Concepts of Neutron Scattering

Andrew Boothroyd University of Oxford

♦ Basic features of neutron scattering

♦ Neutron diffraction

♦ Neutron spectroscopy

♦ Correlations

♦ Polarized neutrons

6th PSI Summer School on Condensed Matter Research Zuoz, Aug 18–25, 2007

Nearly 60 years of magnetic diffraction!

PHYSICAL REVIEW

VOLUME 76, NUMBER 8

OCTOBER 15, 1949

Letters to the Editor

Detection of Antiferromagnetism by Neutron Diffraction*

C. G. SHULL Oak Ridge National Laboratory, Oak Ridge, Tennessee

AND J. SAMUEL SMART Naval Ordnance Laboratory, White Oak, Silver Spring, Maryland August 29, 1949

temperature and at 80°K.

Correlations in interacting electron systems

*BUT neutrons can detect charge and orbital correlations indirectly through their effect on the lattice

La_{1/2}Sr_{3/2}MnO₄

Scattering 'nuts and bolts'

- Neutrons, photons, electrons, atoms
- ♦ Measure distribution of radiation scattered from a sample
- ♦ Interaction potential determines property measured
- Adiation must be coherent to measure correlations

Neutrons are waves and particles

Properties of the Neutron

- \Leftrightarrow Mass = 1.675 x 10⁻²⁷ kg
- \diamond Charge = 0
- ♦ Mean lifetime \approx 15 min
- \diamond Spin = $\frac{1}{2}$
- ♦ Magnetic moment = $1.91 \mu_N$ (~ $0.001\mu_B$)

Neutrons interact with

1. Atomic nuclei (strong nuclear force — short-range)

2. Magnetic fields from unpaired electrons

In both cases, the interaction is very weak

E.g. consider close-packed layer of atoms:

Probability of scattering ~ 1 in 10^8

 \rightarrow mean free path \sim 1 cm

Weak interaction potential

Advantages:

- 1. Neutrons probe the bulk (~1 cm)
- 2. Neutrons do not damage the sample
- 3. Born approximation holds
 - \rightarrow scattering depends on Fourier transform of interaction potential
 - \rightarrow system responds linearly
 - \rightarrow measure equilibrium properties
- 4. Intensity can be calibrated
- 5. Theory is quantitative

Disadvantages:

1. Sample size is an important consideration

single crystals: $\sim 1 \text{ mm}^3$ (diffraction) $\sim 1 \text{ cm}^3$ (spectroscopy) powder samples: $\sim 1 \text{ g}$ (diffraction) $\sim 10 \text{ g}$ (spectroscopy)

Neutron kinematics

Correlations in space and time

Nuclear neutron diffraction

Nuclear interaction (pseudo-)potential

 $V_{\rm N}(\mathbf{r}) = \frac{2\pi\hbar^2}{m_{\rm n}} b\,\delta(\mathbf{r})$

♦ very short range
♦ scalar potential → isotropic scattering
♦ b = scattering amplitude/length (~10⁻¹² cm)
♦ diffraction intensity: $exp \{i(kz-\omega t)\}$ $exp \{i(kz-\omega t)\}$ $(b/r) exp \{i(kr-\omega t)\}$

 $S(\mathbf{Q}) = \left|\sum_{i} b_{j} \exp\left(i\mathbf{Q} \cdot \mathbf{r}_{j}\right)\right|^{2}$

(sum over all nuclei in sample)

♦ Rigid crystal:

 $S(\mathbf{Q}) = N \, \frac{(2\pi)^3}{V_0} \sum_{\mathbf{G}} |F(\mathbf{G})|^2 \, \delta(\mathbf{Q} - \mathbf{G})$

where $F(G) = \sum_{i} b_{i} \exp(iG \cdot r_{i})$

(sum over all reciprocal lattice vectors **G**)

(sum over nuclei in unit cell)

is the structure factor,

 v_0 is the volume of the unit cell and N is the no. unit cells in crystal

Coherent and incoherent nuclear scattering

Values of \overline{b} and σ_{inc} can be found in tables, e.g. http://www.ncnr.nist.gov/resources/n-lengths/

Examples:

Nucleus	\overline{b} (×10 ⁻¹² cm)	$\sigma_{\rm inc}~(\times 10^{-24}~{\rm cm}^2)$
¹ H (protor	-0.374	79.9
2 H (deuter	ron) 0.667	2.0
0	0.581	0.0
V	-0.040	4.9
La	0.827	1.6
U	0.842	0.0

Strong incoherent scattering from vanadium is used for calibration and normalisation of detectors

Shull & Wilkinson 1953

Magnetic neutron diffraction

Magnetic interaction potential

 $V_{M}(\mathbf{r}) = -\boldsymbol{\mu}_{n}$. **B**(**r**) [$\boldsymbol{\mu}_{n}$ = neutron magnetic moment]

♦ B(r) originates from distribution of electron spin and orbital currents

♦ Vector interaction

♦ Anisotropic scattering

♦ Depends on orientation of neutron spin \mathbf{s}_n : $\boldsymbol{\mu}_n = -2\gamma \mu_N \mathbf{s}_n$ ($\gamma = 1.913$)

 \rightarrow polarised neutrons can be used

to probe different magnetic components

Magnetic form factor

$V_{\rm M} = -\mathbf{\mu}_{\rm n} \cdot \mathbf{B}(\mathbf{r})$

 $\mathbf{B}(\mathbf{r})$ derives from electron spin and orbital motion, which is distributed over volume of atom

Scattering decreases with increasing Q due to intra-atomic interference

(b) scattering from electrons

Magnetic diffraction intensity

Diffraction of unpolarized neutrons from general magnetic structure (dipole approx.):

 $S_{M}(\mathbf{Q}) = C \sum_{\mathbf{G}_{M}} |\mathbf{F}_{M}(\mathbf{G})|^{2} \delta(\mathbf{Q} - \mathbf{G}_{M})$ (sum over all magnetic reciprocal lattice vectors \mathbf{G}_{M})

where

 $\mathbf{F}_{M}(\mathbf{G}) = \sum_{i} f_{j}(\mathbf{Q}) \mathbf{m}_{\perp j} \exp(\mathbf{i}\mathbf{G} \cdot \mathbf{r}_{j})$ (sum over ordered moments in magnetic unit cell)

is the magnetic structure factor

In denominator, $I_0 = \rho_i v_i = \rho_i \hbar k_i / m$

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}\Omega\mathrm{d}E_\mathrm{f}} = \frac{k_\mathrm{f}}{k_\mathrm{i}}\,S(\mathbf{Q},\omega)$$

Lattice vibrations

Normal mode — all atoms vibrate at same frequency Phonon — quantum $\hbar \omega_{ph}$ of lattice vibrational energy

Scattering from lattice vibrations ♦ Phonon dispersion curve $\omega_{\rm ph}$ Periodic in wavevector k_1 and k_2 are equivalent $-\frac{2\pi}{a}$ 0 **k**₁ $\frac{2\pi}{2} k_2$ $k_{\rm ph}$ ♦ Observe peaks in neutron scattering when $\hbar\omega = \pm \hbar\omega_{\rm nh}$ $\hbar \mathbf{Q} = \hbar (\mathbf{k}_{ph} \pm \mathbf{G})$ (**G** is a reciprocal lattice vector; \mathbf{k}_{ph} is in 1st Brillouin zone) ♦ Intensity ~ $b^2(\mathbf{Q}.\mathbf{e})^2$ Intensity increases with Q

Expressions for $S(\mathbf{Q}, \omega) - 1$

1 Transition probability

$$S(\mathbf{Q},\omega) = \sum_{i} p_{i} \sum_{j} |M_{ij}|^{2} \delta(\hbar\omega - E_{j} + E_{i})$$

where

 P_i = thermal occupancy of initial state

 M_{ij} = transition matrix element

 $\delta(\hbar\omega - E_j + E_j)$ represents conservation of energy

 E_i

Local magnetic excitations

Example: local magnetic excitations in PrO₂

[ATB et al., Phys. Rev. Lett. 86, 2082 (2001)]

Expressions for $S(\mathbf{Q}, \omega) - 2$ 2 Pair correlation functions These are equilibrium properties of the unperturbed system, related to thermodynamic functions Theory is simple, direct, exact and quantitative! ♦ Example 1 scattering from lattice of spins of one type $S(\mathbf{Q},\omega) = A \int_{\mathbf{R}}^{+\infty} dt \exp(-i\omega t) \sum_{\mathbf{R}} \exp(i\mathbf{Q}.\mathbf{R}) \langle S_0^{\perp}(0) S_{\mathbf{R}}^{\perp}(t) \rangle$ spin-spin correlation function (measures spectrum of spontaneous spin fluctuations) \diamond Example 2 coherent nuclear scattering (one type of atom) $S(\mathbf{Q},\omega) = A' \int dt \exp(-i\omega t) \sum_{\mathbf{R}} \exp(i\mathbf{Q}.\mathbf{R}) \langle n_0(0)n_{\mathbf{R}}(t) \rangle$ density-density correlation function

(measures spectrum of spontaneous density fluctuations)

Collective Magnetic Excitations

Example: Antiferromagnons in charge-ordered La_{3/2}Sr_{1/2}CoO₄ [Lucy Helme, ATB, *et al.* (2005)]

2D square lattice of Co ions with alternating Co²⁺ and Co³⁺

Calculated dispersion surface

Basis for separating scattering from phonons and magnons

Expressions for $S(\mathbf{Q}, \omega) - 3$

3 Generalized susceptibility

$$S(\mathbf{Q},\omega) = [1+n(\omega)] \frac{1}{\pi} \chi''(\mathbf{Q},\omega) \qquad [n(\omega) = \frac{1}{2\pi}]$$

♦ Magnetic susceptibility

 $M = \chi H$

M = magnetization H = applied field $\chi = magnetic susceptibility$ $exp(n\omega)\kappa_{B}$

♦ If H is constant in space and time we measure the zero frequency uniform susceptibility, i.e. $\chi(Q=0, \omega=0)$

♦ If the applied field varies in space and time we could measure the *generalized* (dynamical) susceptibility $\chi(Q, \omega)$

 $M_{\alpha}(\mathbf{Q}, \omega) = \chi_{\alpha\beta}(\mathbf{Q}, \omega) H_{\beta}(\mathbf{Q}, \omega)$

♦ This applies when the system responds *linearly* to the applied field

Fluctuation-dissipation theorem

In general, *M* is not in phase with *H*, so χ is complex:

$$\chi(\mathbf{Q}, \omega) = \chi'(\mathbf{Q}, \omega) - i\chi''(\mathbf{Q}, \omega)$$

The neutron is a probe that provides a magnetic perturbation that varies in space and time

Neutron interaction is very weak

- → System responds linearly
- Fluctuation-dissipation theorem

 $S(\mathbf{Q},\omega) = [1+n(\omega)] \frac{1}{\pi} \chi''(\mathbf{Q}, \omega)$

Basic excitation spectrum not complicated by thermal population of states

Longitudinal polarization analysis

1 Neutrons scatter from spin components $\perp \mathbf{Q}$

- 2 Longitudinal neutron polarization:
 - (i) spin components || **P** do not flip polarization (NSF)
 - (ii) spin components $\perp \mathbf{P}$ do flip polarization (SF)
 - (iii) coherent nuclear scattering does not flip polarization (NSF)

Example: separating phonon and magnon scattering

If **P** is parallel to **Q** then:

magnetic scattering is entirely SF non-magnetic scattering is entirely NSF

> Excitations in Stripe ordered $La_{5/3}Sr_{1/3}NiO_4$ ATB *et al*. PRB **67**, 100407(R) (2003)

Neutron scattering:

(i) is a powerful bulk probe of fundamental electronic and structural correlations in condensed matter

(ii) and provides a direct route to the microscopic origin of the physical properties of materials