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In this thesis I present experimental studies of three quantum materials, resolving an
important unanswered question about the novel microscopic physics in each case.

I first present inelastic neutron scattering measurements on a powder sample of
the unconventional, high-temperature superconductor lithium iron selenide hydroxide,
Li1−xFexODFe1−ySe (x ' 0.16, y ' 0.02, Tc = 41 K). The spectrum shows an enhanced
intensity below Tc at energy transfers below the superconducting pair breaking energy,
with broad maxima at two different wavevectors. The behavior of this feature is con-
sistent with the spin resonance mode found in other unconventional superconductors,
and strongly resembles the spin resonance observed in the spectrum of the molecular-
intercalated iron selenide, Li0.6(ND2)0.2(ND3)0.8Fe2Se2. The signal can be described with
a characteristic two-dimensional wave vector which is consistent with the nesting vector
between electron Fermi sheets. These results place a strong constraint on the pairing
symmetry in this unconventional superconductor and may have relevance to the high
temperature superconductor monolayer FeSe due to structural and electronic similari-
ties between the two systems.

In Na2Ti2Pn2O (Pn = As, Sb), two important members of the titanium oxypnictide
family of superconductors, I then present single crystal x-ray diffraction data which
reveal a charge superstructure that appears below density wave transitions previously
observed in bulk data. From symmetry-constrained structure refinements I am able to
completely determine the symmetry and all atomic positions in the distorted phase. I
also analyse angle resolved photoemission spectroscopy (ARPES) data, which show band
folding and back bending consistent with a density wave with the same symmetry as the
lattice distortion as well as evidence for Fermi surface nesting which may help drive the
density wave transition. The results provide direct evidence for phonon-assisted charge
density wave order in Na2Ti2Pn2O. This represents the first complete characterisation
of the density wave phase in a titanium oxypnictide, information which is crucial in
microscopic modelling of the superconductivity in this family.

Finally I present a detailed study of the pyrochlore osmate Y2Os2O7 via a wide
variety of experimental techniques. I observe a small, non-zero paramagnetic moment
and spin freezing at temperature Tf ' 5 K, consistent with previous results, and show
based on high-field magnetisation measurements that the paramagnetic moment is very
likely to be due to large effective moments located on a small fraction ∼ 2% of Os sites.
Comparison of single-ion energy level calculations with resonant inelastic x-ray scattering
(RIXS) data yields a non-magnetic Jeff = 0 ground state on the majority Os4+ sites with
the spin-orbit interaction, Hund’s coupling and trigonal distortion of OsO6 octahedra all
important in modelling the experimentally observed spectra. These results fully explain
the unexpected magnetism in Y2Os2O7, and the single-ion spectrum may prove useful
to inform the search for novel excitonic magnetism in other, related 5d materials.
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Chapter 1

Introduction

1.1 Quantum Materials

In popular science discussions quantum mechanics, along with its seemingly strange and

counter-intuitive effects, is often described as ‘the science of the very small’. In some

sense this statement is true - if you look at any isolated atom or particle on a small

enough length scale, the laws of quantum mechanics will be crucial in governing its

behaviour. When we put atoms together in certain, ordered ways, however, it is possible

for the ‘small-scale’ effects of quantum mechanics to act co-operatively across the whole

material and fundamentally alter the behaviour on a macroscopic scale.

‘Quantum Materials’ is the term used to describe the remarkably broad group of

materials in which such co-operative, macroscopic quantum effects occur. They have

been and continue to be the subject of intense research with a huge variety of fascinating

and useful states of matter being discovered, many of which are vital to technology we

use every day.

In this thesis I shall describe in detail my research into three novel quantum materials

which together exhibit ordered and disordered magnetism, density waves, and unconven-

tional, high-temperature superconductivity, beginning with a brief theoretical overview

of these effects. There are a large number of other fascinating phenomena seen in re-

lated quantum materials including topological materials, multiferroics, semiconductors,
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1.2. Magnetism

molecular magnets and thin films to name a few, which I do not touch on in this work.

Good texts for the interested reader on these and other topics within quantum materials

can be found in Refs. [1–5].

1.2 Magnetism

Magnetic effects are very widespread amongst quantum materials and the materials

discussed in this thesis are no exception. In this section I shall present some of the key

ideas in the physics of magnetism, beginning with isolated atoms before moving onto

the cooperative effects seen when atoms are brought together in condensed matter. It

should be noted that magnetism is a very broad field, extending well beyond the scope

of this thesis. Some useful books for the interested reader can be found in Refs. [5, 6].

1.2.1 Basic Definitions

Before we begin it is necessary to establish some basic definitions of important concepts

in magnetism. The basic object is the magnetic dipole moment, which is analogous to an

electric dipole, and for which I shall use the symbol µ. In classical mechanics, magnetic

dipoles are caused by small current loops, with the relationship

dµ = IdS (1.1)

where dS is the area of an infinitesimal loop around which a current I flows. For larger

current loops we can integrate this relationship across the area enclosed by the loop to

find the total moment µ. This indicates that the magnetic moment has SI unit A m2 (=

J T−1), although at various points in this thesis I shall also quote magnetic moments in

their ‘CGS’ unit emu, where 1 emu = 10−3 A m2.

A current loop represents orbital motion of electric charge, so a magnetic dipole is

always associated with an angular momentum, L. The proportionality constant γ such

that µ = γL is known as the gyromagnetic ratio.

These definitions can be extended to the orbital motion of electrons in atoms, since

2



1. Introduction

these are essentially charges moving around a small loop. Some care is required in

taking into account the effects of quantum mechanics however it can be shown that, for

an electron with orbital angular momentum L,

µ = −µBL (1.2)

where the Bohr magneton

µB =
e~

2me

(1.3)

is a convenient unit determining the order of magnitude of atomic magnetic moments

and the minus sign in equation 1.2 is due to the negative charge of the electron.

In addition to orbital angular momentum, quantum mechanics dictates that the elec-

tron has a spin, S, which also contributes to the angular momentum, so the complete

relationship is actually

µ = −µB(L + gSS) (1.4)

where the constant gS is known as the ‘g-factor’ of the electron, with gS = 2.002319

(which is approximated as 2 for most experimental purposes). By analogy, equation 1.4

is commonly written with an additional factor gL in the first term, where gL = 1.

With these definitions established we can also define the magnetisation M as the

magnetic moment per unit volume, which we often treat on macroscopic length scales,

i.e. averaged over a macroscopic sample so that only the cumulative effect of a large

number of atomic dipoles is relevant.

Magnetic fields are described by two, related vector fields B and H where

B = µ0(H + M) (1.5)

and µ0 = 4π × 10−7 H m−1 is the permeability of free space. In free space we can set

M = 0, so for external fields applied to condensed matter systems we shall often use the

3



1.2. Magnetism

relationship

Bext = µ0Hext. (1.6)

For small enough external fields, a condensed matter system will always show a linear

response such that

M = χH (1.7)

where χ is the magnetic susceptibility, defined as

χ = lim
H→0

M

H
. (1.8)

If the applied field is oscillatory (Hext = H0 exp(iωt)), the magnetisation will show

an oscillatory response which may have both in-phase and out-of-phase components,

meaning χ may be complex. It is therefore common to write

χ(ω) = χ′(ω)− iχ′′(ω). (1.9)

In this thesis we shall also be interested in the strength and character of magnetic

fluctuations in quantum materials. Since these will have some length scale governed by

their wavevector q, it is common to define the generalised susceptibility via

χ(ω,q) = χ′(ω,q)− iχ′′(ω,q) (1.10)

implying that the response to a spatially homogeneous external magnetic field is governed

by the q = 0 fluctuations. This makes sense since a perfectly homogeneous external

magnetic field only has one Fourier component at q = 0, and we can expect that if a

material shows stronger inherent fluctuations in the q = 0 channel it will therefore show

a stronger response to an external magnetic field with the same periodicity.
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1. Introduction

1.2.2 Magnetism of Isolated Ions

We shall first consider the magnetic response of a single, isolated ion. The basic Hamil-

tonian for electron i with spin σi = ~si which is attached to such an ion in external

magnetic field B = Bẑ is

Hi = H0
i + µBB · (li + gssi) +

e2

2me

1

4
|B× ri|2 (1.11)

where H0
i is the Hamiltonian in zero external field due to the Coulomb interaction with

the nucleus and other electrons, ~li = ri×pi is the electron’s orbital angular momentum

and gs ' 2 is the spin g-factor of the electron [5]. The overall Hamiltonian for all of the

electrons is then

H =
∑
i

Hi. (1.12)

The magnetism of the electrons given by these expressions dominates over any mag-

netic behaviour of the atomic nucleus; this is because the nuclear magneton µN is pro-

portional to 1/mp, as opposed to 1/me for the Bohr magneton µB, meaning the magnetic

response of the nucleus is smaller than that of the electrons by a factor of approximately

me/mp ∼ 10−4 and can normally be neglected.

Initially we shall be interested in the low-field behaviour of this Hamiltonian. For

B = 0 there will be some set of eigenstates {|n〉} which satisfy H0 =
∑

iH0
i |n〉 = En |n〉,

where |0〉 is the ground state. We then have under standard perturbation theory the

change in energy when a small magnetic field is applied to second order in B = |B|,

∆En = µBB · 〈n|
∑
i

(li + gssi) |n〉+
e2

8me

B2 〈n|
∑
i

(x2
i + y2

i ) |n〉

+
∑
n6=n′

| 〈n|µBB ·
∑

i(li + gssi) |n′〉 |2

En − En′
.

(1.13)

In evaluating the matrix elements in this expression, it will be useful to define the

total angular momentum J =
∑

i(li + si) and the Landé g-factor gJ such that

5



1.2. Magnetism

gJJ ·B =
∑
i

(li + gSsi) ·B. (1.14)

The three terms in equation 1.13 all lead to distinct types of magnetic behaviour,

and we shall consider them in turn.

Paramagnetism

The first term in equation 1.13 is the only one 1st order in B and will dominate for

small B, provided the term is non-zero. In order to evaluate it we need to establish how

the individual orbital and spin angular momenta li and si couple together so that we

can find the expectation value 〈n|
∑

i(li + gssi) |n〉 among the eigenstates {|n〉} of the

zero-field Hamiltonian H0. For the purposes of this section, we shall restrict ourselves to

states {|nGS〉} which are part of the ground state multiplet, since these will govern the

low-temperature behaviour.

H0 will in general contain contributions from the Coulomb interaction with the nu-

cleus, the inter-electron Coulomb repulsion and the spin-orbit interaction

H0 = Hnuc +He−e +HSO. (1.15)

We will make the approximation that electrons in different shells do not interact with

each other (e.g. the 3d electrons are not significantly affected by the 4s electrons) so that

we can treat a single electron shell in isolation. Under this approximation the two parts

of the Coulomb interaction can be parametrised in terms of three ‘Racah parameters’

A,B and C [7], or equivalently by the intra- and inter-orbital Coulomb interactions U

and U ′ and the Hund’s Coupling JH, with the relationship [7]

JH = 3B + C

U = A+ 4B + 3C

U ′ = A− 2B + C.

(1.16)

Physically, U is the Coulomb repulsion between two electrons in the same orbital
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1. Introduction

(necessarily, therefore, with different spin), U ′ is the Coulomb repulsion between two

electrons in different orbitals and JH is the exchange integral between electrons in two

orbitals which favours alignment of electron spins. Matrix elements of the Coulomb

interaction as a function of the Racah parameters for different electron shells and con-

figurations have been tabulated for example in Ref. [8], allowing exact diagonalisation

calculations to be performed.

The spin-orbit interaction coupling spin and orbital angular momenta can be ex-

pressed as a function of a single parameter ζSO

HSO =
∑
i

ζSOli · si (1.17)

with ζSO ∼ Z4, where Z is the ion’s nuclear charge [9]. The spin-orbit interaction is

therefore significantly stronger near the bottom of the periodic table.

In determining how the spin and orbital degrees of freedom couple together, we will

be interested in two possible limits.

In the ‘LS-coupling’ limit, we assume the spin-orbit coupling is weak compared to

the Coulomb interaction (ζSO << JH). This means that the Coulomb interaction first

couples together the spatial parts of the wavefunction forming some total orbital angular

momentum L =
∑

i li and, via the Hund’s exchange, couples the spins to form a total

spin S =
∑

i si. The spin-orbit interaction then couples L and S to form a total angular

momentum J = L + S. The famous Hund’s rules provide a method to find the ground

state eigenvalues L, S and J in this limit [6]:

1. The individual electron spins si align as much as possible, maximising S =
∑

ims,i.

2. Electrons are distributed amongst different orbitals in the way which maximises

the total orbital angular momentum L =
∑

iml,i.

3. L and S either align or anti-align to give J = |L± S|, with + for a shell which is

more than half filled and − for one which is less than half filled.

7



1.2. Magnetism

The first two of these rules maximise the energy gain due to the Coulomb attraction to

the nucleus and ensure the overall wavefunction is antisymmetric under exchange of any

two electrons, while the last minimises the spin-orbit coupling. In this limit basis states

of the zero-field Hamiltonian are labelled by the good quantum numbers {L, S, J,mJ}.

More detailed justifications for these rules can be found in Ref. [5].

Hund’s rules allow us to calculate the angular momenta L, S and J , however in order

to find the magnetic moment of the ion we also need to know the magnetic g-factor.

Noting that gS = 2 and gL = 1, it can be shown that [6]

gJ =
3

2
+
S(S + 1)− L(L+ 1)

2J(J + 1)
. (1.18)

The opposite limit is the ‘jj-coupling’ limit in which the spin orbit coupling is stronger

than Coulomb effects, meaning that li and si are first coupled together to form an overall

angular momentum ji for each electron, before the ji are coupled together under the

Coulomb interaction to from the overall J . In this limit, basis states of the zero-field

Hamiltonian are labelled by the good quantum numbers {ji, J,mJ}.

Whichever limit we are in, we can now calculate the expectation value of interest

B · 〈nGS|
∑

i(li + gssi) |nGS〉 = B · 〈nGS| gJJ |nGS〉 = B 〈nGS| gJJz |nGS〉 = BgJmJ where

mJ = −J,−J + 1, ..., J − 1, J labels the ground state multiplet.

We would like to calculate the moment per atom µ of this state, which can be done

via the partition function Z

Z =
∑
mJ

exp{βµBgJmJB}, (1.19)

µ = −∂kBT lnZ

∂B
(1.20)

where β = kBT and T is the temperature. The result is the Brillouin function [5]

µ = gJµBJ

{
2J + 1

2J
coth

(
2J + 1

2J

gJµBJB

kBT

)
− 1

2J
coth

(
1

2J

gJµBJB

kBT

)}
(1.21)

8



1. Introduction
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Figure 1.1: The Brillouin function expressed in equation 1.21 for some different values
of J , where µsat = gJµBJ .

which is plotted in Fig. 1.1. The moment is positive for positive B, so this represents a

paramagnetic contribution. The low-field susceptibility per site is given by

χ = lim
H→0

∂µ

∂H
=
µ0µ

2
Bg

2
JJ(J + 1)

3kBT
(1.22)

which is the famous Curie law, while in the high-field limit gJµBJB � kBT the moment

saturates to a constant value µsat = gJµBJ per site.

Non-interacting ions with spin J 6= 0 will display magnetic behaviour as discussed

here. This is most often realised in ions with unpaired, localised electrons, for exam-

ple among the 3d and 4f elements. In real systems, however, the precise value of J

can be different to that predicted by Hund’s rules due to a variety of non-local effects

which will be discussed in later sections, for example the crystal field and superexchange

interactions.

Larmor Diamagnetism

If J 6= 0, the first term in equation 1.13 will dominate the magnetic behaviour. If J = 0,

however, we must consider second order terms. We shall now examine the second term,

which, for a rotationally symmetric atom (x2
i = y2

i = z2
i = r2

i /3), is

9



1.2. Magnetism

δEn =
e2

12me

B2 〈n|
∑
i

r2
i |n〉 . (1.23)

Electron wavefunctions will have radii of order the atomic radius r̄atom, so we make

the approximation

〈n|
∑
i

r2
i |n〉 ' Ner̄

2
atom (1.24)

where Ne is the number of electrons, yielding a moment

µ = − e2

6me

Ner̄
2
atomB (1.25)

and susceptibility

χLarmor = −e
2µ0Ner̄

2
atom

6me

. (1.26)

All the quantities in equation 1.26 are positive, so χLarmor < 0 and this is a diamag-

netic contribution. It is simply proportional to the number of electrons in the ion so all

electrons including core electrons in filled shells contribute. This contribution ensures

that all materials, even ‘non-magnetic’ materials with J = 0 like water and organic

compounds, show at least a small diamagnetic response to an external field.

Van-Vleck Paramagnetism

It remains to consider the third term in 1.2

δEvv =
∑
n6=n′

| 〈n|µBB ·
∑

i(li + gssi) |n′〉 |2

En − En′
(1.27)

which gives rise to a ‘Van-Vleck’ contribution to the susceptibility

χvv = 2µ0µ
2
B

∑
n6=0

| 〈0| Jz |n〉 |2

En − E0

(1.28)
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1. Introduction

which involves a sum over excited states |n〉. En − E0 > 0, so this is a paramagnetic

(positive) contribution to the susceptibility. In general it is weak since it contains the

factor 1/(En −E0) which is usually small. However, if there is a fairly low-lying excited

state with non-zero J it can become comparable to or stronger than the Larmor contri-

bution. Van-Vleck paramagnetism is commonly observed in ions with L = S 6= 0, such

that they cancel out to give J = 0 for the ground state under Hund’s Rules. In this

situation there will be an excitation which involves re-orienting L and S so that they

don’t cancel out which will likely have a low energy cost (∼ ζSO) and non-zero J .

1.2.3 Magnetism of Ions in Crystals

In the materials discussed in this thesis, I shall be studying magnetic ions in a crystalline

environment which are not isolated. This can give rise to a variety of co-operative effects

beyond the single-ion case.

Crystal Electric Field Effects

We shall first consider the case where the electrons are still confined on the magnetic

ions (i.e. no electron hopping), but the ions are in a crystal environment. An example

is the MO6 octahedra found in many transition metal oxides, in which we can often

approximate the d electrons as being confined on the metal site M but feeling an external

electric field of octahedral symmetry due repulsion from the electrons on the neighbouring

O sites. The single-ion Hamiltonian is modified to

H0 = Hnuc +He−e +HCF +HSO (1.29)

where HCF is the crystal field Hamiltonian and it is in general unclear which components

in this Hamiltonian are the strongest because, for example, the strength of the crystal

field depends on the bond lengths to nearby atoms. The crystal field will split some or

all of the single-ion energy levels and L, S and J may or may not remain good quantum

numbers depending on its rotational symmetry and strength. In the general case, a

crystal field Hamiltonian of any symmetry can be expressed as a matrix in the basis

11



1.2. Magnetism

Figure 1.2: (a–b) Schematic of the angular part of electron wavefunctions for the oxygen
p orbitals and metal dx2−y2 and dxy orbitals in a MO6 octahedral complex. (c) The
resulting energy level splitting of the metal d shell. Figure reproduced from Ref. [5].

of single ions states with some parameters which will depend e.g. on bond lengths or

the magnitude of crystallographic distortions, then the total Hamiltonian in equation

1.29 can be numerically diagonalised in this basis. If the crystal field is of relatively high

symmetry there will be relatively few free parameters in the matrix representation ofHCF

in this basis, which may allow the parameters to be refined against experimental data

obtained for example by resonant inelastic x-ray scattering (RIXS, see Section 2.5.1).

One case of particular note is a strong crystal field (〈HCF〉 � JH , ζSO) of octahedral

(Oh) symmetry, which is the symmetry in e.g. a perfect MO6 octahedron. The MO6

octahedron is a very stable environment for transition metal ions and many oxide quan-

tum materials of interest have this structure, or a small distortion away from it. In this

case the metal d orbitals (which feel the strongest crystal field) are split into three t2g

states (dxy, dxz, dyz) which are lower in energy, corresponding to orbitals with electron

density concentrated in directions away from the neighbouring oxygen sites, and two eg

states (dx2−y2 , dz2) which are higher in energy and have maximum electron density in the

directions towards the oxygen sites. This situation is illustrated in Fig. 1.2. In this type

of ion the t2g states form a triplet and the eg a doublet, amongst which the electrons are

distributed according to Hund’s rules. The effective L, S and J values thus obtained

can be very different from the free ion values - for example, the d2 configuration yields

L = 3, S = 1, J = 2 in the free-ion limit but Leff = 1, Seff = 1, Jeff = 0 in a strong

12



1. Introduction

octahedral crystal field.

1.2.4 Magnetism in Metals

Next, we introduce hopping between the different magnetic sites in a crystal. In many

materials this results in metallic behaviour, and the delocalised conduction electrons in

a metal will exhibit magnetism of their own. For example, the Fermi sea is polarisable

and will split into spin-up and spin-down bands when exposed to an external field. The

electron spins interact with the B field with an energy +gSµBB ·σ, meaning states with

spin anti-aligned with B move to lower energy while those with spin parallel to B move

to higher energy. In the ground state there will therefore be more electrons with spin

anti-aligned with B, leading to a net spin polarisation 〈σ〉 ∝ −B. Since the electrons

have negative charge, the resulting moment µ ∝ −σ ∝ B will be parallel to the field,

leading to a paramagnetic contribution to the susceptibility. A more precise derivation

of this ‘Pauli’ contribution as presented e.g. in Ref. [6] yields

χPauli = µ0µ
2
Bg(EF) (1.30)

where g(EF) is the density of states at the Fermi surface.

It can be shown that g(EF) ∝ 1/TF [6], so the susceptibility due to the conduction

electrons is smaller than that due to any localised (Curie-like) paramagnetic moments by

a factor of T/TF ∼ 300/30, 000 = 1/100 for typical metals at room temperature. Given

this suppression of the Pauli contribution, even for J = 0 ions it is unclear whether the

Pauli contribution or the Larmor diamagnetism due to core electrons will be larger; for

example, metallic copper is diamagnetic for this reason.

There is also a smaller, diamagnetic contribution due to the orbital motion of the

conduction electrons which can be shown to be [5]

χLandau = −1

3
χPauli. (1.31)

13



1.2. Magnetism

Figure 1.3: A simplified metal-oxygen-metal bond in a MO6 complex, showing the spins
of electrons in each orbital (small arrows) and some possible superexchange hopping
pathways. Figure adapted from Ref. [5].

1.2.5 Magnetic Superexchange

If electrons are allowed to hop, moments on neighbouring magnetic ions can become

coupled to one another. To take one simplified example shown in Fig. 1.3, in a situation

where two metal ions are connected by an intermediate oxygen ion the spins on the metal

ions become antiferromagnetically coupled to one another. If the spin of an electron in

a d orbital on the metal site is anti-parallel with that of the electron in a p orbital on

the O2− site with which there is a significant overlap integral, the hopping amplitude is

increased compared to the situation where these electrons have parallel spins as a result

of the Pauli exclusion principle preventing the two electrons occupying the same orbital

and having the same spin. If the hopping is increased the electrons become more spread

out and their kinetic energy is decreased, meaning there is an energy saving for all of the

electron spins to be anti-parallel, as shown in Fig. 1.3. The two moments on neighbouring

metal sites are therefore antiferromagnetically coupled with some superexchange energy

∆ESE.

In different bonding geometries and when many orbitals are considered determining

the magnitude or even sign of superexchange can become a much more complex problem,

however it is common to find some kind of coupling between neighbouring spins in a

crystal.

If superexchange is present then, by analogy to the band structure of electrons in a

metal, we can expect each of the single ion magnetic levels to broaden into k-dependent

bands of magnetic modes, as illustrated in Fig. 1.4 [10]. This can lead to a variety of

interesting cooperative effects.

14
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Figure 1.4: The calculated dispersion of a magnetic mode in one theory of the double
perovskite iridates. Figure reproduced from Ref. [10].

1.2.6 Excitonic Magnetism

In materials where the ground state is non-magnetic (Jeff = 0) but there is a low lying

excited state which is magnetic, for example in ions whose ground state has Leff = Seff 6=

0 and Jeff = 0 as discussed in Section 1.2.2, superexchange can broaden the excited state

but will not affect the ground state. This is the situation represented in Fig. 1.4. The

case shown in the figure is the calculated dispersion of an excited state in the double-

perovskite iridate Sr2YIrO6, which has quite weak superexchange. The bandwidth of

the excited mode can be shown to be proportional to the square of the superexchange

strength [10], so in materials with stronger superexchange the minimum of the excitation

will move to lower energies until at some critical value of the superexchange strength it

will touch E = 0, i.e. the energy of the non-magnetic (and hence non-dispersive) ground

state, at some k. Beyond this point, the minimum energy of the system occurs when

the modes at the bottom of the excitation band are spontaneously occupied in a process

which is analogous to Bose-Einstein condensation. Since these modes have non-zero

J , the system will spontaneously develop a ground state paramagnetic moment whose

precise magnitude is dependent on the details of the crystal geometry and superexchange

strength.

The mechanism discussed above is often called ‘excitonic magnetism’ and represents

a novel way to obtain an emergent ground-state magnetic moment in ions which have
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1.2. Magnetism

J = 0 in the single-ion limit. It requires a very specific set of circumstances including a

low-lying excited state and strong superexchange to occur, however, and has only rarely

been observed with one example in the 4d ruthenates [11]. My work searching for an

experimental realisation of excitonic magnetism in 5d osmates forms a major part of this

thesis, Chapter 5.

1.2.7 Magnetic Order

In the presence of inter-site interactions like superexchange between dipole magnetic

moments it is common for the lowest energy state at zero temperature to be magnetically

ordered, meaning that the moments are correlated with one another over long distances.

Magnetic order is generally viewed from two complementary perspectives.

In insulating materials with localised spins S, the spins are thought of as small

magnetic dipoles fixed to their respective sites in the crystal and allowed to rotate on

that site. The interactions then add contributions to the Hamiltonian which give energy

gains or penalties depending on the relative alignment of nearby spins. Additionally,

there may be anisotropy terms which favour spins aligning in certain directions due, for

example, to the local crystal field at the magnetic sites. All of these (often complicated)

interactions are ultimately the result of the Coulomb interaction between the different

electrons and between the electrons and the nuclei, however they can often be described

more simply by an effective Hamiltonian which only contains spin operators. Which

precise form of Hamiltonian best models a given system depends on details like the

microscopic exchange mechanism and dimensionality, however one of the most common

examples is the 3-dimensional Heisenberg model

H = −
∑
〈i,j〉

JijSi · Sj −D
∑
i

(Szi )2 (1.32)

where 〈i, j〉 are usually chosen to be all pairs of neighbouring spins Si and Sj. The

exchange parameters Jij can in general be bond-dependent but are usually chosen to be

isotropic, with their sign determining whether the coupling is ferromagentic (Jij > 0,
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(a) (b)

(c) (d)

Figure 1.5: A selection of possible ordered states of spins on a tetragonal lattice. Solid
lines mark a single magnetic unit cell in each case. (a) ferromagnetic (FM), q = (0, 0, 0)
(b) Layered A-type antiferromagnetic (AFM), q = (0, 0, π/c) (c) single-stripe (C-type)
AFM, q = (π/a, 0, 0) (d) Néel AFM, q = (π/a, π/a, π/c).
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1.2. Magnetism

spins tend to align) or antiferromagnetic (Jij < 0, spins tend to anti-align). D is a

uniaxial anisotropy which favours spins lying along z (D > 0) or in the xy-plane (D < 0).

This Hamiltonian can have a wide variety of ordered ground states. A selection of

those relevant for later chapters in this thesis are shown schematically in Fig. 1.5, in-

cluding the ferromagnetic state (all spins aligned) and several different antiferromagnetic

ones (some or all neighbouring spins anti-aligned).

Fig. 1.5 makes it apparent that there are many different possible types of order in

3D systems, and the words ‘ferromagnetic’ and ‘antiferromagnetic’ are not enough to

distinguish them. Instead, ordered states are usually classified by a propagation vector

k which describes the full periodicity in all dimensions relative to the underlying crystal

lattice along with a basis which give the moment direction on each site in the magnetic

unit cell. Ferromagnetic states then have a propagation vector k = 0 and the many

possible antiferromagnetic states tend to have at least one component of k equal to π/ai

where ai is the lattice constant in the relevant direction. Within this formalism we can

also take into account other, more exotic types of order, for example helical magnetic

structures with incommensurate propagation vectors where one or more component of k

is not a simple fraction of π/ai.

In all of these ordered states there will be some temperature above which thermal

effects dominate and the magnetic order is destroyed. This means there will be a mag-

netic phase transition temperature, often labelled TN or Tc, at which the thermal energy

is roughly equal to the exchange energy per spin in the ordered state. The precise value

of the transition temperature can be difficult to calculate accurately since it depends on

the magnetic fluctuations in the system, however the ‘Weiss mean-field theory’ is a good

first approximation which is often used. This theory assumes each magnetic ion experi-

ences an effective, internal magnetic field Bint due to all the other spins and develops a

magnetic moment as a result. Since it is possible to write Bint in terms of the moments

on the other magnetic sites in the system and all sites are assumed to be crystallographi-

cally equivalent, the spontaneous magnetisation can be found self-consistently. If a term
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for an external magnetic field is included, the susceptibility of this model can also be

calculated. In both the ferromagnetic and Néel-antiferromagnetic cases the mean-field

susceptibility takes the ‘Curie-Weiss’ form

χ =
C

T − θ
(1.33)

where θ is the Weiss temperature and C =
µ0µ2Bg

2
JJ(J+1)

3kB
is the Curie constant as discussed

in Section 1.2.2 [5]. θ > 0 if the exchange coupling is ferromagnetic and θ < 0 if it is

antiferromagnetic, and |θ| is proportional to the strength of the coupling. The full

expression is

θ = ±2z|J |J(J + 1)

3kB

(1.34)

with the + for the ferromagnet and− for the antiferromagnet, where z is the coordination

number (number of nearest neighbours at each site) and J is the nearest-neighbour

exchange energy.

Although an analytical derivation showing Curie-Weiss-like susceptibility is only pos-

sible for a limited selection of simple microscopic models, it is common to see approxi-

mately Curie-Weiss-like behaviour in the magnetic susceptibility in real materials at high

temperatures, including in many which show more exotic ordered or disordered ground

states than those discussed here. In these cases the Curie constant still gives a rough

estimate of the effective dipole moment on the magnetic sites and the Weiss tempera-

ture gives an estimate of the average spin-spin coupling, along with its ferromagnetic

or antiferromagnetic nature. Fitting experimental magnetic susceptibility data to this

relationship at high temperature is therefore a very common and useful first step in

characterising a magnetic system.

In the discussion of ordered states so far I have discussed only local-moment mag-

netism, in which permanent dipole moments are confined to individual crystallographic

sites. It is also possible for the itinerant electrons of the Fermi sea in a metal to show
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1.2. Magnetism

(a) (b)

Figure 1.6: (a) One unit cell of the pyrochlore crystal structure, which contains corner-
sharing tetrahedra with magnetic ions (gold) situated on the corners. (b) Representation
of the corner-sharing tetrahedra over several unit cells.

magnetic order, for example in the form of spin-density waves (SDW), although the

magnetism in such a state tends to be weaker than localised dipole moments since only

a small fraction of the electrons participate, i.e. those near the Fermi surface. I shall

examine the physics of such density waves in more detail in Section 1.3.

1.2.8 Magnetic Frustration

In the discussion of magnetic order so far we assumed that a unique ground state exists

which minimises the exchange energy on each individual bond simultaneously. There are

many real materials, however, in which this is not the case and we say that the moments

are ‘frustrated’. An example which has been central to my work is the pyrochlore crystal

structure (Fig. 1.6), which contains a network of corner-sharing tetrahedra with magnetic

sites situated on each corner. If the spins in this structure are coupled antiferromag-

netically to their nearest neighbours along the sides of the tetrahedra, the geometry of

the structure means that there is no possible arrangement of spins which simultaneously

minimises the energy on all bonds. Instead, the ground state is macroscopically degener-

ate, i.e., there are a large number of ground states of order one per magnetic site which

all have the same energy. To see why this is the case, let us consider for example an

arrangement of spins on a tetrahedron where two spins point down and two up, and all
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spins are confined along a single, common axis. This configuration then minimises the

antiferromagnetic bond energy within the tetrahedron. There are, however, 6 different

ways to choose the directions of the four spins which satisfy the conditions stated here,

meaning there are 6 degenerate ground states of the individual tetrahedron. For any one

of these 6 states there are then 3 possible arrangements of the remaining three spins on

the tetrahedra which share a corner with the original one. If we continue in this way

we obtain of order one ground state per magnetic site (i.e. ∼ 1023 for a macroscopic

crystal), all of which are degenerate. This is of course a toy model of one very specific

situation, however it illustrates the point that for a system with non-orthogonal magnetic

bonds and antiferromagnetic coupling it is possible to have a macroscopically degenerate

ground state.

In addition to geometrical frustration, it is also possible for frustration to be realised

due to crystallographic disorder. For example in a non-magnetic material with a small

concentration of magnetic impurities which are distributed randomly the bond lengths

and directions between pairs of atoms will have some related, random distribution. It is

possible for the magnitude and even sign of the magnetic exchange along such bonds to

be bond-length-dependent [5]. In this situation the random nature of the bonding ensures

a single, ordered ground state which minimises all bond energies does not exist, again

leading to frustration and in many cases behaviours similar to those seen in geometrically

frustrated systems.

Physical systems with a macroscopically degenerate ground state are often unsta-

ble, since any small perturbation (for example a small crystalline distortion) is likely

to quench at least some of the frustration, reducing the number of ground states and

lowering the energy of the system. This sensitivity to perturbations makes the physics

of frustrated magnets incredibly rich with many exotic ground states being realised in

real materials, for example the spin glass, spin ice, spin liquid and some helical magnetic

structures. In this thesis I shall examine only one of these, the spin glass, since this is the

one which features prominently in my research. Review papers for the interested reader
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which go into detail on many of the other novel magnetic states realised in frustrated

systems can be found in Refs. [12–15].

1.2.9 Spin Glasses

Spin glass behaviour occurs in inherently frustrated systems which, theoretically, are

required to show some degree of disorder [15], for example in the locations of the mag-

netic sites (‘site-randomness’) or in the strength and sign of nearest-neighbour exchange

(‘bond-randomness’). Assuming the frustration is not lifted by any other instability,

as the system is cooled down the spin fluctuations slow down gradually, often forming

locally-correlated clusters which grow as the temperature drops. Spins within a cluster

will fluctuate together, gradually slowing down as the temperature falls and the cluster

grows, while spins not in clusters fluctuate independently and contribute to inter-cluster

interactions. Eventually at some temperature Tf the clusters merge and all of the spins

‘freeze’ into a random arrangement, selecting one of the macroscopically degenerate

ground states. The freezing process appears to be some kind of cooperative phase tran-

sition, however its precise nature is not fully understood [5]. There is some evidence

that a few spins, or possibly some small clusters, can remain paramagnetic even below

Tf , however the majority of spins must freeze so that the spin frozen state can spread

cooperatively throughout the whole sample [15].

Originally, spin-glass behaviour was thought to be confined to strongly disordered

systems, with notable examples being dilute metal alloys such as Ag1−xMnx [16] with

x being a few % or less. These materials have an inherently random distribution of

magnetic sites (site-randomness) and have the useful property that the concentration

can be easily varied, allowing some tuning of the moment distribution. It was later ob-

served experimentally, however, that spin-glass behaviour can also occur in geometrically

frustrated systems seemingly with no disorder like the pyrochlore Y2Mn2O7, however a

mechanism involving disordered microscopic strain has now been proposed which may

explain this [17].
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x   = 1.08 %
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Figure 1.7: Magnetic susceptibility of the spin glass Ag1−xMnx at two values of x. Figure
reproduced from Ref. [18].

Signatures of Spin Glass Behaviour

Below Tf the sample will show significant hysteresis since there is likely to be an energy

barrier between the ground state it has frozen into and any of the other, degenerate

ground states [15]. This hysteresis is the most easily detectable signature of a spin glass,

appearing most clearly in DC magnetisation data. Upon cooling below Tf there is a split-

ting between the field cooled (FC) and zero field cooled (ZFC) magnetic susceptibilities,

as shown in Fig. 1.7, which represents the fact that the sample takes longer than the

measurement timescale of a DC magnetometer (between a few minutes and a few hours)

to respond to the application of an external field. A more subtle signature is that the

susceptibility gradually departs from Curie-Weiss behaviour at a much higher temper-

ature T ∼ 10Tf due to the formation and growth of non-paramagnetic clusters. When

measured in higher fields a hysteresis in the DC magnetisation is also usually observed

along with a gradually-decaying remanent magnetisation when quenched from high field.

The remanence shows that there are very slow magnetic fluctuations on timescales of

minutes or hours present in the system.

Spin glasses also show clear signatures in AC magnetic susceptibility χ(ω), with a

peak in the real part whose temperature varies slightly with frequency ω, as well as the
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Figure 1.8: AC magnetic susceptibility of the spin glass (Eu0.4Sr0.6)S. Figure reproduced
from Ref. [19].

onset of a non-zero imaginary part near Tf which is related to dissipation in the system

(Fig. 1.8).

Another important technique for characterising spin-glasses is muon spin relaxation

(µSR), since the implanted muon measures the internal magnetic field and fluctuations

in the sample directly and on a different timescale (µs) to those accessible via AC mag-

netisation measurements. When exposed to a static internal field (see below for the

meaning of static in this context), the muon will precess around that field. If there is

a random distribution of static fields the overall muon polarisation will show the well-

studied ‘Kubo-Toyabe’ relaxation shown in Fig. 1.9 with an initial dip and characteristic

‘1/3-tail’ [20] caused by the precession of muons at different sites gradually becoming out

of phase with one another. It is worth noting that any field which varies on a timescale

much greater than the muon decay time (a few µs) will appear static in µSR. If there

are magnetic fluctuations on the muon timescale these will couple to the muon spin and

gradually destroy the polarisation, leading to an exponential or stretched-exponential-
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Figure 1.9: Calculated µSR response of a spin glass with a random distribution of static
fields at the muon stopping sites as a function of applied longitudinal field BLF. τ is the
muon decay time and a is a parameter of the field distribution. Figure reproduced from
Ref. [20].

like relaxation. A combination of static and fluctuating components will lead to some

intermediate behaviour [20], with the exact shape of the spectrum being dependent on the

relative strength of the different components. µSR spectra like that shown in Fig. 1.10

are typical of spin-glasses, with their precise shape yielding useful information about the

internal fields and dynamics in the sample.

1.3 Density Waves

We shall now consider the response of the Fermi sea in a metal to a spatially-varying

magnetic field, H(r) =
∑

q Hq cos(q · r), where we have broken the field down in terms

of Fourier components Hq. It can be shown that for a multi-band system, the static

(E = 0) magnetic susceptibility is [21]

χH(q, E = 0) =
χ0
H(q, E = 0)

1−XH(q)χ0
H(q, E = 0)

(1.35)

where XH(q) is a function containing information about the strength of spin-spin inter-

actions (i.e. the exchange strength) and χ0
H(q, E = 0) is the ‘bare’ susceptibility per

unit energy evaluated at zero energy.

The bare susceptibility is the generalised susceptibility if the electrons were non-
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(a) (b)

Figure 1.10: µSR response of a typical spin glass, Ag1−xMnx (x = 0.5%), as a function
of (a) temperature and (b) applied longitudinal field. Figure reproduced from Ref. [16].

interacting and contains details of the band structure. It is proportional to a factor

χ0
H(q) ∝

∑
k,i,j

f(Ei
k+q)− f(Ej

k)

Ei
k+q − E

j
k

(1.36)

where f(E) is the Fermi occupation factor at energy E, Ei
k is the energy of band i at

wavevector k and the sums are over the Brillouin zone (k) and bands indexed by i and

j [21].

Before examining this any further, it is instructive to consider the analogous deriva-

tion for a spatially-varying electric field, E(r) =
∑

q Eq cos(q · r), which can be found in

Ref. [22]. The result is remarkably similar

χE(q, E = 0) =
χ0
E(q, E = 0)

1−XE(q)χ0
E(q, E = 0)

(1.37)

where the bare susceptibility χ0
E(q, E = 0) differs from the magnetic case only by con-

stant factors and XE(q) similarly contains information about the interactions.

We are interested to look for points in q space where either of these susceptibilities

diverge, since these will represent instabilities of the system. Such a divergence could

either occur because the bare susceptibility diverges, or because 1−X(q)χ0(q, E = 0) =

0. I shall examine these cases in order.
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Â
0

Figure 1.11: The bare magnetic susceptibility χ0 for a single, isotropic band in different
dimensions. χP is the Pauli susceptibility as discussed in Section 1.2.4. Figure reproduced
from Ref. [5].

Calculation of the bare susceptibility is discussed in detail in Ref. [22]. For the

simple case of a single, isotropic band the results are reproduced in Fig. 1.11. In 1D

the bare susceptibility diverges at 2kF, while it is non-divergent and reduces in value

as the dimensionality increases. The divergence is related to the factor Ei
k+q − Ej

k in

the denominator of the bare susceptibility, which will be zero when there are states on

the Fermi surface connected (‘nested’) by a wavevector q (more precise details of the

mathematical derivations behind this can be found in Ref. [22]). The Fermi surface

in 1D is perfectly nested by the wavevector q = 2kF, which causes the divergence in

χ0. In 2D and 3D the nesting becomes only partial, with its strength decreasing as the

dimensionality increases [21].

For the more complex, multiband Fermi surfaces found in real materials the calcula-

tion of χ0 can become very complex. The general principles that χ0 will be peaked at

wavevectors which connect (nest) parallel sections of Fermi surface and that nesting is

stronger as the effective dimensionality of the system is reduced are however still true,

although it should be noted that a mathematical divergence in χ0 is not possible in

dimensions above 1D [22].

Since in real materials it is not possible for χ0 to show a strict divergence, we now turn

to the denominator of equation 1.37, which is interaction-dependent. The susceptibility
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clearly diverges if χ0(q, E = 0)X(q) = 1 at any q, although it can be shown that

χ0(q, E = 0)X(q) ≥ 1 at some q is a sufficient condition for instability [22].

The functions XE(q) and XH(q) have been calculated in Ref. [22] for the simpli-

fied case of zero electron-phonon and spin orbit couplings, with the results that SDW

instability occurs if

V̄q &
1

χ0
H(q, E = 0)

(1.38)

and that CDW instability occurs if

V̄q − 2Ūq &
1

χ0
E(q, E = 0)

(1.39)

where V̄q and Ūq are spatially-averaged Fourier components with wavevector q of the

exchange and direct parts of the Coulomb (electron - electron) interaction respectively.

Considering magnetic instability first, we see that once the exchange parameter V̄q

is large enough the system is likely to be most unstable at the value of q where the

bare susceptibility is peaked, i.e. the wavevector at which Fermi surface nesting is

strongest. When instability occurs at one particular value of q = qSDW, a wave will

spontaneously appear in the magnetisation of the system with the same periodicity,

M = M0 cos(qSDW · r). Such a wave represents a periodic modulation of the density of

each spin state (i.e. ρ↑ ∼ cos(qSDW · r), ρ↓ ∼ cos(qSDW · r + π)), and is therefore called

a ‘spin density wave’ (SDW). Upon entering the SDW state the Fermi surface is altered

drastically (‘reconstructed’), usually removing any further nesting and preventing SDWs

at other wavevectors or charge order from developing.

It can be shown that V̄q < 2Ūq [22]. This means that, in the absence of electron-

phonon coupling, the magnetic susceptibility will always diverge before the electric

(charge) susceptibility and a CDW cannot occur. In the presence of electron-phonon

coupling the situation changes, however, because the spatial charge modulation of a

CDW can couple to phonons of the same periodicity, encouraging a CDW. In a simpli-
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fied model with a single phonon band it can be shown that if

4η̄2
q

~ω(q)
− (2Ūq − V̄q) &

1

χ0
E(q, E = 0)

(1.40)

a phonon mode becomes soft, corresponding to a coupled lattice distortion and commen-

surate CDW with the same periodicity, where η̄q is the matrix element of the electron-

phonon interaction and ω(k) is the dispersion relation of the phonon mode in the absence

of electron-phonon coupling [22].

By contrast, in the absence of spin-orbit coupling the SDW is not affected by electron-

phonon coupling, since spatial charge distribution is uniform in a SDW. This means that

interactions with the lattice can provide a route for CDW instability to form in preference

to SDW.

The above arguments do break down in the presence of significant spin-orbit coupling,

however it is still useful to note that in lighter elements where spin-orbit coupling is weak

instability of the charge susceptibility χE is favoured by electron-phonon coupling.

If the different couplings are such that the charge susceptibility diverges before the

spin channel, a periodic charge modulation or charge density wave (CDW) will occur

(ρ↑ = ρ↓ ∼ cos(qCDW · r)). Due to the important role of electron-phonon coupling in

their formation it is common for CDWs to be commensurate and accompanied by a

lattice distortion of the same periodicity (i.e. at the same q) as the CDW. A material

which shows such a commensurate CDW is the subject of one of the main chapters of this

thesis (Chapter 4). SDWs are more likely to be incommensurate than CDWs since there

is no particular reason why the strongest Fermi surface nesting should happen to fall at

a wavevector q which is a simple fraction of a reciprocal lattice vector. However, in the

presence of spin-orbit coupling the phonon degrees of freedom may favour commensurate

SDW order along with a lattice distortion. Such order is important in the physics of

unconventional superconductors, which are the subject of Section 1.4.

For both SDWs and CDWs, only the electrons close to the Fermi surface are involved

in the ordering. This means that density wave (DW) states can be quite subtle and
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1.4. Superconductivity

difficult to detect; in particular, the magnetism from SDW order can be expected to be

significantly weaker than that from local-moment magnetism. The strongest signatures of

both types of density waves occur in the electrical resistivity and magnetic susceptibility,

which for a metallic system depend strongly on the Fermi surface and will therefore show

noticeable anomalies when Fermi surface reconstruction occurs. Anomalies seen with

these techniques can also be caused by a large variety of other, non-DW phenomena

however, so other techniques are required to confirm the presence of DW order.

In cases where a lattice distortion develops, this distortion may be observable via

elastic x-ray and/or neutron scattering (Section 2.3). The positions and intensities of

superstructure peaks in principle carry information about the periodicity and atomic

displacements in the distorted structure, however these are sometimes quite weak relative

to nearby Bragg peaks of the undistorted structure meaning high-intensity sources are

required. A demonstration of this type of measurement is the subject of Chapter 4.

Direct measurements of the CDW charge modulation are difficult but can be achieved

by resonant and non-resonant x-ray scattering and scanning tunnelling microscopy (STM),

the latter of which also carries information about the energy gap associated with CDW

formation. The spin modulation in a SDW can be probed directly via neutron scattering,

especially polarised neutron scattering where the magnetic cross-section can be isolated

from other contributions.

Angle resolved photoemission spectroscopy (ARPES) can also be used to probe the

electronic band structure above and below the density wave transition temperature TDW.

This can allow observation of the energy gap as well as periodicity via band folding and

give information about the precise bands and nested sections of Fermi surface involved

in DW formation.

1.4 Superconductivity

Since its discovery in 1911 by Kamerlingh Onnes [23], superconductivity has been one

of the most fascinating and useful effects in condensed matter, remaining the subject of
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intense study over 100 years later. Superconductivity is a cooperative state of matter in

which all of the conduction electrons form a single, macroscopic quantum state across the

whole sample. As such, it is one of the most stark realisations of quantum mechanics on

a macroscopic scale. Upon cooling below some critical temperature Tc a superconductor

will exhibit zero resistance to the flow of electricity, as well as the ‘Meissner’ effect [24] in

which the material excludes all magnetic flux from its interior when placed in a magnetic

field, i.e. perfect diamagnetic behaviour.

The first microscopic theory of superconductivity was BCS (Bardeen-Cooper-Schreiffer)

theory [25], which rose to prominence in the 1950s. In BCS theory, the electron-phonon

interaction with a crystal lattice causes an attraction between pairs of electrons with

opposite spins, leading to the formation of ‘Cooper pairs’ once kBT falls below the at-

tractive pairing energy. A spin-0 singlet pair of electrons like this forms a boson, and

bosons do not have to obey an exclusion principle like fermions. The Cooper pairs can

therefore ‘condense’, all occupying the lowest-energy state even at finite temperature.

Since the pairs all occupy the same state, all of the electrons involved form a single,

macroscopic state across the whole material.

BCS theory explained all the known properties of superconductors at the time well

including the zero electrical resistance and Meissner effect. It also made some predictions,

including the ‘isotope effect’: since the pairing strength is determined by the electron-

phonon coupling, Tc should be dependent on the isotopes used in the sample, since

different isotopes have different nuclear masses which changes the phonon frequencies.

The isotope effect is indeed observed in many superconductors, which we today term

‘conventional’ superconductors since they are explained by the conventional BCS theory.

In the 1980s, researchers began discovering ‘unconventional’ superconductors exper-

imentally which could not be explained by BCS theory, including most notably high-

temperature copper oxide compounds with Tc > 100 K [26] (Fig. 1.12). These materials

are not predicted to have electron-phonon coupling strong enough to cause such high Tc

under BCS theory and do not show an observable isotope effect. A complete theoretical
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Cu LaO Nd

(a)

(b)

(c)

Figure 1.12: (a) the crystal structure of a typical cuprate superconductor, La2CuO4. (b)
The in-plane antiferromagnetic structure of the AFM phase in the cuprates. (c) Typical
phase diagrams for cuprate superconductors. Figure adapted from Ref. [27].

description of the physics of unconventional superconductors has not yet been realised,

however the mechanism is widely thought to be related to magnetic fluctuations.

1.4.1 Copper-Oxide Superconductors

The highest critical temperatures are achieved in the cuprate superconductors. These

compounds contain copper-oxygen planes stabilised by spacer layers of other materials

as illustrated in Fig. 1.12 (a) for the compound (La1−xSrx)2CuO4. The parent compound

of this group (x = 0) is an antiferromagnetic insulator at low temperatures, with the

spins on the Cu sites ordered as depicted in Fig. 1.12 (b). As the composition is altered

by increasing x holes are doped onto the CuO2 planes, resulting in the phase diagram

shown in Fig. 1.12 (c). The AFM ordering temperature is gradually reduced on doping,

with a novel ‘pseudogap’ phase appearing first, before superconductivity is seen in a

‘dome’ which starts close to the point where the AFM ordering is completely suppressed

to 0 K. Although magnetic ordering has been suppressed in superconducting samples,

it has been shown that strong magnetic fluctuations with similar q to the ordering

wavevector still remain and the prevalent theories propose these magnetic fluctuations

as the attractive superconducting pairing interaction. Exotic forms of CDW have also

been observed in the pseudogap region, but the significance of these forms of charge

order for superconductivity has yet to be established [27, 28]. A detailed examination of

the cuprates including the pseudogap and superconducting mechanism can be found in
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LaOFeAs BaFe  As FeSe

O Ba
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Se
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SDW

Figure 1.13: (a) the crystal structure some typical iron-based superconductors. (b) The
phase diagram for a typical iron-arsenide superconductor. Figure adapted from Ref. [27].

Ref. [27].

1.4.2 Iron-Based Superconductors

In 2008, the first in a new class of unconventional superconductors containing iron was

discovered. These materials contain Fe ions in a square planar arrangement, with pnictide

(As, P) or chalcogenide (Te, Se, S) sites located just above or below the centres of the Fe

squares, as shown in Fig. 1.13 (a). Most compositions also have spacer layers containing

cations which stabilise the full tetragonal structure, with the exception of Fe1−ySe and

Fe1−yS which can be grown as stable structures without these layers, albeit with a small

amount of iron deficiency (y). In the case of FeSe it is possible to chemically intercalate

ions (e.g. K+, Li+, Na+, Ba2+) or small molecules (e.g. NH3) between the layers,

allowing some degree of control over the interlayer separation and electronic doping with

minimal physical disruption to the active FeSe plane. It has also recently become possible

to grow monolayer FeSe on SrTiO3, which has been shown to have a remarkably high

Tc ∼ 100 K. The physics of one FeSe intercalate, Li1−xFexOHFe1−ySe, is the subject of

one of the major chapters of this thesis, Chapter 3.

Many of the bulk iron based superconductors (FeSCs) can be modified in a variety

of ways, including electron doping (Ba(Fe1−xCox)2As2), hole ((K1−xBax)Fe2As2) doping

and isovalent chemical substitution (BaFe2(As1−xPx)2, Fe1−y(Se1−xSx)). In the iron ar-

senides such as BaFe2As2 the parent compound usually shows a transition on cooling to
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a commensurate SDW state with wavevector (π/a, π/a, 0) in the Brillouin zone of the

tetragonal unit cell, sometimes called the ‘stripe SDW’ since it has the same symmetry

as the C-type AFM structure in Fig. 1.5. This is accompanied by an orthorhombic (‘ne-

matic’) structural distortion in which the sizes of the in-plane lattice parameters a and

b change slightly, with all other features of the structure remaining the same. The SDW

wavevector closely matches Fermi surface nesting seen in ARPES [27] and the struc-

tural distortion was originally thought to be related to the magnetic order, even though

the two transitions do not quite coincide, with the distortion usually occurring a few

K above the SDW order as in Fig. 1.13 (b). In Fe1−ySe, a structural distortion similar

to that in the iron arsenides is seen but there is no accompanying magnetic order, and

superconductivity then appears at Tc ∼ 9 K [29]. The lack of magnetic order in Fe1−ySe

has prompted several novel proposals to explain the structural distortions in iron based

superconductors, although this is the still the source of considerable debate.

Upon doping in the ways listed above, the magnetic and/or structural order is gen-

erally suppressed and superconductivity appears, forming a dome whose peak roughly

coincides with the doping level where the competing SDW/orthorhombic order would

have reached zero temperature (Fig. 1.13 (b)). This phase diagram is very similar to that

of the cuprates, and theories involving paring mediated by magnetic fluctuations with

the same symmetry as the nearby SDW state have proven quite successful in modelling

the physics of the iron-based superconductors, although this is still an area of active

debate.

More in-depth review papers on the iron based superconductors can be found in

Refs. [27, 30, 31]

1.4.3 Gap Symmetry and the Spin Resonance

Theoretically speaking all superconductors exhibit a gap function ∆k, which is in general

complex and tells us the amplitude and phase of the superconducting state for carriers

on the Fermi surface at a point k in the Brillouin zone [2]. Alternatively, ∆k can be

thought of as a Fourier coefficient of the real space wavefunction ∆(r) which tells us
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the amplitude and phase of the single, macroscopic quantum state at position r in the

material.

Superconductors are often categorised by the symmetry of the gap function. The

band structure and Fermi surface of any material must be unchanged under all symme-

try operations of the point group of the crystal structure {R̂} as well as the inversion

operation (k → −k, labelled 1̄) if the crystal in non-magnetic. The most useful way to

do this is therefore to examine how the gap function transforms under the same symme-

try operations, i.e. the point group of the crystal composed with the inversion, {R̂⊗ 1̄}.

This involves projecting ∆k onto the irreducible representations (irreps) of the relevant

group

∆k =
∑
Γm

ηΓmfΓm(k) (1.41)

where Γ labels the different irreps, m = 1, ..., d labels the components of a d dimensional

irrep, the functions fΓm(k) are a set of basis functions for k space which have the same

symmetry properties as irrep Γ and ηΓm are the projection coefficients. This procedure

is discussed in detail in Ref. [2].

For most superconductors it turns out that only one of the coefficients ηΓm is non-

zero, meaning that the superconducting gap has well-defined symmetry under the group

{R̂ ⊗ 1̄}, although there are a few exotic cases where it is possible two coefficients are

involved, leading to two closely-spaced critical temperatures seen in specific heat [2].

Under BCS theory the gap function is a constant, ∆k = |∆|, so it transforms under the

trivial irrep and is invariant under all symmetry operations in {R̂ ⊗ 1̄}. This pairing is

usually termed ‘s-wave’ since its rotational invariance means it can be written in terms

of the s-wave (l = 0) spherical harmonic. In fact, the usual definition of ‘conventional’

superconductivity is that the gap function transforms in the same way as the BCS gap

function, i.e. under the trivial irrep of {R̂⊗ 1̄}.

For the unconventional superconductors mentioned in this section the situation is

slightly more complicated since the Fermi surface often contains multiple sheets, however
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1.4. Superconductivity

the theory can be extended if we allow there to be different gap functions on the different

Fermi sheets ∆j
k, where each of the individual gaps transform under the same irrep.

As a concrete example, a schematic of the possible 2D Fermi surface for monolayer

FeSe is shown in Fig. 1.14 together with some possible gap distributions. The s+−–wave

gap, for example, has a constant, positive gap function one Fermi sheet and a different,

negative but also constant gap function on the other sheet. Each of the individual gap

functions is isotropic, so the gap is s-wave, and the +− shows that the gap changes

sign between the different Fermi sheets. The d-wave gap function is the same on both

Fermi sheets but is not constant across the Brillouin zone; instead, it has a rotational

symmetry which is the same as one of the d-wave (l = 2) spherical harmonics.

The symmetry and k-dependence of the superconducting gap function are important

results which differ between the various microscopic theories of superconductivity [27].

Significantly, they are also experimentally observable via a variety of techniques.

If the proposed symmetry constrains the gap to have zero magnitude at some k

points which are on the Fermi surface, the resulting gap nodes should cause low-energy

excitations which persist below Tc whose effect can be seen in heat capacity and Nuclear

Magnetic Resonance (NMR) measurements. Muon spin rotation measurements can also

probe gap nodes via penetration depth measurements [33].

Angle Resolved Photoemission Spectroscopy can give direct information about the k-

dependence of the magnitude of the gap function, while scanning tunnelling spectroscopy

(STS) yields similar information. The possibility of determining the sign distribution

via STS has also been realised recently, although this technique is still being developed

[34, 35]. Both STS and ARPES are surface probes and have limited kz-resolution in 3D

materials, however.

Inelastic neutron scattering can also give bulk, kz-sensitive information about the

sign distribution of the gap via measurements of the ‘spin resonance’ [27].

The spin resonance, which has been observed widely in unconventional supercon-

ductors including iron arsenides, iron selenides and the cuprates [36–39], is a collective
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spin excitation that appears below Tc whose signature is a peak in the inelastic neutron

scattering spectrum. The resonance peak is centred on a characteristic wavevector Qres

which is often close to or the same as the propagation vector of the antiferromagnetic or

SDW phase that borders superconductivity, and the peak appears in a narrow range of

energy Eres ' 5–6 kBTc just below the maximum of the superconducting gap.

In weak coupling spin fluctuation theories of superconductivity the spin resonance is

caused by strong scattering between points on the Fermi surface that are connected by

Qres and have opposite signs of the superconducting gap function. More precisely, for a

multiband superconductor the imaginary part of the dynamical magnetic susceptibility

at the resonance energy χ′′(q, Eres) is proportional to a coherence factor

χ′′(q, Eres) ∝
∑
i,j

∑
k,k′

[
1− ∆i

k∆j
k′

|∆i
k||∆

j
k′|

]
δ(k− k′ − q) (1.42)

where ∆i
k is the superconducting gap function on band i at wavevector k and the sums

are over pairs of Fermi sheets (i, j) and over wavevectors k and k′ on the Fermi sheets i

and j respectively [40, 41]. For real superconducting gap functions the factor in square

brackets is 2 if the signs of ∆i
k and ∆j

k′ are opposite and zero if they are the same, and

the delta-function means we only see contributions from pairs of points on the Fermi

surface separated by q in reciprocal space. The coherence factor is therefore effectively

a nesting integral over the Fermi surface with contributions due to sections with the

same sign of ∆ removed, so the resonance tends to be sharp in q when there are parallel

sections of Fermi surface with opposite sign of ∆ [40, 42–44].

At the very least, unambiguous observation of a spin resonance therefore establishes

that a superconductor is unconventional, since there must be sign change on at least some

parts of the Fermi surface. Indeed, this was the way that it was originally established

that some of the early unconventional superconductors such as the cuprates cannot

be explained in BCS theory [2]. Measurements of the momentum dependence of the

resonance peak can, however, provide further very useful information on the symmetry

of the superconducting gap and the underlying band structure. For example, if it can
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be shown to be peaked at a certain wavevector this indicates nesting between sections of

Fermi surface with opposite signs of the gap function. A study of the spin resonance in

one iron-based superconductor forms one of the core chapters of this thesis, Chapter 3.
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Chapter 2

Experimental Methods

I have used a wide variety of experimental techniques to perform the research presented

in this thesis. In this chapter I shall give a brief overview of these techniques, including

both practical details and the theory behind them, with greater focus on those tech-

niques which were of greater importance in my research. References with more detailed

discussions for the interested reader are cited in each section.

2.1 Magnetisation Measurements

Using magnetometry devices such as a Superconducting Quantum Interference Device

(SQUID) Magnetometer or Vibrating Sample Magnetometer (VSM), it is possible to

measure the AC and DC magnetisation of samples as a function of temperature, mag-

netic field and frequency. The theory presented in Section 1.2 should make it clear that

magnetisation measurements are a crucial piece of information in determining the be-

haviour of a material experimentally, and indeed a magnetisation study is usually one of

the first techniques used to assess a new sample.

2.1.1 DC Magnetisation

Two slightly different pieces of equipment were used to perform the DC magnetisation

measurements in this thesis, the SQUID magnetometer [45] and VSM [46] (Fig. 2.1). In

both cases, the sample is packed inside a plastic capsule and the capsule placed inside a
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Figure 2.1: (a) Schematic of the coil set of the Quantum Design SQUID magnetometer
used in this work. The sample is driven vertically through the coils as marked. A VSM
is similar except there is only one coil and the sample is vibrated vertically about the
centre of the coil. (b) Sample data showing the SQUID response as the sample is driven
vertically through the coils (blue squares) and the fitted response function (black line)
whose magnitude determines the measured sample moment.

plastic straw, with the plastic containing no magnetic impurities and giving only a small

diamagnetic background which is close to constant along the length of the straw. A

background subtraction using a measurement of an empty straw and capsule is possible,

however this was never necessary in the present work since the sample responses were

always much larger than the background.

The sample straw is attached to the end of a probe and lowered into a 4He cryostat,

which is itself located inside the bore of a superconducting high field magnet. By pump-

ing on the 4He in the sample space it is possible attain a base temperature of 1.8 K, and

when combined with a heater and calibrated thermometer in the sample space any stable

temperature between 1.8 and 300 K can be achieved. The superconducting magnets have

maximum fields of 7 T (SQUID magnetometer) and 16T (VSM).

In the SQUID magnetometer, three measurement coils are wound around the sample

space in the −+− configuration shown in Fig. 2.1 (a), with the − polarity coils consisting

of a single turn and the + coil two turns. The sample is then driven vertically through

the coils and the voltage across the whole coil set monitored, resulting in a response
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2.1. Magnetisation Measurements

similar to that plotted in Fig. 2.1 (b) as a function of straw position due to the time-

varying magnetic flux through the coils as the sample moves. This response is then fitted

to the predicted response function, with the magnitude of the fit parameters yielding the

sample’s magnetic moment. The moments obtained from a few such scans at a given

temperature and magnetic field are averaged to reduce noise, meaning the measurement

time for a single data point is typically about 1 minute.

In the VSM the sample is located in the centre of a pickup coil and the sample

vibrated up and down at a constant frequency f = 40 Hz. The time-varying voltage

in the coil Vcoil is measured and all components at frequencies other than the sample

vibration frequency filtered out. This voltage is given by

Vcoil =
dΦ

dt
=

(
dΦ

dz

)(
dz

dt

)
(2.1)

where Φ is the flux through the coil and z is the vertical position of the sample. Since z

varies sinusoidally,

z = A sin(2πft)

Vcoil = 2πfCmA cos(2πft)

(2.2)

where C is a constant and m is the sample’s magnetic moment [46]. This means that the

magnitude of the voltage response at the vibration frequency can be easily converted to

the sample moment. A VSM measurement is continuous with a much shorter measuring

time than the SQUID magnetometer, allowing much more data to be obtained.

For either type of magnetometer, M v. H curves are taken simply by sweeping

the magnetic field, usually in a complete loop 0 → +H → −H → +H to detect any

hysteresis. If the magnetic susceptibility is needed a low-field measurement, typically at

H = 1000 Oe,1 can be used provided the magnetisation is expected to be linear in H up

to the measurement field. Susceptibility and magnetisation data are usually normalised

1Oersted (Oe) is the unit of magnetic field H in the ‘CGS’ (centimetre-gram-second) system which is
commonly used in magnetometers like the MPMS and PPMS. The conversion is 1 Oe = 1000

4π A m−1 =
79.577 A m−1. The CGS unit for magnetic flux density B is Gauss, with conversion 1 T = 10000 G.
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either per mole (χmol) or per unit volume (χv).

2.1.2 AC Magnetisation

If the sample is placed in the coil centre of a magnetometer and a time-varying, sinu-

soidal magnetic field applied it is possible to probe the AC magnetic susceptibility over

a wide range of frequencies. In this thesis I have performed AC magnetisation mea-

surements in a SQUID magnetometer which can access frequencies between 0.1 Hz and

1 kHz. The measurement is performed via a ‘two-point’ method. This entails performing

two measurements, one with the sample positioned in the bottom, negatively-wound coil

and the other with it in the middle, positively wound coils of the SQUID magnetometer

(Fig. 2.1). During the first measurement the magnetometer applies a ‘nulling’ signal

to the SQUID coils, with the aim of exactly cancelling out the sample response and

obtaining zero current through the coils. After refining the nulling waveform down to

a predetermined precision, the magnetometer moves on to the second part of the mea-

surement with the sample in the middle coil, during which it continues to apply the

nulling waveform to the coils. By doing this any background signal which is independent

of the sample is cancelled out. Since the middle coil has twice as many turns and is

wound in the opposite direction compared to the bottom coil, a sample response will

be observed in the second measurement which is three times what the response due to

a single coil would have been. This combination of enhanced sample response and effi-

cient background cancellation allows for very high-precision measurement of the sample

magnetisation.

The measurement is performed over a small number of complete cycles of the AC ap-

plied field and the time dependence of the observed response after the nulling procedure

is fitted to a sine wave at the measurement frequency plus constant and H–linear back-

ground terms. By examining the magnitude of the fitted waveform and its phase relative

to the applied field the real (m′) and imaginary (m′′) parts of the magnetisation can be

obtained. As with DC measurements, the moment is typically normalised per mole or

per unit volume, and the susceptibilities χ′ and χ′′ can be obtained by normalising to
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Figure 2.2: Schematic of the thermal connections between the sample, platform and puck
(thermal bath) in the PPMS Heat Capacity measurement system used in this work.

the amplitude of the measurement field (typically around 4 Oe).

2.2 Specific Heat

The heat capacity of a sample at constant pressure CP =
(
dQ
dT

)
P

is a useful probe of

the low-lying excitations of the system being studied and can sometimes reveal low-lying

modes which other techniques are not sensitive to.

Specific heat measurements in this thesis were performed using the Heat Capacity

option on a Quantum Design Physical Property Measuring System (PPMS) [47]. In

this instrument the sample is bonded to an epoxy platform using grease, with a heater

and thermometer mounted on the underside of the platform (Fig. 2.2). The platform is

connected to a thermal bath (in this case, a metal puck) via thin constantan connecting

wires and the whole setup is placed under high vacuum so that thermal contact between

the puck and platform is dominated by these wires. The puck is in thermal contact with

a 4He cryostat to allow temperature control between room temperature and 2 K, and

surrounded by a superconducting magnet which can provide magnetic fields up to 11 T.

Once the system has reached thermal equilibrium at the temperature of interest a

small, known amount of heat is applied to the platform by the heater over a short period

of time, and the temperature at the thermometer on the sample platform is monitored as

the heat is lost from the sample through the platform to the bath. If there is good thermal

contact between the sample and platform, a simple exponential decay of temperature is

seen after the heater is switched off, whereas if the contact is poor the decay is usually
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well approximated by the sum of two exponentials, one due to heat flowing from the

sample to the platform and one due to heat flowing from the platform to the bath. In

either case the combined heat capacity of the sample, platform and grease can then be

determined by fitting the decay of the temperature measured by the thermometer, given

the known thermal conductivity of the wires between the platform and the puck. In most

cases it is also necessary to perform a background measurement of the heat capacity of

the puck and grease without the sample and subtract this from the data to obtain the

sample heat capacity. Further details of the measurement and fitting procedure can be

found in Ref. [47].

In most condensed matter systems we are primarily interested in the low-temperature

heat capacity. This will always contain contributions from the lattice, which are typically

fitted to the Debye model (C = αT 3 where α is a constant) [6] and for metals a con-

tribution due to the conduction electrons, which is usually fitted using the Sommerfeld

model (C = γT ) [1]. The Sommerfeld coefficient γ is related to the density of states at

the Fermi surface and can therefore be compared to other measurements of electronic

band structure to check if all Fermi surface sheets have been observed [48]. If only these

two contributions are present (C = αT 3 + γT ), a plot of C/T v. T 2 will be linear with

y-intercept γ and gradient α.

2.3 Scattering Theory

Scattering of radiation whose wavelength is on the order of the inter-atomic separation,

for example x-rays and neutrons, is a very versatile and powerful technique in the study

of condensed matter systems. For many decades elastic scattering of these probes has

been used for very precise determination of the crystal structure of samples, as well

as any ordered magnetic structure in the case of neutron scattering [49]. With more

recent developments in instrumentation and the high fluxes available at modern x-ray

and neutron sources many higher-order effects can also be usefully studied including

inelastic, resonant and polarisation-dependent processes. For example, inelastic neutron
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scattering is a powerful probe of low-energy structural and magnetic excitations, while

polarisation can be used to experimentally separate scattering due to magnetism from

that due to structural phenomena. The much higher energies of x-rays, meanwhile, allow

measurement of higher energy excitations, and tuning of the incident x-ray energy to a

resonant enhancement can be employed to make the scattering species-dependent.

In this section I shall give a brief overview of the specific scattering techniques I have

employed in the work presented in this thesis. A more detailed discussion of the full

breath of x-ray and neutron scattering techniques can be found in Refs. [6, 49, 50].

2.4 General Scattering Theory

Fermi’s Golden Rule [6] gives the scattering rate per unit time Γ(k′,k) for incoming par-

ticles with wavevector k and energy Ek scattering into a state with outgoing wavevector

k′ and energy Ek′ :

Γ(k′,k) =
2π

~
| 〈k′|V |k〉 |2δ(Ek′ − Ek). (2.3)

The matrix element

〈k′|V |k〉 =
1

L3

∫
dre−i(k

′−k)·rV (r) (2.4)

is the component of the Fourier transform of the scattering potential V (r) at momentum

transfer Q = k′ − k, while the δ-function ensures elastic scattering.

In a crystal with a periodic potential V (r) =
∑

R Vuc(R + r), we can split the matrix

element into two factors

〈k′|V |k〉 =
1

L3

[∑
R

e−i(k
′−k)·R

][ ∫
uc

dxe−i(k
′−k)·xVuc(x)

]
(2.5)

where Vuc(x) is the potential due to one unit cell centred at x = 0 and {R} are the real

lattice vectors.

The first factor in equation 2.5 is zero unless the momentum transfer is equal to a
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Figure 2.3: Experimental geometry of an elastic scattering experiment. 2θ is the scat-
tering angle and G is the reciprocal lattice vector corresponding to the lattice planes
which the beam diffracts off in this geometry. Figure adapted from Ref. [51].

reciprocal lattice vector, i.e. Q = k′ − k = G where eiR·G = 1 for all R on the real

lattice and G on the reciprocal lattice. This condition can be fulfilled by defining the

reciprocal lattice in terms of the real lattice vectors a, b and c via the general relations

a∗ = 2π
b × c

a · b × c
, b∗ = 2π

c × a

a · b × c
, c∗ = 2π

a × b

a · b × c

G = ha∗ + kb∗ + lc∗
(2.6)

for (h, k, l) integers.

For every G on the reciprocal lattice there is a corresponding set of lattice planes,

i.e. a set parallel planes which contains all of the lattice points, which are normal to G

and have separation (‘d-spacing’) dhkl = 2π/|G|. It can be shown that scattering with

momentum transfer Q = G is equivalent to diffraction off the set of lattice planes with

Miller indices (hkl) [6].

A typical experimental arrangement for measuring diffraction (elastic scattering) off

a set of lattice planes in a crystal using a monochromatic source with wavelength λ is

shown in Fig. 2.3. The incoming and outgoing radiation in such an experiment must be

at the same angle θ to the sample surface, with 2θ often referred to as the scattering

angle. It can be shown that the Laue condition G = k′−k in this geometry implies that

λ = 2dhkl sin θ (2.7)
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which is the famous Bragg’s law. Since dhkl is determined by the real lattice vectors, the

locations of peaks in elastic scattering intensity (‘Bragg peaks’) can be used to determine

the lattice type and lattice parameters in a sample.

The remaining factor in equation 2.5 is the structure factor, S(G)

S(G) =

∫
uc

dxe−iG·xVuc(x) =
∑
d

fde
iG·xd

fd(G) =

∫
dxde

−iG·xdVd(xd)

(2.8)

where fd is the form factor due to atom d in the unit cell and we have used the fact that

the potential is the sum of potentials due to individual atoms

Vuc(x) =
∑
d

Vd(x− xd) (2.9)

and Vd(xd) is the potential due to an atom d situated at xd = 0. The structure factor

is the Fourier transform of the basis, i.e. the contents of the unit cell, and determines

the relative intensities of reflections at different (hkl). Information about Bragg peak

intensities can therefore be used to examine the ionic species and their positions within

the unit cell. This kind of experiment is complicated somewhat, however, by the fact

that observed intensity is determined by |S(G)|2 and is therefore missing information

about the relative phases of structure factors at the different Bragg peaks - the ‘phase

problem’. There is no general way to get around this in first-principles crystal structure

solution, so in reality a combination of methods mostly involving some degree of prior

knowledge or expectation of the likely structure is used.

The precise Q-dependence of the atomic form factors for different probes will be

discussed in the relevant sections below.

2.5 X-ray Scattering

X-rays are photons in the energy range of approximately 100 eV–100 keV. This is often

split further into ‘soft’ x-rays below around 5 keV and ‘hard’ x-rays above this energy.
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Figure 2.4: The typical Q-dependence of the x-ray atomic form factor for an atom of
width ∼ 1 Å.

They provide a very powerful probe due to the large range of wavelengths and energies

accessible as well as very high fluxes available at modern x-ray sources. They do also have

some weaknesses; for example, the x-ray form factor for an ion (Fig. 2.4) is proportional

to the charge on the ion, so they are not very sensitive to small atoms (and almost

totally insensitive to hydrogen ions) and even amongst heavier elements it is difficult to

distinguish between ions with similar atomic number.

X-ray diffraction measurements on single crystals and powders are a routine sample

characterisation technique used throughout the work presented in this thesis. It is usually

relatively easy to index the observed peaks in such a diffraction pattern with (hkl) values,

yielding the unit cell and lattice parameters, while other features such as the presence

of any unindexed peaks and powder rings and the width, shape and any smearing of

the Bragg peaks allow for assessment of the sample quality and impurity content. This

information alone is often sufficient for sample characterisation purposes, however for

high quality samples it is sometimes also possible to partially solve or refine the structure

within the unit cell based on the peak intensities, as demonstrated in Chapter 4. All

of the lab-based x-ray diffraction which I performed in this work employed an Oxford

Instruments Supernova Diffractometer.

It is also possible to perform a range of x-ray scattering measurements at synchrotron
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Figure 2.5: Schematic of the dominant, direct RIXS process. Figure reproduced from
Ref. [52].

facilities such as Diamond Light Source at Harwell, U.K. and the European Synchrotron

Radiation Facility (ESRF) in Grenoble, France. These sources provide a massively in-

creased flux compared to lab-based diffractometers, allowing observation of much lower

intensity features of the spectrum, assuming radiation damage and heating of the sample

can be avoided. Chapter 4 presents an example of the observation of weak superstructure

on the beamline I19 of the Diamond Light Source which allowed for the determination

of a small crystalline distortion in the material studied.

2.5.1 Resonant Inelastic X-Ray Scattering

As synchrotron x-ray fluxes increase and instrumentation develops it has become possible

to measure a range of useful resonant and inelastic phenomena. I present results from one

such technique in this thesis - Resonant Inelastic X-Ray Scattering (RIXS), illustrated in

Fig. 2.5. The dominant, ‘direct’ RIXS process involves tuning the incident photon energy

to match the energy difference between a core electron shell (for example the 2p shell)

and the excited level of interest (for example, some magnetic excitation in a part-filled

5d shell). The photon is absorbed in a dipolar process, promoting a core electron to

the excited level and forming an intermediate state with a core hole. The intermediate

state is very unstable and short-lived and has a range of possible decay routes. The

significant one for direct RIXS is the decay of one of the other 5d electrons to fill the
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core hole via another dipolar process which emits another x-ray photon. The net effect

of this process is to create a particle-hole excitation in the 5d shell, with the energy

and momentum transferred from the photon. The difference in energy and momentum

between the incident and outgoing photons is then used to determine the excitation’s

energy and momentum above the ground state.

By varying the incident x-ray energy it is possible to see a range of different excited

levels resonate, building up a full excitation spectrum. Since the incident energy is tuned

to match a resonance on one specific ionic species in the sample, this is a highly targeted

measurement of the single-ion excitations on that species.

RIXS is a versatile probe of single-ion excitations with the potential to observe charge,

orbital and magnetic excitations. The excitation and decay processes from the core

state are both subject to a dipolar matrix element, however, which means RIXS can

be either forbidden or very weak for certain excited states which have small or zero

matrix elements. It is a second-order process and is correspondingly weak compared,

for example, to elastic scattering, even when the enhancement due to resonance is taken

into account. The energy transfer is also very small (. a few eV) compared to the

photon energies (∼ keV), so very high energy resolution as well as very high statistics

are required.

In order to optimise resolution and signal, RIXS measurements are usually performed

with the detector at right angles to the incident beam (2θ = 90o) since the polarisation

factor ensures elastic scattering processes have zero intensity at this angle, and with a

relatively long sample-to-detector distance ∼ 1 m. With modern instrumentation, it is

now possible to measure excitations via RIXS with energy resolution down to a few tens

of meV.

The RIXS measurements presented in this thesis (Chapter 5) were performed on the

beamline ID20 at the ESRF [53]. A comprehensive review of the many aspects of the

RIXS method which I do not touch on in this thesis can be found in Ref. [52].
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2.6 Neutron Scattering

Neutron spectroscopy is a very powerful technique for probing condensed matter systems

[49, 50]. ‘Thermal’ neutrons, i.e. neutrons with energies close to 0.025 eV (= kB×290 K),

have wavelengths similar to the separation of atoms in crystals and interact directly with

the nuclei via the strong nuclear force. Since nuclei are small compared to the neutron

wavelength the interaction potential is very well approximated by a δ-function at the

nucleus, resulting in atomic form factors which are Q-independent. The form factor is

usually expressed in terms of a ‘scattering length’

fd(Q) = bd (2.10)

where bd is the scattering length of nucleus d, which may be complex.

The neutron has a spin s = 1/2 and resulting magnetic moment |µn| = 1.9µN where

µN is the nuclear magneton. This means that the neutron can also couple to the nucleus

via a magnetic interaction with the nuclear spin I, modifying the coupling compared

to that from the strong force alone. Since the nuclear spins tend to point in random

directions, this leads to a random distribution of scattering lengths on the nuclei in

sample. An additional random component comes from the fact that most elements

naturally occur as a mixture of different isotopes which will have different scattering

lengths, although this component can sometimes be removed by growing samples using

isotopically pure starting materials.

In order to accommodate this disorder, neutron scattering is split into coherent and

incoherent processes. The coherent scattering is the scattering pattern which would be

seen if all nuclei had the same, average scattering length

bcoh = 〈bi〉 (2.11)

where the average is over all sites i in the sample, while incoherent scattering is any

extra scattering due to deviations from this average characterised using the incoherent
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scattering length

binc =
√
〈bi〉2 − 〈b2

i 〉. (2.12)

Incoherent scattering therefore contains nuclear spin incoherent scattering as dis-

cussed above as well as contributions due isotopic disorder

In most cases the coherent scattering channel is dominant and contains nuclear Bragg

peaks as expected under general scattering theory. The values of the scattering lengths

are governed by the details of the strong interaction and vary unpredictably across the

periodic table. This means that, unlike for x-rays, atoms with similar charge Z can be

easily distinguished via the intensities of Bragg peaks in coherent neutron scattering.

Neutron diffraction patterns are also much more sensitive than x-rays to light elements.

Nuclear spin- and isotope-incoherent scattering is usually completely flat as a function

of Q and in unpolarised neutron scattering is typically fitted as part of the background.

For most elements this does not present a significant problem, however in a few well-

known cases where one of the components of the incoherent scattering is strong or the

coherent scattering length is very small the incoherent scattering background can signif-

icantly reduce the statistics of the coherent channel or even mask it altogether. Notable

examples are natural Vanadium, which has almost zero coherent scattering length, and

1H, which has a very large nuclear spin incoherent scattering length. In such cases,

isotopically enriched samples are used to get around the problem; I present one such

example in Chapter 3 where I use a deuterated sample (D = 2H) to avoid the strong

incoherent scattering which would come from natural hydrogen.

In addition to nuclear scattering the neutron can interact with electron spins and

angular momenta in the sample via its magnetic moment. It is therefore a very powerful

direct probe of magnetic effects including short- and long-range magnetic order, since

these will cause extra scattering to appear as the order develops. Long range order

can lead to extra Bragg peaks appearing in the spectrum which are not allowed for the

nuclear scattering alone or to changes in the intensity of the nuclear Bragg peaks, while
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Figure 2.6: Schematic of the GEM beamline at ISIS, a typical instrument used for elastic
neutron diffraction and sample characterisation. Figure reproduced from Ref. [54].

short range correlations lead to broader areas of extra scattering appearing around the

Q corresponding to the typical length scale of the correlations. Magnetic scattering is,

however, subject to a magnetic form factor fmag(Q) which is strongest at low Q and

which contains a factor of Q×M×Q. This factor is the projection of M onto the plane

perpendicular to Q, so only components of the sample magnetisation perpendicular to

Q are probed.

In practice, elastic neutron scattering is often measured in a spectrometer similar to

that pictured on Fig 2.6. The sample is mounted inside a cryostat in the neutron beam

and surrounded by detectors covering as much of the available solid angle as possible,

in order to probe as much of Q space as possible. A single incident neutron energy is

selected by two choppers, which consist of two disks of neutron-absorbing material with

slits in them which rotate at a variable angular frequency. Since a neutron’s velocity

depends on its energy, for a given angular frequency only neutrons with one particular

energy will pass through both slits and reach the sample. This is the commonly referred

to as the ‘time-of-flight’ (TOF) method.
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2.6.1 Polarised Neutron Scattering

If a polarised beam of neutrons is used and the polarisation of diffracted neutrons mea-

sured, it is possible to separate most of the different coherent, incoherent and magnetic

cross-sections. The equations for the so-called xyz-method are

(
dσ

dΩ

)
nuc

=
1

6

[
2

(
dσ

dΩ

)
Tnsf

−
(
dσ

dΩ

)
Tsf

]
(
dσ

dΩ

)
si

=
1

2

(
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−
(
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)
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= 2

(
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)x
sf

+ 2

(
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)y
sf

− 4

(
dσ

dΩ

)z
sf

(2.13)

where dσ
dΩ

are differential cross sections and ‘nuc’, ‘si’ and ‘mag’ refer to the nuclear,

spin-incoherent and magnetic cross-sections [55]. x, y and z refer to the direction of the

neutron polarisation axis relative to a Cartesian coordinate system and ‘sf’ and ‘nsf’

mean the spin-flip and non-spin-flip cross sections along the relevant axis. ‘Tsf’ and

‘Tnsf’ mean the total (non-)spin-flip cross sections summed over all three directions

x, y, z.

If a ‘6-point’ measurement is performed, i.e. subsequent measurements of the spin-

flip and non-spin-flip cross sections for beam polarised parallel to each of x, y and z in

turn, then these equations can be used to extract the desired magnetic, nuclear and

spin-incoherent cross sections.

Polarised neutron scattering is a very powerful technique for probing magnetic scat-

tering since the strong nuclear contributions to the spectrum can be effectively removed.

It can also be used as way to remove the spin-incoherent background in order to study

nuclear scattering in samples containing atoms like 1H which have a large spin-incoherent

cross-section.

Polarised neutron spectrometers typically have a similar geometry to unpolarised

spectrometers, except the polariser and analyser mirrors are chosen to only reflect one

of the two spin species (Fig. 2.7). The whole beam path is in a small magnetic field with

variable direction (‘guide field’) which determines the axis of the neutron polarisation.
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Figure 2.7: Schematic of the D7 beamline at the Institut Laue-Langevin (ILL), the in-
strument used to perform polarised neutron diffraction in this work. The arrows mark the
beam path. Figure reproduced from Ref. [55], where further details on the components
of this spectrometer can be found.

A magnetic ‘flipper’ is placed after the polariser which can invert the polarisation of

the incident beam with high efficiency, meaning that changing between spin-flip and

non-spin-flip mode simply requires turning the flipper on or off. In order to calibrate

background, detector and flipper efficiencies and sample absorption, a range of calibration

measurements are performed for each sample including the empty sample can, cadmium

(a very strong absorber), quartz (only spin-flip scattering) and vanadium (only incoherent

scattering with a known cross-section).

2.6.2 Inelastic Neutron Scattering

Thermal neutron energies and momenta are very similar to those of excitations in con-

densed matter such as phonons and magnons, making inelastic neutron scattering a

useful tool for studying their dispersions. A typical ‘triple-axis’ spectrometer suitable

for unpolarised neutron scattering is pictured in Fig. 2.8. The incident energy can be

varied by changing the diffraction angle at the monochromator and the outgoing en-

ergy using the angle at the analyser, while the momentum transfer is determined by

the scattering angle at the sample. Another common design is the time-of-flight (TOF)

spectrometer, shown in Fig. 2.9. In this case, choppers select the incident energy while

the time of flight and beam path length can be used to determine the outgoing neutron
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Figure 2.8: Diagram of the IN8 instrument at the ILL, a typical triple axis spectrometer
used for inelastic neutron scattering. Figure reproduced from Ref. [56].

Chopper
Sample Location

Detectors

Beam Stop

Beam Path

Figure 2.9: Diagram of the Merlin spectrometer at the ISIS facility [57], a typical time-
of-flight spectrometer used for inelastic neutron scattering. Figure reproduced from
Ref. [58].
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(ARPES)

Figure 2.10: Schematic of the ARPES technique. Figure reproduced from Ref. [59].

energy, since higher energy neutrons have higher velocity. The diffraction angle at the

sample again determines the momentum transfer, and a large bank of detectors can be

used to cover a large range of Q simultaneously [57].

The inelastic neutron scattering spectrum is proportional to the dynamical structure

factor S(Q, ω) as well as a form factor for the relevant type of scattering. This means that

the dispersions of excitations can be directly measured, assuming the neutron couples to

them. A typical spectrum will contain phonon scattering at high Q and magnetic modes

or diffuse scattering at low Q (if present), allowing these two types of excitation to be

distinguished with care by examining the relevant parts of the spectrum and possibly

their temperature dependence. An example of a measurement of magnetic excitations

using a TOF spectrometer can be found in Chapter 3.

2.7 Angle Resolved Photoemission Spectroscopy

(ARPES)

Angle Resolved Photoemission Spectroscopy (ARPES) is powerful technique for measur-

ing electron band dispersions in crystals. It involves exposing the sample to soft x-rays

at a known energy which are absorbed by electrons at the surface of the material. If the

x-ray energy is larger than the binding energy of the electron, it will escape the sample.
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A detector is positioned above the sample at a variable angle which contains an energy

analyser capable of measuring the outgoing electron flux as a function of energy. Using

conservation of energy and momentum, it is possible to reconstruct the electron’s orig-

inal energy and momentum in the sample before it was ejected from the detector angle

and incident x-ray and outgoing electron energies. A detailed discussion of how this is

achieved can be found in Refs. [1, 60] and a diagram of a typical ARPES instrument is

shown in Fig. 2.10.

The ARPES technique is by its nature only sensitive to the sample surface and has

limited kz resolution. It is therefore best-suited to quasi-2D layered systems. There is

also an ARPES matrix element, meaning that certain electron bands may be weak or

absent in ARPES due to their symmetry or orbital character. An example of the use of

ARPES to study changes in the electronic structure of a quasi-2D system can be found

in Chapter 3.

2.8 Muon Spin Rotation/Relaxation (µSR)

µSR is unique among the techniques discussed here since it is an implantation probe

which involves allowing positive or negative muons (µ+/µ−) to stop in the sample and

interact with the internal, microscopic environment before monitoring their decay prod-

ucts.

Muons for such an experiment are typically produced at spallation sources, for exam-

ple the ISIS Neutron and Muon Source, by bombarding a target (made from graphite at

ISIS) with high-energy protons. A small proportion of the protons interact with nucleii

in the target, producing positive and negative pions

p+ p→ p+ n+ π+

p+ n→ p+ p+ π−
(2.14)

which then decay very quickly (mean lifetime = 26 ns) into muons
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Figure 2.11: (a) Geometry of a typical zero-field µSR measurement. (b) Theoretical
asymmetry due to the same, constant magnetic field at all of the muon stopping sites.
(c) Theoretical response due to a random distribution of static magnetic fields at the
muon stopping sites (the ‘Kubo-Toyabe’ function [61]). (d) Theoretical response due
to an oscillating magnetic field at the muon stopping sites with a single characteristic
timescale.
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π± → µ± + νµ. (2.15)

The muon is a spin-1/2 particle with magnetic moment 0.0048µB [5]. Due to parity

violation in the weak force the muon’s spin direction is guaranteed to be antiparallel to

its direction of travel after the pion decay, meaning a perfectly spin-polarised beam is

naturally produced. A single charge species, usually the positive muon, is then selected

and the beam focussed onto the sample using multipole magnets.

The sample is mounted inside a foil packet, usually made of silver. The muons interact

electrostatically with the atoms in the foil and sample, slowing down and stopping after

travelling through a few millimetres of material. The thickness of the foil is therefore

chosen so that as many muons as possible stop in the sample. Inevitably, a small fraction

of muons will however stop in the sample environment, leading to a small background

signal.

Once it has stopped in the sample, the muon will interact with any internal magnetic

field at the muon stopping site via its spin; for example if there is a static magnetic field

the muon will precess around that field, or if there is a fluctuating magnetic field the

muon spin may be randomly re-oriented.

Usually the presence of the muon does not affect the sample’s properties in a no-

ticeable way, however in some cases the muon can influence its environment through its

electric charge. This is especially true in materials whose electronic or magnetic proper-

ties are highly sensitive to ionic positions, such as in the Pr-containing pyrochlores [62],

where the muon causes a distortion of the nearby PrO8 units and changes the crystal

field energy levels on the Pr site. In these situations significant care is required in de-

termining the muon-induced effects, although this is sometimes achievable via in-depth

DFT calculations.

Muons are unstable with a half life of 2.2µs, decaying into a positron and two neu-

trinos
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µ+ → νµ + ν̄e + e+. (2.16)

Parity violation in this decay means that the positron’s emission direction is asym-

metric and more likely to be parallel to the muon’s spin at the time of emission than

anti-parallel. More precisely, the average fraction of positrons N(θ)/N0 emitted at an

angle θ to the muon’s spin is given by [63]

N(θ) = N0(1 + cos(θ)/3). (2.17)

This means that, by observing the emission directions of positrons as a function of

time since muon implantation we can reconstruct the muon spin’s time evolution while

stopped in the sample.

In a µSR experiment the sample is placed between two positron detector banks, in

the forward and backward directions with respect to the initial muon beam (Fig. 2.11

(a)). The quantity of interest is then the decay asymmetry A,

A(τ) =
NF(τ)− αNB(τ)

NF(τ) + αNB(τ)
(2.18)

where NF(τ) and NB(τ) are the positron count rates in the forward and backward de-

tectors and α is an instrumental parameter which takes into account different detector

efficiencies between the two banks. This asymmetry has a maximum possible value of

1/3 for perfectly polarised muons whose spin does not evolve with time and perfect

detectors. In reality, initial asymmetries of 25%–30% are typical.

Some common types of µSR spectra are shown in Fig. 2.11 (b–d). If the muons in

the sample all experience the same, static magnetic field their spins will precess about

the field in a coherent manner, leading to oscillations in the asymmetry as the spin

direction oscillates between the two detector banks (Fig. 2.11 (b)). The period of the

oscillations can be used to directly calculate the internal magnetic field experienced by

the muon. If there are a few distinct muon stopping environments with different magnetic
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fields a superposition of multiple oscillations may be also be seen, with the amplitude of

each oscillation being related to the proportion of muons experiencing the corresponding

field. This type of oscillatory response makes µSR a very powerful, microscopic probe of

ordered magnetic systems, since it is rare for a long-range magnetically ordered system

not to show such a response.

In the absence of magnetic order, a random distribution of static fields on microsec-

ond timescales at the muon sites results in ‘Kubo-Toyabe’ relaxation (Fig. 2.11 (c))

with a single, underdamped oscillation as the muon spins gradually lose coherence and

‘1/3-tail’ [61]. Alternatively, fields which fluctuate on microsecond timescales can cause

relaxation similar to that in Fig. 2.11 (d), which may fit to a single exponential (corre-

sponding to a single dominant fluctuation frequency) or the sum of several exponentials.

In these disordered situations in-depth modelling of the microscopic behaviour including

the spatial distribution of muon stopping sites is often required to obtain quantitative

information from the spectrum.

Further details on the µSR technique and its applications can be found in Refs. [63,

64].
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Chapter 3

Spin resonance in the iron-based

superconductor Li1−xFexODFe1−ySe

In this chapter I present an inelastic neutron scattering study of the recently-synthesised

iron-based superconductor (FeSC) Li1−xFexODFe1−ySe. This material stands out amongst

FeSCs since it bears many similarities to monolayer FeSe which has been shown to ex-

hibit a remarkably high Tc, perhaps as high as 100 K, including almost perfect FeSe

layers, a similar electron doping level and highly 2D electronic structure. Addition-

ally, Li1−xFexODFe1−ySe itself has a critical temperature Tc ' 41 K which is among the

highest seen in bulk FeSCs. Understanding the band structure and nature of the super-

conducting order parameter in Li1−xFexODFe1−ySe therefore promises insight into the

mechanism of superconductivity in FeSCs and information on how efforts to increase Tc

further might be best directed in future.

A large, deuterated powder sample of Li1−xFexODFe1−ySe with almost no Fe vacan-

cies in the FeSe planes (y ' 0) and the minimum possible interstitial iron (minimum x)

was produced via a novel post-synthetic lithiation procedure. I measured the inelastic

neutron scattering spectrum of this sample at a series of temperatures below and just

above the superconducting transition, observing a clear excitation with a double-peaked

shape appearing on cooling below Tc. The structure of this excitation is remarkably sim-

ilar to one seen in the superconducting state of the structurally similar FeSe-intercalate
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3. Spin resonance in the iron-based superconductor Li1−xFexODFe1−ySe

Li0.6(ND2)0.2(ND3)0.8Fe2Se2. Its Q dependence plausibly corresponds to nesting between

Fermi surface sheets seen in a previous ARPES study, and its energy and temperature

dependence strongly indicate it is a superconducting spin resonance.

When taken in combination with ARPES data and evidence from quasiparticle inter-

ference experiments (QPI) that the superconducting gap is nodeless, the Q-dependence

of the observed spin resonance places strong constraints on the possible gap symmetries,

completely ruling out several candidates including s++ symmetry. At the very least

this is important information for testing theories of the superconducting mechanism in

Li1−xFexOHFe1−ySe. Since the electronic structure and doping in Li1−xFexOHFe1−ySe is

very similar to that of monolayer FeSe, it is possible that this can also provide valuable

insight into the mechanism behind the very high Tc in that system.

The results and analysis in this chapter have been published in Physical Review B

94, 144503 (2016).

I am grateful to my collaborators on this project including D. Woodruff and Simon

Clarke’s group in the Chemistry Department at Oxford who grew the samples and took

the XRD and Magnetisation characterisation data and M. Rahn and A. T. Boothroyd

from my group in Oxford who helped perform the neutron scattering measurements.

3.1 Introduction

Much of the rich phenomenology of the iron-based superconductors, especially those

containing FeSe layers, remains unexplained [65–69]. The parent phase β-Fe1+xSe has

a relatively low superconducting transition temperature Tc of 8.5 K [70, 71] which can

be enhanced in a variety of ways including chemical substitution [65], the application

of pressure [72] or the intercalation of alkali metal ions and small molecules [73–80].

Remarkably, superconductivity has been observed in monolayers of FeSe on SrTiO3 with

Tc up to 65 K [81], and perhaps as high as Tc ∼ 100 K [82]. Intercalation significantly

lengthens the c-axis of the tetragonal unit cell and appears to increase the isolation of

the FeSe layers, mimicking the 2D electronic and physical environment of monolayer
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FeSe in bulk materials [32]. This suggests that bulk superconductivity at similarly high

temperatures might be achievable in derivatives of FeSe that have been tuned to optimal

carrier doping and inter-layer separation via chemical intercalation.

Intercalation of alkali ions to form compounds with bulk compositions close toA0.8Fe1.6Se

(A = K, Rb, Cs) has been reported to increase Tc up to 45 K [73–76]. The product,

however, is inhomogeneous with a majority non-superconducting phase containing iron

vacancies and superconductivity in a minority phase [83, 84]. An alternative route is

to synthesize intercalates of FeSe at room temperature or below from solutions of elec-

tropositive metal ions in ammonia [77–80]. This method can yield single-phase material

with vacancy-free FeSe layers and a controllable electronic doping level due to variable

amounts of intercalated metal ions and ammonia.

In addition to the ammonia intercalates, a LiOH-intercalate Li1−xFexOHFe1−ySe was

recently synthesised and is a bulk superconductor with Tc in excess of 40 K [85–87].

This material was initially synthesized by a hydrothermal route which was subsequently

adapted to include a post-synthetic lithiation step, resulting in almost vacancy-free

FeSe layers [88]. Investigations throughout the stable composition range (x ' 0.2,

0.02 < y < 0.15) found the highest Tc values when the iron vacancy concentration

is low (y < 0.05), corresponding to significant electron doping of the FeSe layers [88].

Consistent with this, angle-resolved photoemission spectroscopy (ARPES) [32, 89] and

scanning tunnelling spectroscopy [90] measurements have shown that the Fermi surface

consists only of electron pockets centred on the X points of the iron square lattice and

that the band structure, Fermi surface and gap symmetry are very similar to those of

the monolayer FeSe/SrTiO3 superconductor [32]. This makes Li1−xFexOHFe1−ySe a par-

ticularly promising material for studying the superconducting mechanism in the FeSCs

with the highest known critical temperatures.

Several competing theoretical models have been proposed to explain the supercon-

ductivity and remarkably high Tc in Li1−xFexOHFe1−ySe and other iron-based super-

conductors whose Fermi surface consists only of electron pockets. A variety of novel

66



3. Spin resonance in the iron-based superconductor Li1−xFexODFe1−ySe

pairing mechanisms based on magnetic [43, 91–95] and orbital [96, 97] fluctuations have

been suggested, with the theories predicting different superconducting gap symmetries,

including sign-preserving s++-wave and sign-changing s+− or d-wave. A conclusive de-

termination of the gap symmetry and sign distribution on the Fermi surface, which is

crucial for distinguishing between these theories, has so far proved elusive.

As discussed in Section 1.4.3, measurements of a spin resonance peak in inelastic neu-

tron scattering can yield useful information about the symmetry of the superconducting

gap and therefore potentially distinguish between the proposed paring mechanisms. The

aim of the experimental work in this chapter was to try to measure and characterise this

resonance experimentally in Li1−xFexOHFe1−ySe.

3.2 Sample Characterisation

Two separate batches of polycrystalline Li1−xFexODFe1−ySe, with masses of 9.18 g (S1)

and 8.17 g (S2) respectively, were synthesized via a novel lithiation method as detailed

in Ref. [88]. Starting from FeSe, parent samples were first obtained via a hydrothermal

synthesis route in the presence of a large excess of LiOD. These samples were washed with

deionised and deoxygenated water to remove any soluble side products. Any magnetic

impurities were removed using a strong magnet. The parent samples obtained in this

way then underwent a lithiation procedure in which they were stirred in a solution of

lithium in liquid ammonia. This final step adds extra Li to the sample, in the process

moving Fe out of the intercalate layer and into the FeSe layer (decreasing x and y in the

chemical formula). The daughter samples come very close to perfect FeSe layers with

the minimum possible amount of magnetic Fe in the intercalate layer.

Fully-deuterated samples were prepared in order to reduce the incoherent background

in the neutron scattering measurements. All sample handling was performed in an inert

atmosphere as the samples are known to be air-sensitive, with exposure to air of even

a few minutes affecting the superconductivity. Synchrotron x-ray powder diffraction

patterns taken on the Diamond Light Source I11 beamline [98] (Fig. 3.1 main pan-
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Figure 3.1: (a–b) X-ray powder diffraction data for two different deuterated powder
samples S1 (a) and S2 (b) of Li1−xFexODFe1−ySe after lithiation. Neutron scatter-
ing data presented in later figures were recorded from the combined sample S1 + S2.
Black points are experimental data and red lines are a fit obtained by Rietveld refine-
ment with space group P4/nmm and tetragonal lattice parameters a = 3.78088(1) Å,
c = 9.30020(7) Å (Daughter S1 = Li0.84Fe0.16ODFe0.99Se) and a = 3.77538(1) Å,
c = 9.36136(7) Å (Daughter S2 = Li0.83Fe0.17ODFe0.97Se). The sample in S2 is found
to have a small impurity of the unlithiated parent sample (parent composition =
Li0.81Fe0.19ODFe0.94Se). (c–d) Measured volume magnetic susceptibility χvol on field-
cooling (FC) and zero-field-cooling (ZFC) for the same two samples. Tc is determined
using the first data point at which χvol begins to reduce with cooling. No correction has
been made for demagnetisation.
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els) show both samples to be high quality with almost no Fe vacancies in the FeSe

plane and no detectable impurities except a small amount of unlithiated parent material

in one of the samples. The refined compositions were Li0.84Fe0.16ODFe0.99Se (S1) and

Li0.83Fe0.17ODFe0.97Se (S2) with a 2.6% impurity of Li0.81Fe0.19ODFe0.94Se in S2. The

fitted crystal structure of the samples is presented schematically in Fig. 3.2, together

with pure FeSe for comparison.

Field-cooled and zero-field-cooled magnetic susceptibility data taken on a Supercon-

ducting Quantum Interference Device (SQUID) magnetometer (Fig. 3.1 insets) show a

high superconducting volume fraction and Tc ' 41 K in both samples. Evidence from a

previous study on samples synthesised via the same method indicates that the impurity

composition will either not superconduct or will do so only with a low Tc (< 10 K) [88],

and in light of this observation and its low mass fraction in the sample we expect the

impurity to produce no measurable effect on the neutron spin resonance measurements

discussed later in this work. We note that there is no essential difference in susceptibil-

ity between the deuterated samples measured here and published data from equivalent

samples containing natural hydrogen [88], confirming that deuteration has no effect on

the bulk superconducting properties of this system. Magnetic susceptibility and x-ray

diffraction measurements confirmed that the samples remained unchanged after the ex-

periment.

An independent study, Ref. [99], examined the magnetic behaviour of the Fe in the

intercalate layer in one of the two samples used in this work (S1) via magnetisation and

muon spin relaxation measurements, observing spin-glass-like behaviour with a freezing

temperature Tf ' 10 K. The inelastic neutron scattering spectra presented in this chapter

are taken at temperatures significantly higher than 10 K and restricted to considerably

higher energy transfer than any magnetic excitations seen in typical spin glasses [100]

so it is unlikely the interstitial iron causes any signal in the datasets presented in this

chapter.

69



3.2. Sample Characterisation

Fe

Se

Li/Fe

O

D

(a) FeSe

(b) Li
1-x

Fe
x
ODFe

1-y
Se

(c) FeSe plane

a

ca

c

a

b

Figure 3.2: (a) The crystal structure of tetragonal FeSe. (b) The crystal structure
of LiOD-intercalated FeSe, Li1−xFexODFe1−ySe, studied in this chapter. (c) The FeSe
square planar unit viewed along the c-axis. Black lines show the boundaries of a single
two-Fe unit cell in each case.
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3.3 Experimental Details

Inelastic neutron scattering measurements were performed on the Merlin time-of-flight

chopper spectrometer at the ISIS facility [57]. The two powder samples S1 and S2 were

sealed in separate aluminium foil packets in concentric annular geometry inside a cylin-

drical aluminium can with diameter 4 cm and height 4 cm. The can was mounted inside

a closed-cycle cryostat. Spectra presented here were taken at a range of temperatures

between 6.5 and 62 K with neutron incident energy Ei = 80 meV and normalised to the

scattering from a standard vanadium sample to place the data on an absolute intensity

scale of mb sr−1 meV−1 f.u.−1, where 1 mb = 10−31 m2 and f.u. stands for one formula

unit of Li1−xFexODFe1−ySe (such that all scattering in this work is presented per Fe site

in the FeSe layer), although we note that we have not corrected for the strong neutron

attenuation of the sample. We estimate from the full width at half maximum (FWHM)

of the elastic line that the energy resolution in this configuration is 5 meV at the elastic

line and 3.7 meV at an energy transfer of 24 meV. All spectra presented here have also

been corrected for the Bose population factor {1− exp(−E/kBT )}−1, where E is the

neutron energy transfer and T is the temperature, so that the presented quantity is the

dynamical susceptibility χ′′(Q,E).

3.4 Results

Figure 3.3 (a) presents scattering as a function of momentum transfer Q averaged over

the energy transfer range 19 < E < 29 meV. The two sets of measurements shown are

for temperatures of T = 6.5 K and T > Tc, where the T > Tc curve is an average of

data collected at 51 and 62 K to improve the statistics. The justification for averaging

is that the 51 and 62 K data show no observable difference over the (Q,E) range of

interest after correction for the Bose factor. The general increase in scattering with Q

is due to scattering from phonons, but the T = 6.5 K curve has a clear enhancement in

spectral weight over the T > Tc curve in a broad range of Q from around 1.2 to 2.6 Å−1.

We attribute the excess scattering at low temperatures to the spin resonance appearing
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Figure 3.3: (a) Measured dynamical susceptibility of Li0.84Fe0.16ODFe0.98Se at T =
6.5 K and T > Tc as a function of momentum transfer Q = |Q| averaged over the
range of energy transfer 19 < E < 29 meV. Data for T > Tc are an average of
runs recorded at 51 K and 62 K. The formula unit (f.u.) used for normalisation is
that of Li0.84Fe0.16ODFe0.98Se. (b) Excess neutron scattering intensity ∆χ′′(E, 〈Q〉) =
χ′′(E, 〈Q〉, T = 6.5 K) − χ′′(E, 〈Q〉, T > Tc) as a function of energy transfer E. The
normal state intensity is the average of runs recorded at 51 K and 62 K as in (a) and
the signal is averaged across the full double peak structure, i.e. 1.2 < Q < 2.6 Å−1.
Dashed vertical lines mark E ' 2∆ and E ' 0.64 × 2∆, where ∆ ' 14.5 meV is the
superconducting gap from ARPES [32].

in the superconducting state, since any change in the phonon background is taken into

account by the Bose population factor correction.

Further evidence that this is the spin resonance can be seen in the energy dependence

of excess scattering at 6.5 K relative to T > Tc (Fig. 3.3 (b)), which shows a broad hump

between about 20 and 30 meV. Using Tc = 41 K and the gap energy ∆ ' 14.5 meV mea-

sured by ARPES on samples of this material with the same electron doping level and Tc

[32], we see that this signal is fully consistent with other unconventional superconductors

where the resonance appears at Eres ' 0.64× 2∆ (' 19 meV), or more approximately at

Eres ' 5.8 kBTc (= 21 meV) [101].

A plot of the excess scattering as a function of Q averaged over the energy range

from 19 to 29 meV is given in Fig. 3.4 (a). These energies correspond to the whole

energy range for scattering below the pair-breaking energy from 0.64 × 2∆ ' 19 meV

up to 2∆ ' 29 meV. The excess scattering has a double peak structure at 6.5 K with

no clear change in the shape or position of either peak at intermediate temperatures
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Composition Q1 (Å−1) σ1 (Å−1) Q2 (Å−1) σ2 (Å−1)

Li0.84Fe0.16ODFe0.98Se 1.46(3) 0.12(4) 1.97(7) 0.32(8)

Li0.6(ND2)0.2(ND3)0.8Fe2Se2 1.43(6) 0.27(7) 2.07(7) 0.21(8)

Table 3.1: Best-fit parameters for a two-Gaussian lineshape plus a constant back-
ground obtained from a least-squares fit to the 6.5 K data in Figure 3.4 (a)
(Li0.84Fe0.16ODFe0.98Se) and the 5 K data in Figure 3.5 (Li0.6(ND2)0.2(ND3)0.8Fe2Se2,
from Ref. [102]). The Qis are peak centres and σis the corresponding standard devi-
ations where σ = FWHM/2

√
2ln2.

in the superconducting state, for example 30 K. Some other features are visible in the

data, especially in the 30 and 42 K curves, which though small are not accounted for by

statistical noise. These could be the result of subtle variations in the background signal

with temperature, e.g. small changes in phonon modes, whose effect is magnified by the

subtraction of two very similar signals.

In order to quantify the peak shapes and temperature dependence, we performed a

fit similar to that in Ref. [102] of the subtracted data at 6.5 K to two Gaussian peaks

plus a constant background. Peak heights ai, centres Qi and widths σi as well as the

background were all allowed to vary independently, yielding the fitted parameters shown

in Table 3.1. For intermediate temperatures, the peak widths and centres were fixed to

the values in Table 3.1 and the ratio between the peak heights a1/a2 to its value at 6.5 K

such that only two parameters, the overall amplitude of the whole feature A and the

background, were refined. Within this treatment, A shows a general increasing trend

below Tc (Fig. 3.4 (b)) which could plausibly be consistent with an order-parameter-like

temperature dependence, I ∼ (T −T0)1/2. However, there is insufficient data to establish

such a relationship conclusively.

The spin resonance signal we observed here for Li1−xFexODFe1−ySe (Tc ' 41 K) is

remarkably similar to that measured on a powder sample of Li0.6(ND2)0.2(ND3)0.8Fe2Se2

(Tc ' 43 K) [102]. Cuts along the Q axis are presented for both materials in Fig. 3.5

averaged over the same energy range. The excess scatting at low temperatures shows

the same double-peak structure for each material, with peak positions at the same Q

to within experimental error. Fitted parameters are compared in Table 3.1. The most
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Figure 3.4: (a) Excess neutron scattering intensity as a function of Q at 6.5 K, 30 K and
42 K relative to the average of runs recorded at 51 K and 62 K, as in Fig. 3.3 (a). The
30 K and 6.5 K data have been offset vertically by 0.2 and 0.4 units, respectively. Dark
coloured lines are a best fit to two Gaussians plus a constant background at each tem-
perature, while horizontal broken lines are the constant background at each temperature
as a guide to the eye. The dashed vertical line marks the Q position corresponding to
the 2D wave vector (π, 0) in the 1-Fe square lattice Brillouin zone. (b) Temperature
dependence of the fitted overall amplitude A of the double-peak structure observed in
(a). The red line is the best fit to an order-parameter-like behaviour I ∼ (T − T0)1/2.
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significant difference between the two datasets is a constant scale factor resulting in ∼ 3

times more scattering per Fe site for the ammonia intercalate. This scale factor applies

to the whole spectrum including the elastic line and is explained by increased attenuation

(neutron absorption and elastic scattering) due partly to the greater presence of Li in

the LiOD-intercalate, which exhibits a significant neutron absorption cross-section, and

partly to the greater average neutron path length in the sample used here (the mass of

sample measured in [102] was 11.4 g, compared to 17.98 g here). Another difference is

some extra scattering from the ammonia-intercalate at low Q ' 1.2 Å−1 which has the

effect of widening the lower Q peak and is not present for the LiOD-intercalate.

In order to gain information about the superconductivity from the data presented here

it is necessary to know where the resonance occurs in the Brillouin zone. Using similar

arguments to those presented in Ref. [102] for the ammonia-intercalate we attribute the

two peaks to scattering from resonance positions in the first and second Brillouin zones.

It is clear for the LiOD-intercalate that the resonance does not occur at the Fe square

lattice wave vector (π, 0), as found in pure FeSe [103] (vertical dashed lines in Figs. 3.4

(a) and 3.5). Instead, as shown in Fig. 3.6, it is found to be in the vicinity of (π, π/2) and

equivalent positions as seen in other FeSe intercalates, and is in fact best described by

(π, 0.67π). This is remarkably close to (π, 0.625π) as predicted in one calculation [104].

In Ref. [102] it is suggested that the extra weight around Q ' 1.2 Å−1 may be from a

small secondary superconducting phase with a (π, 0) resonance appearing around 10 K,

possibly due to some degree of phase separation or sample inhomogeneity. The sharper

first order peak and complete lack of excess scattering at Q corresponding to (π, 0) in the

data presented here indicates there is no such minority phase or sample inhomogeneity

in the LiOD-intercalate.

Similarly, the initial studies of the LiOH-intercalate reported evidence for either an-

tiferromagnetic (Ref. [85]) or ferromagnetic (Ref. [86]) order. The low energy spin-

wave excitations of any long-range magnetic order would have a characteristic scat-

tering intensity at low energies which would disperse away from the respective order-
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and Li0.6(ND2)0.2(ND3)0.8Fe2Se2 with selected points of interest marked. Green circles
mark the possible wavevectors of the spin resonance seen in this work and Ref. [102],
assuming l = 0. Longer and shorter dashed black lines mark the 1-Fe and 2-Fe Brillouin
zone boundaries respectively. Figure reproduced from Ref. [102]
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Figure 3.7: ARPES data at 20 K in the kz = 0 plane for (a) Li0.84Fe0.16OHFe0.98Se and (b)
monolayer FeSe on SrTiO3, showing the similarity of the band structure. Grey squares
mark the Brillouin zone boundaries. Figure reproduced from Ref. [32].

ing wave vectors. We did not observe any such scattering in the neutron spectrum of

Li0.84Fe0.16ODFe0.98Se, consistent with the lack of any magnetic Bragg peaks in neutron

diffraction [88, 105, 106]. Furthermore, the study Ref. [99] on the same sample used

in our work also saw no evidence for long-range magnetic order at any temperature in

magnetisation and muon spin rotation (µSR) measurements. Since µSR in particular is

a highly sensitive probe of any internal magnetic fields this makes magnetic order in our

sample extremely unlikely and constrains any magnetic order in samples of optimally

superconducting Li1−xFexOHFe1−ySe in other works to a minority phase with different

chemical composition.

3.5 Discussion

Recently, the band structure, Fermi surface and superconducting gap of LiOH-intercalated

FeSe with the same level of electron doping and Tc as the sample used in this work were

measured in two ARPES studies [32, 89] and via scanning tunnelling spectroscopy [90].

Some of the ARPES data from one of these studies, Ref. [32], is reproduced in Fig. 3.7

for reference. Both ARPES studies found that the Fermi surface consists of almost iden-
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Figure 3.8: Schematic Fermi surface in the kz = 0 plane for Li1−xFexOHFe1−ySe, based
on the calculation in Ref. [104] and qualitatively consistent with all current experiments.
Brillouin zone boundaries are marked with thick dashed lines (1-Fe BZ) and thin dashed
lines (2-Fe BZ) while the lattice parameter used here a = 2.67 Å is that of the 1-Fe
in-plane unit cell. Γ and X labels mark special points of the 1-Fe Brillouin zone, with
each X point surrounded by two box-like fermi sheets (red lines) which in reality are
presumably hybridised at the points where they approach each other to avoid crossings.
Thick arrows mark nesting vectors between straight, parallel sections of Fermi surface
which cause a peak in nesting around (π, 0.625π) as calculated in Ref. [104].

tical, highly 2D electron pockets centred on (π, 0) and (0, π), i.e. the two X points of the

1-Fe square lattice Brillouin zone, although theoretical calculations indicate that it is

reasonable to expect two closely spaced Fermi sheets at each of these X points which are

presumably not resolvable in ARPES and may hybridise with one another. The scanning

tunnelling spectroscopy study provided strong evidence for this two-Fermi-sheet scenario,

showing that there are two different superconducting gaps. A schematic of this Fermi

surface geometry is provided in Fig. 3.8, with the precise Fermi surface cross-sections

represented by those calculated in Ref. [104], although it should be noted that there is

no experimental verification of these cross-sections due to limited resolution in ARPES.

Näıvely, nesting in this Fermi surface geometry would be expected to peak at (π, π),
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i.e. the vector connecting two X points at (π, 0) and (0, π), however it has been shown

via theoretical calculations [95, 104] that if the pockets have a non-circular cross section

then it is possible for the nesting to have a broad plateau around (π, π) and to reach

its maximum at some other position. For example, a full calculation for the type of

Fermi surface represented in Fig. 3.8 shows the maximum is at (π, 0.625π) [104] due to

enhanced nesting between parallel sections of the box-like Fermi surfaces as marked by

bold arrows in Fig. 3.8. It is also possible to obtain a peak at (π, π/2), as observed for

the alkali-metal intercalates [107–111], or at (π, 0.67π) as found in this work, by varying

the precise Fermi surface geometry and size slightly. The detailed shape of the Fermi

surface around the X points is not established in the ARPES data reported so far on

Li1−xFexOHFe1−ySe.

In weak-coupling spin fluctuation models the spin resonance is caused by nesting

between sections of Fermi surface with the opposite sign of the superconducting gap, so

our observation of a resonance at the very least rules out s++ pairing in which the gap

has the same sign at all places on all Fermi sheets.

There is evidence from scanning tunnelling spectroscopy (STS) [90] that the gaps on

all Fermi sheets are nodeless and anisotropic, with the fitted gaps nevertheless preserving

the 4-fold rotational symmetry of the crystallographic space group. If this is assumed

to be correct then only three possible gap distributions remain, with either (i) the sign

change between two decoupled Fermi sheets at the same X point, or (ii) the sign change

between equivalent Fermi sheets at different X points, or (iii) both (i) and (ii). In order

to verify these assumptions a better experimental determination of the Fermi surface

structure around a single X point is required, for example from higher resolution ARPES,

STS or quantum oscillations experiments.

3.6 Subsequent Works

Following the publication of the work in this chapter, several other studies on the same

material appeared. In particular, a single crystal inelastic neutron scattering study [112]
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Figure 3.9: The spin resonance in the kz = 0 plane in a single crystal of Li0.8Fe0.2ODFeSe
observed via inelastic neutron scattering. The hot-spot marked * is at the wavevector
(π, 0.67π) consistent with the powder data presented in this chapter. Figure reproduced
from Ref. [112].

measured the kz = 0 plane structure of the spin resonance, seeing rings of scattering

surrounding (π, π, 0) which are peaked at (π, 0.62π, 0) as shown in Fig. 3.9. Another

independent inelastic neutron scattering study [113] performed similar measurements at

kz = π, observing scattering peaked at Q = (π, 0.54π, π). In both cases the energy de-

pendence shows a broad enhancement in scattering between around 16 meV and 30 meV

and the enhanced scattering is absent above Tc, consistent with a spin resonance. Overall

these data are consistent with and confirms the conclusions of our powder experiment,

with the additional observation of a small, non-trivial kz dependence which could not

have been deduced from our data due to the effects of powder averaging.

There is also a recent quasiparticle interference (QPI) study [34] looking at the QPI

pattern near to non-magnetic Zn impurities in the FeSe layer which presented evidence

that the sign-change in the gap function is between the two Fermi sheets at the same X

point, i.e. case (i) from the discussion above. However, one theoretical study cast some

doubt on the validity of this novel technique [35].
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3.7 Summary

In summary, we have observed a spin resonance appearing in the superconducting state

of the FeSe intercalate Li0.84Fe0.16ODFe0.98Se at a 2D wave vector close to (π, π/2) as

found in other FeSe-intercalates. Best agreement with the data is obtained with the

wave vector (π, 0.67π). We see no evidence for a (π, 0) resonance, and the data are

remarkably similar to previous measurements on the lithium ammonia/amide intercalate

Li0.6(ND2)0.2(ND3)0.8Fe2Se2 reported in Ref. [102]. The observed wavevector (π, 0.67π)

is plausibly consistent with the nesting vector between pairs of 2D electron Fermi sheets

around (π, 0) and (0, π) seen in ARPES and scanning tunnelling spectroscopy, which

rules out conventional s++ pairing. When considered in the light of evidence that the

gap is nodeless, the observations constrain the sign of the gap to have one of three

possible distributions on the Fermi surface.
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Chapter 4

Coupled charge density wave and

lattice distortion in Na2Ti2Pn2O

(Pn = As, Sb)

In this chapter I present a single crystal x-ray diffraction study of the titanium oxypnic-

tide compounds Na2Ti2Sb2O and Na2Ti2As2O, with supporting µSR and ARPES mea-

surements. These materials, along with other physically similar titanium oxypnictides,

exhibit density wave (DW) transitions in close proximity to superconductivity whose

precise nature and symmetry-breaking has been the subject of considerable debate. In

many established unconventional superconductors it is thought that superconductivity

and the proximate density wave order are intimately connected, so information about the

precise nature of the density wave order in titanium oxypnictides is likely to be crucial

in establishing the superconducting mechanism in this family.

Single crystal x-ray diffraction data on Na2Ti2Sb2O and Na2Ti2As2O samples had

shown clear, weak superstructure reflections at non-integer (h, k, l) positions appearing

at the density wave transition temperature TDW, indicative of a small crystallographic

distortion. I was able to refine against the data the different possible distortion modes

which correspond to the irreducible representations of the crystallographic space group.
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In this way we obtained the precise distortion mode and all atomic positions in the DW

phase for both studied compositions. By analysing band back-folding in our collabora-

tors’ ARPES data as well as some µSR data from powder samples I was then able to use

the distortion modes I had established to show that the DW in both samples studied is a

commensurate, two-q charge density wave and determine the active propagation vectors

in each case. This result implies a strong electron–phonon coupling, offering a likely

explanation for the superconductivity in the related material BaTi2Sb2O.

The results and analysis presented in this chapter have been published in Physical

Review B 94, 104515 (2016).

I am grateful to a number of collaborators on this project, including the group of Y.-

G. Shi at the Chinese Academy of Science in Beijing who grew the crystals, L. Gannon,

A. J. Princep and A. T. Boothroyd from my research group in Oxford and the beamline

scientists on I19 at the Diamond Light Source who performed the XRD measurements

and R. D. Johnson who helped with the symmetry analysis.

4.1 Introduction

As discussed in earlier chapters, unconventional superconductivity often appears in the

neighbourhood of other symmetry-breaking ground states, especially density waves [114].

In many of the prominent theoretical scenarios strong fluctuations of the order parameter

characteristic of the proximate density wave ground state appear close to the supercon-

ducting region of the phase diagram and are integral to the pairing interaction. Since

there is such a strong relationship between the symmetry of the density wave state and

that of the superconducting pairing interaction it is therefore important to fully de-

termine the nature of any phase competing with superconductivity and any associated

broken symmetries.

Superconductivity close to spin density wave order has been established in many sys-

tems, notably the iron-based superconductors. The SDW in these materials is assisted by

partial nesting of quasi-two-dimensional electron and hole Fermi surface pockets [27, 115],
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4. Coupled charge density wave and lattice distortion in Na2Ti2Pn2O

which is suppressed under a range of conditions including doping and chemical and phys-

ical pressure. At the point where the SDW is suppressed strong spin fluctuations in the

equivalent symmetry channel remain and these fluctuations are widely thought to play

a central role in mediating unconventional superconducting pairing [116]. Superconduc-

tivity proximate to CDW formation is less often encountered but is known in several

transition-metal chalcogenides and oxides [117–120], especially the layered copper oxides

where CDW order is found to compete with superconductivity in several hole-doped ma-

terials [28, 121–126]. Theoretical work suggests that charge fluctuations near the onset

of CDW order may play an important role in the superconducting pairing mechanism

[127].

The layered titanium oxypnictides [128] ATi2Pn2O (A = Ba, Na2, (SrF)2, (SmO)2;

Pn = As, Sb, Bi) share structural similarities with the copper oxide and Fe-based su-

perconductors and display anomalies in magnetic, transport and thermal properties at

various temperatures up to 400 K which have been interpreted as some kind of density

wave transition [129–136]. Recently, superconductivity at Tc ' 1.2 K was discovered

in one member of this family, BaTi2Sb2O, which also shows a proposed DW order be-

low TDW ' 55 K, prompting suggestions of unconventional superconductivity [136, 137].

This explanation was supported by the observation that substitution of Na for Ba in-

creases Tc up to 5.5 K with concomitant gradual suppression of the DW transition [137].

A similar anticorrelation between Tc and TDW has been observed with other chemical

substitutions indicating competition between the superconducting and DW phases, al-

though there remain large regions of the phase diagrams in which they appear to coexist

[138–142].

Many attempts have been made to identify the nature of the DW phase in the tita-

nium oxypnictides, although a complete characterisation has proved elusive. Electronic

structure models predict a highly anisotropic Fermi surface with box-like electron and

hole pockets that are quite well nested and therefore susceptible to either SDW or CDW

instabilities [143–149], and ARPES data revealed a Fermi surface in good agreement with
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theory as well as evidence for gap formation at the DW transitions on parts of the Fermi

surface, confirming that the DW has a strong electronic component [150, 151]. Meanwhile

Density Functional Theory (DFT) phonon calculations predicted strong electron–phonon

coupling, which could plausibly induce a crystallographic distortion and encourage a

CDW in the accompanying symmetry channel [152, 153].

µSR studies of Na-doped BaTi2(As1−xSbx)2O did not detect any static magnetic

moments, leading to the conclusion that the DW phase in this composition cannot be

a SDW and is most likely a CDW [154, 155], while a Nuclear Quadrupole Resonance

(NQR) study observed microscopic breaking of 4-fold symmetry and concluded that only

a commensurate CDW could explain the data [156].

Further evidence for 4-fold symmetry breaking at the DW temperature came from a

neutron diffraction study in BaTi2(As,Sb)2O [157] and Raman scattering in Na2Ti2As2O

[158]. Electron and neutron diffraction studies of ATi2Pn2O compounds [154, 157] did

not observe any magnetic or charge superstructure associated with a SDW or CDW or-

dering, however, prompting proposals that the DW phase is either some form of novel

intra- unit cell orbital nematic state [157, 159], or is characterized by an orbital polar-

ization that takes place without any lowering of symmetry [160].

The aim of the work presented here was to search for a crystallographic distortion at

the DW temperature as predicted by phonon DFT using high-resolution x-ray diffraction.

Any such distortion would likely be coupled to a CDW with the same symmetry via

electron-phonon coupling, so a full low-temperature structural characterisation may shed

light on the symmetry breaking of the DW.

4.1.1 High-Temperature Crystal Structure

The established high-temperature crystal structure of the titanium oxypnictides is shown

in Fig. 4.1. The key structural element present in all compositions is the Ti2O square

planar motif, with O sites on the corners of the squares and Ti on the sides (Fig. 4.1

(c)). This is the anti-structure of the CuO2 planes seen in the high-temperature cuprate

superconductors. Above and below the centre of the squares are pnictogen (Pn) sites
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Figure 4.1: (a) The crystal structure of superconducting BaTi2Sb2O (b) The crystal
structure of the compositions studied in this chapter, Na2Ti2Sb2O and Na2Ti2As2O (c)
The Ti2O square-planar unit common to all Ti oxypnictide families (d) The structurally
similar CuO2 square-planar unit present in the Copper Oxide high-Tc superconductors.
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occupied by As, Sb or Bi, which is similar to the structure of the iron-based supercon-

ductors. The electronic properties of the iron-based superconductors are very sensitive

to the height of the pnictogen site above the Fe layer, presumably since hybridisation

with the pnictogen p-orbitals significantly modifies in-plane Fe-Fe bonding, and the Ti

oxypnictides have been shown to exhibit a similar sensitivity to this parameter [128].

The valence states of the constituent ions in the active Ti2Pn2O layers are O2−,

Pn3− and Ti3+, with the Ti valence state being especially noteworthy as it leads to a d1

configuration which is the conjugate of the d9 configuration of Cu in the cuprates and

might therefore be expected to behave in a similar manner. The total charge per Ti2Pn2O

formula unit is –2, meaning that positively charged spacer layers are required for overall

charge neutrality. In the two compositions studied here there are two Na+ spacer layers

between active Ti2Pn2O layers, whereas for the superconducting composition there is

a single Ba2+ layer (Fig. 4.1 (a–b)). There is also some variation in stacking, with the

square planes in neighbouring pairs of Ti2Pn2O layers being offset by the in-plane vector

(1/2, 1/2) for Na2Ti2Pn2O, while neighbouring planes are not offset in BaTi2Pn2O.

4.2 Sample Characterisation

Single crystals and powder samples of Na2Ti2Sb2O and Na2Ti2As2O were prepared via

a flux method as described by Shi et al. [161]. High-purity starting materials of Ti and

TiO2 powder were mixed together with NaAs or NaSb flux in the correct molar ratio

and heated in an inert atmosphere at around 1200 0C for 5 hours before being cooled and

spun in a centrifugal separator to remove excess flux. Following this process, plate-like

single crystals with typical dimensions of around 3 mm× 3 mm× 0.1 mm were obtained.

Magnetic susceptibility and electrical resistivity measurements (Fig. 4.2) show clear

anomalies at TDW ' 115 K and TDW ' 320 K for Pn = Sb and As, respectively, coinciding

with the DW transition temperatures in these materials known from literature [161].

The Pn = As compound appears to undergo a metal-to-insulator transition on cooling

through TDW, whereas for Pn = Sb the sample remains metallic throughout, albeit
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(a) (b)

(c) (d)
Pn = AsPn = Sb

Pn = As

Pn = Sb

Figure 4.2: (a–b) In-plane (H ‖ ab) and out-of-plane (H ‖ c) magnetic susceptibility
of single crystals of Na2Ti2Sb2O (a) and Na2Ti2As2O (b). (c–d) In-plane (ρab) and
out-of-plane (ρc) resistivity of the same crystals. Figures reproduced from Ref. [161].

with a stepped increased in resistivity on entering the DW phase. There is also a large

uniaxial anisotropy with magnetic susceptibility and electrical resistivity being an order

of magnitude higher out-of-plane (parallel to the c-axis) than in-plane (perpendicular

to c), consistent with a layered structure. There is no evidence for in-plane symmetry

breaking in this initial transport data.

4.3 Results and analysis

4.3.1 Muon Spin Relaxation (µSR)

µSR measurements were performed on the EMU spectrometer at the ISIS Pulsed Muon

Facility using powder samples of Na2Ti2Pn2O (Pn = Sb, As) packed inside 25µm silver

foil packets mounted on a silver backing plate and measured at temperatures above and

below TDW using a closed-cycle refrigerator. Figure 4.3 shows the temperature variation

of the measured zero-field µSR asymmetry after muon implantation. The asymmetry

shows no characteristic features associated with magnetic order (oscillations) or magnetic

fluctuations in either sample and has a very small relaxation rate which is virtually
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Figure 4.3: Temperature dependence of the µSR asymmetry for (a) Na2Ti2Sb2O and (b)
Na2Ti2As2O. There is no evidence in the curves for any relaxation due to magnetic order
or magnetic fluctuations.

independent of temperature. Furthermore, there was no change in the asymmetry of the

muon spin precession in a weak transverse field, indicating that any magnetic fluctuations

at the muon stopping site are negligibly small. This observed µSR behaviour is most

likely dominated by nuclear relaxation from Na and Sb/As nuclei with the very small

temperature variation plausibly caused by muon diffusion at high temperatures. These

results strongly indicate that the DWs in Na2Ti2Pn2O are most likely CDWs rather

than SDWs, since a SDW would result in magnetic fluctuations and long-range order.

4.3.2 X-ray Diffraction

Temperature dependent x-ray diffraction measurements were performed on single crystal

samples of Na2Ti2Pn2O (Pn = Sb, As) using a Mo-source Oxford Diffraction Supernova

diffractometer equipped with a liquid nitrogen flow cryostat. The diffraction data pre-

sented here on Na2Ti2As2O were collected from a large single crystal of approximate

dimensions 2× 0.5× 1 mm3, while data taken on Na2Ti2Sb2O were from a much smaller

sample 0.5 × 0.5 × 0.1 mm3. Additionally, synchrotron x-ray diffraction patterns were

recorded from a single-crystal of Na2Ti2Sb2O at high (T = 300 K > TDW) and low

(T ∼ 100 K < TDW) temperatures on the I19 beamline [162] at the Diamond Light

Source. The experiment was conducted in the experimental hutch EH1 using an inci-

dent monochromatic beam at the Zr edge with a wavelength of 0.6889 Å, and a 4-circle

diffractometer with a charge-coupled device (CCD) detector. The Helix device installed
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Figure 4.4: Experimental single crystal x-ray diffraction maps (left half-panels) and
simulations (right half-panels) in the (1/2, k, l) and (2, k, l) reciprocal space planes of
Na2Ti2Sb2O measured at temperatures above (300 K) and below (∼100 K) the structural
distortion temperature TDW. Intensities are plotted on a log scale.

on the beamline was used to cool the sample below its transition temperature using a

flow of helium. These samples are air-sensitive and were coated with vacuum grease to

prevent decomposition during diffraction measurements.

Figures 4.4 and 4.5 present x-ray diffraction intensity maps for Na2Ti2Sb2O and

Na2Ti2As2O respectively in the (1/2, k, l) and (2, k, l) reciprocal space planes recorded

above and below TDW. Well-resolved Bragg peaks were seen in all these diffraction

measurements, although data from both compounds show some elongation of the Bragg

peaks along the c∗-direction and some mosaic broadening, especially in Na2Ti2As2O.

This indicates some disorder along the c-axis, likely due to random stacking faults which
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Figure 4.5: Experimental single crystal x-ray diffraction maps (left half-panels) and
simulations (right half-panels) in the (1/2, k, l) and (2, k, l) reciprocal space planes of
Na2Ti2As2O measured at temperatures above (330 K) and below (230 K) the structural
distortion temperature TDW. Intensities are plotted on a log scale.

may be anticipated in systems with weak inter-layer chemical bonding. All Bragg peaks

in the highest temperature datasets for both compositions could be indexed in the es-

tablished I4/mmm space group, and we shall henceforth refer Bragg reflections and

reciprocal lattice coordinates to the I4/mmm conventional unit cell. The fitted tetrag-

onal lattice parameters at 300 K are a = 4.1525(4) Å, c = 16.585(3) Å for Pn = Sb and

a = 4.061(1) Å, c = 15.272(4) Å for Pn = As, consistent with literature values in both

cases [131, 132]. Error bars on structural parameters quoted here and throughout this

chapter correspond to uncertainties on the structural fitting and refinement procedure.

Upon cooling below TDW the data reveal weak superstructure reflections appearing
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Figure 4.6: Measured x-ray intensity as a function of temperature close to TDW along the
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The red line is a best fit of the form I ∼ (TDW − T )1/2, intended as a guide to the eye.

at positions with indices h + k = half an odd integer, l = integer for Pn = Sb, while

for Pn = As a similar superstructure is observed except the peaks are shifted to half-

integer positions along l. This superstructure is the key experimental observation of this

chapter.

The precise l positions of the superstructure and its evolution as a function of tem-

perature close to TDW is best seen by taking cuts through the data from the laboratory

x-ray diffractometer, as shown in Fig. 4.6. Figure 4.6 (a) shows the superstructure peaks

in Na2Ti2Sb2O in cuts along (2, 1/2, l), −2 ≤ l ≤ 2 at several temperatures between 95

and 115 K, Fig. 4.6 (b) shows a similar plot for Na2Ti2As2O at temperatures between 230

and 320 K and Fig. 4.6 (c) follows the (2, 1/2, 0) peak maximum intensity as a function of

temperature for Na2Ti2Sb2O. The superstructure peaks were detected for temperatures

below 115 K (Pn = Sb) and 300 K (Pn = As), consistent with the previously measured

anomalies in bulk data at TDW ' 115 K (Pn = Sb) and 320 K (Pn = As). Mosaic broad-

ening made it impossible to extract a reliable quantitative temperature dependence for

the superstructure peaks for Pn = As.

The superstructures in both materials can be indexed (after averaging over an equal

population of equivalent domains) using either a two-q distortion with commensurate

propagation vectors q1 and q2, or a single-q distortion with either of q1 or q2, where
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4.3. Results and analysis

q1 = (1/2, 0, l) and q2 = (0, 1/2, l), with l = 0 (Sb) or l = 1/2 (As).

In order to characterise the distortion further, displacive distortion modes of the

Na2Ti2Pn2O I4/mmm parent crystal structure were calculated using Isodistort [163].

Four irreducible representations of the in-plane commensurate propagation vector

(1/2, 0, 0) were determined, labelled Σ1, Σ2, Σ3, and Σ4 in Miller and Love notation

[164], which support finite displacements of all atomic species present. Considering all

symmetry-distinct directions of the order parameter, a total of 52 superstructures were

found. We were able to constrain this number significantly by testing each against the

qualitative features of our data shown in Figs. 4.4 and 4.5. Firstly, reflections extinct

by I-centring in the high temperature parent phase at h + k + l = odd positions were

observed to remain extinct in the distorted phase. The super-space group must therefore

contain a symmetry element that, for all atomic positions, gives a reflection condition

equivalent to that of the I-centring translational symmetry of the parent. Secondly, the

period-eight modulation observed in the diffraction intensity along l requires displace-

ments of both Ti and Sb ions to be orthogonal to the I4/mmm c-axis. Overall, we were

left with just two two-q modes and two single-q modes.

The two-q modes are both described by the space group Cmcm with basis

{(2, 2, 0), (2,−2, 0), (0, 0,−1)} and origin shift (3/4, 5/4,−1/4) with respect to the parent

structure, and within Σ1 and Σ4 representations, respectively. The Σ1 mode describes

displacements of the titanium ions parallel to the respective O–Ti–O bond, whereas the

Σ4 mode describes orthogonal displacements. A preliminary comparison of the calcu-

lated diffraction patterns due to both these Σ1 and Σ4 Cmcm distortion modes to the

experimental data indicated that both models can provide reasonable qualitative agree-

ment with the data, but only the Σ4 model accurately reproduces the relative intensity

between groups of reflections along l, when measured at different h or k as seen in

Fig. 4.4.

A structural distortion model for Na2Ti2As2O was found via the same strategy, again

yielding one two-q mode and two single-q modes which agree with the experimental data.
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4. Coupled charge density wave and lattice distortion in Na2Ti2Pn2O

For both compositions the two-q mode involves Ti displacements perpendicular to

the local O–Ti–O bond, whereas both single-q modes involve a mixture of displacements

parallel and perpendicular to O–Ti–O bonds. As transverse displacements are expected

to be energetically more favourable than longitudinal ones the two-q mode is the most

likely distortion, so for each material we performed least-squares refinements of the two-q

mode against the integrated intensities of the best resolved superstructure peaks at the

lowest temperatures using the FullProf software package [165].

For Pn = Sb, all reflections from the model distorted structure obey Fhkl = ±Fkhl

where hkl are referred to the reciprocal space of the I4/mmm structure, so that the

contributions to intensity at any hkl from the two equivalent orthorhombic domains are

equal. It was therefore possible to perform a quantitative refinement by using a single

domain and refining an overall scale factor. For Pn = As, it was found that there

is no overlap between superstructure reflections from the two equivalent domains so a

quantitative fit was again possible by indexing half of the observed superstructure peaks

using a single domain.

For both materials, displacements of the Ti and Sb/As sites are required to reproduce

all of the qualitative features of the experimental data. A small displacement of the Na

sites is also allowed by symmetry and was found to improve the quantitative fit slightly

for Pn = Sb, although the fit is not very sensitive to this. Such a displacement would

also be allowed for Pn = As, although our data are not of sufficient quality to perform

a quantitative refinement in that case.

The x-ray diffraction intensities calculated from the model are shown in Fig. 4.4 for

Pn = Sb and in Fig. 4.5 for Pn = As (right half-panels), and a plot of the observed versus

calculated squared structure factors in both cases is given in Fig. 4.7. For both mate-

rials there is reasonable agreement between the observed and calculated superstructure

intensities. In particular, the intensity modulation along (0, 0, l) is well reproduced.

Figure 4.8 shows the in-plane distortion models for both materials and the relation

between them and how the layers stack along c, while the relevant displacement pattern
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96
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Pn = Sb
Cmcm x y z

Na1 0 0.377(3) 0.93054
Na2 0 0.127(3) 0.43054
Na3 0.752(3) 0.125 0.93054
Ti1 0.3668(12) 0.0082(12) 0.25
Ti2 0.6332(12) 0.2418(12) 0.25
Ti3 0.8832(12) -0.0082(12) 0.25
Ti4 0.1168(12) 0.2582(12) 0.25
Sb1 0 0.376(1) 0.12884
Sb2 0 0.126(1) 0.62884
Sb3 0.751(1) 0.125 0.12884
O1 0 0.625 0.25
O2 0 0.125 0.25
O3 0.75 0.375 0.25

Pn = As
C2/m x y z

Na1 0.9097 0 0.6389
Na2 0.4097 0 0.6389
Na3 0.1597 0.25 0.6389
Ti1 0.1315(14) 0.1185(14) 0
Ti2 0.8815(14) 0.3685(14) 0
As1 0.810(1) 0 0.2423
As2 0.311(1) 0 0.2423
As3 0.06058 0.24912(17) 0.2423
O1 0 0 0
O2 0 0.5 0
O3 0.25 0.25 0

Table 4.1: Atomic positions in the distorted structure of Na2Ti2Pn2O for Pn = Sb and
As from the least-squares fits to our x-ray data shown in the main text.
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Figure 4.9: The proposed distortion in the Na layers. (a) ab-plane distortion pattern for
a single Na layer relative to the positions of the Ti and Sb atoms in the nearest Ti2Pn2O
unit, with thin dashed lines showing the high temperature I4/mmm unit cell boundaries,
thick dashed lines the low temperature unit cell boundary and solid lines the unit cell
of the Ti2Pn2O layer distortion pattern. (b) and (c) show how these layers stack, with
+ and − beside each Na layer being the sign of the distortion in that layer, where +
is defined as the pattern in (a), and the numbers beside each Ti2Pn2O unit giving the
distortion pattern in that unit as defined in the main text. Black and purple dashed
lines mark the unit cells of the distorted structures for Pn = Sb and As respectively.

for Na layers is presented in Figure 4.9. Final positions for all sites in the best-fit

distorted structures can be found in Table 4.1. The in-plane displacement pattern of a

layer of Ti2Pn2O units depicted in Fig. 4.8(a), which is the same for both compounds, is

a 2× 2 superstructure with the most significant distortion being an in-plane shift of all

the Ti atoms perpendicular to the Ti–O nearest-neighbour bonds. The magnitude of the

shift is found to be about 0.14±0.03 Å for Pn = Sb and 0.10±0.03 Å for Pn = As. The

Pn sites immediately above and below each Ti2O plaquette undergo a smaller in-plane

distortion (' 0.012 Å in both cases). Best agreement with experiment for Pn = Sb is

obtained when the Na layers are allowed to distort slightly (by ' 0.025 Å) such that

every Na atom moves parallel to the nearest Pn immediately above/below it along the

c axis (Fig. 4.9). The fit was not very sensitive to the size of the Na distortion, however.

In the distorted phase the isolated Ti2Pn2O layer has 4-fold axes through half of the

O sites, which plausibly explains why the a and b lattice parameters remain virtually

the same [131]. The 4-fold axes do not coincide between layers upon stacking in the c

direction, so the three-dimensional superstructures do not have 4-fold symmetry. For
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4. Coupled charge density wave and lattice distortion in Na2Ti2Pn2O

Pn = Sb, the superstructure within one Ti2Sb2O layer displaces first by t and then by

−t, where t = (1/2, 1/2, 1/2) in I4/mmm. The resulting structure is orthorhombic with

space group Cmcm and lattice vectors a′ = 2(a + b), b′ = 2(a − b) and c′ = c, see

Figs. 4.8 (a) and (b). In the case of Pn = As, each layer is displaced by t relative to

the one below resulting in a monoclinic structure with space group C2/m and lattice

vectors a′ = 2(a−b), b′ = 2(a + b) and c′ = 1
2
(−a + b + c), Fig. 4.8 (c). The distortion

in the As compound has period 2c along the c axis which is why the superlattice peaks

appear at l = half-odd integer positions (half-even integer reflections are absent because

the distortion of a Ti2As2O unit undergoes a phase shift of π upon translation by c along

the c axis.) The diffraction maps shown in Fig. 4.4 (for Pn = Sb) and in Fig. 4.5 (for

Pn = As) are averaged over equal populations of equivalent domains.

The superstructures found here have some features in common with the distortion

mode predicted from density functional theory (DFT) by Subedi [152] for BaTi2Sb2O.

Both involve transverse displacements of the Ti atoms relative to the O–Ti–O bond, and

the calculated shift of ' 0.14 Å is very close to that obtained from our model. However,

the predicted distortion mode has a
√

2a ×
√

2a in-plane unit cell which has a smaller

area and different propagation vectors than that obtained here and therefore cannot

index some of the superstructure peaks observed in the x-ray pattern, for example the

peak at (2, 1/2, 0).

4.3.3 Angle-Resolved Photoemission Spectroscopy

Figure 4.10(a) shows special points in the kz = 0 plane in the reciprocal space of

Na2Ti2Sb2O. For the I4/mmm parent structure, reciprocal lattice points (all symmetry-

equivalent to Γ = (0, 0, 0)) are marked with filled circles and systematic absences with

crosses. At the phase transition into the Cmcm distorted structure determined by x-ray

diffraction all crosses (I4/mmm absences) become reciprocal lattice points, as well as

the X = (1/2, 0, 0) and M = (1/2, 1/2, 0) points, which are marked with empty circles.

According to our model, the X and Γ points become equivalent in the Cmcm structure

below TDW, since X becomes the (1, 0, 0) point on the reciprocal lattice of the distorted
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4. Coupled charge density wave and lattice distortion in Na2Ti2Pn2O

structure. One consequence of this is that any electronic bands which are present at

X at high temperature should ‘fold’ back and appear at Γ in the distorted phase (and

similarly the bands at Γ at high temperature should fold to X). Angle-resolved photoe-

mission spectroscopy (ARPES) is very well suited to direct measurements of in-plane

electronic band structure for layered materials, so looking for band folding in ARPES

experiments presents an independent way to detect the symmetry breaking at TDW and

confirm that our distortion model is correct.

ARPES measurements were performed at the PGM (Plane Grating Monochromator)

beamline of the Synchrotron Radiation Center (Wisconsin), as well as at the beamline

SIS (Surface and Interface Spectroscopy) of the Swiss Light Source at Paul Scherrer

Institute (PSI), both equipped with a Scienta R4000 analyzer. The energy and angular

resolutions were set at 15-30 meV and 0.2◦, respectively. The crystals were cleaved in situ

and measured in the 24 to 150 K temperature range in a vacuum better than 8× 10−11

Torr. The ARPES data were recorded using s polarized light.

Figure 4.10 (b, c, e and f) show measured band dispersions through the Γ (b, e) and

X (c, f) points above (T = 140 K) and below (T = 24 K) TDW, and Fig. 4.10 (d) shows

the observed Fermi surface (FS) in the undistorted state at 140 K. The measured band

structure at high temperature agrees with that reported in Ref. [150] as well as with DFT

calculations. In previous studies it has been established that there are three FS sheets,

one around each of Γ, X and M, all of which are quasi-2D and have approximately

square cross-sections. The Γ FS sheet is predicted to show a more pronounced 3D

warping, although this has not yet been observed experimentally, perhaps due to limited

kz resolution in the ARPES experiments [150]. We observed all the Γ, X and M FS

pockets in our dataset, although we saw only two opposite sections of the squarish FS

pocket at M, which we attribute to matrix element effects. Since these three FS pockets

are similar in shape at the first order, it is plausible that a CDW with wavevectors q1 =

(1/2, 0, 0) and q2 = (0, 1/2, 0) can develop due to nesting between them as suggested by

Tan et al. [150], depending on the precise 3D nature and warping of the FS sheets.

101



4.3. Results and analysis

At 140 K > TDW, the band structures around Γ and X are clearly different. While an

electron band is found at Γ, a hole band is observed at the X point, both of which cross

EF directly (Fig. 4.10 (b) and 4.10 (c)). Upon cooling down to 24 K (Fig. 4.10 (e–g))

the Γ and X bands fold onto each other and hybridize near EF, thus gapping the Fermi

surface as expected for a CDW gap formation. This band folding and the resulting

back-bending can be seen in our data, particularly in Fig. 4.10 (g) where we extract

the band positions relative to the nearby high-symmetry point via Energy Distribution

Curve (EDC) analysis. The folded bands coincide remarkably well, fully consistent with

a CDW with the wavevectors q1 and q2. This provides evidence that at least some parts

of the Γ and X FS pockets are involved in the CDW gap formation. Whether the M point

FS sheet is also involved, and whether the CDW gap on each of these three FS sheets is

full or only partial as a function of kz remain open questions that may be answered via

more in-depth ARPES studies.

Our ARPES measurements cannot reliably distinguish whether the CDW exhibits

both or only one of the propagation vectors q1 and q2 due to the effects of domains in

the single-q case. However if CDWs with q1 and q2 do develop simultaneously (which is

reasonable since q1 and q2 are equivalent in I4/mmm) then they are expected to couple

to a two-q lattice distortion with the same propagation vectors q1 and q2. We have

detected precisely such a distortion in this work, providing a unified picture of a coupled

CDW and lattice distortion appearing at TDW = 115 K in Na2Ti2Sb2O. ARPES data have

not been published for the case of Pn = As, but non-magnetic DFT calculations [147]

predict a very similar Fermi surface to Pn = Sb with quasi-two-dimensional (2D) Fermi

sheets around the Γ, X and M points. Nesting vectors of the form q1 = (1/2, 0, l) and

q2 = (0, 1/2, l) for some l leading to associated CDWs coupled to the lattice distortion

are therefore plausible in this case too.

4.3.4 Subsequent Works

Following the completion and publication of the work presented in this chapter some

other papers have appeared on these materials. Particularly noteworthy is Ref. [166],
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1 nm

16 pm

0 pm

Figure 4.11: An STM image taken in a defect-free area of the Na-terminated surface of
a cleaved single crystal of Na2Ti2Sb2O, reproduced from Ref. [166]. Green dots mark
the locations of Na atoms, with the black lines indicating the distorted lattice and white
dashed lines marking the unit cell of the 2 x 2 superstructure.

a Scanning Tunnelling Microscopy (STM) study on Na2Ti2Sb2O in which the authors

directly image the atomic displacements on the Na-terminated surface of a cleaved sin-

gle crystal. The observed Na displacement pattern matches exactly the two-q distortion

found in the work presented in this chapter, albeit with a larger magnitude of Na dis-

placement which can plausibly be explained as a surface effect.

Two further phonon DFT studies have also appeared [167, 168] which reproduce most

of the significant features seen here including a CDW and lattice distortion with one or

both of q1 and q2.

4.4 Summary

The identification of the DW transition in the titanium oxypnictides as a lattice distor-

tion coupled to a CDW solves the puzzle of the nature of this transition and provides

a complete determination of the low temperature ordered phase including the periodic-

ity, symmetry and lattice distortion mode. Fermi surface nesting assists the CDW to

form, and the opening of a gap on nested parts of the Fermi surface explains the in-

crease in resistivity and drop in magnetic susceptibility observed at TDW. The observed

lattice instability implies a strong electron-phonon coupling for at least this one mode,

which points towards a conventional phonon-mediated mechanism for the superconduct-
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ing phase found in doped BaTi2Sb2O. However, given that superconductivity appears

upon suppression of the CDW transition, unconventional mechanisms involving charge

fluctuations, similar to that proposed in Ref. [127] for the copper oxide superconduc-

tors, cannot be ruled out. The results provide a new impetus for theoretical models of

superconductivity in this system.
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Chapter 5

Jeff = 0 ground state and

defect-induced spin glass behaviour

in the pyrochlore osmate Y2Os2O7

In this chapter I present a detailed study of the 5d osmate Y2Os2O7 via a wide variety

of experimental techniques. Interest in compounds containing ions in the 5d4 electronic

configuration like Y2Os2O7 has developed in recent years following the discovery of non-

zero magnetic moment in the perovskite iridates A2YIrO6 (A = Sr, Ba). The magnetic

ions in these materials have a nominal non-magnetic Jeff = 0 state in the single-ion

limit, leading to proposals of novel co-operative mechanisms involving the condensation

of magnetic excitons to explain the unexpected magnetism. There has, however, been

no definitive experimental confirmation of this and further studies in some composi-

tions indicated that the magnetism is actually related to disorder or extrinsic effects in

experimental samples.

Y2Os2O7 was the subject of one recent study which observed a non-zero magnetic

moment and spin-glass behaviour, however prior to my work the origin of the magnetic

moment was unclear. It represents a promising candidate for the realisation of excitonic

magnetism since the OsO6 octahedra are corner-sharing, meaning the magnetic superex-
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change between Os sites is expected to be quite strong, one of the key requirements of

theories of excitonic condensation.

By combining results from a variety of experimental techniques including AC and

DC magnetisation measurements, µSR, polarised neutron scattering and RIXS, I have

been able to establish that the magnetism in Y2Os2O7 is very likely to be due to large

magnetic moments located on a small fraction (. 5%) of the Os sites in the sample, likely

related to microscopic crystalline disorder. The majority of Os sites exhibit the Jeff = 0

non-magnetic state, and I was able to measure their single-ion excitation spectrum and

show that it matches the results of single-ion calculations. I also studied the dynamics

of the spin freezing, showing that at low temperature some areas of the sample remain

non-magnetic and that some of the spins in the magnetic parts of the sample remain

dynamic, which may indicate clustering of the magnetically active Os sites.

The results and analysis presented in this chapter are the subject of a paper which

is under review for the journal Physical Review B.

I am grateful to my collaborators on this project including members of the group of

Youguo Shi at the Beijing Institute of Physics who prepared the sample, C. V. Topping

who helped perform the high field magnetisation measurements, F. K. K. Kirschner who

performed the µSR simulations and M. C. Rahn, A. J. Princep, H. Jacobsen and A. T.

Boothroyd from my group in Oxford who helped perform the µSR, polarised neutron

scattering and RIXS measurements.

5.1 Introduction

In the single-ion picture, octahedrally coordinated transition-metal ions with a d4 elec-

tronic configuration, such as Os4+ and Ir5+, are expected to have a non-magnetic singlet

ground state in both the strong spin-orbit and strong Hund’s coupling limits. For strong

spin-orbit coupling, the t2g levels are split into a fully-filled jeff = 3/2 quadruplet and

an empty jeff = 1/2 doublet yielding an overall Jeff = 0, while for strong Hund’s cou-

pling each site is in a S = 1, Leff = 1 state with Leff and S coupled together under the
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Figure 5.1: The arrangement of electrons among single-electron states in the t2g manifold
for the d4 configuration in (a) the strong Hund’s coupling and (b) the strong spin-orbit
coupling limits.

spin-orbit interaction to form also a Jeff = 0 state, as shown in Fig. 5.1.

Such materials have been studied since the 1960s [174], and although many are non-

magnetic there are cases in which a magnetic moment and possibly magnetic ordering

is nevertheless observed experimentally [169–171, 173, 175–179] with several different

novel mechanisms being proposed to explain this [172, 180–182]. Notable examples

which have been studied recently include the double perovskite iridates A2YIrO6 (A =

Sr, Ba) [169, 170, 177] and the pyrochlore osmates R2Os2O7 (R = rare earth) [173].

For the iridates some theories proposed that a novel excitonic mechanism related to

the interplay of spin-orbit coupling and superexchange was behind the magnetic state

[180–182], however it has been pointed out that the superexchange interaction is prob-

ably not strong enough in these materials to induce excitonic magnetism since the IrO6

octahedra are isolated from one another [10]. Instead, the observed moment has been

ascribed to extrinsic explanations such as paramagnetic impurities [170, 171] or antisite

disordered clusters [172].

The pyrochlore osmates provide more promising candidates for excitonic magnetism

since the OsO6 octahedra form a corner-sharing network, meaning the superexchange

is expected to be much larger. Less work has been done on this family of materials

however, with one experimental study on the R = Y and Ho pyrochlores observing

non-zero moments in both cases [173].
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Figure 5.2: Elastic neutron scattering data from the Y2Os2O7 sample at 200 K as a
function of d = 2π/Q where Q is the momentum transfer. Black squares are experimental
data and the red line is the fitted profile after structural refinement (corresponding to
the 200 K parameters in Table 5.1). The green line beneath the ticks is a difference plot
between the data and the fit. Blue tick marks show the expected locations of peaks due
to the main Y2Os2O7 phase while black asterisks indicate impurity peaks. When regions
in which impurity peaks are present are excluded, the Bragg R-factor for this fit is 6.54.

The aim of this work was to establish the origin of the non-zero magnetic moment

in Y2Os2O7 and study the single-ion physics of the Os site, as well as examining the

dynamics of the spin-freezing transition observed previously.

5.2 Sample Characterisation

A 5.2g polycrystalline sample of nominal composition Y2Os2O7 was synthesised through

a conventional solid-state reaction. A stoichiometric mixture of Y2O3 and OsO2 was

ground and sealed in an evacuated quartz tube, then the tube was heated up to 773 K

and left at this temperature for 24 hours. The production was reground and pressed into

a pellet and sealed in a new quartz tube under vacuum. The quartz tube was heated

slowly up to 1173 K and kept at this temperature for 2 days and the target Y2Os2O7

phase obtained after shutting off the furnace.

Elastic neutron scattering measurements performed on the GEM beamline at the

ISIS facility [183] allowed for a full structural refinement as shown in Fig. 5.2 and Ta-

ble 5.1, yielding lattice parameter a = 10.225(1) Å. Superficially, the refinement indicates
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Temperature
(K)

a (Å) x48f O48f Occupancy (%)

200 10.225(1) 0.3352(2) 98.7(5)

100 10.222(1) 0.3354(2) 98.5(8)

2 10.220(1) 0.3355(2) 98.5(8)

Temperature
(K)

Biso(Os)
(Å2)

Biso(Y)
(Å2)

Biso(O48f )
(Å2)

Biso(O8b)
(Å2)

200 0.46(2) 0.84(4) 0.91(3) 0.78(7)

100 0.42(3) 0.71(5) 0.83(5) 0.70(9)

2 0.41(3) 0.68(5) 0.81(5) 0.67(9)

Table 5.1: Refined structural parameters for Y2Os2O7 in the space group Fd3̄m. There
is only one free fractional coordinate in this structure for the O on the 48f site (x48f ),
corresponding to trigonal distortion of oxgygen octahedra around the Os site. Zero
trigonal distortion corresponds to x48f = 5/16 = 0.3125.

an oxygen deficiency of approximately 1.5 %, but this result is not reliable as there is

an uncertainty of around 2 % in the neutron scattering length of Os [184]. The only

fractional coordinate in this structure which is not constrained by symmetry is the 48f

oxygen site x-coordinate which we find to be x48f = 0.3352(2) at 200 K. For reference,

zero trigonal distortion of the OsO6 octahedra corresponds to x48f = 5/16 = 0.3125,

with x48f > 5/16 indicating trigonal compression of the octahedra in this case. As de-

picted in Fig. 5.3, this structure contains a network of corner-sharing tetrahedra with

OsO6 octahedral complexes located at each each vertex of the tetrahedron. All pairs

of neighbouring OsO6 units share one oxygen site, and in our sample the octahedra are

trigonally distorted as shown in Fig 5.3 (d).

The structural parameters are similar but not identical to those reported in Ref. [173],

with the variation possibly related to different levels of microscopic disorder resulting

from the different sample synthesis routes. A small number of low-intensity peaks from

an unidentified impurity phase can also be seen. These peaks could not be indexed by

Y, Os, any known oxide of Y or Os or any material expected to be close to the beam

path. Based on the intensity of the strongest peaks in the neutron scattering spectrum

we estimate that the impurity is on the level of . 6% and note that due to the small
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(a) (b)

Os4+O2{ Y3+
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Figure 5.3: (a) The unit cell of the pyrochlore crystal structure of Y2Os2O7. (b) Rep-
resentation of the corner-sharing Os octahedra over several unit cells. (c) Two of the
Os tetrahedra, showing the axis of the trigonal distortion. (d) Representation of the
trigonal distortion of single OsO6 unit.

volume fraction the µSR, RIXS and specific heat measurements discussed in this work

are assumed not to be very sensitive to the impurity. The potential effects of the impurity

on magnetisation will be discussed in Section 5.4.1.

5.3 Experimental Details

DC magnetisation measurements up to 16 T and specific heat measurements were per-

formed on a Quantum Design Physical Property Measurement System (PPMS) while

AC and DC magnetisation measurements up to 7 T where performed on a Quantum
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Design Magnetic Property Measurement System (MPMS). Muon spin relaxation (µSR)

measurements were performed in a 4He cryostat (3.8–225 K) and a dilution refrigerator

(92 mK to 3.8 K) on the MuSR beamline at the ISIS Pulsed Muon Facility [185] on part

of the powder sample packed in a packet made from 25µm thick silver foil mounted on

a silver backing plate. An additional measurement on the same sample was performed

in a 4He cryostat on the GPS spectrometer at the Paul Scherrer Institute (PSI) to check

the low-decay-time spectrum at 1.5 K. Resonant Inelastic X-ray Scattering (RIXS) data

were taken on a pressed pellet of the sample on the beamline ID20 at the European Syn-

chrotron Radiation Facility. Polarised neutron scattering measurements were performed

using the xyz-polarisation method on the beamline D7 at the ILL neutron source [58]

in a 4He cryostat with the sample mounted in annular geometry inside an Al can. Data

were normalised using the scattering from a standard vanadium sample and polarisation

correction performed using a quartz rod of similar dimensions to the Y2Os2O7 sample,

while background subtraction was performed using measurements of a sample holder and

a cadmium sample.

5.4 Results

5.4.1 DC Magnetisation

DC magnetic susceptibility data (Fig. 5.4) show Curie-Weiss-like behaviour over a large

temperature range with departures below about 60 K and a significant splitting be-

tween field-cooled and zero-field-cooled data below about 5 K. A fit to the form χ =

χ0 + NAnµ
2
eff/3kB(T − θ) for temperatures above 70 K where χ is the DC suscepti-

bility expressed in SI units (m3 mol−1), n is the fraction of Os sites which exhibit

a magnetic moment and µeff is the effective moment due to each of these Os sites

yields
√
nµeff = 0.417(1)µB, a Weiss temperature of θ = −2.1(4) K and a temperature-

independent background susceptibility χ0 = 1.126(1) × 10−5 m−3 mol−1. The formula

unit for all molar quantities here and throughout this work is Y2Os2O7 unless otherwise

stated. The origin of the significant temperature-independent component of the suscep-
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Figure 5.4: (a) DC magnetic susceptibility of polycrystalline Y2Os2O7. Data were taken
using a 0.1 T measurement field, after cooling from room temperature in the measurement
field (FC, blue squares) and in zero field (ZFC, red squares). (b) (χmol − χ0)−1 as a
function of temperature, where χ0 is the background susceptibility obtained in a Curie-
Weiss fit of the form χ = χ0 + NAnµ

2
eff/3kB(T − θ) where n is the fraction of Os sites

which exhibit a spin. The black line is the result of this Curie-Weiss fit, showing good
agreement with the data down to around 60 K. The resulting fit parameters are

√
nµeff =

0.417(1)µB, θ = −2.1(4) K and χ0 = 1.126(1)× 10−5 m−3 mol−1.

tibility will be discussed in more detail in Section 5.5.3 in light of our RIXS results.

The observed DC magnetic susceptibility appears qualitatively very similar to that

measured in Ref. [173], differing only by a constant factor close to 1. The sample mea-

sured in that work contained 7% Y2O3 and 10% OsO2 impurities and the authors do not

mention any unknown impurity similar to the one seen here. The close similarity be-

tween the two samples from different sources and containing different secondary phases

(albeit at low levels) indicates that the dominant features in the measured magnetisation

are from the Y2Os2O7 phase. We will provide further evidence that the impurity does

not affect the measured magnetisation in Section 5.5 via in-depth analysis of our µSR

results.

Magnetisation data taken up to 16 T at 2.5 K (Fig. 5.5 (a)) shows a small hysteresis

(inset to figure). Due to the significant van-Vleck susceptibility in this material, the

moment µ is expected to be linear in H at high enough fields once the Curie-Weiss-

like moments have reached saturation. Looking at the raw data, the moment does not

saturate up to the maximum field of 16 T, however it does appear to be approaching

saturation. If we subtract off a van-Vleck contribution corresponding to χ0 = 1.126(1)×
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Figure 5.5: (a) Magnetisation µ of Y2Os2O7 at 2.5 K as a function of applied field µ0H.
A small amount of hysteresis is seen between field up and down sweeps (inset). (b) The
positive-field part of the dataset in (a) after subtraction of a linear van-Vleck contribution
χ0 = 1.126(1)×10−5 m−3 mol−1, consistent with the results of our Curie-Weiss fitting. (c)
The temperature dependence of the magnetisation between 2 and 40 K. The inset shows
the same data as a function of µ0H/T to demonstrate the lack of H/T scaling expected
for a paramagnet. (d) Remanent magnetisation of Y2Os2O7 at 2 K after quenching from
a field of 7 T. In order to obtain this data the superconducting magnet was ramped down
from 7 T as quickly as possible over the course of around 6 minutes with the starting
time t = 0 being when the field began to ramp down. The magnet was then heated up
above its superconducting transition temperature and the first data point taken once the
magnet reached its normal state.
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Figure 5.6: (a) AC magnetic susceptibility of Y2Os2O7 powder. Data were taken using
a 0.4 mT AC measurement field and zero DC field after cooling from room temperature
in zero field. χ′mol is the real part of the AC molar susceptibility. Solid lines are fits
to a Gaussian peak plus a constant background in the region around 4 K to find the
peak position for plotting in (b) and to emphasise its shift to lower temperature with
decreasing frequency. (b) Fractional change in the peak position in the real part of the
AC magnetic susceptibility ∆Tf/Tf,0 = (Tf(ω)− Tf(ω → 0))/Tf(ω → 0) as a function of
ln(ω), where Tf(ω) is taken from the fitted peaks in (a). The blue line is the best linear
fit yielding a gradient ∆Tf/Tf/∆ ln(ω) = 0.010 ± 0.008, comparable to that seen in a
typical spin glass [3].

10−5 m−3 mol−1 from our Curie-Weiss fitting (Fig. 5.5 (b)), it appears that the saturated

moment due to the paramagnetic component is unlikely to be greater than about 0.04µB

per Os in the whole sample.

The temperature dependence of the magnetisation curves (Fig. 5.5 (c)) shows that

the moment does not show normal paramagnetic behaviour at low temperature. Instead,

it is close to temperature-independent at the lowest temperatures (2–5 K) and shows a

gradually increasing thermal response above this, although ideal paramagnetic behaviour

according to the Brillouin function (i.e. µ being a function of B/T only) is not recovered

up to 40 K.

The sample also shows a small but observable remanent magnetisation and time-

dependent relaxation when quenched from 7 T (Fig. 5.5 (d)) at 2 K, with the moment

not decaying fully even after many hours. The curve does not fit to a single exponential,

consistent with a spread of decay times.
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5.4.2 AC Magnetisation

In the real part of the AC susceptibility (Fig. 5.6 (a)) a clear peak is seen close to the

previously proposed spin freezing temperature Tf ' 5 K [173], with the peak moving to

lower temperatures and having a higher maximum χ′ at lower frequencies. This separa-

tion of peaks at different frequencies shows that there are slow magnetic dynamics in the

0.1–1000 Hz range. More quantitatively, we find the shift of this peak with frequency is

consistent with a linear relationship

∆Tf/Tf,0 = (Tf(ω)− Tf(ω → 0))/Tf(ω → 0) = F∆(lnω) (5.1)

with constant F = 0.010(7) (ln(s−1))−1 (Fig. 5.6 (b)), which is within the range F =

0.001− 0.08 found for typical spin glasses [3, 186].

We found that the imaginary part of the AC susceptibility was smaller than the

instrumental resolution of the magnetometer used for our measurements at all frequencies

and temperatures measured, i.e. χ′′ . 10−6 m−3 mol−1. This weak χ′′ is consistent with

the behaviour of known spin glasses and indicates a wide spread of relaxation times [186].

The hysteretic and frequency-dependent effects described here, including the splitting

between field-cooled and zero-field-cooled DC magnetisation, AC magnetisation and re-

manence are all characteristic features of canonical spin glasses and other spin-glass-like

pyrochlore systems such as Y2Mo2O7 [187, 188].

5.4.3 Heat Capacity

The zero-field specific heat of a pressed pellet made from the above sample is smooth at

all temperatures down to 2 K and shows no obvious signature of the spin glass transition

or any other magnetic behaviour (Fig. 5.7(a)). A plot of C/T as a function of T 2

(Fig. 5.7(b)) shows that the data do not fit a simple Debye model (C/T = γ+αT 2) over

any measured temperature range.

Remarkably, on applying a large (11 T) magnetic field we find no observable change

in the specific heat of Y2Os2O7 at any temperature as shown in Fig. 5.7(a). Since such
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Figure 5.7: (a) Molar specific heat of Y2Os2O7 as a function of temperature in zero
and high (11T) magnetic field. (b) C/T as a function of T 2 in zero magnetic field for
comparison to the Debye model.

a large magnetic field can reasonably be expected to significantly affect the magnetic

state – and hence the magnetic component of the heat capacity – it is very likely that

the specific heat measured experimentally is almost entirely due to phonons, and any

magnetic contribution is unresolvably small at all temperatures.

Although surprising, we find that the lack of an observed magnetic specific heat signal

is consistent with the results of the other measurements presented here. The effective

moment per Os (
√
nµeff) is quite small and the spin glass state likely has a large amount

of residual disorder, so the entropy change associated with the spin-freezing transition

may be quite low. Additionally, the release of entropy for typical spin glasses has been

observed to be spread over a large temperature range up to around 5Tf [15], resulting

in a very small contribution to the specific heat at any given temperature [189].

Our measurements of Y2Os2O7 are consistent with the data presented by Zhou et al.

in Ref. [173]. However, our conclusion that there is no observable magnetic contribution

to the specific heat differs. We therefore performed further heat capacity measurements

on a pellet of Y2Ti2O7 as a non-magnetic reference sample. For Y2Ti2O7, we obtained

virtually identical data to Zhou et al. up to 30 K. However we find that, after applying

the same scaling, the zero-field specific heats of Y2Ti2O7 and Y2Os2O7 are not the same

above 30 K, where any magnetic signal due to spin glass behaviour should be small.

The discrepancy between this finding and the conclusions of Ref. [173] indicates that
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Y2Ti2O7 is not a sufficiently accurate non-magnetic background sample to isolate the

small magnetic contribution to the heat capacity.

5.4.4 Muon Spin Relaxation (µSR)

µSR data taken at ISIS shows very little relaxation of the implanted muons at high tem-

peratures & 100 K (not shown), as expected for a paramagnet, with relaxing behaviour

developing gradually on cooling below this point (Fig. 5.8 (a)). The relaxation becomes

significantly greater below around 20 K as the spin freezing temperature is approached,

although the spectrum does not completely stop evolving even at the lowest measured

temperature of 92 mK. This indicates that the evolution of magnetic fluctuations in this

system is very gradual, as is typical for spin-glasses. No oscillations are seen at any tem-

perature confirming that there is no long-range magnetic order, and additional datasets

at 1.5 and 10 K taken at PSI with much higher time resolution confirm that no oscilla-

tory behaviour has been lost on shorter timescales down to 0.1µs (Fig. 5.8 (b)). Overall

the data is remarkably similar to that seen in canonical spin glasses such as AgMn [16],

supporting the assertion that some kind of spin freezing occurs in this material.

In an applied longitudinal field at 0.12 K (Fig. 5.8 (c)), a significant proportion of

the relaxation is decoupled at the smallest measured field of 0.02 T, with no observable

change between 0.08 T and 0.16 T. Similar longitudinal field dependence is also seen

at 2 K. For the case of a static magnetic field Bstat at the muon stopping site it has

been shown that a longitudinal field BLF & 10Bstat will completely decouple the muon

relaxation [61]. This indicates that there is a small, static component of the internal

field.

5.4.5 Polarised Neutron Scattering

Polarised neutron scattering measurements performed using theXY Z-polarisation method

at 1.5 and 100 K allowed separation of the cross-sections for coherent nuclear scatter-

ing, nuclear spin-incoherent scattering and magnetic scattering, with normalisation to

scattering from quartz and vanadium standard samples meaning the cross-sections were
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Figure 5.8: (a) Measured muon decay asymmetry as a function of decay time at selected
temperatures for polycrystalline Y2Os2O7. Datasets at temperatures greater than 3.8 K
were recorded in a 4He cryostat while those at 3.8 K and below were taken in a dilution
refrigerator. Solid lines represent a double-exponential fit as discussed in Section 5.5.2.
(b) Similar spectra to (a) but data taken at a different facility with higher time resolution
to show that no structure has been missed in the low decay time region. This data was
taken with the beamline’s spin rotator switched on, leading to a lower absolute value of
the measured asymmetry. (c) Muon decay asymmetry at 0.12 K as a function of applied
longitudinal field.
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Figure 5.9: Polarised neutron scattering spectra of Y2Os2O7 obtained using the XY Z-
method. (a) Nuclear coherent cross-section at 100 K. The line is a guide to the eye. (b)
Same as (a) but on a different scale to show the diffuse scattering between the Bragg
peaks. (c) Magnetic cross-section at 100 K plotted with the calculated paramagnetic
signal under the constraint

√
ng
√
J(J + 1) = 0.417 obtained from our DC magnetisation

measurements in Section 5.4.1. (d) Magnetic cross-section at 1.5 K.

determined on an absolute scale.

The nuclear coherent cross-section shows all expected Bragg peaks. There is also

quite a strong increase in background scattering at very low Q as well as a small, broad

enhancement on top of this peaked around Q = 0.6 Å−1 at both temperatures measured

(Fig. 5.9 (a–b)). This corresponds to a correlation length around d ' 10.5 Å which is

similar to the lattice parameter a = 10.225(1) Å. Our characterisation measurements in-

dicated an oxygen deficiency ∼ 2%, corresponding to approximately one oxygen vacancy

per unit cell, so it is plausible that this extra scattering is related to short-range correla-

tions between oxygen vacancies. The general increase in background scattering at low Q

has been observed before on this and similar instruments and is likely to be an artefact

of the measurement technique; further discussion of this can be found in Ref. [190].

Upon changing temperature to 1.5 K the only difference is a small, approximately

120



5. Jeff = 0 ground state and spin glass behaviour in the Y2Os2O7

constant enhancement at all Q, which likely corresponds to a temperature-dependent

change in the background signal.

There is no observable signal in the magnetic scattering at any Q at either temper-

ature apart from a small negative deviation at Q = 2.15 Å−1 at 1.5 K (Fig. 5.9 (c–d)).

A similar deviation was also seen in the nuclear spin incoherent scattering which should

be Q-independent so this is likely not a real magnetic feature.

We have also plotted in Fig. 5.9 (c) the calculated paramagnetic scattering at 100 K

according to the equation

dσ

dΩ
=

2

3

(γr0

2

)2 N

Nfu

|F (Q)|2ng2J(J + 1) (5.2)

[50] where dσ
dΩ

is the differential cross-section per formula unit, N/Nfu = 2 is the number

of magnetic sites per formula unit, F (Q) is the magnetic form factor and C =
(
γr0
2

)2
=

0.07265 barn/µ2
B. Applying the constraint

√
ng
√
J(J + 1) = 0.417 from our DC mag-

netisation measurements (Section 5.4.1) we obtain

dσ

dΩ
=

4

3
C|F (Q)|20.4172. (5.3)

Assuming the form factor F (Q) can be closely approximated by the form factor of

Os4+ as given in Ref. [191], we find that the paramagnetic scattering at 100 K would

have been unobservable with the available experimental statistics.

The lack of any observable signal at 1.5 K indicates that correlations between spins

at any given Q are relatively weak in the spin-frozen phase, as expected for a spin glass.

5.4.6 Resonant Inelastic X-Ray Scattering (RIXS)

In Fig. 5.10 (a–b), we show RIXS maps of the Os L3 resonance measured on the same

powder sample at 15 K. In the lower resolution map (b) the most significant feature is a

high intensity excitation peaked at energy transfer ∆E = 4.2 eV and Ei = 10.876 keV.

In the higher resolution map (a) two excitations are seen clearly at energy transfers

∆E = 0.2 eV and 0.7 eV, as well as a weaker, broad feature around ∆E = 1.00–1.25 eV.
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i ai Ei (eV) σi (eV)

1 474(20) -0.003(2) 0.050(2)

2 604(23) 0.206(2) 0.073(3)

3 639(27) 0.665(4) 0.139(6)

4 410(10) 1.11(3) 0.47(2)

5 168(20) 3.23(2) 0.19(3)

6 820(40) 4.10(1) 0.41(2)

7 532(18) 5.08(6) 0.93(4)

Table 5.2: Gaussian parameters obtained from a fit of the sum four Guassians plus a
linear background to Fig. 5.10 (c) and three Guassians plus a constant background to
Fig. 5.10 (d) where each Gaussian is of the form intensity = ai exp(−(E − Ei)2/2σ2

i ).

Within the resolution of these data, all these lower energy excitations resonate at the

same incident energy Ei = 10.8725 keV. There are also some broad, weak excitations

at energy transfers around 3.33 eV and above ∼ 5 eV. Cuts through all these features

(Fig. 5.10 (c) and (d)) show that no splitting into sub-levels is resolvable in any of them.

As the incident photon energy is tuned to the Os L3 edge we assume that the observed

excitations involve Os 5d states. The crystal field at the Os site is close to cubic with

only a small perturbing trigonal distortion, so to a first approximation we can identify

the ∆E = 4.2 eV feature with single-ion t2g – eg excitations and the low energy features

with intra-t2g excitations. This assumption allows us to estimate the cubic crystal field

parameter 10Dq = 4.2 eV. This assignment is supported by the fact that the t2g – eg and

intra-t2g excitations resonate at energies separated by around 4 eV as expected and that

this crystal field value is comparable to that found in other osmates, for example 10Dq

= 4.3 eV in Ba2YOsO6 and 10Dq = 4.5 eV in Ca3LiOsO6 [192].

To quantify the energies and widths of these RIXS excitations, we performed phe-

nomenological fits of the spectra in Fig. 5.10, with the data in panels (c) and (d) modelled

by a linear background and several Gaussian peaks. The corresponding fit parameters,

numbered as indicated in the figures, are given in Table 5.2.
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Figure 5.10: RIXS spectra of Y2Os2O7 taken at 15 K on the Os L3 edge. (a) High
resolution map focusing on the low energy excitations, (b) low resolution map, (c) a cut
through the low energy excitations as marked in (a) and (d) a cut through the higher
energy excitation as marked in (b). The black lines are a fit to four Gaussian peaks plus
a linear background in (c) and three Gaussians plus a constant background in (d) with
parameters shown in Table 5.2. Grey lines show the fitted Gaussian components with
numbers corresponding to peak numbers in the table. The very strong peaks at zero
energy in the maps are Y2Os2O7 Bragg peaks.
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Figure 5.11: (a) and (b) the calculated saturated moment µsat = ngJµB as a function
of J (top axis) and g (bottom axis) for two plausible values of n, based on our Curie-
Weiss fitting as described in the main text. (c) and (d) the calculated crossover field
Bc = 5kB/gJµB, as defined in the main text, as a function of g and J . The g and J
axes are identical for plots at the same n. The grey shading indicates regimes of g which
imply saturation magnetisations (top panels) or saturation fields (bottom panels) that
would be in poor agreement with our measurements (see text for a detailed discussion).

5.5 Analysis

5.5.1 High Field Magnetisation

Based on Curie-Weiss fitting, we were able to establish that
√
ng
√
J(J + 1) = 0.417(1)

but were unable to determine the spin concentration, n. Since the saturated moment in

high-field magnetisation measurements µsat = ngJµB has a different dependence on n,

we can constrain the possible values of n based on our high-field µ v. H data.

Given the lack of thermal effects at the lowest temperatures shown in Fig. 5.5 (c),

we hypothesise that the µ v. H behaviour is instead governed by some average internal

energy barrier to spin reorientation, ∆E. Based on the gradual appearance of thermal

effects between 5 and 10 K, it is reasonable to assume that such an energy barrier is of
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5. Jeff = 0 ground state and spin glass behaviour in the Y2Os2O7

order kBT at 5 K, i.e. ∆E ∼ 5kB.1

Considering the energetics of a single, classical spin in a magnetic field B subject to

such an energy barrier, we find that the spin will align with the field (saturate) in the

high-field limit for B much greater than some crossover field Bc = ∆E/(gJµB). Based

on our µ v. H data, it is likely that in this material 1 T . Bc . 10 T.

Using the constraint that
√
nµeff/µB =

√
ng
√
J(J + 1) = 0.417 from our suscepti-

bility data, we were able to solve for g as a function of J at two selected values of n (1

and 0.02) chosen to represent the concentrated and dilute cases. The value n = 0.02 is

chosen as it comparable with the levels of intersite mixing and microscopic disorder seen

in similar iridate materials [170]. However, we note that the true value of n may vary

by a few % from this in the dilute case.

Given values of g and J , we can calculate the predicted saturation moment µsat =

ngJµB and the crossover field assuming an energy barrier of 5kB, Bc = 5kB/(gJµB).

Plots of these two quantities as a function of g are presented in Fig. 5.11. Applying the

previously determined experimental results that µsat . 0.04µB (from Section 5.4.1) and

1 T . Bc . 10 T, we find that some values of g are very unlikely, represented by the

shaded regions on three of the plots. For n = 0.02, there is a plausible region for g & 1.5,

while for n = 1 we find that all values of g are very unlikely under these constraints.

It is noteworthy that, since the calculated µsat and Bc are both a factor of 5–10 larger

for n = 1 than for n = 0.02, the above arguments still hold for quite significant changes

in n or in the experimental constraints. For example, any value of n . 10 % still yields

some plausible values of g, whereas any n & 50 % leads to all values of g being unlikely

based on experiment. We therefore conclude that the fraction of occupied Os sites is very

likely to be ∼ a few %, with the majority of Os sites adopting in a J = 0 state. Higher-

field magnetisation data observing moment saturation or data from another technique

1The authors of Ref. [173] have extracted an energy barrier to spin reorientation of ∆ = 204(18) K
based on a fit of the Arrhenius law f = f0 exp(−∆/Tf) to the peaks in the real part of the AC suscepti-
bility. This fitting procedure has been shown to yield unphysically large energy barriers when applied to
spin glasses, as discussed in Refs. [19, 186, 193, 194], with information about χ′′ usually being required
to obtain a physically realistic energy barrier.
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which is sensitive to the magnitude of the moments independent of their concentration

such as electron spin resonance (ESR) would be useful to corroborate this conclusion.

5.5.2 Muon Spin Relaxation (µSR)

Having established that the spins in the sample are very likely to be dilute, we can now

perform fitting and simulations of the spin-glass-like relaxation in our µSR spectra.

Phenomenological Fitting

At all temperatures the µSR asymmetry appears to consist of a relaxing component plus

a constant baseline component which does not relax even at long decay times, with the

relative magnitudes of these two components varying significantly with temperature. In

order to quantify this we performed fits to the sum of two exponentials plus the baseline

asymmetry, A(τ) = Ab + Ar((1− a)e−λ1τ + ae−λ2τ ) at each temperature where A is the

observed muon decay asymmetry, τ is the decay time, λ1 and λ2 are the two exponential

decay rates, Ar is relaxing asymmetry due to muons experiencing a B field in the sample

and Ab is the baseline asymmetry from muons which do not experience a magnetic

field. Ab includes muons which stop in the sample holder, cryostat/dilution fridge and

any non-magnetic or paramagnetic parts of the sample. Throughout this procedure the

initial asymmetry Ai = Ar + Ab was held constant at Ai ' 30% for the 4He cryostat

and at Ai ' 28% for the dilution fridge. These values were found by fitting the initial

asymmetry to the highest temperature dataset available for each sample environment,

since Ai should only be a function of the muon beam polarisation and sample environment

and is not expected to change with temperature. For datasets above 40 K we found that

the spectrum fitted well to a single exponential so at these temperatures a was fixed at

0, while for lower temperatures the full double-exponential form was required. The best

possible fit was obtained by fixing λ2 = 9.66µs−1 to its value in the lowest-temperature

dataset in each sample environment for all double-exponential fits. We note that since

we have no knowledge of the muon stopping site(s) this fitting function should be treated

as purely phenomenological.
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Figure 5.12: (a–c) Temperature dependence of the slower exponential relaxation rate λ1,
fraction of the faster relaxation a and the background asymmetry Ab fitted to our µSR
data by the procedure outlined in the main text. (d) Simulated µSR spectrum at 90 mK
for static and dynamic moments with moments of magnitude 2.95µB on 2% of Os sites.
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Fitted parameters are presented in Fig. 5.12. The relaxation rate λ1 shows behaviour

which is reminiscent of that seen in other spin-glasses [16, 20], with an increase on cooling

up to a peak at the spin-glass temperature followed by a plateau below this point. The

spin freezing temperature Tf is ' 3 K based on this measurement, which is slightly

lower than that seen in AC susceptibility. This discrepancy may be due to the different

fluctuation timescales probed by the different techniques.

The baseline asymmetry shows a clear decrease on cooling before flattening out be-

low Tf , except for a jump at 3.8 K which can be attributed to the change of sample

environment from 4He cryostat to dilution fridge at this temperature. This tempera-

ture dependence indicates that the volume of sample which is in a paramagnetic state

decreases only gradually on cooling with no particularly sharp change at any tempera-

ture. A possible explanation for this would be if spins in different parts of the sample

are freezing at slightly different temperatures, which is plausible behaviour for a spin

glass. The large uncertainties in this parameter at high temperatures are due to limited

statistics at very high decay times τ > 20µs, since the relaxation is very slow (λ1 small)

at these temperatures.

Overall, it is very likely that the relaxing portion of the µSR spectrum is caused

by the same part of the sample as the dilute spins which show hysteretic, spin-glass-

like behaviour in magnetisation measurements. Since the muons can be assumed to

stop randomly throughout the Y2Os2O7 and impurity phases, we can therefore use the

magnitude of the relaxing µSR signal relative to the background to examine which of

the two phases the spins are located in.

At low temperature, the baseline asymmetry Ab is very similar in value to the relaxing

asymmetry Ar (e.g. Ar = 13.442 and Ab = 11.414 at 92 mK). This implies that at least

half of the muons are stopping in an environment which shows the relaxing asymmetry.

If the relaxing behaviour were due to muons stopping in a small (< 10% by volume)

impurity phase we would expectAr to be no more than 10% of the total initial asymmetry,

Ar +Ab, under the assumption that muons stopped in the Y2Os2O7 phase do not couple
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5. Jeff = 0 ground state and spin glass behaviour in the Y2Os2O7

significantly to spin fluctuations in the impurity phase.

If the spins are located in the Y2Os2O7 phase, magnetic exchange mediated by ions

located between the spins and the muon stopping sites in this phase would likely cause a

significant magnetic field at the muon site. For example, in the double perovskite iridates

it has been shown [195] that exchange mediated by Y3+ and O2− ions is significant

even between second- and third- nearest-neighbour Ir sites. Furthermore, simulations

presented in Ref. [195] show that for a double perovskite lattice populated with a few

% spins on one of the octahedral sites the majority of Ir sites are no further than the

third-nearest-neighbour distance from a spin. Assuming that similar results hold in

Y2Os2O7, muons stopping at most locations within the Y2Os2O7 phase will experience

a significant magnetic field even if the spin concentration is low. We therefore conclude

that the relaxing behaviour is due to dilute moments in the main Y2Os2O7 phase, and

that the impurity phase shows no noticeable signal other than a constant background in

µSR.

Simulations

For the lowest temperature dataset we have performed a simulation similar to that

presented in Ref. [196] to try to extract information about the spin dynamics. This

simulation involves randomly populating a lattice with magnetic moments µ on n% of

the sites then examining the internal field at a muon test site. We applied the constraint

nµ = 0.06µB (n = 2 %, µ = 2.95µB) throughout in order to agree with the conclusions

from our magnetisation data.

If the spins are assumed to be completely static, the simulation results in an asym-

metry

A(τ) =

∫
p(∆)(

1

3
+

2

3
cos (γµ∆τ))d∆ (5.4)

where ∆/γµ is the width of the field distribution at the muon site, p(∆) is the probability

of finding that field width for a randomly chosen muon site and γµ is the gyromagnetic

ratio of the muon. The simulated spectrum assuming the most likely values of n = 2%

129



5.5. Analysis

and µ = 2.95µB is presented in Fig. 5.12 (d), however we find that this model cannot

reproduce the data for any values (n, µ).

If the spins are allowed to fluctuate, the model asymmetry becomes

A(τ) =

∫
p(∆)e−2∆2τ/νd∆ (5.5)

where ν is the fluctuation rate. The model with fluctuations provides a much better fit

to the data. For µ ' 2.95µB and n ' 2% the best fit is achieved with ν ' 21 MHz,

as plotted in Fig. 5.12 (d). This fit is, however, reliant on an adjustment of Ab from

the previously fitted value of 11% to ' 7%. If the baseline asymmetry is fixed at 11%

we find that the model cannot reproduce the data even in the dynamical case. This

indicates either that the data is not well-modelled by this scenario or that even at the

lowest temperatures a significant fraction (' 18%) of muons stopping in the sample

experience a non-magnetic or paramagnetic environment. Given that we have ruled out

impurities on the > 10% level this latter situation would imply that the Y2Os2O7 phase

still contains some non-magnetic regions even well below Tf .

5.5.3 RIXS Single Ion Calculations

It is reasonable to assume RIXS is sensitive to all Os sites in the sample, the majority

of which we have now established to be in a non-magnetic d4 configuration based on

the above analysis of our other datasets. We therefore performed single-ion calculations

on the Os 5d4 electrons, including inter-electron interactions, spin-orbit interaction and

trigonal crystal field terms in the Hamiltonian in order to understand the origin of the

excitations seen in RIXS. This procedure is outlined in Refs. [8, 197] and involves writing

each contribution to the Hamiltonian as a matrix using the properly antisymmetrised

multielectron states of the d4 configuration as a basis then numerically diagonalising

the combined Hamiltonian. The inter-electron interaction is written in terms of Racah

parameters [198] A, B and C which can be transformed into intra- and inter-orbital

Coulomb interactions U and U ′ and the effective Hund’s coupling JH via

130



5. Jeff = 0 ground state and spin glass behaviour in the Y2Os2O7

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1 1.2

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8

(a)

(c)

(e)

(d)

0 1 2 3 4 5
0

1

2

3

4

5(b)

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3(f)

D

D

D

D

D
D D

D

D

D

D

D

Figure 5.13: The predicted energy levels of Os 5d4 electrons from single-ion calculations
as outlined in the main text. Green horizontal strips represent the observed energy levels
in the present RIXS experiments with the position and width of the strip corresponding
to the Gaussian peak position and full width at half maximum from Table 5.2. Vertical
grey strips in (a) and (b) indicate a region where the calculated low energy levels appear
to best match those seen in experiment as discussed in the main text, while the grey strip
in (f) is in the same position as those in (a–b) to aid visual comparison. (a) Calculation
with non-zero trigonal distortion, spin-orbit interaction and Hund’s coupling. (b) Same
as (a) but extended to high energy transfer. (c) Calculation with no trigonal distortion.
(d) Calculation with no Hund’s coupling. (e) Calculation with no spin-orbit interaction.
(f) Calculation with the variable trigonal distortion parameter Dσ set to zero.
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JH = 3B + C

U = A+ 4B + 3C

U ′ = A− 2B + C.

(5.6)

Following Ref. [199] the crystal field is parametrised by Dq, Dσ and Dτ , where Dq

represents the octahedral crystal field and Dτ and Dσ small trigonal distortions away

from the perfect octahedral case. 2 The spin-orbit coupling strength enters via a single

parameter ζSO.

Some of the above parameters could be found from experiment before performing

calculations. We have estimated from the RIXS data that 10Dq = 4.2 eV, and there

is a direct relationship between Dτ , the sign of Dσ and the 48f oxygen position x =

0.3352(2) [200, 201] which yields Dτ = −0.090 eV and tells us that Dσ must have the

same sign (–) as Dτ . The Racah parameter A only appears on the diagonal elements of

the Hamiltonian and causes only a constant shift of all energy levels. Since spectroscopy

reveals only relative, not absolute energies, A is not determined by this measurement.

All other parameters (B,C, ζSO and |Dσ|) are in general free and ideally would be

fitted to experimental data. Unfortunately, we do not observe enough excitations in

the experiment for this to be possible in this case. Instead, we need to fix some of the

parameters to values obtained from other, similar compounds.

We fixed the values of ζSO = 0.32 eV and B = 0 to the values obtained for Ba2YOsO6

in Ref. [192] leaving as free parameters Dσ and C = JH. Fig. 5.13 (a–b) shows the results

of this calculation, in which best agreement with experiment is obtained for Dσ =

−0.09 eV and a region around JH/ζSO ∼ 1.4. All of the experimental excitations are

adequately explained, although notably many of the features are in fact a combination of

several closely-spaced levels which are unresolved. There are several states (for example

those at 0.3 and 0.5 eV) which fall close to the edges of the experimental peaks, as well

2The parameters Dq, Dσ and Dτ used in this work correspond to the parameters with the same
symbols in Ref. [199].
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as one set of nearly-degenerate states at around 2.1 eV which is not close to any feature

in the experiment. It is possible that these states may have a low spectral weight if a

full RIXS calculation were performed, in which case they would be unresolvable above

the background, especially in the case of the 0.3 eV and 0.5 eV levels which may easily

be swamped by the nearby, stronger excitations or combined with them via intersite

hopping terms which are not included in this model.

Changing Dσ causes small perturbations to the low-lying energy levels and makes

the agreement with experiment less good. The Dσ = 0 case is presented in Fig. 5.13 (f)

for comparison, showing how agreement is still close but slightly worse, in particular for

the two lowest-energy observed peaks.

The above results are consistent with work on other osmates which has seen JH ∼ ζSO.

We emphasise that due to the number of free parameters and the inherent uncertainty

due to the unknown RIXS matrix elements we cannot conclude that the parameter values

suggested here are definitely the values in this material, only that based on our current

knowledge the present model is capable of explaining the data for plausible values of all

parameters.

We also performed calculations by removing in turn the trigonal distortion (Dτ =

Dσ = 0, Fig. 5.13 (c)), spin orbit interaction (ζSO = 0, Fig. 5.13 (d)) and inter-electron

interactions (B = C = 0, Fig. 5.13 (e)). In all three cases we could not find any values

of the remaining parameters which adequately reproduce the two lowest lying features

at 200 and 700 meV in the RIXS spectrum. This allows us to conclude that all three

effects are required to model the physics of this material.

The ground state for our likely set of parameters, as well as for any set of parameters

calculated here as long as JH/ζSO . 3, is a Jeff = 0 non-magnetic singlet. This allows us

to rule out any kind of single-ion physics, including the trigonal distortion, as the source

of the magnetic moment, consistent with our conclusions from other techniques.

For all reasonable sets of parameters there are low-lying excitations in the 200–

400 meV region, which may be either a doublet, triplet or closely-spaced singlet and
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doublet. Significantly, we find that for the trigonally distorted case seen here (Dτ =

Dσ = −0.09 eV) these lowest-lying excitations are a singlet at 200 meV and a degenerate

doublet at 300 meV. This is in contrast to the undistorted case where the first excitation

is a triplet. Quantitative theories of excitonic magnetism applied to the A2YIrO6 (A =

Sr, Ba) materials such as Ref. [180] are based on a situation where the first excited state

is a low-lying triplet. In the case proposed here for Y2Os2O7 the splitting between the

singlet and doublet excitations is ∼ 50% of the separation between the singlet excitation

and the ground state, representing quite a significant departure from the case used in

the theories. The theories may therefore need modification before being directly applied

to the pyrochlore osmates.

In light of these calculations, we can now also explain the temperature independent

component of the magnetic susceptibility in Fig. 5.4. It was shown in Refs. [172, 180] for

Ba2YIrO6 that, following standard second-order perturbation theory, in the single-ion

case the magnetic susceptibility of a system with a singlet ground state and a low-

lying triplet excited state at 350 meV is temperature-independent and on the order of

χ0 ∼ 1× 10−5 m−3 mol−1. For Y2Os2O7, the first and second excited states are a singlet

and a doublet, respectively, with a similar average energy above the ground state as

the triplet in Ba2YIrO6. The van-Vleck susceptibility for Y2Os2O7 is therefore expected

to be of similar magnitude to that of Ba2YIrO6, consistent with our observed value of

1.126(1)× 10−5 m−3 mol−1.

5.6 Discussion

When all of our experimental results are considered together, a consistent picture emerges

with the majority of Os sites in a non-magnetic Jeff = 0 state along with a few Os

sites exhibiting a non-zero spin. These magnetic defect sites are likely caused by some

kind of microscopic disorder, for example related to oxygen deficiency in the sample,

site disorder involving partial interchange of Y3+ and Os4+ ions or partial static charge

disproportionation (2 Os4+ → Os3++ Os5+).
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This scenario is very similar to that proposed in the recent preprint Ref. [195] for

the 5d4 iridate Ba2YIrO6, where the authors show via electron spin resonance (ESR)

spectroscopy that the observed magnetic moment is caused by a small percentage of Ir6+

(5d3) and Ir4+ (5d5) magnetic defects, with the majority of Ir sites remaining in the non-

magnetic Ir5+ (5d4) configuration. A similar scenario in Y2Os2O7 would be consistent

with all of our data; for example, only 1% of Os sites in the spin-only 5d3 configuration

(L = 0, J = S = 3/2) would lead to
√
nµeff = 0.3873µB, very close to our measured

value of
√
nµeff = 0.417µB.

The authors of Ref. [195] also show that medium- and long-range interactions, pos-

sibly involving exchange mediated by Y ions, are significant in Ba2YIrO6 and that the

magnetic defects tend to form extended correlated clusters even at low concentrations.

Such long-range interactions and clustering of magnetic defects would provide a natural

explanation for the spin-freezing in Y2Os2O7, including the observation in our µSR that

the proportion of the sample exhibiting non-magnetic behaviour reduces gradually with

temperature, and that some regions of the sample appear non-magnetic even below Tf .

5.7 Summary

Our AC and DC magnetisation, heat capacity and µSR measurements all show results

consistent with low temperature spin-glass behaviour as suggested in Ref. [173]. Having

ruled out impurity effects, we have shown that the observed Curie-Weiss-like moment

in Y2Os2O7 is very likely due to large moments ∼ 3µB located on a small proportion

∼ 2% of Os sites, perhaps related microscopic disorder in the sample. We have also

shown via RIXS measurements in conjunction with single-ion energy level calculations

that the majority of Os sites in Y2Os2O7 exhibit a Jeff = 0 ground state with a low-lying

doublet excitation in the single-ion picture. Overall, a scenario similar to that recently

proposed by Fuchs et al. [195] with a small proportion of magnetic defects in a 5d3 or

5d5 configuration along with majority non-magnetic 5d4 Os sites can explain all of our

observations.
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Chapter 6

Concluding Remarks

In this thesis I have presented studies on three systems which demonstrate the huge

variety of novel and fascinating phenomena found amongst quantum materials, as well

as the breadth of experimental techniques which have been developed to probe their

behaviour. In each case, I have resolved a key unanswered question about the microscopic

physics of the system being examined and provided information which may be useful in

discovering and modelling the novel physics in these and other, related quantum materials

in future.

In all of the systems I have studied, the effects of interest originate primarily from the

d-shell electrons on a transition metal ion. In the absence of correlations, these electrons

would simply form part-filled bands and the material would be a normal metal. When the

electrons are allowed to interact with each other, however, a wide variety of interesting

macroscopic states are realised, including the CDW, conventional and unconventional

superconductivity and excitonic magnetism which have featured in my studies. This

clearly demonstrates the power of the principle of emergence as discussed at the start

of this thesis, where new and interesting effects can occur as a result of the cooperative

physics of many interacting particles which would not be possible without interactions.

In order to reach the conclusions of each chapter I have employed a large number

of different experimental techniques, with a picture of the underlying physics of the

materials in question only becoming clear when results from all techniques are considered

136



6. Concluding Remarks

together. In addition to showcasing some of the many experimental probes now available

in the study of condensed matter systems, my analysis demonstrates the necessity of

considering a range of complementary techniques together to fully understand the physics

of a given material.

Research in line with these two principles has led to many exciting and important

scientific discoveries in the past, and will continue to do so in future. I hope that the

work presented here will prove to be a useful part of the basis for such future discoveries.
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Hillier, A. P. Murani, T. Hayes, and B. Lindenau, J. Appl. Crystallogr. 42, 69
(2009).

[56] “Thermal neutron three-axis spectrometer IN8,” https://www.ill.eu/users/

instruments/instruments-list/in8/description/instrument-layout/

(2018), Accessed: 2018-05-30.

[57] R. Bewley, R. Eccleston, K. McEwen, S. Hayden, M. Dove, S. Bennington,
J. Treadgold, and R. Coleman, Physica B: Condens. Mat. 385-386, 1029 (2006).

140

http://dx.doi.org/10.1038/nphys2438
http://dx.doi.org/10.1016/j.crhy.2015.10.002
http://dx.doi.org/ 10.1103/PhysRevB.96.014515
http://dx.doi.org/ 10.1103/PhysRevB.96.014515
http://dx.doi.org/10.1103/PhysRevB.78.020514
http://dx.doi.org/10.1103/PhysRevB.78.140509
http://dx.doi.org/ http://dx.doi.org/10.1016/j.physc.2009.03.019
http://dx.doi.org/10.1103/RevModPhys.83.705
http://dx.doi.org/https://doi.org/10.1016/j.nima.2005.07.053
https://www.ill.eu/users/instruments/instruments-list/in8/description/instrument-layout/
https://www.ill.eu/users/instruments/instruments-list/in8/description/instrument-layout/


BIBLIOGRAPHY

[58] R. Ewings, A. Buts, M. Le, J. van Duijn, I. Bustinduy, and T. Perring, Nucl.
Instrum. Methods Phys. Res. A 834, 132 (2016).

[59] “Wikipedia: Angle-resolved photoemission spectroscopy,” https://en.

wikipedia.org/wiki/Angle-resolved_photoemission_spectroscopy (2018),
Accessed: 2018-05-30.

[60] D. Lu, I. M. Vishik, M. Yi, Y. Chen, R. G. Moore, and Z.-X. Shen, Annu. Rev.
Condens. Matter Phys. 3, 129 (2012).

[61] R. S. Hayano, Y. J. Uemura, J. Imazato, N. Nishida, T. Yamazaki, and R. Kubo,
Phys. Rev. B 20, 850 (1979).
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