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◊ Basic features of neutron scattering

◊ Neutron diffraction

◊ Neutron spectroscopy

◊ Correlations

◊ Polarized neutrons



Nearly 60 years of magnetic diffraction!Nearly 60 years of magnetic diffraction!

C.G. Shull
(1915–2001)



Correlations in interacting electron systemsCorrelations in interacting electron systems

◊ magnetic

◊ charge

◊ orbital

◊ lattice distortions

LaLa1/21/2SrSr3/23/2MnOMnO44
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Neutrons?

BUT neutrons can detect charge and orbital
correlations indirectly through their effect on the lattice

*

*

*



Scattering Scattering ‘‘nuts and boltsnuts and bolts’’

◊ Neutrons, photons, electrons, atoms

◊ Measure distribution of radiation scattered from a sample

◊ Interaction potential determines property measured

◊ Radiation must be coherent to measure correlations

Neutrons are waves and particles



Scattering techniques probe correlationsScattering techniques probe correlations

1 Born approximation:

2 Coherence + superposition:

Detected amplitude: 

~nm

φ1

φ2
1

2

Φ =  … φ1 + φ2…

Detected intensity: 

I =  |… φ1 + φ2 …|2

=  … |φ1|2 + |φ2|2 + φ1* φ2 + φ2* φ1 …

depends on relative positions of 1 and 2

→ correlations



Properties of the NeutronProperties of the Neutron

◊ Mass = 1.675 x 10–27 kg
◊ Charge = 0
◊ Mean lifetime ≈ 15 min 
◊ Spin = ½
◊ Magnetic moment = 1.91 µN (~0.001µB)

Neutrons interact with

1. Atomic nuclei (strong nuclear force — short-range)

2. Magnetic fields from unpaired electrons

In both cases, the interaction is very weak

Probability of scattering ~ 1 in 108

→ mean free path ~ 1 cm

E.g. consider close-packed layer of atoms:



Weak interaction potentialWeak interaction potential

Advantages:

1. Neutrons probe the bulk (~1 cm)

2. Neutrons do not damage the sample

3. Born approximation holds
→ scattering depends on Fourier transform of interaction potential
→ system responds linearly
→ measure equilibrium properties

4.   Intensity can be calibrated

5.   Theory is quantitative

Disadvantages:

1. Sample size is an important consideration

single crystals: ~1 mm3 (diffraction)     ~1 cm3 (spectroscopy)

powder samples: ~1 g      (diffraction)     ~10 g   (spectroscopy)

1cm



Neutron energy and wavelengthNeutron energy and wavelength

d ~ 0.2nm

E , p

de Broglie: p = h/λ = ћk (k = 2π/λ)

E = h2/(2mλ2) = ћ2k2/2m

→ E = 25 meV corresponds to v = 2,200 ms–1 and λ = 0.18 nm

comparable to energy and length scales of static and dynamic 
correlations in condensed matter

~localized

~λ

Neutrons are particles and waves:



Neutron kinematicsNeutron kinematics

Q

ki

kf

scattering triangle

ћQ = ћki – ћkf

◊ momentum transfer

◊ energy transfer

ћω = Ei – Ef = ћ
2 (ki

2 – kf
2)

2m

◊ a scattering event is characterised by (Q, ω)

Elastic scattering (diffraction):

Inelastic scattering (spectroscopy):

ћω = 0

ћω ≠ 0

◊ Q and ћω can be chosen independently 

(within limits set by 0 < φ < 180 deg)

φ

◊ Fourier transform conjugate variables: Q ~ 2π/(length) ћω = 2πћ /(time)



Correlations in space and timeCorrelations in space and time



DiffractionDiffraction

Diffraction from 
a crystalline material

Diffraction from 
a disordered material

Q

Intensity

Q

Intensity

Diffraction peaks when nλ = 2d sin θ
(Bragg’s Law)

First maximum when Q ≈ 2π/d

d

Q

ki

kf
d

θ



DiffractionDiffraction

Diffraction from 
a crystalline material

Diffraction from 
a disordered material

Q

Intensity

First maximum when Q ≈ 2π/d

d

Q

ki

kf
d

Bragg peaks when Q = G
(G = reciprocal lattice vector)

Reciprocal lattice

Q
(100) (200)

(110) (210)

(000)

(010)



ShortShort--range order and diffuse scatteringrange order and diffuse scattering

If the system is correlated over a range ∆x ~ ξ,

the scattering features are broadened by ∆Q ~ 1/ξ

ξ

ξ = correlation length

Short-range order

Intensity

Q

Γ = half width at half maximum

Γ ~ 1/ξ

Diffuse scattering



Nuclear neutron diffractionNuclear neutron diffraction

VN(r) = 2πћ2 b δ(r)

Nuclear interaction (pseudo-)potential

◊ very short range

◊ scalar potential → isotropic scattering

◊ b = scattering amplitude/length (~10–12 cm)

◊ diffraction intensity:

S(Q)  = |Σ bj exp (iQ . rj)|
2

j
(sum over all nuclei in sample)

◊ Rigid crystal:

j

(sum over all reciprocal lattice vectors G)

(sum over nuclei in unit cell)F(G)  = Σ bj exp (iG . rj) where

is the structure factor, 
v0 is the volume of the unit cell and N is the no. unit cells in crystal

S(Q)  = N (2π) Σ |F(G)|  δ(Q – G)
2

G

3

v0

mn



Coherent and incoherent nuclear scatteringCoherent and incoherent nuclear scattering

b varies with isotope and with nuclear spin orientation

e.g. sample with two isotopes with scattering lengths b1( ) and b2( )

Coherent scattering: replace bj by bj

Q

Intensity

incoherent scattering

coherent scattering

Incoherent scattering: additional ‘flat background’

Sinc(Q)  = Σ (σinc)j

4π
j



Coherent and incoherent nuclear scatteringCoherent and incoherent nuclear scattering

Values of b and σinc can be found in tables, 
e.g. http://www.ncnr.nist.gov/resources/n-lengths/

Examples:

Shull & Wilkinson 1953

Strong incoherent scattering from
vanadium is used for calibration
and normalisation of detectors



Magnetic neutron diffractionMagnetic neutron diffraction

◊ B(r) originates from distribution of electron spin and orbital currents 

◊ Vector interaction

◊ Anisotropic scattering

◊ Depends on orientation of neutron spin sn: µn = –2γµNsn (γ = 1.913)

→ polarised neutrons can be used 

to probe different magnetic components

Magnetic interaction potential

VM(r) = –µn . B(r) [ µn = neutron magnetic moment ]



Magnetic form factorMagnetic form factor

B(r) derives from electron spin and orbital motion,
which is distributed over volume of atom

Scattering decreases with increasing Q 
due to intra-atomic interference
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VM = –µn . B(r)
(a)  scattering from nucleus

(b)  scattering from electrons

Small angle

Large angle



Fourier transform of magnetic potentialFourier transform of magnetic potential

Magnetic scattering probes magnetic moments perpendicular to Q

Magnetic scattering depends on Fourier transform of VM(r):

VM(Q) = –µn . B(Q)

Maxwell’s eq.

∇. B(r) = 0
F.T.

iQ . B(Q) = 0

B(Q) is perpendicular to Q

Neutrons scatter from m┴, the component of the (atomic)
magnetic moment perpendicular to Q

James Clerk Maxwell
(1831 – 1879)



Diffraction from moments perpendicular to Diffraction from moments perpendicular to QQ

Example: Metamagnetic transition in NaxCoO2

Magnetic Field

H = 0 H = HSF

I(00L) = 0

spin flop

I(00L) > 0

(001)

(Lucy Helme, ATB, et al., 2006)

Q

(001)

ki kf



Magnetic diffraction intensityMagnetic diffraction intensity

Diffraction of unpolarized neutrons from 
general magnetic structure (dipole approx.):

where

SM(Q)  = C Σ |FM(G)|  δ(Q – GM)
2

GM

(sum over all magnetic reciprocal lattice vectors GM)

FM(G) = Σ fj(Q) m┴j exp (iG . rj) 
j

is the magnetic structure factor

(sum over ordered moments in magnetic unit cell)



Inelastic scattering cross sectionInelastic scattering cross section

double differential cross section

Incident flux I0

sample

dΩ

detector

Detector has energy analysis capability

f

fff

f

2

dd

d and  between energy final with

d angle solid into sec.per  scattered neutrons no.

dd

d

EI

EEE

E ×Ω×










+

Ω

=
Ω 0

σ



Inelastic scattering cross sectionInelastic scattering cross section
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Numerator depends implicitly on 5 factors:

1  dΩ
2  dEf
3  vf = ћkf/m — speed of scattered neutrons
4 ρi — density of incident neutrons
5  S(Q,ω) — transition probability for process in which system changes 

its energy by ћω and momentum ћQ while scattering a neutron

In denominator, I0 = ρivi = ρiћki/m

d2σ

dΩdEf

=
kf
ki

S(Q,ω)



Lattice vibrationsLattice vibrations

Normal mode — all atoms vibrate at same frequency

Phonon — quantum ћωph of lattice vibrational energy

kph
e

e
kph

Longitudinal mode Transverse mode

e = polarization



Scattering from lattice vibrationsScattering from lattice vibrations

◊ Phonon dispersion curve

ωph

kph
k2k1

◊ Observe peaks in neutron scattering when

ћω = ±ћωph

ћQ = ћ(kph ± G) (G is a reciprocal lattice vector;

Periodic in wavevector

0 2π
a

-2π
a

k1 and k2 are equivalent

kph is in 1
st Brillouin zone)

◊ Intensity ~ b2(Q.e)2 Intensity increases with Q



Principle of Detailed BalancePrinciple of Detailed Balance

◊ For any neutron scattering process

S(Q, –ω) = exp(–ћω/kBT) S(Q, ω)

neutron energy gain neutron energy loss

S(Q,ω)

ω

T = 0

ω0

ground state

ћω ћω

excited state

‘neutron energy loss’ ‘neutron energy gain’

◊ neutron energy loss and energy gain processes

Principle of Detailed Balance

kBT ~ ћω0

ω0 ω–ω0



Expressions for Expressions for SS((QQ, , ωω) ) —— 11

S(Q,ω) = Σ pi Σ |Mij|
2 δ(ћω–Ej+Ei)

where

Pi = thermal occupancy of initial state

Mij = transition matrix element

δ(ћω–Ej+Ei) represents conservation of energy g.s.

Ei

Ej

0

i

ji j

1 Transition probability



Local magnetic excitationsLocal magnetic excitations

Example: local magnetic excitations in PrO2

[ATB et al., Phys. Rev. Lett. 86, 2082 (2001)]

Pr4+ 4f1 L=3 S=1/2



These are equilibrium properties of the unperturbed system,

related to thermodynamic functions

◊ Example 1 scattering from lattice of spins of one type

spin–spin correlation function
(measures spectrum of spontaneous spin fluctuations)

S(Q,ω) = A  dt exp(–iωt) Σ exp(iQ.R) 〈S┴(0)S┴(t)〉
0 R

R
∫
–∞

+∞

◊ Example 2 coherent nuclear scattering (one type of atom)

S(Q,ω) = A’ dt exp(–iωt) Σ exp(iQ.R) 〈n (0)n (t)〉
0 R

R
∫
–∞

+∞

density–density correlation function
(measures spectrum of spontaneous density fluctuations)

Theory is simple, direct, exact and quantitative!

Expressions for Expressions for SS((QQ, , ωω) ) —— 22

2 Pair correlation functions



Collective Magnetic ExcitationsCollective Magnetic Excitations

e.g. ferromagnetic spin waves

Ground state Spin wave

Q

hω

0 π/ 2π/aa-π/a

Magnon dispersion curve

(periodic in reciprocal space)

Magnon — quantum of
energy in a spin wave mode



Collective Magnetic ExcitationsCollective Magnetic Excitations

Example: Antiferromagnons in charge-ordered La3/2Sr1/2CoO4
[Lucy Helme, ATB, et al. (2005)]

2D square lattice of Co ions 
with alternating Co2+ and Co3+

Calculated dispersion surface

E = 6 meV
E = 10 meV



Scattering from Spin WavesScattering from Spin Waves

◊ Neutron scatters from spin deviations perpendicular to Q

Q Scatter from x and y spin components

Qy

x

z

Scatter from x spin component
(no z spin deviation) so intensity
weaker by a factor of 2

◊ No Q2 variation because lattice is not distorted

◊ Instensity decreases with magnetic form factor
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Basis for separating scattering from phonons and magnons

S(Q,ω) for ferromagnetic spin waves similar to phonons except



Self correlation FunctionSelf correlation Function

Example 3 incoherent nuclear scattering

Si(Q,ω) = A’’ dt dr exp(iQ.r–iωt) Gs(r,t)∫

‘self’ pair correlation function

∫

Measures correlations between 
the position of a particle at different times

e.g. diffusion

t=0

t=t

ћω

Si(Q,ω)

DQ2

J = D ∇n



◊ Magnetic susceptibility

M = χ H

M = magnetization
H = applied field
χ = magnetic susceptibility

◊ If H is constant in space and time we measure 
the zero frequency uniform susceptibility, i.e. χ(Q=0, ω=0)

◊ If the applied field varies in space and time we could measure
the generalized (dynamical) susceptibility χ(Q, ω)

Mα(Q, ω) = χαβ(Q, ω) Hβ(Q, ω)

◊ This applies when the system responds linearly to the applied field

Expressions for Expressions for SS((QQ, , ωω) ) —— 33

3 Generalized susceptibility

S(Q,ω) = [1+n(ω)] 1 χ’’(Q, ω)
π

[n(ω) =           1 ]
exp(ћω/kBT) – 1



FluctuationFluctuation––dissipation theoremdissipation theorem

In general, M is not in phase with H, so χ is complex: 

χ(Q, ω) = χ’(Q, ω) – iχ’’(Q, ω)

The neutron is a probe that provides a
magnetic perturbation that varies in space and time

Neutron interaction is very weak

System responds linearly

Fluctuation–dissipation theorem

S(Q,ω) = [1+n(ω)] 1 χ’’(Q, ω)
π

Basic excitation spectrum not complicated
by thermal population of states



Polarized neutron scatteringPolarized neutron scattering

Neutron has spin ½, so is either up (↑) or down (↓) 
relative to an applied field

◊ Longitudinal polarization analysis

Non-spin-flip (NSF)

Non-spin-flip

Spin-flip (SF)

Spin-flip

◊ Spherical neutron polarimetry

Pi Pf



1  Neutrons scatter from spin components ⊥⊥⊥⊥ Q

2 Longitudinal neutron polarization:

(i)  spin components || P do not flip polarization (NSF)

(ii)  spin components ⊥⊥⊥⊥ P do flip polarization (SF)

(iii)  coherent nuclear scattering does not flip polarization (NSF)

Example: separating phonon and magnon scattering

If P is parallel to Q then: 

magnetic scattering is entirely SF

non-magnetic scattering is entirely NSF

Longitudinal polarization analysisLongitudinal polarization analysis
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Excitations in Stripe ordered La5/3Sr1/3NiO4

ATB et al. PRB 67, 100407(R) (2003)



SummarySummary

Neutron scattering: 

(i) is a powerful bulk probe of fundamental 
electronic and structural correlations in condensed matter 

(ii) and provides a direct route to the microscopic origin 
of the physical properties of materials


