presence of the broad peak from 10–100 meV
and the shoulder to the 131 meV peak. It is likely that the maximum of
the broad peak corresponds to a crystal field transition between the two
doublets arising from the splitting of the Γ8 level, but this does not explain
the enormous width of the peak. As for the shoulder to the 131 meV peak, it
cannot be due to a crystal field transition, as Pr4+ is a Kramers ion, so the
Γ7 doublet cannot split.

Boothroyd et al. [50] have constructed a model for the PrO2 excitation
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Figure 7.3: Energy levels of a Pr4+ ion in a cubic crystal field. The Russell-
Saunders multiplets for the free ion are shown on the left. Under the influence of
a cubic crystal field these split into the levels shown in the middle. The symmetry
labels of the levels arising from the excited multiplet have been primed to distin-
guish them from the levels arising from the ground state multiplet. Under the
influence of a crystal field of lower than cubic symmetry the Γ8 and Γ′

8 quartets
each split into two doublets, as shown on the right. The rest of the levels remain

unchanged.

spectrum, based on a cubic crystal field. As a starting point they used the
spin-orbit coupling constant ζ (which determines the separation of the 2F5/2

and 2F7/2 terms) for a free Pr4+ ion [52] and point charge estimates of the
crystal field parameters B4

0 and B6
0 [53] (which determine the separation of

the crystal field levels, and are defined by Carnall et al. [54]). They then
used the integrated spectral weights

∫

ki

kf

d2σ
dΩdE

dE of the observed features

in the excitation spectrum to refine the parameters ζ, B4
0 and B6

0 , using
the fourteen states |J ; mJ〉 of the 2F5/2 and 2F7/2 terms as a basis. They
achieved good agreement between the transition matrix elements5, obtained
from the refined eigenfunctions, and the integrated spectral weights of the
intermultiplet transitions, Γ8 → Γ′

6, Γ8 → Γ′
8 and Γ8 → Γ′

7 (the simulated
scattering cross section obtained from the matrix elements for each transition
is shown in Figures 7.1(b) and (c) as a solid line). However, the same could

5The transition matrix elements were used to simulate the inelastic scattering cross
section using Equations (2.10) and (2.11) for comparison with the integrated spectral
weights of the observed features.
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not be said for the intramultiplet transitions, Γ8 → Γ8 and Γ8 → Γ7.
The refinement predicted spectral weights of 182 and 99 mb sr−1Pr−1 for

the Γ8 → Γ8 and Γ8 → Γ7 transitions respectively. However, if we integrate
over the features at 3 meV and 131 meV in the measured PrO2 excitation
spectrum (after subtraction of the non-magnetic background and extrapola-
tion to Q = 0), using the trapezium rule, we obtain spectral weights of 47
and 48 mb sr−1Pr−1 respectively. These are considerably smaller than those
predicted. Even if we consider the elastic contribution to the scattering cross
section from the Γ8 → Γ8 transition6 we only add 19 mb sr−1Pr−1 to the con-
tribution of 47 mb sr−1Pr−1 from the 3 meV peak, which still falls a long way
short of the predicted value of 182 mb sr−1Pr−1.

Table 7.1 lists the integrated spectral weights of several of the features
observed in the PrO2 excitation spectrum. The spectral weight of the broad
peak is very significant. If we include this in the Γ8 → Γ8 transition, along
with the spectral weights of the 3 meV peak and the elastic scattering contri-
bution, we obtain a total spectral weight of 19+47+109 = 175 mb sr−1Pr−1.
This is much closer to the predicted value of 182 mb sr−1Pr−1. Correspond-
ingly, if we include the shoulder to the 131 meV peak in the spectral weight
of the Γ8 → Γ7 transition we obtain 68 mb sr−1Pr−1, which is closer to the
predicted value of 99 mb sr−1Pr−1.

Allowing for a 10% uncertainty in the absolute calibration of the scatter-
ing cross section, the higher energy features of the PrO2 excitation spectrum
are described well by the model of Boothroyd et al., based on a cubic crystal
field and a +4 ionisation state for the Pr ion7. The total spectral weight of
the lower energy features is also in good agreement with the model, provided
that the broad peak is included in the Γ8 → Γ8 transition and the shoulder
to the 131 meV peak is included in the Γ8 → Γ7 transition.

The observation that the broad peak must be included in the Γ8 → Γ8

transition suggests that this feature is due to a splitting of the Γ8 ground
state. I have already mentioned that the distortion of the oxygen sublattice
splits the Γ8 level into two doublets, but this cannot explain the large width
of the peak. It has been suggested previously that the anomalously low
ordered magnetic moment of the Pr ion could be explained by magnetoelastic

6This is given by the formula dσ
dΩ = 2

3

(

γr0

2

)2
(

µ
µB

)2

, where
(

γr0

2

)2
= 72.4 mb (note

that ki = kf for elastic scattering). At T = 10 K, the ordered moment µ of the Pr ion
is 85% saturated (see Figure 6.13). At T = 2 K, where the moment is close to 100%
saturated, the two components of the magnetic structure of PrO2 have ordered moments
µ1 = 0.654± 0.002 µB and µ2 = 0.354± 0.002 µB (see Section 6.2.5). Using these values
we obtain a spectral weight at T = 10 K of dσ

dΩ = 15 + 4 = 19 mb sr−1Pr−1.
7The presence of Pr3+ ions can be ruled out, as these would give rise to 3H4 → 3H5

crystal field transitions in the region 200–300 meV [55], but no peaks are observed.
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Peak and spectrum
∫

ki

kf

d2σ
dΩdE

dE (mb sr−1Pr−1)

3 meV peak

(Ei = 30 meV)
47

Broad peak (10–100 meV)

(Ei = 180 meV)
109

131 meV peak

(Ei = 180 meV)
48

131 meV peak + shoulder

(Ei = 750 meV)
68

Table 7.1: Integrated spectral weights
∫

ki

kf

d2σ
dΩdE dE for features in the PrO2 exci-

tation spectrum.

coupling of the crystal field levels and phonon states in PrO2 [10], which
would mix the electronic and phonon degrees of freedom, giving rise to a
dynamic Jahn-Teller effect (DJTE) in the Γ8 ground state. This hypothesis
has already been successful in explaining the same phenomenon in UO2 [56].
In the next section I describe a simple model for the coupling of the Γ8 and
Γ7 crystal field levels of PrO2 with a phonon state, which accounts for the
low spectral weights of the 3 meV peak and the 131 meV peak, as well as
explaining the origin of the broad peak and the 160 meV shoulder to the
131 meV peak.

7.6 Simple magnetoelastic coupling model

The magnetoelastic model makes a number of simplifying assumptions. First,
only the coupling of a single, non-dispersive phonon mode to the crystal field
levels is considered. This is unrealistic, since in reality the PrO2 phonon
dispersion curves contain many branches, most of which are likely to be
dispersive. However, the computational complexity increases rapidly with
the addition of more phonon states. A single mode is sufficient to provide a
qualitative description of the data. Second, only single phonon processes are
considered, since to justify the inclusion of multiphonon processes, more than
one mode would have to be included. Third, group theory shows that the Γ8
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CEF ground state couples (in first order) to local lattice distortions of either
Γ3 or Γ5 symmetry. Point charge calculations [56] indicate that the coupling
strengths are comparable for both, but for the sake of simplicity the model
will be restricted to a mode of Γ5 symmetry (an arbitrary choice). Finally,
the model assumes cubic symmetry (the distortion of the oxygen sublattice
had not been discovered at the time the model was developed), and only the
Γ8 and Γ7 crystal field levels are included. It should be noted that omission
of the energy levels arising from the 2F7/2 multiplet causes the calculated
spectral weights of the Γ8 and Γ7 levels to be overestimated by ∼10%.

To calculate the splitting of the Γ8 and Γ7 crystal field levels by mag-
netoelastic coupling, we start with the Russell-Saunders ground state of the
free ion, 2F5/2 and apply perturbations ĤCEF and Ĥph, due to the crystalline
electric field and the elastic potential created by the phonon mode. We then
apply a magnetoelastic perturbation ĤME, which couples the phonon mode
and the crystal field levels together to produce new vibronic states. The total
perturbation Hamiltonian is

Ĥtotal = ĤCEF + Ĥph + ĤME. (7.1)

The CEF perturbation, based on a point charge model in which the Pr ion
is surrounded by a cube of eight oxygen ions, is given by

ĤCEF = B0
4 [Ô

0
4 + 5Ô4

4] + B0
6 [Ô

0
6 − 21Ô4

6], (7.2)

where the parameters Bk
q and the Stevens operators Ok

q are defined by Hutch-
ings [57] (Note that these are not the same as those mentioned in Section
7.5, which are defined by Carnall et al. [54]). The phonon perturbation is
given by

Ĥph = (â†
i âi + 1/2)h̄ωph (7.3)

where âi and â†
i are creation and annihilation operators8, the index i runs over

x, y and z, and ωph is the frequency of the phonon mode. The magnetoelastic
perturbation is given by

HME = g
∑

j

(âj + â†
j)Ôj (7.4)

where Ôj is a quadrupolar operator9 (defined by Abragam and Bleaney [58])

8Examples of creation and annihilation operators are âx =
√

mω
2h̄

(

x̂ + i
mω p̂x

)

and â†
x =

√

mω
2h̄

(

x̂ − i
mω p̂x

)

.
9The quadrupolar operators represent the distortion of the electron orbitals of the Pr

ion from cubic symmetry.



7.6. Simple magnetoelastic coupling model 121

and g is the coupling constant (which absorbs the factor of
√

mω
2h̄

from the
creation and annihilation operators). The index j is a symmetry label which
takes three different values corresponding to the three degrees of freedom
possessed by the phonon mode (i.e. motion in the x, y and z-directions). For
a phonon of Γ5 symmetry, the quadrupolar operators are

Ô1 =
1

2

(

ĴxĴy + ĴyĴx

)

, Ô2 =
1

2

(

ĴxĴz + ĴzĴx

)

, Ô3 =
1

2

(

ĴyĴz + ĴzĴy

)

,

(7.5)
where Ĵx, Ĵy and Ĵz are angluar momentum operators.

We take as a basis the twenty-four states |φn〉, n = 1, . . . , 24, represented
by |Γ8; 0〉, |Γ7; 0〉, |Γ8; 1

(j)〉, and |Γ7; 1
(j)〉. These are products of the crystal

field eigenfunctions and the three Γ5 phonon modes (j = 1, 2, 3), which each
contain either 0 or 1 quantum h̄ωph. The total perturbation hamiltonian
is diagonalised in this basis to obtain the eigenvalues and eigenfunctions of
the new vibronic energy levels. The vibronic eigenfunctions can be used
to calculate the matrix elements between the ground state and the excited
vibronic levels. These can be substituted into Equation (2.10) (with Q = 0)
to simulate the magnetic part of the inelastic scattering cross section ki

kf

d2σ
dΩdE

of PrO2. They can also be used to calculate the effect of magnetoelastic
coupling on the magnetic susceptibility (see Appendix D).

Finally, we add a mean field perturbation Ĥmf due to superexchange of
the antiferromagnetically ordered Pr4+ ions via the O2− ions, which splits
the vibronic ground state. This is required to simulate the peak at 3 meV.
The mean field perturbation is

Ĥmf = gJµBĴ .Bmf (7.6)

where gJ is the Landé g-factor, Ĵ is the total angular momentum vector of
the Pr4+ ion, and Bmf = λµ is the mean field (µ is the ordered moment of
the Pr ion). The magnitude of Bmf is chosen in a self-consistent way. This
means that the splitting of the ground state caused by Bmf reduces 〈µ〉 to a
value that is consistent with the equation Bmf = λµ.

As mentioned in Section 1.4.1, it is not known whether the AFM type-I
component of the magnetic structure of PrO2 is single-q, double-q or triple-q,
so the mean field Bmf could lie along either the [100], [110] or [111] direction.
The model assumes that Bmf lies along the [111] direction, since this predicts
the lowest value for the ordered moment of the Pr ion.



7.7. Results of the model 122

7.7 Results of the model

The excitation spectrum predicted by the model depends on the parameters
used. Small values of h̄ωph are effective at mixing the |Γ8; 0〉 and |Γ8; 1

(j)〉
states, creating a DJTE by transferring intensity from the ground state to
the excited vibronic states. Transitions between the ground state and ex-
cited states give rise to the broad peak in the excitation spectrum, and the
splitting of the Γ8 crystal field ground state reduces the ordered magnetic
moment. On the other hand, large values of h̄ωph tend to create bound
vibronic states between the phonon and the |Γ7; 0〉 crystal field excitation.
Transitions between the ground state and these states reproduce the shoulder
to the 131 meV peak.

These effects are illustrated in Figures 7.4 and 7.5. Figure 7.4 shows
the vibronic states produced by the coupling of the phonon state to the
crystal field levels, while Figure 7.5 shows the simulated excitation spectrum
at Q = 0. Both figures show the results of the model for two different
parameter sets. The first set (I) has a small value for the phonon energy
(h̄ωph = 12.5 meV), while the second set (II) has a larger value (h̄ωph =
42 meV). The coupling constant g is equal to 8 meV in set I, and 9 meV in
set II. Larger values of g would result in greater separation of the vibronic
levels, but cannot be justified without including multiple phonon modes and
multiphonon processes in the model. The constant B0

4 is proportional to
the energy separation of the |Γ8; 0〉 and |Γ7; 0〉 crystal field levels before the
addition of magnetoelastic coupling. In the unperturbed case g = 0 an energy
separation of 131 meV can be achieved for B0

4 = −0.364. However, the effect
of setting g to a finite value is to push the |Γ8; 0〉 and |Γ7; 0〉 levels apart, so B0

4

must be decreased to keep the energy separation at 131 meV. In parameter
set I, B0

4 = −0.306, while in set II, B0
4 = −0.280. These correspond to

unperturbed |Γ8; 0〉 → |Γ7; 0〉 energy separations of 109 meV and 101 meV
respectively.

Both parameter sets cause new peaks to appear in the excitation spec-
trum between the 3 meV and 131 meV peaks. Set I causes a decrease in the
intensity of the 3 meV peak and a reduction in the ordered moment by a
factor of 0.86. Set II has a less significant effect on the ordered moment but
reproduces the shoulder to the 131 meV peak.

Figure 7.6(a) shows the temperature dependence of the magnetic suscep-
tibility of PrO2 predicted by the magnetoelastic model for the two param-
eter sets. The eigenfunctions obtained from the diagonalisation were used
to evaluate the matrix elements between the vibronic states, and these were
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Γ7 × Γ5 using group theory.

susbstituted into Equation (D.7) to obtain the susceptibility10. If we com-
pare plots of 1/χ vs T from the model and from experimental measurements
with a powder sample (see Figure 5.1) we find that the slope increases at low
temperatures in both calculated and measured curves. This corresponds to
suppression of the effective paramagnetic moment11 µeff of the ground state.

At room temperature the observed value of µeff is 2.32µB, but at T =

10For PrO2 the factor to convert from SI susceptibility to cgs susceptibility is NA

10µ0
. V
N =
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regions.

1.879 emu mol−1 (see Appendix D).
11The effective paramagnetic moment µeff should not be confused with the ordered

moment µ of the antiferromagnetic state. The effective paramagnetic moment is given
by µeff = gJµB

√

J(J + 1) in the paramagnetic phase, and can be calculated from the
gradient of a plot of 1/χ vs T by equating the gradient to the Curie constant (see Section
5.2.2). The ordered magnetic moment in the antiferromagnetic phase is given by µ =
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30 K it is reduced to µeff = 1.61µB. Parameter sets I and II give effec-
tive moments of 2.48µB and 2.50µB respectively at room temperature and
2.05µB and 2.04µB respectively at 30 K. It is difficult to make a direct com-
parison between the measured and calculated susceptibilities for PrO2 since
the structural distortion at TD = 120 K (which is not taken into account in
the magnetoelastic model) and the antiferromagnetic transition at T = 14 K
both create discontinuities in the susceptibility trace. However, in a dilute
magnetic compound such as Ce1−xPrxO2 the Pr-Pr magnetic interaction can
be significantly reduced, allowing the material to remain paramagnetic to
much lower temperatures. The Pr ions have identical local environments to
those in the cubic phase of PrO2, and for low Pr doping it is unlikely that a
structural distortion will occur. Therefore, the susceptibility of the Pr4+ ion
predicted by the model can be compared with the measured susceptibility of
Ce1−xPrxO2.

Figure 7.6(b) shows a plot of 1/χ vs T for a powder sample of Ce0.9Pr0.1O2,
measured with a SQUID magnetometer (applied field H = 1 T). At room
temperature the effective moment is found to be 2.33µB, which is almost
identical to that of PrO2 at room temperature, and close to the free ion
value of 2.54µB. At 30 K it is found to reduce to 1.97µB, which is close to
the value expected for a Γ8 crystal field level in cubic symmetry, without
magnetoelastic coupling (µeff = 1.99µB). However, at lower temperatures
µeff reduces still further, to 1.44µB at T = 2 K. The model predicts µeff =
1.74µB at T = 2 K for parameter set I (low phonon energy) and µeff = 1.92µB

at T = 2 K for parameter set II (high phonon energy). The overall shape
of the susceptibility trace of Ce0.9Pr0.1O2 is very similar to that predicted
by the model for a Pr4+ ion. This provides reassurance that magnetoelastic
coupling is also likely to occur when the Pr ions are isolated from one another.
Parameter set I provides better agreement than set II, which indicates that
low energy phonons are more effective at reducing the effective paramagnetic
moment than high energy phonons.

7.8 Discussion

Because of the simplicity of the model we cannot expect a perfect match
to the PrO2 data. The model assumes a single phonon mode. However, in
reality the crystal field levels will couple to local dynamic distortions with
Γ3 as well as Γ5 symmetry, and these distortions will exist over a range of
frequencies due to dispersion. The extent of the observed broad scattering

gJµB〈φ′
0|Ĵx|φ′

0〉, where φ′
0 is the groundstate eigenfunction obtained from diagonalisation

of the total perturbation Hamiltonian, including the self-consistent mean field.
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is indicative that many frequencies are actually involved. A realistic model
would need to include these dispersive modes, and would also need to con-
sider multiphonon processes. However, the qualitative agreement between
measured and predicted spectra achieved with the simple model is sufficient
to demonstrate the existence of magnetoelastic coupling in PrO2.

The magnetoelastic model assumes that the oxygen ions surrounding the
Pr ion form a cube, although it is now known that the oxygen configuration
is somewhat more complicated (see Section 6.2.4). In cubic symmetry the
crystal field ground state is the four-fold degenerate Γ8 level. However, any
lowering of symmetry splits this into two doublets, the energy separation
of which is determined by the displacement of the oxygen ions from their
cubic lattice sites. An early model of the Pr4+ crystal field levels, based on
measurements of the PrO2 susceptibility, suggested a splitting of 28.8 meV
[11]. Although this is reasonably large, the qualitative results of the already
simplified model are still valid, provided that the coupling constant g is
comparable to the splitting, since this allows quantum-mechanical mixing
between the two doublets. The two parameter sets used to illustrate the
model both have g ∼ 10 meV, so I believe that the qualitative results of the
model are still applicable in the presence of a distorted oxygen sublattice.

A realistic model would, of course, take into account the reduced symme-
try below TD = 120 K. In view of the susceptibility model mentioned above, it
is likely that such a model would predict new vibronic levels at E ∼ 30 meV.
These would give rise to peaks in the simulated excitation spectrum at the
same energy. The predicted values of the effective paramagnetic moment and
the ordered moment of the Pr ion would be further reduced, and the new
peaks would transfer more intensity from the ground state into the region of
the observed broad peak. The two distinct Pr sites that appear in the dis-
torted phase cause different splittings of the Γ8 cubic ground state, so these
would each give rise to a separate set of vibronic levels at different energies,
which could contribute to the smeared out appearance of the broad peak.

A previous study of the PrO2 excitation spectrum, performed with a
contaminated sample, revealed a marked temperature dependence of the
131 meV peak [49]. It was found that the peak broadened and moved to
lower energy transfers as the temperature was increased from 4.2 K to 125 K,
although its intensity remained approximately constant. The full width at
half maximum (FWHM) increased from ∼ 7 meV at 4.2 K to ∼ 23 meV at
125 K, while the energy transfer decreased from 131 meV at 4.2 K to 119 meV
at 125 K. The most rapid change occurred between 75 K and 125 K, and above
125 K the peak showed little temperature dependence. Although the sample
was contaminated with weakly bonded hydrogen ions, the excitation spec-
trum appeared to be clean in the region 100–150 meV, in which the crystal
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field transition was observed. The temperature dependence of the peak width
and centre correlate strongly with the onset of the structural distortion at
TD = 120 K, so it is very likely that the distortion is the cause of the changes.
The increase in the transition energy as T is lowered is likely to be due to
the change in crystal field caused by the distortion of the oxygen cubes sur-
rounding the Pr ions, while the broadening of the peak as T as raised is likely
to be due to thermal population of vibronic states at energies of ∼ 12 meV.
Unfortunately, in this early study a spurious peak at 85 meV due to the im-
purity phase diverted attention away from the broad peak from 10–100 meV.
The temperature dependence of the broad peak was therefore not evaluated
carefully. However, an experiment to measure this has now been scheduled
[39].

In summary, the measurement of the PrO2 excitation spectrum has re-
solved the controversy over the ground state, providing support for the
tetravalent model of PrO2 and contradicting the intermediate valence inter-
pretation (as described in Section 1.4.2). The results of the magnetoelastic
model provide compelling evidence that magnetoelastic coupling creates a
ground state with mixed electronic and vibrational degrees of freedom, and
that this is partially responsible both for the unusual features in the excita-
tion spectrum and the reduced magnetic moment.

The neutron scattering data reported here represent the first direct mea-
surement of the vibronic excitation spectrum in a rare earth dynamic Jahn-
Teller system. Because of its simple structure and large crystal field splitting,
PrO2 would seem to be an ideal system for further studies of the dynamic
Jahn-Teller effect.



Chapter 8

Field-Induced Irreversible
Phase Transition in PrO2

In this chapter I describe neutron diffraction measurements of the magnetic
structure and SQUID measurements of the magnetic susceptibility of PrO2

in an applied magnetic field. The original aim of the neutron diffraction
experiments was to use the applied field to influence the magnetic domain
populations so that the three possible multi-q structures (see Section 1.4.1)
would no longer have identical magnetic structure factors. By measuring
the intensities of the magnetic Bragg reflections it would then be possible to
determine which structure was formed in PrO2. However, it was found that
application of a large field caused an irreversible transition to a new magnetic
phase. The SQUID measurements were used to investigate this transition.

8.1 Sample Preparation

Four single crystals of PrO2 were used for the experiments described in this
chapter. They were all prepared by the hydrothermal procedure of McKelvy
et al. [41], and they were all of similar mass and volume (m < 1 mg, V ∼
0.1 mm3). The largest was used for the neutron diffraction experiments (this
was the same crystal as used for the experiments described in Chapter 6),
while the other three were used for the SQUID experiments.

128
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8.2 Neutron diffraction experiments

Two neutron diffraction experiments were performed using the same crystal
in two different orientations.

8.2.1 Experimental Details

The first experiment was performed on the E4 double-axis single crystal
diffractometer at the Berlin Neutron Scattering Centre at the Hahn-Meitner
Institute. A flat pyrolytic graphite (002) monochromator was used in combi-
nation with a graphite filter. 40′ collimators were used before and after the
monochromator, but there was no collimation between the sample and the
detector. A square aperture of 10 × 10 mm was placed before the detector.
The size of this was dictated by the sample precession radius of 5 mm, which
was caused by a bend in the sample stick, and led to a higher background
than desired. The incident neutron wavelength was 2.44 Å.

The single crystal of PrO2 was mounted on a thin aluminium pin such that
the [11̄0] direction lay along the axis of the pin. The pin was attached to an
aluminium mount such that the [11̄0] direction was vertical, and the pin and
mount were shielded with cadmium (see Figure 8.1). The mount was then
attached to the sample stick and inserted into an orange superconducting
helium cryomagnet which provided a temperature range of 2–300 K and a
vertical magnetic field range of 0–5 T.

The second experiment was performed on the D10 four-circle single crystal
diffractometer at the Institut Laue-Langevin. This was operated in double-
axis mode, since the Eulerian cradle could not be used in conjunction with
the cryomagnet. The sample alignment required a magnet tilt of 4.5◦, so, to
avoid this, the scattering plane was tilted by allowing the detector to move
out of the horizontal plane. This allowed the magnet to remain vertical,
which minimised the possibility of quenching. The detector was position-
sensitive to allow the background to be minimised. A vertically curved Cu
(200) monochromator was used in combination with a graphite filter. No
collimators were used, but a circular aperture of diameter 6 mm was placed
in the incident beam before the sample, and a square aperture of 12 × 12 mm
was placed before the detector. The incident neutron wavelength was 2.662 Å.

The same single crystal of PrO2 was used for this experiment as for the E4
experiment described above. It was kept mounted on the thin aluminium pin
with the [11̄0] direction along its axis, but this time the pin was secured to the
aluminum mount using an attachment that held it at 45◦ to the vertical, so
that the [001] direction was vertical (see Figure 8.2). The pin, attachment and
mount were shielded with cadmium and inserted into an Oxford Instruments
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Figure 8.1: Single crystal of PrO2, mounted for neutron diffraction with [11̄0]
vertical.

helium superconducting cryomagnet which provided a temperature range of
2–300 K and a vertical magnetic field range of 0–6 T.

8.2.2 Measurements and results

This section is divided into three subsections. The first two describe the
results obtained from the E4 and D10 diffractometers, where the magnetic
field H was applied parallel to the [11̄0] and [001] directions respectively.
The final section outlines the data analysis and compares the results of the
two experiments.

H ‖ [11̄0]

The aim of the experiment performed on the E4 diffractometer was to mea-
sure as many magnetic Bragg reflections as possible at zero applied field,
then warm the sample above TN, apply a field large enough the influence
the formation of magnetic domains, cool back down to base temperature and
measure the same reflections again. Any changes in intensity would then
be compared with the expected magnetic structure factors for each of the
multi-q structures to determine the structure formed in PrO2.
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Figure 8.2: Single crystal of PrO2, mounted for neutron diffraction with [001]
vertical.

The accessible magnetic reflections in the scattering plane of the crystal
with [11̄0] vertical were (100), (110), (211), (221) and (300). Due to the
presence of cadmium-shielded pillars, which supported the superconducting
magnet, many of the symmetry-equivalent reflections were wholly or par-
tially obscured. Also, due to the high background and low neutron intensity,
long counting times were required. It was therefore decided not to mea-
sure symmetry-equivalents. The five reflections were measured by ω-scan at
T = 1.55 K with no applied field.

In order to decide on a magnetic field strength that would be large enough
to influence the formation of magnetic domains, but not large enough to
rotate the individual Pr spins, existing literature on similar compounds was
used as a guide [48]. This suggested that a field of 2.5–8 T would be sufficient.
The lower end of this range was chosen as a starting point, so a field of
H = 2.5 T was applied at T = 20 K (above TN). The sample was then
cooled to T = 1.55 K, and the five reflections were measured by ω-scan again.
Little change was observed, except that the intensity of the (110) reflection
appeared to have decreased slightly.

To check whether the decrease in the intensity of the (110) reflection
was in fact due to rotation of the individual Pr spins, the applied field was
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increased from H = 0 T to H = 5 T in 0.5 T steps while remaining at a
temperature of T = 1.55 K, and the count at the centre of the (110) reflection
was recorded as a function of applied field. It was found that the (110)
intensity decreased continuously with field, reducing to almost zero intensity
at H = 5 T (see Figure 8.3). However, when the sample was warmed to 20 K,
the field removed, and the sample cooled back to T = 1.55 K in zero field,
the original intensities of the reflections were not recovered. ω-scans of all
five reflections showed that the intensity of each had increased by ∼ 100%
relative to the initial zero-field measurement.
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Figure 8.3: Suppression of the (110) reflection by application of a magnetic field.
The circles represent the count at peak centre, while the dotted line shows the

level of the background on which the peak sits.

It appeared that the application of the 5 T field had caused an irreversible
phase transition. The intensities of the nuclear reflections were checked, and
it was found that these hadn’t changed since the application of the field. The
Néel temperature hadn’t changed either, remaining at TN = 13.4 K. The only
way that was found to recover the original intensities of the magnetic Bragg
reflections was to heat the sample to T > 122 K and cool back down in zero
field. Since T ∗ ∼ 122 K is the temperature at which the structural distortion
and the discontinuity in the magnetic susceptibility occur, this suggests that
when PrO2 is cooled through T ∗ under ambient conditions its ground state
becomes metastable, and application of a 5 T field causes a transition to
another stable state, from which the system cannot return until it is heated
back to the cubic phase. For the sake of clarity I will call the original phase
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obtained by cooling through T ∗ in zero field “phase I” and the phase obtained
by cooling through TN in a 5 T magnetic field “phase II”.

After returning to phase I, the sample was cooled through TN in a field
of H = 1 T, in an attempt to influence the domain populations without
inducing phase II, and the intensities of the five magnetic reflections were
measured again. No change was observed with respect to the intensities at
zero field. This suggests one of two things: either the structure is triple-q
(for which there is only one possible domain, so the structure factors are
unaffected by the application of a magnetic field), or a field of 1 T is not
sufficient to influence the population of the magnetic domains.

The intensities of the five reflections were also measured in phase II.
In the confusion surrouding the discovery of the irreversible transition the
reflections were measured at H = 0.5 T rather than at H = 0, but this did
not matter, as measurements of the peak intensities as a function of field
showed little change between H = 0 and H = 0.5 T. Figure 8.4 shows the
intensities of the (100) and (110) reflections, measured at H = 0 T in phases
I and II. All the reflections were found to increase in intensity by ∼ 100%
from phase I to phase II.
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Figure 8.4: Intensities of the (100) and (110) magnetic Bragg reflections, measured
at H ∼ 0 T before (Phase I) and after (Phase II) application of a 5 T magnetic

field parallel to the [11̄0] direction.

The intensities of three of the reflections, (100), (110) and (211), were also
measured at H = 5 T (after cooling through TN in the field). The (100) and
(211) reflections were found to have increased by ∼ 100% from their values
in phase I at H = 0, while the (110) reflection was found to have decreased
almost to the level of the background. The (100) and (110) peaks are shown
in Figure 8.5 for comparison with those shown in Figure 8.4.
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Figure 8.5: Intensities of the (100) and (110) magnetic Bragg reflections, measured
at H = 5 T (after cooling through TN in the field), for H ‖ [11̄0].

Figure 8.6 shows a plot of the peak count of the (110) reflection as a
function of the applied field in phases I and II. In both phases the temperature
was kept constant at T = 1.55 K while the field was applied. The intensity of
the reflection was found to decrease to zero as the field increased. A similar
measurement was made on the (100) reflection, but the intensity of this
reflection didn’t increase with field unless the crystal was cooled through TN

each time the field was increased. Furthermore, the increase did not become
irreversible until the applied field was larger than H = 3.5 T. Once phase II
had been induced, the intensity of the (100) reflection was unaffected by the
applied field, whether the crystal was cooled through TN in the field or not.
The same was found to be true for the (122) and (300) reflections. However,
the (211) reflection behaved more like the (110) reflection, decreasing to zero
intensity at H = 5 T in both phases when cooled through TN in the applied
field.

I have attempted to state the observations listed above as unambiguously
as possible. Unfortunately the short time-scale of the experiment prevented
a more complete investigation of the transition from phase I to phase II, and
a number of questions remain unanswered. For instance, it would be useful
to measure the field-dependence of each reflection twice: once keeping the
temperature constant, and once warming and cooling through TN for every
change in field. This needs to be done in both phases for each reflection. It
would be interesting to find out whether it is necessary to cool through TN in
the applied field to cause the irreversible transition to phase II. It would be
useful to determine the exact field strength required to induce the irreversible
transition, as this is currently only known to lie in the range 3.5 < H < 5 T
for H ‖ [11̄0].
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Figure 8.6: Field dependence of the (110) magnetic Bragg reflection in phases
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H ‖ [001]

The experiment performed on the D10 diffractometer was a repeat the study
performed on E4, but this time with the field applied parallel to the [001]
direction instead of the [11̄0] direction. Since the field was constrained to be
vertical in both experiments the crystal orientation had to be changed for the
D10 experiment. This altered the scattering plane and therefore the range of
accessible reflections. Those that could be reached using the chosen neutron
wavelength were (100), (110), (210), (300), (310) and (320). A number of
half-integer reflections were also accessible, but only the

(

1
2
10

)

and
(

3
2
10

)

reflections had sufficient intensity and were sufficiently separated in reciprocal
space from Al powder lines to be measurable in the time available1.

These eight magnetic reflections were measured by ω-scan at T = 2.4 K
in zero applied field. To induce phase II the crystal was warmed to 18 K
and a field of 5.7 T was applied. The crystal was then cooled through TN in
this field. Before measuring the magnetic reflections again, the crystal was
warmed to 18 K and the field removed before cooling back to T = 2.4 K. The
ω-scans of the eight reflections were then repeated. None of the symmetry-
equivalent reflections were measured, as half of these were obscured by the

1The background scattering from the cryomagnet was much greater than that from the
helium flow cryostat used in the experiment described in Chapter 6.
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cadmium shielding on the aluminium mount, and time was limited. The
estimate of the field required to induce phase II (∼ 5.7 T) was based on the
observation that a field of 3.5–5 T was required to induce phase II when the
field was applied parallel to the [11̄0] direction and the possibility that this
might increase by a factor of

√
2 for a field applied parallel to the [001] direc-

tion. The maximum possible field of 6 T was avoided for fear of quenching
the magnet. The (110) and (130) reflections were found to reduce by ∼ 80%
from phase I to phase II, while the other integer reflections increased by ∼
40%. The

(

1
2
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)

and
(

3
2
10

)

reflections increased by ∼ 20% and 30% respec-
tively. Figure 8.7 shows the intensities of the (100) and (110) reflections in
phases I and II.
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Figure 8.7: The intensities of the (100) and (110) magnetic Bragg reflections at H
= 0 T before (Phase I) and after (Phase II) application of a 5.7 T magnetic field

parallel to the [001] direction.

The (100) and (320) reflections were measured by ω-scan at T = 2.4 K
and H = 5 T (after cooling through TN in the field). The (110) reflection
was measured by ω-scan after cooling through TN in a field of H = 5.4 T. At
these fields the three reflections were found to remain at approximately the
same intensities as those observed in phase II at H = 0.

In agreement with expectations following the E4 experiment, it was found
that the transition from phase I to phase II was irreversible, and that phase
I could only be regained by heating the crystal to T > 122 K and cooling
back through T ∗ in zero field. The intensities of the nuclear reflections were
checked, and it was again found that these were identical in both phases.
There was no change in the Néel temperature either, this remaining at TN =
13.4 K for both integer and half-integer magnetic reflections.

The most striking result from the measurements described above is that
the changes in the peak intensities from phase I to phase II are different
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from those observed during the E4 experiment. In the E4 experiment, when
H was applied along the [11̄0] direction, all the peak intensities rose by ∼
100% from phase I to phase II, but in the D10 experiment, when H was
applied along the [001] direction, some peaks increased by ∼ 40% while oth-
ers decreased by ∼ 80%. These observations raise the question of whether
the field-induced, irreversible transition results in the same phase II in both
cases. It is possible that the phase II reached in each experiment is different,
consisting, for example, of a different magnetic structure. However, for sim-
plicity I will continue to refer to the field-induced phase as phase II for both
field directions.

Figure 8.8 shows a plot of the count at peak centre for the (100) and
(110) reflections as a function of the applied field in phases I and II. In both
phases the crystal was warmed above TN and cooled back to T = 2.4 K each
time the field was changed. Once phase II had been induced, the intensities
of both reflections were little affected by changes in the applied field.
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Figure 8.8: Field dependence of the (100) and (110) magnetic Bragg reflections in
phases I and II. The open circles show the field dependence of the intensities as
the transition from phase I to phase II occurs, while the closed circles show the
field-dependence in phase II. The magnetic field was applied parallel to the [001]
direction, and the crystal was warmed above TN and cooled back to T = 2.4 K
each time the field was changed. Note that the monitor count for this data is four

times that of the data displayed in Figure 8.7.

As with the E4 experiment, time constraints prevented a more thorough
investigation of the transition from phase I to phase II. It would be useful to
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make a more careful study of the exact field required to induce the irreversible
transition to phase II, and also to investigate whether phase II can be induced
by cooling through TN in the field, or whether the transition can be induced
while remaining below TN.

Data analysis

The intensity of each magnetic Bragg reflection measured in the experiments
described above was integrated by fitting a gaussian to the peak and calcu-
lating its area. The integrated intensities were then corrected for the Lorentz
factor (as described in Section 2.4.2). Tables 8.1 and 8.2 list the integrated,
corrected intensities and compare them with the square of the expected mag-
netic structure factor |FM(Q)|2 for a type-I antiferromagnetic structure under
ambient conditions, i.e. where all the magnetic domains are equally popu-
lated (see Appendix C for an outline of the structure factor calculation).
The intensities are directly proportional to the |FM(Q)|2, but the constant
of proportionality is different for the two experiments. The uncertainties
in the integrated, corrected intensities have been estimated by eye for each
individual reflection from the quality of the data and gaussian fit.

H ‖ [11̄0]

Reflection Phase I Phase II |FM(Q)|2

H = 0 H = 0.5 T H = 5 T

(100) 163 ± 8 305 ± 15 314 ± 16 5.0572

(110) 91 ± 4 163 ± 8 0 2.4029

(211) 102 ± 10 218 ± 22 192 ± 19 3.3077

(221) 77 ± 4 149 ± 15 1.9294

(300) 92 ± 9 190 ± 19 3.4730

Table 8.1: Comparison between integrated intensities of magnetic peaks in phases
I and II for H ‖ [11̄0]. The integrated intensities have been corrected for the
Lorentz factor, and have the units Å−1. The magnetic structure factors |FM(Q)|2

are dimensionless.

8.2.3 Summary

To summarise, an irreversible, field-induced magnetic phase transition has
been observed in single crystal PrO2. The field required to induce this tran-
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H ‖ [001]

Reflection Phase I Phase II |FM(Q)|2

H = 0 H = 0 H ≈ 5 T

(100) 68 ± 3 97 ± 5 94 ± 5 5.06

(110) 34 ± 2 7 ± 1 6 ± 1 2.40

(210) 36 ± 4 52 ± 5 2.49

(300) 39 ± 4 54 ± 5 3.47

(310) 18 ± 2 5 ± 1 1.66

(320) 32 ± 3 44 ± 4 52 ± 5 2.48
(

1
2
10

)

5.7 ± 0.6 6.6 ± 0.7
(

3
2
10

)

6.5 ± 0.7 8.6 ± 0.9

Table 8.2: Comparison between integrated intensities of magnetic reflections in
phases I and II for H ‖ [001]. The integrated intensities have been corrected
for the Lorentz factor, and have the units Å−1. The magnetic structure factors

|FM(Q)|2 are dimensionless.

sition is H = 3.5–5 T when H ‖ [11̄0] and H ≤ 5.7 T when H ‖ [001]. To
recover the original phase the crystal must be heated to T > 122 K and cooled
back through T ∗ in zero applied field. The experimental results suggest that
the crystal must be cooled through TN in the applied field to induce the ir-
reversible phase transition, but more thorough experiments are required to
confirm this. When the transition is induced by applying the field parallel to
the [11̄0] direction, all the magnetic Bragg reflections increase in intensity by
∼ 100%. However, when the transition is induced by a field parallel to [001]
some of the integer reflections (those with integer Miller indices) increase by
∼ 40% while others decrease by ∼ 80%, and the half-integer reflections in-
crease by 20–30%. The intensities of the nuclear Bragg peaks are identical in
the original and field-induced phases for fields applied along both directions,
and TN also remains unchanged.

8.3 SQUID experiments

In this section I describe measurements of the magnetic susceptibility of
single crystal PrO2. The susceptibility was measured as a function of tem-
perature and field, with the field applied along several different symmetry
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directions. The aim was to probe the effect of the irreversible, field-induced
magnetic phase transition on the magnetic susceptibility and to use this to
gain information about the magnetic nature of the ground state before and
after the transition.

8.3.1 Experimental Details

The measurements were made with a SQUID magnetometer capable of ap-
plying a vertical field of 7 T over a temperature range of 2–300 K (see Section
3.1.1 for a description of the SQUID and measurement technique). All mea-
surements were made in reciprocating sample oscillation (RSO) mode.

Three single crystals of PrO2 were used, each aligned with a different
symmetry direction parallel to the vertical applied field. For the alignment
each crystal was wrapped in a piece of cling film of area ∼ 5 × 5 mm2, then
mounted temporarily with plasticine on a goniometer, as shown in Figure
8.9(a), and aligned by x-ray Laue diffraction. For the SQUID measurements,
it was necessary to mount the crystals in plastic drinking straws. To achieve
this, each crystal was trapped between a further two layers of cling film,
which were cut to the length of the straw, as shown in Figure 8.9(b). In
order to transfer each crystal from its plasticine mount to the cling film
while preserving its orientation, the following procedure was used: the sheet
of cling film was brought close to the crystal, such that its long edge lay
along the desired symmetry direction (see front view in Figure 8.9(b)), and
its surface lay parallel to the twist of cling film holding the crystal (see side
view in Figure 8.9(b)). The sheet was pulled taught and carefully folded over
the crystal. The two layers on either side of the crystal were pinched together
while maintaining the tension, thus trapping the crystal, so that it could be
pulled free of the plasticine without changing its orientation. The long piece
of cling film was then wrapped around one half of a straw that had been split
along its axis, and this was inserted into a whole straw as shown in Figure
8.9(c).

In this way the three crystals were mounted with the [100], [110] and
[111] directions parallel to the axis of the straw. The procedure worked
well for the crystals with [100] and [110] along the straw axis, so I estimate
that their orientations were preserved to within 5%. However, the third
crystal slipped as it was pulled free of the plasticine, so its orientation was
much less reliable. Each straw was mounted vertically in the SQUID, so
the magnetic field was applied along its axis. The RSO method causes the
straw to oscillate in the vertical direction. Therefore, since the cling film
method of mounting the crystals provides an approximately even distribution
of polythene along the vertical axis, the diamagnetic contribution of the cling
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goniometer

crystal
wrapped
in cling

film

plasticine(a)

(b)

(c)

cling film cut to length of straw

front view side view

[100] [100]

[100]

[100]

Figure 8.9: The procedure for aligning and mounting a single crystal of PrO2 in
cling film for SQUID magnetometry. (a) The crystal is wrapped in a small twist
of cling film and mounted in plasticine on a goniometer for alignment by x-ray
diffraction. In this diagram the crystal is aligned such that the [100] direction is
horizontal. (b) A long piece of cling film, cut to the length of a drinking straw, is
folded over the aligned crystal, trapping the crystal between the two layers so that
the desired symmetry direction lies along the length of the cling film. (c) The long
piece of cling film is wrapped around one half of a drinking straw that has been

split along its axis, and this is inserted into a whole straw.
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film to the measurement is only a constant background, and hence does not
affect the PrO2 signal.

8.3.2 Measurements and results

In this section I present measurements of the magnetic susceptibility per-
formed with the applied field parallel to the [110] and [100] directions2. For
each measurement, the results obtained with the different field directions are
compared, and their significance discussed. For all measurements, phase II
was induced by applying a field of 7 T above TN, and phase I was recovered
by heating to T > 122 K and cooling back through T ∗ in zero field.

It should be noted that the measurements presented in this section are
of total susceptibility, i.e. total magnetisation per unit applied field (units:
emu). The molar susceptibility, i.e. magnetisation per unit of substance
per unit applied field (units: emu mol−1), could not be calculated because
the masses of the crystals were too small to be measured accurately. Since
the masses of the different crystals were not identical the total susceptibility
measurements for the different field directions can only be compared quali-
tatively.

Figures 8.10(a) and 8.10(b) show the temperature dependence of the mag-
netic susceptibility in the range T = 2–300 K when a field of H = 1 T is ap-
plied parallel to the [110] direction and when a field of H = 0.3 T is applied
parallel to the [100] direction. Figures 8.10(c) and 8.10(d) show the same
data as in Figures 8.10(a) and 8.10(b) respectively, but depict the inverse
susceptibility as a function of temperature, which makes the discontinuity at
T ∗ = 122 K more visible. The overall shape of the susceptibility trace is very
similar for H ‖ [110] and H ‖ [100]. However, the discontinuity at T ∗ is more
pronounced for H ‖ [110]. This can be seen in the plots of both χ vs T and
1/χ vs T .

To investigate the field-dependence of the susceptibility, a series of mea-
surements were made between 2 K and 20 K at different applied fields. The
field was increased and decreased in steps from H = 0 T to H = 7 T. For each
measurement the field was applied at T = 20 K, and the susceptibility was
then measured as a function of temperature as the crystal was cooled through
TN. Figures 8.11(a) and 8.11(b) show how the temperature-dependence of
the susceptibility changes from phase I to phase II when the field is applied
along the [100] direction. Figure 8.11(a) shows the susceptibility increasing

2Some measurements were made on the crystal oriented with the [111] direction parallel
to the applied field, but the results were similar to those obtained with the field parallel
to [110], and since the orientation of the crystal was not well known, these will not be
presented here.
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Figure 8.10: Temperature dependence of the magnetic susceptiblity of PrO2 when
the magnetic field is applied parallel to the [110] and [100] directions. Plots (c)

and (d) show the same data as plots (a) and (b) respectively.

with field from H = 0.2 T to H = 7 T. Between H = 0.2 T and H = 1 T
the susceptibility below TN increases smoothly through the pale grey region,
while the susceptibility above TN hardly changes. However, between H = 1 T
and H = 7 T the susceptibility both below and above TN increases smoothly
through the dark grey region. Figure 8.11(b) shows how the susceptibility
decreases again when the field is removed. Between H = 7 T and H = 1 T the
whole trace decreases through the dark grey region. Then, between H = 1 T
and H = 0.2 T the susceptibility below TN decreases smoothly through the
pale grey region, while above TN it changes very little.

Figures 8.11(c) and 8.11(d) show how the temperature-dependence of the
susceptibility changes from phase I to phase II when the field is applied
along the [110] direction. Figure 8.11(c) shows the susceptibility below TN

increasing with field from H = 0.5 T to H = 7 T, and Figure 8.11(d) shows it
decreasing again as the field is removed. In both data sets the susceptibility
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Figure 8.11: Change in the temperature-dependence of the susceptibility from
phase I to phase II for fields applied parallel to the [110] and [100] directions. The
field is increased and decreased in steps, with each new field applied at T = 20 K.
The susceptibility is measured as a function of T as the crystal is cooled through
TN. (a) and (b) show χ for H ‖ [100]. The field increases in (a) and decreases in
(b). (c) and (d) show χ for H ‖ [110]. The field increases in (c) and decreases in

(d).

below TN moves smoothly and reversibly through the pale grey region, while
the susceptibility above TN is almost unaffected by the field. This is in
contrast to the measurements made with H ‖ [100], where an irreversible
increase in the magnitude of the whole trace from T = 2–20 K is observed
between H = 1 T and H = 7 T.

It should be noted that repetitions of the susceptibility measurements
at low applied fields revealed small, random shifts whenever the applied
field was changed between measurements. This was attributed to fluctua-
tions in the magnetisation of the sample surroundings and trapped flux in
the superconducting magnet, leading to fluctuations in the applied field of
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0.001–0.02 T. These fluctuations caused the magnitude of the susceptibility
measurements at low applied fields to drift. However, at higher fields the fluc-
tuations became negligible compared to the total field, so the susceptibility
was unaffected. Unfortunately it was impossible to measure the magnetisa-
tion of the sample surroundings, and it was therefore impossible to measure
the exact applied field. This meant that the magnitude of the susceptibility
at applied fields of H ≤ 0.2 T had an uncertainty of at least ± 10%.
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Figure 8.12: Change in the field-dependence of the susceptibility from phase I to
phase II for fields applied parallel to the [110] and [100] directions. These plots
are taken from the same data set as those in Figure 8.11. Each time the applied
field was changed, the crystal was warmed to T = 20 K, then cooled through TN

in the new applied field. (a) and (b) show χ for H ‖ [100]. The transition to phase
II is shown at (a) T = 6 K and (b) T = 20 K. (c) and (d) show χ for H ‖ [110].
(c) shows the reversible increase in susceptibility below TN and (d) shows that the

susceptibility is almost independent of temperature above TN.

The plots in Figure 8.12 are taken from the same data set as those in
Figure 8.11, but this time the susceptibility is plotted as a function of ap-
plied field instead of temperature. Figures 8.12(a) and (b) show the field-
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dependence of the susceptibility at T = 6 K and T = 20 K respectively, when
the field is applied along the [100] direction. Figure 8.12(a) shows that be-
low TN the susceptibility increases rapidly from H = 0–1 T. It then increases
more slowly, but irreversibly from H = 1–7 T. Figure 8.12(b) shows that
above TN there is no change in susceptibility between H = 0 and 1 T, but an
irreversible increase occurs between H = 0 and 7 T. Figures 8.12(c) and (d)
show the field-dependence of the susceptibility at T = 6 K and T = 20 K re-
spectively, when the field is applied along the [110] direction. Figure 8.12(c)
shows that below TN the susceptibility increases rapidly and reversibly from
H = 0–7 T. Figure 8.12(b) shows that above TN the susceptibility is almost
independent of field.
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Figure 8.13: Field-dependence of χ from phase I to phase II for fields applied at
constant T = 2 K. (a) shows the transition from phase I to phase II for H ‖ [100].
The main differences between this plot and Figure 8.12(a) are that the irreversible
increase in χ occurs at a lower field, and that the susceptibility reaches a lower
value in phase II at H = 0 when the crystal is cooled through TN in the field. (b)
shows the transition from phase I to phase II for H ‖ [110]. This trace is very
similar to that in Figure 8.12(b). The small upturns in the susceptibility at low
fields in both (a) and (b) are probably due to underestimation of the applied field

strength, due to magnetisation of the sample surroundings.

To investigate whether phase II could be induced by applying the field
at T = 2 K without cooling through TN, the magnetic field was swept while
keeping the temperature constant at 2 K, and the susceptibility was measured
as a function of applied field for both H ‖ [100] and H ‖ [110]. Figure
8.13 shows the results obtained. For H ‖ [110] the field-dependence of the
susceptibility was very similar to that obtained when the crystal was cooled
through TN in the field. However, for H ‖ [100] there were two differences.
Firstly, the irreversible increase in χ occurred at a lower field (H = 3–5.5 T)
when the crystal was cooled through TN in the field than when the field was
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applied at T = 2 K (H = 4.5–7 T). Secondly, the susceptibility reached a
lower value in phase II than in phase I when the crystal was cooled through
TN in the field, whereas it never returned to a value lower than in phase I
when the field was applied at T = 2 K.

To see if an irreversible increase in the susceptibility occurred at higher
temperatures when the field was applied along the [100] direction, χ was mea-
sured as a function of H at T = 60 K. An irreversible increase did occur (see
Figure 8.14(a)), but of smaller magnitude than that observed at T = 20 K. To
find the field required to make the increase in susceptibility irreversible, the
crystal was returned to phase I, and the field was swept up and down several
times, reaching successively larger fields each time. It was found that any
increase in susceptibility, no matter how small, was irreversible (see Figure
8.14(b)). When the field was applied along [110] the susceptibility was found
to be completely independent of field at T = 60 K. The data in Figure 8.14(a)
has been corrected for a remanent field of H = 0.008 T, which was probably
caused by magnetisation of the sample surroundings or trapped flux in the
superconducting magnet. The remanent field was determined by finding the
y-intercept of a straight line fitted to a plot of magnetisation M versus field
H in phase II (M = χ(H + HR), where HR is the remanent field).

0.00018

0.00019

0.0002

0.00021

0 1 2 3 4 5 6 7

Phase I to Phase II

Phase II

c
(e

m
u
)

H (T)

T = 60 K
H // [100]

(a)

0.00018

0.00019

0.0002

0.00021

0 1 2 3 4 5 6 7

c
(e

m
u
)

H (T)

T = 60 K
H // [100]

(b)

Figure 8.14: Field-dependence of χ from phase I to phase II for fields applied at
constant T = 60 K. (a) shows the transition from phase I to phase II for H ‖ [100].
This data has been corrected for a small remanent field of H = 0.008 T, probably
caused by magnetisation of the sample surroundings or trapped flux in the magnet.
(b) shows that any increase in susceptibility, no matter how small, is irreversible.

The irreversible increase in susceptibility from phase I to phase II for H ‖
[100] persists up to T ∗ = 122 K. This is shown in Figure 8.15(a), where the
susceptibility, measured at H = 0.3 T in both phases, is plotted as a function
of temperature. The two traces coincide at temperatures greater than T ∗.
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Figure 8.15(b) shows the inverse susceptibility in both phases (taken from
the same data set as Figure 8.15(a)). The two traces have been displaced
vertically by a small amount for clarity. In phase II the discontinuity at T ∗

is more abrupt than in phase I.
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Figure 8.15: Temperature-dependence of χ in phases I and II for H ‖ [100]. (a)
χ vs T in phases I and II. The two traces coincide for T > T ∗. (b) 1/χ vs T in
phases I and II. The two traces have been displaced vertically by a small amount

for clarity. The transition at T ∗ = 122 K is more abrupt in phase II.

8.3.3 Summary

To summarise, several interesting features have been observed in the mag-
netic susceptibility. The discontinuity at T ∗ = 122 K is more pronounced
when the field is applied along the [110] direction than when it is applied
along the [100] direction in phase I. When the field is applied along the [110]
direction, an increase in field causes a reversible increase in the susceptibility
below TN, but above TN the susceptibility is independent of field. When the
field is applied along the [100] direction, an increase in field causes a rapid
increase in the susceptibility below TN from H = 0–1 T and a more gradual
increase from H = 1–7 T. The increase from 0–1 T occurs only below TN,
so this must be associated with the magnetic ordering. The increase from
1–7 T is irreversible, and also occurs above TN. The field strength at which
it occurs depends on whether the field is applied below or above TN. For
fields applied at constant T < TN a field of 7 T is required to achieve the full
increase in susceptibility, whereas for fields applied above TN, only 5.5 T is
required. Any increase in susceptibility above TN, no matter how small, is
irreversible. Above T ∗ = 122 K the susceptibility is independent of field.
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Some questions remain. For example, it has not been established whether,
for fields along the [100] direction, the increase in susceptibility from H
= 0–1 T is reversible in both phases I and II. Preliminary measurements
have shown that the increase is irreversible if the field is applied at constant
T < TN, but the reversibility has not been tested for fields applied above
TN before cooling back down. It would also be interesting to repeat the
measurements for a well-oriented crystal with the [111] direction parallel to
the applied field.

8.4 Discussion

The results of the neutron diffraction and SQUID experiments both show
field-induced changes in the magnetisation, but each experiment reveals dif-
ferent, puzzling features. When a field of 5 T is applied along the [110]
direction the neutron diffraction experiments reveal an irreversible doubling
of the intensities of the magnetic Bragg reflections. However, the SQUID
experiments show a reversible increase in the susceptibility below TN. When
a field of 5.7 T is applied along the [100] direction the neutron diffraction
experiments show that some magnetic Bragg reflections increase by ∼ 40%
while others decrease by ∼ 80%. The half-integer reflections increase by 20–
30%. All these changes are irreversible. The SQUID experiments reveal an
irreversible increase in susceptibility for applied fields of 1–7 T, which occurs
both above and below TN. However, there is also a rapid increase in the
susceptibility below TN from 0–1 T, which decreases again in phase II.

Several questions immediately spring to mind. Firstly, for fields parallel
to [110], why is the increase in susceptibility reversible when the increase in
Bragg intensity is irreversible? Also, for fields parallel to [100], why are the
changes in the Bragg intensities different to those observed for fields parallel
to [110], and why does the susceptibility show a rapid increase from H = 0–
1 T when there is no rapid change in Bragg intensity over this range of field?
Finally, for fields parallel to [110], why is there no change in susceptibility
above TN, when a field-induced, irreversible increase is observed for T < T ∗

for fields parallel to [100]?
I will discuss some possible answers to the above questions, but so far

I have not found a single explanation that accounts for all of the observed
features or that answers all my questions.

Before beginning the discussion I should emphasise a couple of points.
Firstly, neutrons probe the ordered moments of the individual Pr ions, whereas
the SQUID measurements probe the magnetisation of the bulk sample. This
means that caution should be exercised when comparing the SQUID and
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neutron measurements directly. Secondly, neutrons are only sensitive to the
components of the atomic magnetic moments that are perpendicular to the
scattering wavevector Q. This means that a change in magnetic structure
may affect the Bragg reflections differently in different scattering planes.

To attempt to explain the puzzling experimental observations, a number
of physical processes can be considered. Firstly, the applied field could cause
an irreversible change in the magnetic domain populations of the type-I AFM
component of the magnetic structure. If this were the case, we would expect
the field to cause changes in the relative intensities of the Bragg reflections if
the structure were single-q or double-q (in triple-q structures all domains are
equivalent by symmetry). However, it is difficult to reconcile this picture with
the experimental observations when such different results are obtained for
fields along different symmetry directions. When the field was applied along
[110] the intensities of all the peaks doubled, but their relative intensities
remained the same. This suggests a triple-q structure in both phases I and
II. However, when the field was applied along [100] some peaks increased
while others decreased. This seems to rule out the triple-q structure.

The degeneracy between the different multi-q structures is removed when
fourth and/or sixth order terms are included in the spin Hamiltonian. Triple-
q structures compete with single-q structures when the fourth order terms
are large, and double-q structures are favoured when the sixth order terms
are large [59]. Large fourth and sixth order terms arise from anisotropies
in the crystal field, such as would be created by a structural distortion,
and/or quadrupolar exchange interactions that would occur in an orbitally
ordered state. In compounds with only Heisenberg interactions and single
ion anisotropy, single-q structures are favoured. Rare-earth and actinide
compounds are more likely to have multi-q structures than transition metal
compounds because of hybridisation of the f electrons with the band elec-
trons, which leads to anisotropic exchange interactions. Typical examples are
UP [60] and UO2 [47]. Analogy with UO2, which has very similar properties
to PrO2 might suggest a triple-q structure for PrO2, but the likelihood of
quadrupolar (orbital) ordering and the large oxygen displacement in the dis-
torted phase (the oxygen displacements in PrO2 are five times those observed
in UO2), could stabilise a double-q structure.

Another possible explanation for the puzzling changes in the intensities of
the magnetic Bragg reflections might be that the magnetic structure changes
on application of a field. Perhaps an irreversible transition occurs from one
multi-q structure to another, or perhaps the field is large enough to overcome
the exchange interactions between the Pr spins and change the structure to
something completely different. If orbital order occurs at T ∗ it is possible that
the applied field causes an irreversible change in the orbitally ordered state,
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thus allowing a different multi-q structure to stabilise in phase II. To verify or
refute such a hypothesis, a detailed model of the magnetic interaction energies
and the magnetic structure factors for the different multi-q structures would
be required. The possibility is appealing, since a field-induced change in
orbital order might explain why the susceptibility increases irreversibly at
all temperatures below T ∗ when the field is applied along [100]. However, it
doesn’t explain why the same phenomenon is not observed when the field is
applied along [110]. Also, it doesn’t explain why the change in susceptibility
below TN is reversible when the field is applied along [110]. If an irreversible
change in magnetic structure occurs, one would expect an irreversible change
in the shape of the susceptibility trace below TN.

So far I haven’t considered the doubled component of the magnetic struc-
ture. This too could be influenced by the applied field, and could have
a multi-q structure, so the same arguments apply as for the type-I AFM
structure considered above. It is likely that the doubled component of the
magnetic structure is stabilised by the structural distortion, which in turn
could be caused by the onset of orbital order. A field-induced change in or-
bital order might therefore affect the displacements of the oxygen atoms, and
this might affect the doubled component of the magnetic structure. The half-
integer magnetic reflections increase in intensity by 20–30% from phase I to
phase II when the field is applied along [100], and this might be indicative of
a change in orbital order. It would be interesting to find out if the structural
half-integer peaks change in intensity from phase I to phase II. Unfortunately
they could not be measured in either of the neutron diffraction experiments
since they lay outside the scattering plane in both cases.

Yet another possibility might be that the changes in the intensities of the
magnetic Bragg reflections are due to a change in the magnetic moment of
the Pr ion, brought on by a field-induced change in magnetoelastic coupling.
A decrease in the coupling constant g would decrease the suppression of
the magnetic moment caused by magnetoelastic coupling. However, this is
unlikely to be the case, since all the Pr ions would be affected equally, giving
no reason for some reflections to decrease in intensity while others increase.

None of the explanations I have offered can explain the experimental
observations in their entirety, so there is plenty of scope for theoretical in-
vestigation.



Chapter 9

Conclusions and Further Work

In this thesis I have described measurements of the excitation spectrum of
PrO2, the dispersion of magnetic and vibrational excitations in PrBa2Cu3O6+x,
the crystallographic and magnetic structure of PrO2, the temperature depen-
dence of the crystallographic structure, the field dependence of the magnetic
structure, the field and temperature dependence of the magnetic susceptibil-
ity, the specific heat capacity and electrical conductivity of PrO2.

I have found that certain phonon modes in PrBa2Cu3O6.2 are substantially
lower in frequency than the same modes in YBa2Cu3O6.2. These modes are
predominantly due to motion of the oxygen ions in the CuO2 planes, and
are not well described by the common interaction potential model, which
assumes that the bonding is predominantly ionic. I have also found that the
low energy crystal field excitations of the Pr3+ ion in PrBa2Cu3O6.93 have
very different dispersion to those in PrBa2Cu3O6.2, although the energy gap
of the Cu optic spin-wave mode is very similar at both doping levels. The
change in dispersion of the Pr crystal field excitations with oxygen doping is
consistent with the observation that TPr increases with oxygen doping, and
these two observations together provide support for hybridisation of the Pr
and O orbitals.

I have found that the Pr ion in PrO2 has an ionisation state of +4,
which contradicts the mixed valence interpretation of some high energy x-ray
spectroscopies. The PrO2 excitation spectrum has also revealed evidence for
strong magnetoelastic coupling, which creates a dynamic Jahn-Teller effect
in the ground state.

The anomalously small magnetic moment of the Pr ion in PrO2 has been
a puzzle for some time. However, the research presented here has provided
some explanations. Firstly, measurements of the magnetic structure have
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revealed a new component of the structure which has a unit cell twice the
length of that of the previously accepted structure. This discovery of this
component of the structure reveals that the Pr moment is not as small as
originally thought. It is still much smaller than would be expected for a
cubic structure with a Γ8 ground state, however. My measurements of the
crystallographic structure of PrO2 have also revealed that the structure is
not cubic at low temperatures. At a temperature TD = 120± 2 K an internal
distortion of the oxygen sublattice occurs, which doubles the crystallographic
unit cell. The oxygen ions are found to displace by 0.07260 Å, which is
five times as large as the displacement found in the similar compound UO2.
The distortion lowers the symmetry of the crystal lattice and splits the Γ8

crystal field ground state into two doublets. This splitting is likely to account
partially for the reduction of the magnetic moment of the Pr ion. It is possible
that further reduction is caused by the dynamic Jahn-Teller effect.

The measurements of the specific heat capacity and the magnetic sus-
ceptibility of PrO2 support the findings described above. The specific heat
measurements have allowed the degeneracy of the PrO2 ground state to be
determined, and it has been found to be a doublet. The susceptibility mea-
surements show a reduction in the effective paramagnetic moment of the
Pr ion below TD, and also reveal a discontinuity at a temperature T ∗ =
122± 2 K. This is the same temperature, to within experimental uncertainty,
as TD, which suggests that the cause of the structural distortion is magnetic
in origin. It is possible that it is due to ordering of the Pr 4f orbitals, giving
rise to a cooperative, static Jahn-Teller distortion.

It was originally hoped that if the ionisation state of the Pr ion was found
to be the same in PrO2 and PrBa2Cu3O6+x, some analogies could be drawn
between the properties of the two compounds. However, my research has
shown that both have different ionisation states, which makes this difficult.
Nevertheless, both compounds exhibit unusual magnetic ordering and com-
plex interactions between the constituent ions, which merit further study,
and provide a valuable basis for comparison with other similar compounds.

Now that the Cu optic spin-wave dispersion has been measured in
PrBa2Cu3O6+x at oxygen dopings of both x ≈ 0.2 and x ≈ 0.93, it would
be interesting to measure the dispersion of the phonon modes in the ox-
idised compound (x ≈ 0.93) and compare them with those observed in
PrBa2Cu3O6.2 and YBa2Cu3O6.93.

It would also be interesting to measure the excitation spectrum of PrO2

above 120 K to observe the crystal field excitations and the magnetoelastic
coupling in the cubic phase1. It would be interesting to measure the excita-

1An experiment has now been scheduled to measure this [39]
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tion spectrum of Ce1−xPrxO2 as well, since at low Pr doping x this compound
contains only isolated Pr ions, which do not order antiferromagnetically. It
would be interesting to see how the excitation spectrum changes when no
magnetic ordering is present. Point charge calculations are currently being
undertaken to estimate the splitting of the Γ8 crystal field ground state in
the distorted phase [39], and it would be useful to modify the magnetoelastic
model to take this into account.

More thorough neutron diffraction studies of the magnetic structure of
PrO2 before and after the field-induced magnetic phase transition would
be very interesting. It would be useful to establish whether the magnetic
structure is multi-q and whether it changes following the transition. It would
also be interesting to find out whether the oxygen displacements are affected
by the transition. It would be very useful to model the magnetic interactions
between the Pr ions in the different multi-q structures to decide which is
most favourable for PrO2, using the experimental observations of the ordered
magnetic moment of the Pr ion and the oxygen displacements. It would also
be useful to find out what influence orbital order might have on the stability of
such structures, and whether this could be changed by application of a large
magnetic field. Finally, it would be very interesting to perform a resonant
x-ray diffraction experiment to determine whether orbital ordering does in
fact occur in PrO2.



Appendix A

Lorentz Factor

A.1 The Ewald construction

The Ewald construction is useful tool for visualising the geometry of scans
performed by a single crystal diffractometer. For elastic scattering the wavevec-
tors of the incident and scattered neutrons have the same magnitude k. These
two vectors are joined by the scattering vector Q. The Bragg condition is
satisfied whenever Q is equal to a reciprocal lattice vector τ , so if we plot a
two-dimensional1 map of reciprocal space (see Figure A.1), and draw a circle
of radius k whose circumference intersects the origin O, we can see that the
Bragg condition is satisfied whenever another point in the reciprocal lattice
lies on the circumference of the circle2.

Using the Ewald construction it is easy to see what happens when an
ω-scan is performed. When the crystal turns through an angle dω about its
vertical axis, the reciprocal lattice turns through the same angle. However,
the Ewald circle remains fixed in place, since it is determined by the direction
and magnitude of ki. Thus, as we scan ω to measure the intensity profile of
a Bragg reflection, we scan the reciprocal lattice through the Ewald circle,
causing one of the reciprocal lattice points to move from the inside to the
outside (or vice versa) of the circle.

1It is convenient to work in two dimensions since most single crystal diffraction exper-
iments do not require the detector to move out of the scattering plane, and this simplifies
the derivation of the Lorentz factor.

2By analogy, in three dimensions the Bragg condition is satisfied whenever another
reciprocal lattice point intersects the surface of a sphere of radius k.
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ki

kf

QO

( )hkl

Figure A.1: The Ewald construction. Q is the neutron scattering wavevector. ki

and kf are the incident and scattered wavevectors respectively. They both have
the same magnitude k. O is the origin of reciprocal space. The Bragg condition is

satisfied if Q is equal to a reciprocal lattice vector.

In a perfect crystal the reciprocal lattice points would be infinitessimally
sharp, and a diffractometer with perfect resolution would detect Bragg reflec-
tions of infinitessimal angular width. However, in a real crystal the mosaic
spread due to the slight misorientation of individual crystallites causes the
reciprocal lattice points to become broadened into fuzzy spheres, and the
spread of neutron wavelengths due to imperfect resolution of the diffrac-
tometer causes the Ewald circle to be broadened into a fuzzy ring. When
we now consider scanning a reciprocal lattice point through the Ewald circle
we can see that it will have an angular width to it. Furthermore, if we con-
sider scanning points at different positions in the reciprocal lattice through
the circle, we can see that some reciprocal lattice points will intersect with
the circle over a broader range of ω than others (see Figure A.2), and will
therefore have a larger measured width. The Lorentz factor derived below is
used to correct for the variation in integrated intensity of the Bragg peaks
that this causes.

A.2 Derivation of the Lorentz factor

If Bragg reflections were measured by scanning reciprocal lattice points through
the Ewald circle in a direction z normal to the circumference (see Figure A.3),
all reflections would have the same angular width. This means that
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Figure A.2: Reciprocal lattice points are broadened by crystal mosaic. Ewald
circle is broadened by diffractometer resolution function. The directions of ω-
scans through points A and B are indicated. Point B will intersect with the circle

over a broader range of ω than point A.

dσ

dΩ
∝

∫

I(z) dz, (A.1)

where I is the scattered neutron intensity (count rate) measured by the
detector at a given value of ω.

ki

kf

QO

( )hkl

z

dv

dw

q2
S

q
S

Figure A.3: ω-scan through reciprocal lattice point (hkl).

However, the direction dω of the ω-scan is not parallel to z, so
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dσ

dΩ
∝

∫

I(ω)
dz

dω
dω. (A.2)

Since the width of the ω-scan is small, dz
dω

remains approximately constant
across the scan. We can evaluate it at peak centre and take it outside the
integral. This gives

dσ

dΩ
∝ 1

L

∫

I(ω) dω, (A.3)

where L = dω
dz

is the Lorentz factor and
∫

I(ω) dω is the integrated intensity
of the ω-scan. To evaluate the Lorentz factor we consider turning the crystal
through a very small angle dω (see Figure A.3). The arc v traced out by
the reciprocal lattice point is approximately straight and perpendicular to
Q. To find the rate of change of ω with respect to z we project v onto the
z-axis to give

dz = dv cos θS, (A.4)

where θS is the Bragg angle. We note that the magnitude of v is Qdω (where
dω is measured in radians), so

dz = Q cos θS dω, (A.5)

Also, since ki and kf both have magnitude k, we have Q = 2k sin θS. Substi-
tuting this in A.5 and rearranging, we arrive at

dz

dω
= 2k sin θS cos θS ⇒ L =

1

k sin 2θS

. (A.6)

and since k generally remains constant during a diffraction experiment, the
Lorentz factor is often quoted simply as

L =
1

sin 2θS

. (A.7)



Appendix B

Lockin Amplifier

The lockin amplifier is a piece of sensitive equipment, capable of detecting
periodic signals of low amplitude but known frequency amid larger amplitude
white noise. A simple description of how it works is given below.

1. An AC signal V of known frequency f is fed into the input. Its ampli-
tude V0 is to be measured.

2. A reference signal Vref of arbitrary shape and amplitude, but of the
same frequency f as the signal to be measured, is fed into the reference
input.

3. The lockin amplifier uses the reference signal to generate a unit square-
wave S of frequency f .

4. V is multiplied by S to produce the waveform P (see Figure B.1).

5. P is averaged over a time period τ (referred to as the time constant),
to give a DC output D of magnitude V0/

√
2.

To measure the real and imaginary parts of an AC signal, two square-
waves are generated, with a phase difference of 90◦ between them. Each of
these is multiplied by the input signal and averaged, to obtain two readings,
separated by a phase of 90◦.
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V (input signal)

Vref (reference signal)

S (square-wave)

P = I S´

D = P tdò
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Figure B.1: Method by which the lockin amplifier measures the amplitude of a
periodic signal.



Appendix C

Structure Factor Calculations
for PrO2

The aim of a neutron diffraction experiment is to determine the crystallo-
graphic and magnetic structure of a crystal as accurately as possible. This
requires the measurement of as many nuclear and magnetic Bragg reflections
as possible, and the comparison of their integrated intensities with the cal-
culated structure factors of possible structures. The integrated intensity of
a Bragg reflection is proportional to the differential elastic scattering cross
section of that reflection, which is proportional to the square of the struc-
ture factor for that reflection. In this appendix the nuclear and magnetic
structure factors of PrO2 will be calculated.

C.1 Nuclear structure factor

The nuclear unit cell structure factor for a given Bragg reflection is (see
Section 2.3.3)

FN(Q) =
∑

j

b̄je
iQ.rje−Wj(Q,T ). (C.1)

where the summation index j runs over all the atoms in the unit cell, b̄j is
the nuclear scattering length of the jth atom averaged over all of its isotopes,
rj is the position of the jth atom within the unit cell, and e−Wj(Q,T ) is the
Debye-Waller factor of the jth atom. The calculations outlined here assume
that the Debye-Waller factor is equal to 1, which is a valid assumption at
low temperatures.
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C.1.1 Cubic fluorite phase (T > 120 K)

In the cubic fluorite phase the unit cell of PrO2 contains Pr ions at coordinates

(0, 0, 0), (0, 1/2, 1/2), (1/2, 1/2, 0), (1/2, 0, 1/2)

and O ions at coordinates

(1/4, 1/4, 1/4), (1/4, 1/4, 3/4), (1/4, 3/4, 1/4), (1/4, 3/4, 3/4),

(3/4, 1/4, 1/4), (3/4, 1/4, 3/4), (3/4, 3/4, 1/4), (3/4, 3/4, 3/4).

The position vector r is equal to a(x, y, z), where a is the lattice parameter
and x, y and z are the coordinates of the atoms in the unit cell. The scattering
vector Q is equal to 2π

a
(h, k, l), where h, k and l are the Miller indices of the

Bragg reflection, i.e. the coordinates of the reflection in reciprocal space.
The nuclear structure factor is

FN(Q) = b̄Pr

(

1 + eiπ(k+l) + eiπ(h+k) + eiπ(h+l)
)

+ b̄O

(

eiπ
2
(h+k+l) + eiπ

2
(h+k+3l) + eiπ

2
(h+3k+l) + eiπ

2
(h+3k+3l)

+ eiπ
2
(3h+k+l) + eiπ

2
(3h+k+3l) + eiπ

2
(3h+3k+l) + eiπ

2
(3h+3k+3l)

)

,

(C.2)

where the nuclear scattering lengths of praseodymium and oxygen are b̄Pr =
4.58 ± 0.05 fm and b̄O = 5.805 ± 0.005 fm respectively.

The fcc lattice of Pr ions gives rise to Bragg reflections of non-zero inten-
sity when h, k, and l are all even or all odd. If we then consider the contribu-
tion of the oxygen ions, we find that there are three possible structure factors
for these reflections. If h, k and l are all odd, the contributions of the oxygen
ions all cancel each other out, giving a structure factor FN(Q) = 4b̄Pr. Alter-
natively, if h + k + l = 2n, where n is an integer, the oxygens all contribute
negatively to the structure factor, giving FN(Q) = 4b̄Pr − 8b̄O. Finally, if
h + k + l = 4n, the oxygens all contribute positively to the structure factor,
giving FN(Q) = 4b̄Pr + 8b̄O.

The integrated intensity of a Bragg reflection measured by neutron scat-
tering is proportional to the square of the structure factor. If we evaluate
this we arrive at the following values for the nuclear structure factors of PrO2

in the cubic fluorite phase:

|FN(Q)|2 =











335.62 fm2, h, k, l all odd

790.73 fm2, h + k + l = 2n

4193.86 fm2, h + k + l = 4n.

(C.3)
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C.1.2 Distorted phase (T < 120 K)

In the distorted phase the unit cell becomes doubled along one crystal axis.
The praseodymium ions are undisplaced, but the oxygen ions are shifted away
from the positions they occupied in the cubic fluorite phase. The doubling
of the unit cell gives rise to measurable intensities at positions in reciprocal
space with half-integer Miller indices (when the reciprocal lattice is defined
using the undoubled cubic fluorite unit cell), but the structure factors of
these cannot be calculated directly using equation (C.1), as this equation is
only valid for integer Miller indices.

To calculate the structure factors of the half-integer reflections we must
redefine the direct and reciprocal lattices to have a unit cell twice the length
of the cubic fluorite unit cell and containing twice as many atoms. The
coordinates of the ions in the unit cell undergo the transformations x → 2x′,
y → y′, z → z′, where x, y and z are the coordinates in the cubic unit
cell, and x′, y′ and z′ are the coordinates in the distorted unit cell (these
transformations are depicted in Figure C.1). Similarly, the coordinates of
the reflections in reciprocal space undergo the transformations h → h′/2,
k → k′, l → l′, where h, k and l are the coordinates in the cubic unit
cell, and h′, k′ and l′ are the coordinates in the distorted unit cell. The
reciprocal lattice points which had one half-integer index under the cubic
lattice definition now have integer indices, and equation (C.1) can be used
to calculate their structure factors.

(a) (b)

x

y

0 1

1

x

y

0 ½ 1

1

‘

‘

a 2a

Figure C.1: (a) The unit cell of the cubic phase with lattice parameter a. The
coordinates of the ions are x, y and z. (b) The unit cell of the distorted phase
with lattice parameters a and 2a. The coordinates of the ions are x′ = x/2, y′ = y

and z′ = z.

The distorted structure has three symmetry-equivalent structural do-
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mains, with unit cells doubled along each of the three crystal axes. Under
ambient conditions none of these domains is favoured over the others, so it is
likely that all three will be equally populated below T = 120 K. This means
that the measured intensity of a given Bragg reflection is proportional to the
square of the nuclear structure factor, averaged over all three domains.

Finally, it should be noted that, in order to make a direct comparison
between the structure factors of the distorted and cubic phases, we must
divide the distorted structure factors by 2. This is because the distorted unit
cell contains twice as many atoms as the cubic unit cell.

C.2 Magnetic structure factor

For an antiferromagnetic structure in which all the magnetic atoms are the
same, the magnetic elastic scattering cross section quoted in Section 2.3.4
can be simplified to

dσ

dΩ
= Nm

(2π)3

V0m

(γr0

2

)2

µ2|FM(Q)|2, (C.4)

where Nm is the number of magnetic unit cells in the crystal, V0m is the vol-
ume of the magnetic unit cell, ( γr0

2
)2 = 7.24 fm2, µ is the magnetic moment

of each atom (in units of Bohr magnetons) and FM(Q) is the magnetic struc-
ture factor of the reflection with reciprocal lattice vector Q. The magnetic
structure factor can be expressed as

|FM(Q)|2 =
∑

αβ

〈(

δαβ − Q̂αQ̂β

)

F α
M(Q)F β

M(Q)
〉

, (C.5)

where the summation indices α and β run over the cartesian co-ordinates
x, y and z, δαβ is the Kronecker delta, Q̂α is the α-component of the unit
scattering vector, F α(Q) is the α-component of the magnetic structure factor
and 〈〉 denotes an average over all symmetry-equivalent magnetic domains.
The components of the magnetic structure factor are given by

F α
M(Q) = f(Q)

∑

j

µ̂α
j eiQ.rje−Wj(Q,T ), (C.6)

where the summation index j runs over all the magnetic atoms in the mag-
netic unit cell, µ̂α

j is the α-component of a unit vector in the direction of
the magnetic moment of the jth magnetic atom, rj is the position of the
jth magnetic atom within the magnetic unit cell, f(Q) is the magnetic form



C.2. Magnetic structure factor 165

factor (see section 2.3.7) and e−Wj(Q,T ) is the Debye-Waller factor. The cal-
culations outlined here assume that the Debye-Waller factor is equal to 1,
which is a valid assumption at low temperatures.

The magnetic structure of PrO2 consists of two components: one which
has the same unit cell as the cubic fluorite structural phase (referred to as the
antiferromagnetic type-I component), and one which has the same unit cell
as the distorted structural phase (referred to as the doubled component).
The methods by which the magnetic structure factors were calculated for
these two components are outlined in the following sections.

C.2.1 Antiferromagnetic type-I component

The magnetic unit cell of the type-I antiferromagnetic phase contains Pr ions
at coordinates

(0, 0, 0), (0, 1/2, 1/2), (1/2, 1/2, 0), (1/2, 0, 1/2).

The magnetic moments of the ions in the type-I antiferromagnetic structure
can point along the (100), the (110) or the (111) directions. These structures
are referred to as single-q, double-q and triple-q structures. The ordering
wavevector is along (100). If the magnetic moments lie along this direction
the structure is said to be longitudinal, whereas if they lie perpendicular to
this direction the structure is said to be transverse. The single-q, double-q
and triple-q transverse structures all have the same structure factors, and
are consistent with the measured intensities of the integer magnetic Bragg
peaks. I shall therefore use the single-q transverse structure to illustrate
the magnetic structure factor calculation. For this structure the ions at the
positions listed above have magnetic moments which point along the following
directions respectively:

(1, 0, 0), (1̄, 0, 0), (1, 0, 0), (1̄, 0, 0).

The components of the magnetic structure factor are

F x
M(Q) = f(Q)

(

1 − eiπ(k+l) + eiπ(h+k) − eiπ(h+l)
)

F y
M(Q) = 0

F z
M(Q) = 0.

(C.7)

The single-q transverse structure has three symmetry-equivalent magnetic
domains, in which the magnetic moments lie along each of the three crystal
axes. We must therefore calculate the components of the magnetic structure
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factor for these domains as well. For the domain in which the moments lie
along the y-direction the ions at the positions listed above have moments
which point along the following directions respectively:

(0, 1, 0), (0, 1, 0), (0, 1̄, 0), (0, 1̄, 0)

and the components of the magnetic structure factor are

F x
M(Q) = 0

F y
M(Q) = f(Q)

(

1 + eiπ(k+l) − eiπ(h+k) − eiπ(h+l)
)

F z
M(Q) = 0.

(C.8)

For the domain in which the moments lie along the z-direction the ions at
the positions listed above have moments which point along the following
directions respectively:

(0, 0, 1), (0, 0, 1̄), (0, 0, 1̄), (0, 0, 1)

and the components of the magnetic structure factor are

F x
M(Q) = 0

F y
M(Q) = 0

F z
M(Q) = f(Q)

(

1 − eiπ(k+l) − eiπ(h+k) + eiπ(h+l)
)

.

(C.9)

Substituting equations (C.7), (C.8) and (C.9) into equation (C.5) and aver-
aging over all three domains we arrive at

|FM(Q)|2 =
1

3
f 2(Q)

(

(1 − Q̂2
x)|F x

M(Q)|2 + (1 − Q̂2
y)|F y

M(Q)|2

+ (1 − Q̂2
z)|F z

M(Q)|2
)

(C.10)

Although this expression appears complicated, it can be evaluated easily for
a given reflection by inserting h, k and l. For example the magnetic structure
factor for Q = (100) is

|FM|2 =
1

3
f 2

(

(1 − 1)|F x
M|2 + (1 − 0)|F y

M|2 + (1 − 0)|F z
M|2

)

=
1

3
f 2

(

|F y
M|2 + |F z

M|2
)

=
1

3
f 2(42 + 0)

=
16

3
f 2

(C.11)
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where f is the value of the magnetic form factor at Q = (100), which can be
evaluated in the dipole approximation (see Section 2.3.7).

C.2.2 Component with doubled unit cell

The doubled component of the magnetic structure posesses a unit cell identi-
cal to that of the distorted crystallographic phase. This gives rise to magnetic
reflections at half-integer positions in reciprocal space (when the reciprocal
lattice is defined by the cubic fluorite structure). The magnetic structure
factors of this component of the magnetic structure are calculated using the
same procedure as described in Section C.2.1, but using the distorted unit
cell and transformed coordinates described in Section C.1.2.

As described above, the magnetic structure factors are averaged over the
three magnetic domains whose unit cells are doubled along the x, y and
z-directions respectively, since it is likely that these are equally populated
under ambient conditions.



Appendix D

Magnetic Susceptibility

The magnetic susceptibility χ is a tensor which relates the magnetisation
M of a linear, homogeneous, isotropic medium to the applied magnetic field
strength H as follows:

M = χH . (D.1)

The susceptibility tensor for a general system is

χ =





χxx χxy χxz

χyx χyy χyz

χzx χzy χzz



 (D.2)

However, for systems with a high degree of symmetry this can be simpli-
fied. For example, the crystal axes of an orthorhombic crystal are mutually
perpendicular, so the off-diagonal elements of the susceptibility tensor are
zero:

χorthorhombic =





χxx 0 0
0 χyy 0
0 0 χzz



 (D.3)

A tetragonal crystal has only two independent lattice parameters, so the
susceptibility tensor has only two independent elements on the diagonal:

χtetragonal =





χxx 0 0
0 χxx 0
0 0 χzz



 (D.4)

168



169

For a cubic crystal the elements on the diagonal of the susceptibility tensor
are all identical:

χcubic =





χxx 0 0
0 χxx 0
0 0 χxx



 (D.5)

The magnetic susceptibility of a general system whose eigenfunctions are
known can be calculated using the following formula

χSI
αβ =

Nµ0µ
2
Bg2

J

V kBT
.
1

Z

∑

n

e
− En

kBT

{

∑

i∈n

∑

j∈n

〈i|Ĵα|j〉〈i|Ĵβ|j〉

−2kBT
∑

m6=n

[

∑

i∈n

∑

j∈m

〈i|Ĵα|j〉〈i|Ĵβ|j〉
(En − Em)

]} (D.6)

where χSI
αβ is an element of the general susceptibility tensor in SI units1, α

and β are each x, y or z, N is the number of magnetic ions in a sample of

volume V , Z is the partition function
∑

n gne
− En

kBT , n and m are used to label
the energy levels, gn is the degneracy of level n and En is its energy, i and
j are used to label the degenerate states within the energy levels, T is the
temperature, gJ is the Landé g-factor, µB is the Bohr magneton and Ĵα is
the α-component of the total angular momentum operator. This formula is
valid when the magnitude of the applied magnetic field H → 0, i.e. when
the applied field is so small that it doesn’t split the energy levels n enough
to significantly disturb their thermal population. In a cubic crystal, (D.6)
simplifies to

χSI
xx =

Nµ0µ
2
Bg2

J

V kBT
.
1

Z

∑

n

e
− En

kBT

{

∑

i∈n

∑

j∈n

∣

∣〈i|Ĵx|j〉
∣

∣

2

−2kBT
∑

m6=n

[

∑

i∈n

∑

j∈m

∣

∣〈i|Ĵx|j〉
∣

∣

2

(En − Em)

]} (D.7)

The second term is often referred to as the van Vleck term.
1Although most quantities are now stated in SI units, it is currently still conventional

to use cgs units for magnetic susceptibility. These are more convenient because knowledge
of the density of magnetic ions in the sample is not required. In SI units the susceptibility
is dimensionless, but in cgs units it has the dimensions emu mol−1. The SI susceptibility
χSI is related to the cgs susceptibility χmol as follows: χmol = NA

10µ0
. V
N .χSI, where NA is

Avogadro’s number.
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D.1 Derivation

To derive Equation (D.6) we begin be noting that the magnetisation of a
system of N magnetic ions at T = 0 is given by2

M = −N

V
∇BE0, (D.8)

where E0 is the ground state energy of a single ion in the presence of a
magnetic field B and ∇B is the field gradient operator

∇B = i
∂

∂Bx

+ j
∂

∂By

+ k
∂

∂Bz

. (D.9)

However, for T > 0 the energy levels above the ground state start to become
populated, so the magnetisation must be averaged over the contributions
from each energy level:

M =
1

Z

∑

n

Mne
− En

kBT , (D.10)

where

Mn = −N

V
∇BEn. (D.11)

We assume that M � H so that the relation B = µ0(H +M ) becomes B =
µ0H . We can then express individual elements of the differential magnetic
susceptibility tensor as

χαβ =
∂Mα

∂Hβ

= µ0
∂Mα

∂Bβ

. (D.12)

Substituting (D.11) into (D.10) and taking the partial derivative with respect
to Bβ of the α-component of M we arrive at

χαβ = −Nµ0

V

∂

∂Bβ

{

1

Z

∑

n

∂En

∂Bα

e
− En

kBT

}

=
Nµ0

V kBT
.
1

Z

∑

n

e
− En

kBT

{

(

∂En

∂Bα

) (

∂En

∂Bβ

)

− kBT
∂2En

∂Bβ∂Bα

}

,

(D.13)

2Equation (D.8) follows from the more familiar equation E0 = −(µ.B), where µ is the
moment of the magnetic ion and M = Nµ/V .
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where we have assumed that the applied field H is too small to significantly
alter the thermal population of the energy levels, so the partition function Z
can be regarded as a constant.

Now, the energy of level n is given by En = εn + ∆En, where εn is the
energy of the level before application of the field, and ∆En is the perturbation
caused by the field. We know that ∂εn/∂Bα = 0, since the energies εn are
independent of field, so this allows us to make the simplification ∂En/∂Bα =
∂∆En/∂Bα. Replacing En with ∆En in Equation (D.13) gives

χαβ =
Nµ0

V kBT
.
1

Z

∑

n

e
− En

kBT

{

(

∂∆En

∂Bα

)(

∂∆En

∂Bβ

)

− kBT
∂2∆En

∂Bβ∂Bα

}

. (D.14)

We must now calculate ∆En. To do this we need to know how the ionic
Hamiltonian is modified in the presence of a magnetic field. The perturbation
Hamiltonian consists of two contributions: one from the interaction energy
of the electron spins with the field, and the other from the change in kinetic
energy of the electrons due to the applied field. The interaction energy of
the electron spins with the field is given by

∆Ĥspin = gµBŜ.B, (D.15)

where g = 2, Ŝ =
∑

i ŝi and ŝi is the spin of the ith electron. We ignore the
effects of the magnetic field on the spin-orbit interaction and nuclear spin,
since these are negligible compared with the direct interaction of the electron
spin with the field. The change in kinetic energy of the electrons due to the
applied field can be found by replacing the momentum of each electron by
p̂i → p̂i + eÂ(ri) [61], where r̂i and p̂i are the position and momentum of
the ith electron respectively and Â is the magnetic vector potential Â(ri) =
(B × r̂i)/2. We substitute these into the formula T̂ =

∑

i p̂
2
i /2m, where T̂ is

the total electronic kinetic energy before application of the field, to give

T̂ + ∆T̂ =
1

2m

∑

i

(

p̂i +
e

2
B × r̂i

)2

=
1

2m

∑

i

(

p̂2
i + e

(

B × r̂i

)

.p̂i +
e2

4

∣

∣B × r̂i

∣

∣

2
)

=
1

2m

∑

i

(

p̂2
i + e

(

r̂i × p̂i

)

.B +
e2

4

∣

∣B × r̂i

∣

∣

2
)

=
1

2m

∑

i

(

p̂2
i + eh̄l̂i.B +

e2

4

∣

∣B × r̂i

∣

∣

2
)

(D.16)
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where l̂i is the angular momentum of the ith electron. We can ignore the
last term, since r̂i is of atomic dimensions, and we can replace the sum over
the angular momenta with L̂ =

∑

i l̂i to give

T̂ + ∆T̂ =
1

2m

∑

i

p̂2
i + µBL̂.B

= T̂ + µBL̂.B,

(D.17)

where µB = eh̄/2m. This shows that the perturbation due to the change in
kinetic energy of the electrons in an applied field is

∆T̂ = µBL̂.B. (D.18)

Note that we ignore the effect of the magnetic field on the translational
motion of the nucleus, since this is negligible compared to the effect of the
field on the translational motion of the electrons. The total perturbation
Hamiltonian due to the applied field is

∆Ĥ = ∆Ĥspin + ∆T̂

= µB

(

L̂ + gŜ
)

.B

= gJµBĴ .B,

(D.19)

where gJ Ĵ = L̂+gŜ. This allows us to evaluate ∆En. Since Equation (D.14)
for the susceptibility contains the second derivative of ∆En with respect to
B we must use second order perturbation theory:

∆En = 〈n|∆Ĥ|n〉 +
∑

m6=n

∣

∣〈n|∆Ĥ|m〉
∣

∣

2

En − Em

. (D.20)

Substituting (D.19) into (D.20), we obtain

∆En = gJµB〈n|Ĵ .B|n〉 + g2
Jµ2

B

∑

m6=n

∣

∣〈n|Ĵ .B|m〉
∣

∣

2

En − Em

. (D.21)

Evaluating the scalar product Ĵ .B we arrive at

∆En = gJµB〈n|ĴxBx + ĴyBy + ĴzBz|n〉

+ g2
Jµ2

B

∑

m6=n

∣

∣〈n|ĴxBx + ĴyBy + ĴzBz|m〉
∣

∣

2

En − Em

.
(D.22)
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The next step is best illustrated with a specific example. If we take the
partial derivative of (D.22) with respect to Bx we obtain

∂∆En

∂Bx

= gJµB〈n|Ĵx|n〉

+ 2g2
Jµ2

B

∑

m6=n

1

En − Em

(

Bx

∣

∣〈n|Ĵx|m〉
∣

∣

2
+ By〈n|Ĵy|m〉〈n|Ĵx|m〉

+ Bz〈n|Ĵz|m〉〈n|Ĵx|m〉
)

. (D.23)

However, the second term is negligible due to the fact that B is small. Ig-
noring this term, we obtain the more general expression

∂∆En

∂Bα

= gJµB〈n|Ĵα|n〉. (D.24)

If we take the double derivative of (D.22) we obtain

∂2∆En

∂Bβ∂Bα

= 2g2
Jµ2

B

∑

m6=n

〈n|Ĵβ|m〉〈n|Ĵα|m〉
En − Em

. (D.25)

Now we can substitute (D.24) and (D.25) into (D.14) to obtain

χαβ =
Nµ0µ

2
Bg2

J

V kBT
.
1

Z

∑

n

e
− En

kBT

{

〈n|Ĵα|n〉〈n|Ĵβ|n〉

− 2kBT
∑

m6=n

〈n|Ĵβ|m〉〈n|Ĵα|m〉
En − Em

}

.

(D.26)

This expression allows individual elements of the general susceptibility tensor
to be evaluated in the case of non-degenerate energy levels. However, if the
energy levels are degenerate we must make the following replacements:

〈n|Ĵα|n〉〈n|Ĵβ|n〉 →
∑

i∈n

∑

j∈n

〈i|Ĵα|j〉〈i|Ĵβ|j〉 (D.27)

〈n|Ĵβ|m〉〈n|Ĵα|m〉 →
∑

i∈n

∑

j∈m

〈i|Ĵβ|j〉〈i|Ĵα|j〉 (D.28)

where the summations run over all the degenerate states within the energy
levels. Substituting (D.27) and (D.28) into (D.26) we obtain (D.6).



Appendix E

Magnetic form factor of Pr4+

In the dipole approximation (Q−1 � 〈r〉, where 〈r〉 is the mean radius of the
orbital wavefunction of the unpaired electrons and Q is the magnitude of the
neutron scattering vector) the magnetic form factor is given by

f(Q) = J0 +
gL

gS + gL

J2, (E.1)

where gS = 1 +
S(S + 1) − L(L + 1)

J(J + 1)
(E.2)

and gL =
1

2
+

L(L + 1) − S(S + 1)

2J(J + 1)
. (E.3)

The functions J0 and J2 are spherical Bessel functions, which can be approx-
imated by series expansion as follows:

J0 = A exp(−as2) + B exp(−bs2) + C, (E.4)

J2 = s2(A exp(−as2) + B exp(−bs2) + C), (E.5)

where s = sin θ
λ

(N.B. for elastic scattering, s = Q
4π

). The coefficients A, a, B,
b and C have been tabulated for a number of rare-earth ions by Lisher and
Forsyth [25]. Although the tables do not contain the coefficients for Pr4+

these can be estimated by scaling the coefficients for Ce3+. This is done by
noting that the mean electronic radius of the Pr4+ ion is 0.84 times that of
Ce3+ [62]. This is expressed as

〈r〉Pr4+ = 0.84〈r〉Ce3+ . (E.6)
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The magnetic form factor is equal to the fourier transform of the radial charge
density ρ(r):

f(Q) =

∫ ∞

0

ρ(r) exp(iQ.r) dr. (E.7)

Figure E.1 shows the function ρ(r) for Pr4+ and Ce3+.

r ( )r

r<  >r <  >r
Pr

4  +
Ce

3  +

Figure E.1: Radial charge density of unpaired electrons in Pr4+ (solid line) and
Ce3+ (dashed line).

We now make the approximation

ρPr4+(r) = AρCe3+

( r

0.84

)

, (E.8)

where A is a constant of proportionality. Multiplying both sides by exp(iQ.r)
and integrating, we obtain

∫ ∞

0

ρPr4+(r) exp(iQ.r) dr =

∫ ∞

0

AρCe3+

( r

0.84

)

exp(iQ.r) dr. (E.9)

At Q = 0 we have

∫ ∞

0

ρPr4+(r) dr =

∫ ∞

0

AρCe3+

( r

0.84

)

dr, (E.10)

but normalisation requires that

∫ ∞

0

ρPr4+(r) dr =

∫ ∞

0

ρCe3+(r) dr, (E.11)
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so A must be equal to 1/0.84. Subsituting this into (E.10) gives

∫ ∞

0

ρPr4+(r) dr =

∫ ∞

0

ρCe3+(r′) dr′, (E.12)

where r′ = r/0.84. Now, substituting A = 1/0.84 into (E.9) gives

∫ ∞

0

ρPr4+(r) exp(iQ.r) dr =

∫ ∞

0

ρCe3+

( r

0.84

)

exp(iQ.r)
dr

0.84
. (E.13)

The left hand side is simply the magnetic form factor of Pr4+. If we now
make the substitution r′ = r/0.84 we obtain

fPr4+(Q) =

∫

ρCe3+(r′) exp(i(0.84Q).r′) dr′

= fCe3+(0.84Q).

(E.14)

Since s ∝ Q, this means that we can obtain the magnetic form factor of Pr4+

by substituting s′ = 0.84s into equations (E.4) and (E.5), using the tabulated
coefficients A, a, B, b and C for Ce3+. Figure E.2 shows the square of the
magnetic form factor f 2(Q) obtained in this way for the Pr4+ ion.
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Figure E.2: The Q-dependence of the magnetic form factor of Pr4+.
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