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Neutron scattering measurements were used to investigate the magnetic and crystal

structure and magnetic excitations of three compounds characterized as low-dimensional

quantum magnets. The materials are frustrated systems with low spin quantum number.

The first was a powder sample of AgNiO2. The Ni ions form a triangular lattice antifer-

romagnet in which, according to the published crystal structure, both the orbital order and

magnetic couplings are frustrated. However, it is shown here that there was a small distor-

tion of the crystal structure at 365 K, which is proposed to result from charge dispropor-

tionation and this relieves the orbital frustration. The magnetic structure was investigated

and, below 20 K, the triangular lattice of electron-rich Ni sites was observed to order into

antiferromagnetic stripes. Investigations of the magnetic excitations showed that the main

dispersions were within the triangular plane, indicating a strong two-dimensionality. The

dispersion was larger along the stripes than between the stripes of collinear spins. The

second material investigated was CoNb2O6, a quasi Ising-like ferromagnet. It was studied

with a magnetic field applied transverse to the Ising direction. The magnetic field intro-

duced quantum fluctuations which drove a phase transition at a field comparable to the

main exchange interaction. The phase diagram of the magnetic order was mapped outs

and a transition from an ordered phase to a paramagnetic phase was identified at high

field. This low-temperature high-field phase transition was further investigated by inelastic

neutron scattering measurements to observe the change in the energy gap and magnetic

excitation spectrum on either side of the transition. The spectrum had two components in

the ordered phase and had sharp magnon modes in the paramagnetic phase. The third ma-

terial was the spin-half layered antiferromagnet CuSb2O6. It has a square lattice of Cu2+

ions in which the main interaction is across only one diagonal of the square. The magnetic

structure was studied by neutron scattering with a field applied along the direction of the

zero-field ordered moment. A spin-flop was observed at low field and there was evidence

for a high-field transition. The magnetic excitation spectrum was unusual in that it had an

intense resonance at 13 meV at the magnetic Brillouin zone boundary.
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Chapter 1

Introduction to Low-Dimensional

Quantum Magnetism

1.1 Introduction

The compounds investigated within this work are spin systems chosen to explore the ef-

fect of quantum fluctuations. All of the materials have properties of low spin models that

exemplify the basic concepts in quantum magnetism, especially the role of fluctuations.

• The one-dimensional Ising chain in a transverse field is a paradigm system of a quan-

tum phase transition. In this system a phase transition is tuned by a magnetic field

which introduces quantum fluctuations.

• The triangular lattice antiferromagnet with uniaxial anisotropy is a highly frustrated

system. The couplings of the spins in the lattice cannot be satisfied simultaneously

because the of geometry of the lattice.

• The square lattice antiferromagnet with a dominant antiferromagnetic next-nearest-

neighbour exchange is a frustrated system due to the arrangement of the couplings

within the lattice.

1
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This chapter explains the origins of localized moments in magnets and the possible

coupling mechanisms between them. The mean-field approach is briefly discussed together

with an outline of the spin-wave approximation. The concepts of low-dimensional low-spin

systems and frustration are discussed with reference to the types of systems covered in this

thesis.

1.2 Magnetic Ordering and Excitations

The simplest models of magnetic systems are semi-classical descriptions which neglect

quantum fluctuations. They are successful for three-dimensional systems where the spin

quantum number is large. The semi-classical description is outlined here and the effect of

quantum fluctuations is described in the following section.

The magnetic moment of an ion is due to electrons which are in unfilled electronic

shells. The spinsi and orbital angular momentumli of these electrons add to give a total

spin and total orbital angular momentum. The spherical symmetry of an electronic shell

implies that these vector sums are zero for filled shells of electrons. According to Hund’s

rules, the ground state of the free ion is that which maximizes the total spin,S and to-

tal orbital angular momentum,L, and thereby minimizes the Coulomb repulsion between

electrons. The spin-orbit interaction couples the spin and orbital angular momentum to

give a total angular momentum,J = L + S =
∑

i li + si. However, the magnetic ion

in a compound is not a free ion but sits in the environment of the electric field created by

the ions around it. Therefore, the ground state may differ from that given by Hund’s rules.

Given a state of total angular momentumJ the effective magnetic moment is given by

µeff = gJµB

√
J(J + 1) (1.1)
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wheregJ is the Land́e g-value or g-factor and is calculated as

gJ =
3

2
+

S(S + 1) + L(L + 1)

2J(J + 1)
.

In 3d ions it is often the case that the environment of the ion is such that the orbital angular

momentum is effectively quenched and the ground state is an orbital singlet. In this case,

the ground state can be described as a purely spin state. Also, the spin-orbit interaction can

be included by allowing a small change from theg = 2 value, which is the case for an ideal

L = 0 system.

In order to know the ground state of an ion in a particular compound it is necessary to

know the particular electronic environment of the ion. The ground state can be probed by

making measurements of excitations of the outer electrons from the ground state to higher

energy levels. Crystal-field excitations are local excitations of the electrons in magnetic

ions. Measurements of crystal-field excitations are generally made at low temperatures;

these measurements look at excitations from the ground state to excited crystal-field levels.

The excitations are flat dispersionless modes at constant energy. The energy of the crystal-

field levels is due to the local electron environment of the ion. The environment causes

splitting of degenerate energy levels of the free ion which can be measured directly by

inelastic neutron scattering measurements.

The spins in the system couple via an exchange interaction which is dependent on

the structure and composition of the crystal [1]. It is the exchange interaction that pro-

vides long-range order and dispersion of excitations in the system of spins. The forms of

magnetic coupling may differ between materials. A weak coupling may occur due to the

magnetic dipolar interaction. This is a weak interaction which cannot explain the interac-

tion energies of approximately 10 meV which is the order of magnitude of the interactions

observed in the experiments described in this thesis. A greater coupling arises from inter-

actions such as direct exchange, super-exchange and indirect exchange.

The origin of the exchange interaction can be understood by considering the exchange
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of two electrons [2]. In such a system the combined wavefunction of the two electrons,

which are spin-half objects, is either a spin triplet,S = 1, or spin singlet state,S = 0. The

symmetry of the spatial states of the combined electrons is necessarily different because the

combined state must obey exchange symmetry. The exchange integral calculates the energy

difference between the two states associated with the spin singlet, Es, and spin triplet, Et.

The Hamiltonian can be written as:

H =
1

4
(Es + 3Et)− (Es − Et)S1 · S2 (1.2)

where the exchange integral is:

J = Es − Et =

∫
φ∗1(x1)φ

∗
2(x2)Ĥφ1(x2)φ2(x1)

The effective Hamiltonian can be simplified to:

H = JS1 · S2 (1.3)

A series of spins may interact in this way. The effective interaction between a series of

spins within a material may be anisotropic due to the effects of the crystal field. The ground

state levels are mapped onto an effective spin system. The degeneracy of the ground state

determines the effective spin. Therefore an effective spin Hamiltonian is formed from the

lowest energy levels and the Heisenberg Hamiltonian becomes:

H =
∑

l,j

Jx
ljS

x
l Sx

j + Jy
ljS

y
l Sy

j + Jz
ljS

z
l S

z
j (1.4)

wherel, j refer to the interaction between the pair of magnetic ionsl andj (i.e. each in-

teraction is counted once). A positive J leads to the anti-alignment of spins, and a negative

J leads to co-alignment of spins. The two different values of J are referred to as antiferro-

magnetic or ferromagnetic interactions, respectively.
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The physical origin of the exchange may vary between different materials. The main ex-

change mechanisms are direct exchange, superexchange, double exchange and the RKKY

interaction. Each will be outlined in turn next. The direct overlap of neighbouring magnetic

orbitals is referred to as a direct exchange mechanism. It can lead to an exchange interac-

tion between magnetic ions with extended electron orbitals arranged as neighbours on a

lattice. Superexchange refers to exchange between magnetic ions through a non-magnetic

ion. It describes exchange between magnetic ions which are not nearest neighbours, when

considering all the ions in the unit cell. Superexchange is highly dependent on the overlap

of the orbitals of the magnetic ions with the non-magnetic ion. It is therefore related to the

angles of the bonds between the magnetic ion and the non-magnetic ion. The Goodenough-

Kanamori rules [3, 4] outline, to some extent, whether interactions between ions are likely

to be antiferromagnetic or ferromagnetic. Double exchange occurs between mixed valency

states and comes about from electrons hopping between magnetic ions. Therefore, from

Hund’s rules, the alignment of spins in a particular polarization is favoured. The RKKY

interaction is used to describe interactions in a metallic bond. In the RKKY interaction a lo-

cal spin moment polarizes conduction electrons, which then move to polarize neighbouring

local magnetic moments.

In classical magnets long-range order is typically seen below a characteristic tempera-

ture,Tc, where thermal fluctuations are reduced to the extent that the magnetic moments in

the system are able to form a well defined structure. At this temperature the thermal fluc-

tuations are small enough such that the magnetic interactions are strong enough to bring

about long-range order of all the magnetic moments in the system. The different magnetic

structures which can form are related to the type of lattice of magnetic moments and the

sign and magnitude of the interactions between the moments. For example, in a ferromag-

net, where the main interaction is ferromagnetic, there is an overall magnetization. Near

the critical temperature the functional form of the magnetization can be described as

M(T ) ∝ (Tc − T )β
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andβ is referred to as a critical exponent. For an antiferromagnet the magnetisation,M(T ),

is that of the sublattice of co-aligned spins. Mean-field theory was an early method of un-

derstanding the magnetisation in a magnet and is often used to gain an initial understanding

of a system. It assumes an effective field is acting on a magnetic moment and that it is due to

the exchange interaction and the average field created by the surrounding moments. There-

fore it is assumed that the magnetic moments all have the same mean value. In mean-field

theory the behaviour of the magnetisation below the transition temperature is predicted to

give an exponentβ = 1/2 for any lattice dimension. This shows a failure of the mean-field

approach in accounting for the differences observed in the behaviour of lattices of different

dimensions.

The exchange interaction between moments leads to magnetic excitations dispersing

through the material. For large spin systems in three dimensional lattices, magnetic excita-

tions are successfully described by linear spin-wave theory [5]. In this method a∆S = 1

excitation from the ground state is spread coherently throughout the system. The spin

deviation propagates through the system like a wave with a momentum and energy related

through the dispersion relation. In the linear spin-wave calculation, lattices of spins aligned

along the same ordering direction are considered as separate sublattices. The spin devia-

tions are then calculated from this assumed ground state. Using the Holstein-Primakoff

transformations, the spin operators in the Hamiltonian are expressed in terms of spin devi-

ation operators [6]. The spin deviation operators obey the Bose commutation relations and

create and annihilate the spin deviations. Terms higher than second order in these opera-

tors are not considered in linear spin-wave theory. Therefore the Heisenberg Hamiltonian

in Eqn. 1.4, for the case of a simple ferromagnet, would become:

H ≈
∑

lj

JljS(S − a†l al − a†jaj + ala
†
j + a†l aj) (1.5)
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where the spin deviation operators are

Sz
l = S − a†l al

S+
l = Sx

l + iSy
l ≈

√
2S al,

S−l = Sx
l − iSy

l ≈
√

2S a†l .

(1.6)

The normal modes of the system can be calculated by taking the Fourier transform of

the Hamiltonian and diagonalizing it using the Bogliubov transformations. In this way,

descriptions of the excitations as a function of energy and momentum transfer are obtained.

For example, the dispersion relation for the the Hamiltonian in Equation 1.5 as calculated

within linear spin-wave theory is

h̄ωq = 2S(J(0)− J(q)).

For the case of an antiferromagnetic interaction in Eqn. 1.4, it is assumed that the spin

structure can be divided into two interpenetrating lattices of spins. The spin deviation

operators for the two sublattices a and b are defined as:

Sa z
l = S − a†l al Sb z

l = (S − b†l bl)

Sa +
l =

√
S/2 (al + a†l ), Sb +

l =
√

S/2 (b†l + bl),

Sa−
l = −i

√
S/2 (al − a†l ), Sb−

l =
√

S/2(b†l − bl).

(1.7)

where the operatorsa†l or b†l creates a spin deviation on sitel of sublattice a or b. The

Hamiltonian is first expressed in terms of the spin deviation operators and then the Fourier

transform of the Hamiltonian is taken such that the spin-wave variables are:

aQ = 1√
N

∑
l e
−iQ·rlal bQ = 1√

N

∑
l e

+iQ·rlbl

a†Q = 1√
N

∑
l e

+iQ·rla†l , b†Q = 1√
N

∑
l e
−iQ·rlb†l .

(1.8)



8

wherel runs over the N sites on sublatticea(or b). The linear spin wave calculation consid-

ers only bilinear terms inaQ or bQ and so the Hamiltonian becomes:

H = ΣQX†HX + E0 (1.9)

whereE0 is the zero point energy andX† = (a†Q, b†Q, aQ, bQ) and the matrixH is written

as:

H =
1

2




2JS 0 0 JSγQ

0 2JS JSγQ 0

0 JSγQ 2JS 0

JSγQ 0 0 2JS




(1.10)

whereγQ = 2(cos(2πh) + cos(2πk) + cos(2πl)) for a three dimensional antiferromagnet,

Q = ha∗+ kb∗+ lc∗. In order to diagonalizeH the Bogoliubov transformations are used

to transformaQ to αQ andbQ to βQ. The Bogoliubov transformation is such that:

αQ = uQaQ − vQb†Q βQ = uQbQ − vQa†Q

α†Q = uQa†Q − vQbQ β†Q = uQb†Q − vQaQ

(1.11)

whereu2
Q + v2

Q = 1 to preserve the commutation relations. The commutation relations are:

[X, X†] = X(X∗)T − (X∗XT )T = g =




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1




. (1.12)

The transformations given in Eqn. 1.11 can be written as

X ′ = SX (1.13)

and it was shown by Whiteet al.[7] that the transformation matrix can be found by solving
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the problem:

gHS = SgH ′. (1.14)

The elements of the diagonal matrixgH ′ are the eigenvalues of the matrixgH. The

columns ofS are the corresponding eigenvalues given the normalization conditionSgS ′ =
g. Therefore, by diagonalizingH using the Bogoliubov transformations, the dispersion for

the antiferromagnet is:

h̄ω = 2JS
√

1− γ2
Q. (1.15)

Linear spin-wave theory is successful because it is possible to assume that, for large

spin three-dimensional magnets, excitations are small spin deviations from a long-range

ordered state. For large spin systems the spin deviation∆S = 1 is small in comparison to

the spin,S, whereas for small spin states the approximation is no longer valid. Although

spin-wave theory has been applied to low-dimensional spin systems with fewer than three

dimensions, low-energy long-wavelength excitations destroy the magnetic ordering at finite

temperature and the spin-wave approach is no longer valid.

1.3 Quantum Magnetism

Studies into quantum magnetism consider systems where the effects of quantum fluctua-

tions must also be considered as well as thermal fluctuations. Low spin, low dimensionality

and frustration all enhance quantum fluctuations. In this thesis three materials are studied

which have all these attributes. In the following, the concept of the quantum phase transi-

tion is introduced. There is a brief outline of some of the novel ground states and excita-

tions predicted to arise in one-dimensional and two-dimensional systems, where frustration

is important.
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1.3.1 Quantum Phase Transitions

The interest in quantum phase transitions in spin systems comes from a desire to understand

the transition between novel quantum phases, such as spin liquids with fractional spin exci-

tations [8]. A classical phase transition is driven by thermal fluctuations, the size of which

can be varied by changing the temperature of the system. A quantum phase transition re-

sults from quantum fluctuations in an order parameter [8]. The quantum fluctuations are

a result of the quantum uncertainty of the ground state. The quantum fluctuations can be

increased by slightly varying a control parameter in the Hamiltonian of the system, such as

an applied field, pressure, or a doping percentage of a chemical, so that a new ground state

becomes preferable. A quantum critical point is the point at which the transition occurs at

zero temperature. Although it is not possible to observe a system atT = 0, it is possible to

reach temperatures where quantum fluctuations and not thermal fluctuations are dominant.

1.3.2 One-Dimensional Magnetism

A simple model in which the quantum phase transition can be understood is the one-

dimensional Ising model in a transverse magnetic field. A quasi one-dimensional Ising

ferromagnet in such a field arrangement is studied in Chapter 4. The one-dimensional Ising

model is referred to as the Ising chain and its Hamiltonian is:

H = J
∑

l

Sz
l S

z
l+1, (1.16)

whereJ is a negative parameter for a ferromagnetic Ising chain. An Ising chain is one

in which the exchange interaction is anisotropic and dominant in one particular spin direc-

tion. The Hamiltonian for the one-dimensional Ising system is formed from Eqn. 1.4 taking

Jx =Jz = 0. In a pure Ising system the ground state at zero temperature is two-fold de-

generate and corresponds to the two possible ferromagnetic states of completely co-aligned

spins. In a spin-half system an excitation to a spin-flipped state creates two domain walls

separating regions of the chain with co-aligned spins as shown in Fig. 1.1 b). To understand
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Figure 1.1: The Ising ferromagnetic chain. a) One of the two degenerate Néel ground states.
b) a spin flip in the Ising magnet which creates two domain walls. c) The two domain walls
separate along the chain creating a larger domain of flipped spins. Because there are two
domain walls in both of the states b) and c) they have the same energy as at zero field.

the basic excitation of the system consider a state with many spin flips as in Fig. 1.1 c). In

zero field, one region of many flipped spins is degenerate in energy with the single spin-

flip state since, because the system is one-dimensional, two bonds are not satisfied in both

cases. A sketch of such an excitation is shown in Fig. 1.1 b) and c). Therefore the basic ex-

citations are domain walls which are deconfined spin-half particles and may be considered

as a spin-wave decaying into two spin-half domain walls.

If a field is applied perpendicular to the ordering direction the Hamiltonian of the system

is:

H = −J
∑

l

Sz
l S

z
l+1 − Γ

∑

l

Sx
l , (1.17)

where J is a positive constant and is the magnitude of the ferromagnetic coupling, andΓ

is a field applied transverse to the Ising direction. In a non-zero magnetic field, quantum

fluctuations exist because the magnetisation, which is the order-parameter, does not com-

mute with the Hamiltonian[H, Sz] 6= 0 and the classical Ńeel ground state is no longer

an eigenstate. The quantum fluctuations allow tunnelling between the two ferromagnetic

states and these fluctuations increase with increasing field. The phase diagram for the Ising
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Figure 1.2: Phase diagram of the Ising chain at zero temperature in an increasing field
transverse to the Ising direction. A quantum critical point separates the ordered phase and
the quantum paramagnetic phase.

chain in a transverse field is given in Fig. 1.2. At zero temperature the Ising chain is or-

dered and the transverse field tunes an order-to-disorder quantum phase transition. Above a

critical field the spontaneous magnetic long-range order is destroyed leading to a quantum

paramagnetic state [9]. At zero temperature the critical field is a quantum critical point.

At an infinitely large field,Γ = ∞, the spins are aligned along the field direction and the

excitations, which are spin reversals from this direction, are bosonic states called magnons.

The excitations below the phase transition, in the ordered phase, are close to domain walls

which, in the Ising chain, are produced in pairs at a finite energy.

At a finite temperature thermal fluctuations are also involved in determining the state of

the system. At high temperature the system is paramagnetic for all applied fields but there

is a region where both the classical fluctuations and quantum fluctuations are relevant and

much of the behaviour for the zero temperature regime, discussed above, is present.

AboveT = 0, one-dimensional systems are not expected to order because of finite tem-

perature long-wavelength thermal fluctuations. The Heisenberg model is a totally isotropic

exchange and has continuous symmetry and is quite different to the very anisotropic Ising

model which has discrete symmetry. In the case of spin-half Heisenberg chains with anti-

ferromagnetic coupling, no order is expected even at zero temperature. The Néel ground
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state for an antiferromagnet is not an eigenstate of the Hamiltonian. The spin-half Hamil-

tonian can be expanded into raising and lowering operators to demonstrate this:

H =
∑

l

JlSl · Sl+1 =
∑

l

Jl(S
z
l S

z
l+1 +

1

2
(S+

l S−l+1 + S−l S+
l+1)). (1.18)

In this equation,J is the coupling constant between the spins,S’s are Pauli spin matrices

and the raising and lowering operators areS+
l = 1

2
(Sx

l + iSy
l ) andS− = 1

2
(Sx

l − iSy
l ).

The effect of the operatorsS+
l S−l+1 andS−l S+

l+1 on the Ńeel ground state is successively

to flip the spins alternately up and down. By applying the Hamiltonian to one of the two

classical Ńeel states the other state is formed and so it is not an eigenstate of the system.

Again, the order parameter, which is the sublattice magnetisation, does not commute with

the Hamiltonian. The ground state is in fact a spin singlet state and the excitations are

again spin-half, which are created and destroyed in pairs, and are generally referred to

as spinons. An experimental realization of a spin-half Heisenberg magnet is KCuF3 in

which two spinon scattering has been observed [10, 11]. The dispersion is gapless with a

continuum of states across the Brillouin zone [10, 12].

Computational studies into the magnetic properties of the linear spin chains were ini-

tially carried out by Bonner and Fisher [13]. These computational results characterized the

form of the exchange constants by comparing the numerical result with the data. There-

fore they allowed the main exchange interactions within such systems to be approximately

deduced.

1.3.3 Frustration

In addition to low-dimensionality, frustration in a material can enhance quantum fluctua-

tions. Frustration is the inability of a system to satisfy all interactions simultaneously. One

example of frustration is a square lattice of spin sites with antiferromagnetic diagonal ex-

changes. A square lattice of spins with nearest-neighbour coupling is not frustrated and the

classical Ńeel states satisfy all the couplings in the system. Frustration is introduced by an
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Figure 1.3: The two dimensional lattices considered are the square lattice, a) and b), and
the triangular lattice c). The couplings on a square-lattice are frustrated when there is an
antiferromagnetic next-nearest-neighbour interaction. The triangular lattice is a frustrated
system when the nearest-neighbour interaction is antiferromagnetic.

antiferromagnetic next-nearest-neighbour interaction, as shown in Fig. 1.3. The system is

frustrated, independent of the sign of the nearest-neighbour exchange. Geometric frustra-

tion is the name given to frustration resulting from the geometry of the lattice. Antiferro-

magnetic nearest-neighbour interactions on a triangular lattice are geometrically frustrated.

Fig. 1.3 c) shows that all three bonds on the triangle cannot be satisfied simultaneously.

Within a mean-field approximation a triangular lattice magnet is expected to have simi-

lar critical temperature to a simple cubic lattice because they have the same co-ordination

number. Yet due to the low dimensionality and frustration they are not similar. The effect of

adding frustration to low dimensional systems is often to lower the transition temperature

to long-range order. In some cases the frustration removes the transition altogether.

Frustration may also occur in one-dimensional systems but the models considered here

are two-dimensional lattices made up of squares of spins with next-nearest-neighbour an-

tiferromagnetic exchange or triangles of spins with nearest-neighbour antiferromagnetic

exchange. The physics of frustrated units discussed above is considered when extended to

a lattice comprised of many of those units.
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1.3.4 Two-Dimensional Magnetism

The Mermin-Wagner theorem [14] predicts no static long-range order at finite temperature

in a two-dimensional Heisenberg antiferromagnet with short-range interactions. However,

since most real systems have some small inter-layer couplings, long-range order is ob-

served at low temperatures. In the spin-half square lattice model, as shown in Fig. 1.3, the

spins sit on a square lattice coupled with nearest-neighbour antiferromagnetic interactions.

In this system, quantum fluctuations have also been observed to reduce the ordered mag-

netic moment to60% of the maximum value for a spin-half system. One material that has

been extensively characterized is deuterated copper formate tetrahydrate, (CFTD) and is

modelled as a two-dimensional square lattice of spin-half Cu2+ ions. Investigations have

shown that renormalization of the exchange constants is necessary to describe the excitation

spectrum in the mean-field spin-wave approach [15].

If next nearest-neighbour couplings are introduced into the square lattice the system

can become frustrated and quantum fluctuations are increased. The Hamiltonian in such a

case is:

H =
∑

lj

J1Sl · Sj +
∑

lk

J2Sl · Sk,

where J1 refers to the coupling between nearest-neighbour couplings and J2 refers to next-

nearest-neighbour couplings. The phase diagram has been predicted by Shannonet al.[16]

for various J1/J2 ratios at finite temperature and is given in Fig. 1.4. The phase diagram

is complex, with various unusual spin phases. When J2 > 0.5J1 quantum fluctuations are

predicted to select a ground state of collinear spins arranged antiferromagnetically (CAF)

by the ‘order by disorder’ mechanism and a spin liquid region is predicted close to where

the J2 = ±0.5J1 which is marked in grey.

The second frustrated two-dimensional lattice considered here is the archetype of geo-

metrical frustration which is the antiferromagnetic triangular lattice and has a macroscopic

ground state degeneracy. The classical ground state of the antiferromagnetic triangular

lattice of continuous spins, with a small next-nearest-neighbour coupling, has long-range
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Figure 1.4: Phase diagram of the square-lattice spin-half system with nearest-neighbour(J1)
and next-nearest-neighbour(J2) interactions. The grey region marks a spin-liquid state.
CAF marks the collinear antiferromagnetic ordered state. FM marks a ferromagnetic state
and NAF marks the Ńeel antiferromagnetic state. The angleφ indicates the ration of the
couplings andtan φ =J2/J1 [16].

order when spins lie at 120o to each other. There are two degenerate states corresponding

to the two different senses of rotation. In the 120o structure three sublattices are formed in

a Néel type state and the frustration is partially released. Conversely, the antiferromagnetic

Ising model on a two-dimensional triangular lattice does not order and has a large entropy

at zero temperature [17, 18]. For a spin-half Heisenberg model, the effect of large quantum

fluctuations and the geometrical frustration have been predicted to lead to a ‘resonating

valance bond’ ground state which is similar to a spin liquid. Fazekas and Anderson[19, 1]

proposed this unusual ground state, comprising of singlet spin pairing, which leads to short-

range correlations and a continuum of highly dispersive excitations.

LiNiO 2 is proposed as a triangular lattice antiferromagnet and many studies of the ma-

terial so far have found no long-range magnetic order. Such studies have been hindered by

the inability to produce fully-stoichiometric samples because of Li and Ni substitution in

the lattice.
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1.4 Quantum Magnets Studied in this Thesis

In this thesis, samples are investigated which have magnetic ions that are arranged in well

separated layers or chains. Those with dominant exchange interactions along one direction

are one-dimensional magnets and those within a plane are two-dimensional magnets. In

this work the materials studied are:

AgNiO2 A system of Ni ions, forming layers in a triangular lattice, coupled with antifer-

romagnetic interactions. A study of the effects of both orbital and spin frustration

in this system has led to a novel mechanism which released orbital frustration and

an unusual magnetic structure. Inelastic scattering measurements revealed a band of

excitations which could not be captured by linear spin-wave theory and demonstrated

the need to consider the effects of quantum fluctuations.

CoNb2O6 A system of Co ions that form ferromagnetic Ising chains of effective spin-half

sites arranged within a triangular lattice. The magnetic structure in an applied field

transverse to the Ising direction was investigated. Inelastic scattering measurements

were made in order to investigate the different excitations in the two phases and to

look at the change in the energy gap to excitations. These technically very challeng-

ing experiments needed precise alignment of the sample and the applied magnetic

field direction.

CuSb2O6 A system composed of planes of spin-half Cu2+ ions in a square lattice arrange-

ment. This material closely resembles the structure of high temperature superconduc-

tors and as such is of interest in considering the physics of those systems. Although

the system has been described as a one-dimensional antiferromagnetic Heisenberg

chain, the interactions on the square lattice system of Cu2+ ions are frustrated. There-

fore, it is possible it could be described better as a two dimensional system. The mag-

netic structure was investigated in an applied field parallel to the spin direction and

inelastic scattering measurements gave an insight into an unusual excitation pattern.



Chapter 2

Experimental Techniques

2.1 Introduction

Neutron scattering is a technique well suited to the study of correlated electron systems.

The de Broglie wavelength of thermal neutrons is comparable to the interatomic length

scales of solid crystalline materials, and so thermal neutrons will be diffracted by a crys-

talline sample. Since the neutron carries a magnetic moment it is also sensitive to the

magnetic field distribution in the sample. The energy of thermal neutrons is close to the

energy of the excitations discussed in the previous chapter. Therefore neutron scattering

will probe both the nuclear and magnetic structure and also the dynamics of a material.

It is an established technique in studies of magnetic materials and a primary experimental

method in the investigation of low-dimensional magnetic materials.

The properties and neutron-scattering cross-section for both nuclear and magnetic scat-

tering will be briefly summarized next. There is an extensive theoretical literature, exam-

ples include books [20], lecture notes [21] and reviews [22]. The various types of neutron

scattering techniques and instruments used in the experiments discussed later in this thesis

will then be explained.

18
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2.2 The Neutron Scattering Cross-Section

In a neutron scattering experiment incident neutrons, with wave vectorki, are scattered at

an angleθ with a wave vectorkf . If energy is transferred to the sample the neutron energy

change is:

h̄ω = Ei − Ef

=
h̄2k2

i

2m
− h̄2k2

f

2m
(2.1)

=
h̄2(k2

i − k2
f )

2m
,

wherem is the mass of the neutron andh̄ = h/2π, h is Plank’s constant. Momentum is

also transferred to the sample and the neutron momentum change is−h̄Q. Thewave vector

transfer, Q, illustrated in the the scattering triangle in Fig. 2.1 a), is calculated as

Q = ki − kf and Q2 = k2
i + k2

f − 2kikf cos(2θ).

For elastic scattering, sincēhω = 0, thenki = kf and soQ is dependent on the scattering

angle,θ, only. Fig. 2.1 a) shows the elastic scattering triangle for two differentQ vectors

but for the same incident wave vectorlengthki. For inelastic scattering,̄hω 6= 0, and so

ki 6= kf and a range of Q values are achieved over a range of scattering angles.

The neutron is a spin-half particle with a magnetic moment ofµn = −1.04µB and it

interacts with nuclei via the strong force and with magnetic fields via the electromagnetic

interaction. The weak scattering which occurs can be well approximated by the first-order

perturbation theory of the Born approximation, which assumes that incident and scattered

neutron beams are plane waves. The quantity measured in an experiment is the flux of

scattered neutrons within particular ranges of energy and solid angle. This then is the flux

of neutrons,σ, with energy in the range[Ef , Ef + dEf ] detected by a detector which

subtends the solid angle range[Ω, Ω + dΩ]. This quantity is referred to as the ‘partial

differential cross-section’. For a neutron scattered by a potentialV , the partial differential
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Figure 2.1: a) A diagram of the neutron scattering triangle for elastic scattering showing
two configurations where the incident wavelength is constant but the wave vector transfer,
Q, differs. b) A sketch of a diffractometer used to measure elastic scattering at a reactor
source and described in the text.

cross-section is:

d2σ

dEfdΩ
=

kf

ki

(
m

2πh̄2

)2 ∑

λi,si

pλi
psi

∑

λf ,sf

|〈kfsfλf |V̂ |kisiλi〉|2δ(Eλi
− Eλf

+ h̄ω) (2.2)

whereki is the incident wave vector,si is the incident neutron spin state,λi is the state

of the sample before scattering,Eλi
is the energy of stateλi, pλi is the probability of

moving to stateλi, andh̄ω is the energy transferred to the sample from the neutron.V̂

is the operator corresponding to the scattering potentialV . The subscriptf indicates the

properties of the scattered neutron and final state of the sample. In Chapter 5 polarized

neutron diffraction measurements will be presented and the contributions to the intensity

for various polarizations will be discussed. However, all the remaining equations in this

chapter consider unpolarized neutrons since the majority of the measurements made in this

thesis were unpolarized neutron scattering experiments.
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Nuclear Scattering

In the case of nuclear scattering, which is the main component of the partial differential

cross-section, the scattering potential has a short range and is dependent on the position,rl,

of the nucleil. It can be approximated by the Fermi pseudopotential:

V (r) =
2πh̄2

m

∑

l

blδ(r− rl), (2.3)

wherebl is the scattering length of the atomic nucleusl and it is dependent on the type of

nucleus, the isotope and the orientation of the nuclear and neutron spins relative to each

other.

The nuclear scattering is comprised of coherent scattering and incoherent scattering:

d2σ

dEfdΩ
=

(
d2σ

dEfdΩ

)

coherent

+

(
d2σ

dEfdΩ

)

incoherent

.

The coherent scattering is a result of coherent interference from the nuclei in the sample

whereas the incoherent scattering is due to the variance in scattering lengths and creates an

isotropic background. The incoherent cross section isσinc = 4π(b̄2 − b̄2),.

The partial differential cross-section for nuclear scattering, using Eqns. 2.2 and 2.3, is :

(
d2σ

dEfdΩ

)

coherent

=
kf

ki

S(Q, ω) (2.4)

(
d2σ

dEfdΩ

)

incoherent

=
kf

ki

Sinc(Q, ω) (2.5)

where thecorrelation functions, S(Q,ω) andSinc(Q,ω), are,

S(Q, ω) =
1

2πh̄

∑

l,l′
blbl′

∫ ∞

−∞
〈exp(−iQ · rl′(0)) exp(iQ · rl(t))〉 exp(−iωt)dt (2.6)

Sinc(Q, ω) =
1

2πh̄

∑

l

∫ ∞

−∞

σinc

4π
〈exp(−iQ · rl(0)) exp(iQ · rl(t))〉 exp(−iωt)dt (2.7)



22

It is now more obvious how the scattering is separated. The coherent nuclear scattering is

the interference pattern between positions of the same nucleus at different times and the

interference between the positions of different nuclei at different times. The incoherent

scattering is the interference of the same nucleus at different times.

In general, the samples studied in this thesis have a large coherent scattering cross-

section and therefore information can be gained about the crystalline structure and excita-

tions within the sample. An example of a largely incoherent scatterer is Vanadium, which

has a well characterized large isotropic incoherent cross-section and is therefore useful in

calibrating the efficiency of detectors at a variety of scattering angles.

The coherent scattering provides information about the sample excitations and sample

structure. The major contribution to coherent nuclear scattering from a crystalline sample

is the elastic contribution and this is caused by the periodic atomic planes, which produce

Bragg peaks in the scattering pattern. Intense peaks in scattering are seen at scattered wave

vectors that satisfy the Bragg condition: they are equal to a reciprocal lattice vector and are

perpendicular to the crystal planes. The partial differential cross-section under the Bragg

condition for coherent nuclear scattering is:

(
d2σ

dh̄ωdΩ

)
Nuclear
coherent
elastic

=

(
(2π)3N

V0

)
|FN(Q)|2δ(Q− τ)δ(h̄ω). (2.8)

Here, the crystal reciprocal lattice vectors areτ and the nuclear structure factor is,

FN(Q) =
∑

l

bl exp(iQ · rl) exp(−Wl(Q, T )),

where the sum is over atoms,l, in the unit cell. The factorexp(−Wl(Q, T )) is the Debye-

Waller factor at a temperature,T for a givenQ. It indicates the probability that an atom is

at the position,rl, at temperatureT as a result of thermal motion.
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Magnetic Scattering

Magnetic scattering results from the interaction of the neutron with the electromagnetic

field of the unpaired electrons and from the orbital momentum of the unpaired electrons of

the ions in the sample. The magnetic dipole moment of the neutron,σ, interacts with this

electromagnetic field. As a result, the scattering potential is more complicated than that for

nuclear scattering:

V̂m(Q) = r0σ · M̂⊥, (2.9)

where

M̂⊥ = Q̃× (− 1

2µB

M̂(Q)× Q̃).

M̂(Q) is the Fourier transform of the magnetic field distribution in the sample andQ̃ is

the unit vector along the direction of the scattering vectorQ, and r0 is a constant. In

Eqn. 2.9 it is evident that the scattering vector,Q, must be perpendicular to the magnetic

field distribution of the sample for magnetic scattering to occur. Substituting the potential

defined in Eqn. 2.9 into Eqn. 2.2, the partial differential cross-section for a sample with one

type of magnetic ion with quenched orbital angular momentum is:

d2σ

dh̄ωdΩ
=

kf

ki

(γr0

2

)2

(gf(Q))2 exp(−2W (Q, T ))
∑

αβ

(
δαβ − Q̃αQ̃β

)
Sαβ(Q, ω),

(2.10)

wheref(Q) is the magnetic form factor andγ is the gyromagnetic ratio. It is the Fourier

transform of the electromagnetic field distribution of the sample. This distribution imposes

an intensity envelope on the observed scattering which usually causes the signal to diminish

considerably for largeQ. Here the correlation function is,

Sαβ(Q, ω) =
∑

ll′
exp(−iQ · (rl′ − rl))

∫ ∞

−∞
〈Sα

l (0)Sβ
l′ (t)〉 exp(−iωt)dt (2.11)

whereSα
l is the time-dependentα component of the spin of atoml. Sαβ(Q, ω) is the

dynamical spin correlation function and is a Fourier transform in both the space,rl, and
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time, t, of the spin-spin correlation function〈Sα
l (0)Sβ

l′ (t)〉. Therefore it gives the response

of the sample to the magnetic field created by the neutron.

If M(Q) is a periodic function then, just as in the case of nuclear scattering, there will

be magnetic Bragg scattering. Within the magnetically ordered phase, peaks in scattering

will be seen at scattered wave vectors which are equal to a magnetic reciprocal lattice

vector if there is a component perpendicular to the planes of co-aligned spins. The partial

differential cross-section for this coherent elastic scattering is:

(
d2σ

dh̄ωdΩ

)
Magnetic
coherent
elastic

=

(
(2π)3Nm

V0

) (γr0

2

)2 ∑

αβ

(
δαβ − Q̂αQ̂β

)
Fα

M(Q)F β
M(Q)δ(Q−τM)δ(h̄ω),

(2.12)

where Nmisthenumberofmagneticionsandthemagneticstructurefactoris, Fα
M(Q) =

f(Q) exp(−W (Q, T ))
∑

l µ
α
l exp(iQ · rl).µ

α
l is theα component of the magnetic moment

of atoml in the magnetic unit cell at positionrl.

The Detailed Balance Factor

The sample can be probed by observing either neutron energy loss or neutron energy gain.

In the case of neutron energy gain the temperature becomes an important factor in de-

termining the occupation number of particular energy states. The difference between the

probabilities of the neutron gaining or losing energy is accounted for through the detailed

balance factor and so the correlation function for neutron energy loss becomes:

S(−Q,−ω) = exp(−h̄ω/kBT )S(Q, ω), (2.13)

whereT is the temperature andkB is the Boltzmann constant. The term,exp(−h̄ω/kBT ),

is known as the detailed balance factor. For measurements at very low temperatures the

probability of neutron energy gain is greatly reduced and can often be ignored.

2.3 Neutron Scattering Experiments

The aim of the neutron scattering experiments was to measure the partial differential cross-

section and to compare it to theoretical models. In this work a variety of neutron scat-

tering experiments used different instruments to measure the elastic and inelastic neutron



25

cross-section from three different samples. The type of instrument that was used in each

experiment depended upon the neutron source. Measurements were made at

• the reactor source at the Institute Laue Langevin

• the reactor source BENSC at the Hahn Meitner Institut

• and the spallation source ISIS at the Rutherford Appleton Laboratory.

For the inelastic scattering measurements at the reactor sources it was possible to use triple

axis-spectrometers effectively whereas at the spallation source the time-of-flight technique

had to be used. Each of the main experimental techniques used in this study are briefly

described next, beginning with an explanation of the difference between the energy distri-

butions produced by the two types of neutron source.

Neutron Sources

At a reactor source a steady flux of neutrons is produced in a controlled fission process.

The neutrons are thermalised to a particular temperature in a moderator and their energy

has a Maxwell-Boltzmann distribution. A high intensity beam of monochromatic neutrons

is extracted for use in experiments by illuminating a monochromator composed of a large

array of single crystals.

A spallation source produces a relatively low flux of neutrons and with an extremely

broad range of energy. The energy distribution of a spallation source has a higher inten-

sity of neutrons at higher energies than does the Maxwellian distribution of the reactor

source. A pulse of neutrons is produced when a pulse of high energy protons is fired into

a heavy metal target. Again a moderator is used to slow neutrons to energies suitable for

experiments. A chopper is normally used in the incident beam to gain a beam of constant

energy or a range of energies. A chopper is constructed of curved sheets alternately made

of neutron absorbing and neutron transparent materials. These slats and slits reject and

accept neutrons within a pulse from the source. By varying the phase and frequency that

the chopper spins, the desired incident energy is selected as the slats and slits pass through

the beam at different times within the pulse.

Thermal neutrons are generally detected with3He detectors, through the reaction

n + 3He → 3H + p + γ.

The proton is detected because it ionizes the gas. The detectors are set up such that they
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have a high efficiency for low-energy neutrons but a low efficiency for high-energy neutrons

andγ-rays.

2.3.1 The Neutron Diffractometer

The neutron diffractometer was the most basic instrument used in this work and Fig. 2.1 b)

is a sketch of it. The figure shows how a beam of neutrons is incident on the sample and

how the neutrons are diffracted into an array of detectors which cover a large solid angle. At

a reactor source a monochromatic beam is incident on the sample and the array of detectors

counts the neutrons scattered in a particular direction, and generally no energy analysis is

made. The figure shows that a monitor, marked M1, is placed in the incident beam. The

counts from this monitor enable the observations to be normalised to the incident beam

flux.

A diffractometer at a spallation source, such as the General Materials diffractometer

(GEM), has a disk chopper which selects a range of wavelengths to be incident on the

sample. At a spallation source the neutrons are produced in a pulse at a known time. By

measuring the time taken for the neutrons to reach a particular detector in an array the

wavelength of the neutron can be determined using the formula:

k =
2π

λ
=

mL

h̄t
, (2.14)

wheret is the time of flight andL is the length of the flight path. Since the scattering angle

for the detector is known the direction of the wave vector transfer is also known. Again,

banks of multi-detectors, both within and below the horizontal scattering plane and at fixed

distances around the sample collect neutrons over a large solid angle. Such an instrument

at a spallation source is generally used for investigations of powder samples or liquids

however in this study it was also used to look at a single crystal sample. A crystalline

powder sample produces rings of scattering at constant wave vector magnitude, Q, whereas

points of scattering at particularQ are seen in the case of single crystal samples. The

sample can be placed a large distance from the pulse source to improve the resolution of

the instrument. Eqn. 2.14 shows that increasing the time of flight of the neutrons improves

the ability to differentiate neutrons of different wavelengths. High scattering angles further

increase the resolution. The high resolution of the High Resolution Powder Diffractometer

(HRPD) at ISIS is achieved by a long flight path of approximately100 m and its array of
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Figure 2.2: a) The two possible setups for a times-of-flight instrument. b) A diagram of a
direct time-of-flight chopper spectrometer.

detector banks which are in the backscattering position where2θ ∼ 180o. In the work

that will be described in chapter 3 the high resolution available at HRPD was necessary to

observe a very small crystal distortion. In such backscattering situations the detectors cover

large Q values. Unfortunately, for magnetic scattering, it is not so advantageous because

the magnetic form factor drops considerably therfore the intensity of magnetic Bragg peaks

decreases rapidly with increasing Q.

2.3.2 The Neutron Time-of-Flight Spectrometer

The time-of-flight technique can also be used to measure inelastic scattering cross-sections

with a pulsed source of neutrons. There are two possible instrumental setups which are

illustrated in the scattering triangles shown in Fig. 2.2 a).

The direct geometry instrument, the incident beam of neutrons has a fixed energy se-

lected by a chopper in the incident beam. The energy difference is measured from

the the time-of-flight of the scattered beam.
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The indirect geometry instrument is the second case where only scattered neutrons with

a fixed energy are selected by means of analyzer crystals. The incident energy is

calculated from the time of flight of the neutrons and so the energy difference can be

calculated.

The scattering angles of the neutrons again gives the wave vector transfer, Q. In this thesis

only the direct geometry configuration was used. A schematic diagram of a direct geometry

spectrometer is given in Figure 2.2 b). The incident beam energy was selected by means

of a combination of choppers. A nimonic chopper reduced background by blocking the

beam tube at the time of the proton pulse and thereby reduced the number of fast neu-

trons scattered from the sample area. A Fermi chopper then selected an incident energy as

described above. The3He detectors surrounded the lower section of the sample tank and

covered a large solid angle of the scattered neutrons. The detector and sample area were

normally enclosed and under vacuum to reduce air scattering. In this study, the time-of-

flight spectrometer, IN6, was also used. It is placed on the main neutron guide at the ILL

reactor source. In such a case a chopper is used to create the pulse of neutrons and a mono-

chromator selects the incident neutron energy beam. The advantage of the time-of-flight

instrument is that an overview of the scattering in (Q, ω) is possible in one measurement

although it may take some time to collect statistically significant neutron intensity data.

The resolution of the instrument is related to the pulse width of the neutrons and to the

flight path length and density of detectors.

The program ‘Homer’ [23] was used to convert the intensity to S(Q, ω) for the exper-

iments made on HET and MARI at ISIS. This is a standard program which calculates the

energy transfer and wave vector transfer of the scattered neutrons and, by using the sam-

ple mass and a standard vanadium measurement, converts the data into absolute units of

mbarns/meV/sr/atom. A monitor on the IN6 spectrometer was used to take into account

the1/kf factor in the intensity and a vanadium measurement was made to convert the data

into absolute units.

2.3.3 The Neutron Triple-Axis Spectrometer

Fig. 2.3 is a diagram of a triple-axis spectrometer used at a reactor source for inelastic

scattering experiments. The incident neutron energy is chosen by use of a monochromator

composed of an array of single crystals. The initial energy and corresponding wave vector

are selected by a Bragg reflection. The final energy of the neutrons is also selected in the
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Figure 2.3: A diagram of a triple-axis spectrometer. The monochromator rotates and the
analyser and sample tables move to achieve a desired energy transfer and wave vector
transfer in a given measurement.
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same way by use of an array of single crystals. The intensity of the scattered neutrons at

the resulting energy and wave vector transfer can then be measured. Thus the instrument

is extremely flexible. However, since only a single detector is used, a data set may take

some time to collect. In general, the final energy of the neutrons is fixed by the analyser

and scans are made by varying either the wave vector transfer (constant energy scans) or

the energy (constant wave vector scans).

The resolution of the measurement is dependent on the angular divergence of the neu-

tron beam and the mosaic spread of the monochromator and analyser crystals. Collimators

can be used to reduce the angular divergence of the beam and the monochromator and the

anaylser curvature can be set to an optimum balancing intensity and resolution.

When making inelastic scattering measurements there is the danger of measuring second-

order reflections from the monochromator and/or the analyser. To avoid this, two types of

filters are commonly used: a nitrogen-cooled beryllium-filter and a pyrolytic graphite filter

(PG). The cooled Be-filter acts to avoid transmission of neutrons above∼5.2 meV and the

PG filter can be used with optimally chosen wavelengths where, for example, the transmis-

sion curve has a peak at one wavelengthλ, such asλ = 2.360 Å, but troughs at2λ and3λ.

In this case, when a PG filter is placed in the scattered beam and the fixed final wavelength

is λ = 2.360 Å higher order neutrons are not scattered into the detector because they are

filtered before the analyser.

Measurements are usually performed with a constant final energyEf . A monitor, la-

belled M1 in Fig. 2.3, is placed in the incident beam with a characteristic efficiency propor-

tional to the reciprocal of the incident wave vector. Hence an advantage of measurements

made with a constantEf is that when the intensity is normalized to the counts in monitor

M1 it is simply proportional to the correlation function. Another advantage of this configu-

ration is that a greater neutron energy loss range is available and this is generally necessary

for low temperature measurements.

2.4 Susceptibility and Heat Capacity

Measurements of bulk properties, such as the magnetic susceptibility and heat capacity of

a sample, can be useful in characterizing the presence of any phase transitions and may

indicate the main exchange interactions. In this work, susceptibility and heat capacity

measurements have been carried out to complement the neutron-scattering measurements.

The two instruments used for these measurements are briefly described next.
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Figure 2.4: A diagram of the pick-up coil geometry used in an MPMS SQUID used to
measure the susceptibility.

Susceptibility

Susceptibility measurements were made using a Superconducting Quantum Interference

Device (SQUID) magnetometer. The sample was placed in a cryostat with a temperature

variation from 2 K to 300 K. The superconducting magnet provided a magnetic field of up

to 7 T.

A sketch of the main components of the instrument is given in Fig. 2.4. A small field

was applied to the sample during measurements. The measurements in this study were

taken using the Reciprocating Sample Option (RSO) technique by which the sample was

oscillated about two superconducting detection coils. The current induced by the magneti-

zation of the sample was proportional to the voltage output of the coils. The magnetization

of the sample was given by the amplitude of the output voltage curve as a function of

sample position.

Heat Capacity

The sample was mounted to the puck, which was a small microcalorimeter platform, using

a standard cryogenic grease. The sample platform was suspended by eight thin wires that

are the electrical leads for the heater and thermometer. The sample area was kept under a
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high vacuum such that heat was not lost via exchange gas.

Measurements were made by stabilizing the sample at an initial temperature and then

applying a fixed amount of heat to the sample for a set time interval. The sample temper-

ature was monitored when the heat was removed as it decayed to the initial temperature.

The heat capacity was obtained by modelling the decay time of the sample and puck [24].



Chapter 3

Investigation of the Frustrated

Triangular Antiferromagnet AgNiO 2

This chapter describes neutron and X-ray diffraction measurements done to observe the

crystal structure and magnetic order of AgNiO2 over range of temperatures. Also, de-

scribed are low-temperature inelastic neutron scattering measurements of the powder-

averaged excitation spectrum. AgNiO2 has been proposed to have a high symmetry struc-

ture in which Ni3+ ions have an unquenched eg orbital moment and are in a spin-half state.

The Ni3+ ions form an antiferromagnetic triangular lattice and so both the spin and orbital

order are frustrated. Therefore it was of interest to investigate its magnetic and crystal

structure. A high-temperature distortion of the crystal structure, which created inequiv-

alent NiO6 octahedra, was observed and suggested charge disproportionation within the

Ni lattice. Magnetic order, observed below 20 K, could be described by the electron-rich

S = 1 sites ordering into ferromagnetic rows of spins ordered antiferromagnetically. In the

magnetically ordered phase, a band of excitations, extending to approximately 7.5 meV, was

observed above an energy gap of about 1.8 meV. The shape of the lower boundary of the

scattering suggested a small inter-layer dispersion, indicating strong two-dimensionality.

A large antiferromagnetic in-plane dispersion explained the full bandwidth. However, a

linear spin-wave model could not explain all the features of the dispersion and quantum

fluctuations, beyond linear order, may have accounted for the dispersion renormalization.

33
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Figure 3.1: The idea crystal structure of 2H-AgNiO2 deduced from X-ray measurements in
[27] (space group P63/mmc-D4

6h). a) There are two NiO2 layers per unit cell related by a
mirror plane reflection through the Ag+ layer atz = 1/4. b) A diagram of the basal plane
showing the triangular network of Ni ions (large red balls) coordinated by oxygens (small
blue balls). The thick solid line contour shows the unit cell and dashed line shows the unit
cell tripling in the distorted structure.

3.1 Introduction

Spin and orbitally frustrated systems are predicted to stabilize a variety of unconventional

ordered phases, [25] or orbital-liquid states [26]. This chapter describes investigations into

such a system: AgNiO2 is a two-dimensional low-spin triangular lattice antiferromagnet.

The frustration generated by the triangular geometry of its lattice is relevant to both the

spin and orbital order of the system. The two-dimensionality and frustration are all factors

which increase the effect of quantum fluctuations.

Many delafossites, as in the case of AgNiO2, occur in two structural polytypes which

differ in the stacking pattern of the the NiO2 layers along thec-axis. The transition metal

ion, Ni, sits at the vertices of a triangular lattice in the basal plane, made up of a network

of edge-shared NiO6 octahedra. Work by S̈orgel and Jansen [27, 28] investigated the two

polytypes of AgNiO2 which exist. The 3R polytype has a three-stage structure, where

successive layers have the same orientation but have an in-plane offset with the nickel ions

forming a three-stage staircase along thec-axis. This 3R polytype has a rhombohedral

space group R̄3m, [29, 30]. There is also the 2H polytype, which has a two-stage structure,

where successive layers are stacked on top of each other but are rotated by 180o. The 2H

polytype has the hexagonal space group, P63/mmc, [27] shown in Fig. 3.1. In both cases,

the 3R and 2H polytypes, Ni ions spin and an orbital moments are frustrated.
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AgNiO2 is part of a group of materials of the form XNiO2 which display spin and an or-

bital frustration if their nominal crystal structure is considered. One such material, LiNiO2,

has shown no long-range magnetic order but experiments have been hindered by the dif-

ficulty of attaining stoichiometric samples [31]. In contrast, with NaNiO2 the degeneracy

of the eg orbital is lifted via a Jahn-Teller distortion which splits the eg band and opens an

energy gap that removes the orbital degeneracy [32, 33, 34, 35]. From elastic and inelastic

neutron scattering measurements, NaNiO2 is found to be a spin-half system with in-plane

ferromagnetic interactions and weak antiferromagnetic inter-plane coupling.

The 2H-AgNiO2 polytype is of particular interest and its properties were investigated

in the present study. It had been recently synthesized using high-oxygen pressure tech-

niques [27]. Susceptibility measurements on 2H-AgNiO2 have indicated dominant anti-

ferromagnetic order near 20 K [27]. Therefore the system is different to NaNiO2 and the

magnetism is potentially frustrated through the magnetic order. However, this had not yet

been characterized before the current study. Metallic-like conductivity has been observed

in this polytype from 300 K down to low temperatures. The high-temperature resistivity

measurements have shown an anomaly at 365 K [28]. Finally, zero-field muon-spin re-

laxation measurements have observed six distinct muon precession frequencies within the

magnetically ordered phase [36].

3.2 Structural and Magnetic Properties of AgNiO2

In this section powder diffraction experiments are described which investigated the struc-

tural and magnetic properties of the 2H polytype of AgNiO2. AgNiO2 had been initially

studied by Shin et al.[30] and has been furthered investigated by Sörgel and Jansen [27, 28].

Susceptibility measurements have been fitted to give an effective moment which is consis-

tent with the Ni ions being in the low-spin configuration where the Ni3+ have a spin-half.

The seven outer 3d electrons are then in the configurationt62ge
1
g. The high spin configuration

would have been expected to give larger effective moment since S=3/2. Their susceptibil-

ity measurements have also suggested dominant antiferromagnetic interactions which are

frustrated on a triangular lattice. They have proposed a high-symmetry crystal structure,

deduced from X-ray measurements, which would leave an unquenchedeg orbital moment

per Ni site. Therefore there is a tendency for each of the NiO6 octahedra to distort locally

and to change the Ni environment, lowering the orbital energy by the Jahn-Teller effect.

Yet on a triangular lattice the cooperative order is frustrated because neighbouring Ni sites
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Figure 3.2: Sketch to show that the co-operative orbital ordering of the eg orbital moment
is frustrated on a triangular lattice since the neighbouring sites on a triangle cannot all be
in different orbital states.

on a triangle cannot all be in different orbital states. Fig. 3.2 shows this. Such a situation of

spin and orbital frustration has been predicted to result in non-trivial forms of orbital order

or orbital liquid states, depending on the details of the interactions [25, 26]. Alternatively,

the lattice may distort in a different way to lift the orbital degeneracy.

The related materials which have potential to show spin-orbital frustration are: NaTiO2,

which undergoes a structural transition at low temperatures [37]; NaNiO2, which is a fer-

romagnet magnetic and undergoes a distortion to ferro-orbital order [32, 33, 34, 35]; and

LiNiO 2, in which no long-range magnetic or orbital order has been observed [31].

The results of the diffraction measurements described in this section showed evidence

for a weak structural modulation in 2H-AgNiO2 which led to a tripling of the unit cell in

the basal plane. It will be proposed that this structural modulation results in charge dispro-

portionation on the Ni sites which occurs in order to avoid the strong orbital frustration of

the undistorted structure. Magnetic ordering was observed at low temperatures and it will

be proposed that this is due to ordering of the charge-depleted Ni sublattice into a collinear

structure with spins aligned along thec-axis.

3.2.1 Experimental Details

Diffraction measurements were made on powder samples of the 2-stage AgNiO2 which

had less than one percent admixture of the 3-stage polytype. The sample was prepared

from Ag2O and Ni(OH)2 using high oxygen pressures (130 MPa). The method has been
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described elsewhere [27].

The crystal structure was probed by neutron powder diffraction measurements that used

the high resolution time-of-flight diffractometers OSIRIS (0.65< Q <6 Å−1) and HRPD

(2< Q <9Å−1) at the ISIS Facility and the monochromatic D2B diffractometer at the In-

situte Laue-Langevin (ILL). Preliminary measurements were also made using the general

materials diffractometer, GEM, at ISIS. In addition, X-ray powder diffraction measure-

ments to investigate the crystal structure at room temperature were made using the Philips

X’pert diffractometer at Bristol and Oxford University using the CuKα line, (λCuKα =

1.54Å).

The magnetic order was investigated by low-temperature neutron powder diffraction

measurements with the high-resolution time-of-flight diffractometer OSIRIS (0.65< Q<6Å−1).

Preliminary measurements were also made using the monochromatic neutron diffractome-

ter D1B at the ILL using a wavelength,λ=2.52Å. The magnetic order parameter was ob-

tained from elastic neutron scattering measurements using the direct-geometry time-of-

flight spectrometer IN6 at the ILL, for which the details are given in the following section.

Susceptibility measurements were made using a SQUID magnetometer (Quantum Design

MPMS) and specific heat data were collected on a pressed powder pellet using a Quantum

Design PPMS system.

3.2.2 Measurements and Results

Room-Temperature and High-Temperature Diffraction Measurements

The pattern observed in initial room-temperature measurements of the neutron powder dif-

fraction of AgNiO2 was in reasonable agreement with that reported previously by Sörgel

et al.[27]. That work proposed that the room-temperature crystal structure of AgNiO2

was within the hexagonal space group P63/mmc. The program FullProf [38] was used to

analyse the data using a Rietveld refinement method. High resolution measurements re-

vealed a series of additional low-intensity peaks which had approximately1% the intensity

of the of the main Bragg reflections. The powder diffraction pattern measured at 300 K is

shown in Fig. 3.3, plot a, and a selection of the small additional peaks is shown in Fig. 3.4.

The additional reflections could be indexed within the P63/mmc space group with thefrac-

tional wave vectors of the type (2/3, -1/3, 0) and (2/3, -1/3, 1). These additional peaks were

observed over the wholeQ range that was measured. They were supercell peaks which

moved inQ as the temperature was reduced because of the lattice contraction – as shown
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Figure 3.3: a) Room temperature (300 K) neutron diffraction pattern obtained using HRPD
(resolution∆Q/Q ∼ 10−3, 15 hours counting on an 11 g powder sample). The solid
curve through the data points was fitted to the distorted P6322 space group. The vertical
bars indicate calculated Bragg peak positions. The the bottom trace shows the difference
between the fit and the data. The inset shows complementary OSIRIS measurements which
extend the lower-Q coverage (resolution∆Q/Q = 5 × 10−3 at 3Å−1). b) The (1, 1, 1)
Bragg reflection, which would be expected to split in the case of a structural distortion to
an orthorhombic or monoclinic structure, show no splitting. The lineshape at both 300 K
(open circles) and 2 K (filled circles) could be well described by a resolution-convolved
profile for the hexagonal P6322 space group (solid lines) with lattice parameters adjusted
for thermal contraction upon cooling.
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Figure 3.4: Regions of the 300 K neutron diffraction pattern showing a number of the weak
supercell reflections disallowed in the ideal P63/mmc structure and associated with tripling
the unit cell in the ab plane. Solid lines are the calculated profile for the distorted P6322
structure in Fig. 3.11 and dashed lines show the estimated local background including the
resolution tails of nearby main structural peaks (data in some subpanels is shifted vertically
by indicated amounts for clarity).

in the central panels of Fig 3.5. The wave vectors of the supercell peaks implied a structural

modulation which was equivalent to tripling of the unit cell in the basal plane.

Fitting was attempted of the additional peaks to all the available structures of the form

NixOy in the Inorganic Crystal Structure Database [39] in order to eliminate the possibility

that the additional peaks were due to an impurity phase. Other structures of compounds

of the typeAxBy, AxByCz (whereA, B, C=Ni, Ag, O) were also considered. All were

discounted as inconsistent with the measured data. Some small peaks were identified with

the 3R polytype structure and these were estimated to be due to a small admixture of 1%

by volume. The few weak peaks that were not indexed by any obvious commensurate

fractional index of the main peaks were attributed to unidentified impurity phases below

1% of the sample volume and these would have been made during the chemical synthesis.

X-ray measurements were made in order to complement the neutron scattering mea-

surements and to make use of the difference in scattering cross-section of X-rays and neu-

trons. The X-ray measurements are presented in Fig. 3.5. They did not show any statisti-

cally significant intensity at the supercell peak positions observed in the neutron diffraction

measurements. Because lighter atoms have a smaller X-ray scattering cross-section, the

lack of intensity in the X-ray pattern implied that the structural modulation would have in-

volved displacements of the light oxygen ions predominantly and not of the heavier Ag or
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Figure 3.5: Comparison of the supercell diffraction pattern at 300 K to lower temperatures
and to room temperature X-ray measurements. The comparison of the neutron diffraction
data show that the peaks were displaced inQ following the lattice contraction upon cooling.
The low temperature data has a higher overall background because it was collected in a
cryostat. The supercell peaks were not observed in the X-ray data shown in bottom panels
and is consistent with a structural modulation involving mainly displacements of the light
oxygen ions.



41

Table 3.1: Lattice parameters and atomic positions in the unit cell in the ideal (P63/mmc)
and the distorted (P6322) structural space groups at 300 K. Oxygen positions are pa-
rameterized by an out-of-plane heightzO = 0.08050(5) and an in-plane displacement
ε = 0.0133(2). The distorted unit cell is tripled in the hexagonal plane with an unchanged
extent along thec-axis, but the origin is shifted byc/4 such that the two NiO2 layers appear
now atz = 1/4 and3/4. The symbolsa0 anda =

√
3a0, are used to denote the hexagonal

lattice parameter of the high symmetry and distorted structures, respectively.
P63/mmc (no. 194) P6322 (no. 182)
a0 = 2.93919(5) Å a = 5.0908(1) Å
c = 12.2498(1) Å c = 12.2498(1) Å
Atom Site (x, y, z)

Ni 2a (0, 0, 0)

Ag 2c (2
3
, 1

3
, 1

4
)

O 4f (2
3
, 1

3
, zO)

Atom Site (x, y, z)
Ni1 2c (1

3
, 2

3
, 1

4
)

Ni2 2b (0, 0, 1
4
)

Ni3 2d (1
3
, 2

3
, 3

4
)

Ag 6g (2
3
, 0, 0)

O 12i (1
3
, ε, 1

4
+ zO)

Ni ions. Therefore, the data was fitted to a model where only the oxygen positions varied

from the structure of 2H-AgNiO2 published in [27].

The appropriate space group to describe the structural modulation was found by con-

sidering, in order of decreasing symmetry, those subgroups within the ideal structure space

group, P63/mmc, which allowed for a tripling of the unit cell. Therefore the distorted struc-

ture had a unit cell of
√

3a0×
√

3a0× c, wherea0 is the high symmetry space group lattice

constant within the basal plane. Space groups which were not compatible with the magnetic

ordering observed in the low temperature diffraction measurements were also discounted.

To accommodate the magnetic structure, the crystallographic Ni sites of the magnetically

ordered and the magnetically unordered Ni ions were distinctly different. The best fit was

achieved using the space groupP6322. The best-fit parameter wasRF = 6.49%1. The

details of the fit are given in Table 3.1. Within this space group the twelve oxygen atoms

are within one crystallographic site and so they are related by the symmetry elements of

the group. The structural modulation can be described by a small displacement,ε, of the

oxygen atoms from the ideal structure. It was found that adjacent layers had opposite dis-

placements.

1

RF = 100
∑

n[|Gobs,n −Gcalc,n|]∑
n Gobs,n

where G is the structure factor and n runs over all observables.
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Figure 3.6: Plot a) A comparison between the 300 K (open symbols, lower trace) and
420 K data (filled symbols, upper trace) showing the absence of the triple-cell peaks (021),
(212) and (314) at high temperature. Solid lines are fits to the distorted structure for the
300 K data and ideal structure for the 420 K data. The dashed lines show the estimated
background level. The high-temperature data was shifted vertically by the indicated offsets
for clarity. Plot b) The temperature dependence of the lattice parameters:c left axis,a right
axis. Solid (dashed) lines for thec parameter are straight line fits to the data below (above)
TS = 365 K. The inset shows the temperature-dependence of the oxygen displacement
parameterε and the solid line is a guide to the eye.

A further test of the origin of the additional peaks was made by refinement of the lattice

parameters and by fitting separately the main peaks or only the supercell peaks. The results

gave similar lattice constants for both:a = 5.09082(1) Å andc = 12.24984(4) Å for the

main peaks compared witha = 5.0908(2) Å andc = 12.250(2) Å for the supercell peaks.

This was further evidence that supercell peaks were not due to an extra phase.

Measurements of the neutron diffraction pattern were made at temperatures down to

2 K. The main structural peaks observed at the base temperature of 2 K showed no splitting

and were described by the same structure as that fitted to the 300 K data but with reduced

lattice parameters ofa =
√

3×2.93360(1) Å andc = 12.24670(7) Å. This was a reasonable

fit with fit parameter valueRF = 5.53%. Therefore the main Bragg peaks indicated that the

lattice contracted at low temperature, as expected, and that no further structural transitions

occurred upon cooling.

Measurements were also made at increasing temperatures above 300 K as shown in

Fig. 3.6, plot a). As the temperature of the sample was increased the intensity of the su-

percell peaks decreased. AboveTs =365(3) K supercell peaks were not observed. The
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Figure 3.7: a) Inverse magnetic susceptibility (1/χ) fitted to a Curie-Weiss law Eqn.3.1
(solid line) gives a large negative intercept indicating dominant antiferromagnetic inter-
actions. The inset shows the suppression of the susceptibility below 20 K which was at-
tributed to onset of antiferromagnetic order. b) Temperature dependence of the specific
heat showing a sharp lambda-like peak near the magnetic transition temperature.

data was fitted to the distorted model found from the room temperature measurements but

allowing the oxygen and lattice parameters to vary. The results are summarized in Fig. 3.6

b). The temperature dependence of the displacement of the oxygen atoms from the ideal

structure,ε, showed a sharp decrease close to the temperatureTs. The lattice parameters

increased smoothly as the temperature was increased. There was a small change in the c-

lattice parameter which also occurred atTs. The diffraction pattern at 420 K was fitted to the

undistorted structure, P63/mmc space group, with the lattice parametersa = 2.94267(3) Å,

c = 12.2554(2) Å and oxygen positionz0 = 0.07991(6). The goodness-of-fit parameter

was Rf = 7.13%.

Susceptibility, Magnetisation and Specific Heat

Magnetic susceptibility measurements on a 66 mg powder sample were made using a SQUID

magnetometer (Quantum Design MPMS). The results are shown, as the inverse suscepti-

bility, in Fig. 3.7 a). There is a peak in the susceptibility at low temperatures near 20 K

as shown in the inset. This peak is an indication of the onset of magnetic ordering. At

higher temperatures the data can be well described by a Curie-Weiss functional form plus

a small temperature-independent part,χ0, which may be from the sample holder straw and

the packaging material around the sample. The high-temperature susceptibility above 70 K
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was fitted to:

χ =
C

T − θCW

+ χ0 (3.1)

whereC = 0.445(5) emu K/mole,θCW = −107(2) K, andχ0 = 1.7(1)× 10−4 emu/mole.

The negative Currie-Weiss temperature indicated dominant antiferromagnetic interactions.

The Curie-Weiss constant was used to extract an effective magnetic momentµeff = 1.88 µB

per Ni ion. This value is in accordance with measurements by Sörgel and Jansen [27] who

suggested that this implied that all the Ni sites were in the low-spin Ni3+ state (t62ge
1
g)

with S = 1/2. For a spin-half system with g-factor,g = 2, the effective moment is

µeff = 1.73µB. However, when considering the charge disproportionation model, as sug-

gested by the structural measurements, then the three Ni sublattices of Ni2+ and two Ni3.5+

sites have spin states ofS = 1 andS = 0 respectively. The Ni3.5+ is close to thet62g which

would haveS = 0. Therefore the average effective moment would beµeff = 1.63µB, for

g = 2, which is also consistent with the measurements. It may be improved further with a

better understanding of the level of charge disproportionation in this particular case.

The saturation field can be estimated by extrapolating magnetisation measurements

made up to 7 T at 2 K. The magnetisation data formed a straight line with a gradient of

1.884×10−2 µB/T per Ni1 site (6.28×10−3 µB/T per Ni site) which therefore gave a lower

limit to the saturation field asBsat ∼ 212 T of a S=1, which can only be reached by pulsed

fields. Assuming a Heisenberg model of spinS sites on a triangular lattice then Bsat = 9JS
gµB

,

and the average exchange constant,J ≈ 2.7 meV for the nearest neighbour exchange as-

sumingg = 2 and ordering on the Ni1 sites only.

Specific heat measurements were made on a pressed powder pellet of 0.023 g using

a Quantum Design PPMS system. The results are shown in plot b of Fig. 3.7. A sharp

lambda-like peak, identified with the magnetic transition, was observed near 20 K and this

is similar to the temperature of the anomaly observed in the susceptibility data. No other

anomalies were observed up to the highest temperature of 240 K, suggesting that no addi-

tional transitions occur within this temperature range.

Low-Temperature Neutron Diffraction Measurements

Low-temperature neutron diffraction measurements were made on the powder sample to in-

vestigate further the transition observed at low temperature in the susceptibility and heat ca-

pacity measurements. On cooling, additional reflections were observed below 20 K which

coincided with the peak in the susceptibility. The data in Fig. 3.8 show a subtraction of
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Figure 3.8: The difference pattern of 4 K− 300 K taken using OSIRIS. It shows the peaks
of magnetic origin. They can be indexed by the propagation vectork=(1/2,0,0). The circles
represent the observed intensities, the solid curve is a fit to the magnetic structure given in
the text and vertical bars indicate the magnetic Bragg peak positions. The bottom curve
shows the difference between the fit and the data.

Table 3.2: Irreducible representations for the six Ni ions in the unit cell, which form three
independent sublattices, for a magnetic structure with propagation vectork=(1/2, 0, 0) for
the P6322 space group obtained using group theory package[40].u, v, u′, v′, u′′ andv′′ are
independent spin components.

site Ni1 (2c) Ni2 (2b) Ni3 (2d)

position

Γ1

Γ2

Γ3

Γ4

(1
3 , 2

3 , 1
4 ) (2

3 , 1
3 , 3

4 )

(2u,u, 0) (2u,u, 0)
(0, -u,v) (0, -u, -v)
(0, -u,v) (0,u,v)
(2u,u, 0) (-2u, -u, 0)

(0, 0,14 ) (0, 0,34 )

(2u′,u′, 0) (-2u′, -u′, 0)
(0, -u′,v′) (0,u′,v′)
(0, -u′,v′) (0, -u′, -v′)
(2u′,u′, 0) (2u′,u′, 0)

(1
3 , 2

3 , 3
4 ) (2

3 , 1
3 , 1

4 )

(2u′′,u′′, 0) (2u′′,u′′, 0)
(0, -u′′,v′′) (0, -u′′, -v′′)
(0, -u′′,v′′) (0,u′′,v′′)
(2u′′,u′′, 0) (-2u′′, -u′′, 0)
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Figure 3.9: Temperature-dependence of the observed intensity at several magnetic Bragg
peak positions (from elastic neutron powder scattering measurements using IN6). Lines
are guides to the eye.

the neutron diffraction pattern at 300 K from the 4 K pattern, therefore the peaks present

in the plot are the reflections which were observed only at low temperature. These peaks

were observed only at lowQ, indicating their magnetic origin, and were indexed by the

commensurate propagation vector,k = (1/2, 0, 0). The intensity of the additional Bragg

peaks increased as the temperature was reduced below 20 K, as shown in Fig 3.9.

To analyse the low temperature diffraction patterns, the possible magnetic structures

within the P6322 space group and with an ordering wave vector (1/2, 0 0) were considered.

The four possibilities for the six Ni sites are given in Table 3.2. Table 3.2 shows that the

symmetry restricts the moments on the same sublattice to be either parallel or antiparallel

between the two layers in the unit cell. The spin direction and magnitude were indepen-

dently varied on the three sublattices in the fitting process. The best fit to the observed

diffraction pattern was obtained when only one of the three sublattices was ordered: either

Ni1(2c) or Ni3(2d), with a moment ofµ = 1.552(7) µB along the c-axis and spins parallel

between adjacent layers, Rf = 13.9% . Therefore, the best-fit case corresponded to the

irreducible representationΓ3 in Table 3.2 withv 6= 0(Ni1) or v′′ 6= 0(Ni2) and all the other

spin components equal to zero.

The magnetic structure is illustrated in Fig. 3.10 a) and consists of ferromagnetic chains

ordered antiferromagnetically in the triangular plane. Equivalent structures were obtained

by a rotation±60◦ around thec-axis, which all had the same powder averaged diffraction

pattern. Those structures correspond to the symmetry-equivalent wave vectors,k′=(0, 1/2, 0)
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Figure 3.10: A single layer of Ni2+ ions form a triangular lattice. The projection of the spin
moments along the c-axis is indicated by the± symbol for two magnetic structures. a) The
antiferromagnetic stripe order structure found to be the magnetic ordering in AgNiO2 and
b) the honey combe Up-Up-Down structure which is the usual ground state of an easy axis
triangular antiferromagnet.

andk′′=(1/2, -1/2, 0). Three equally weighted domains of the three structures would be ex-

pected in a macroscopic sample.

3.2.3 Discussion

Crystal Structure

The high-resolution neutron powder diffraction measurements indicated a structural distor-

tion occurred belowTs = 365(3) K. The orbital order of AgNiO2 is frustrated because of

the triangular geometry. A related material to AgNiO2 is NaNiO2 which undergoes a strong

ferro-distortive transition into a low-temperature monoclinic structure. It changes from the

rhombohedral R̄3m to monoclinic C2/m with a significant difference of 4% of the two in-

plane lattice parameters [32, 33, 34, 35]. The orthorhombic Cmcm space group was used

to test for a similar distortion within the AgNiO2 data, where the lattice parameters are

a× b× c. Within the accuracy of the measurements, the fitted in-plane lattice parameters,

a andb, had the same ratio as within the undistorted structure,b/a =
√

3. The hexago-

nal symmetry was preserved down to the lowest measured temperature of 2 K to less than

0.02% of the lattice constants. In the other related delafossite material, LiNiO2, measure-

ments have shown that the triangular symmetry is preserved at low temperature [31]. Yet

there has been evidence of lattice strain due to local Jahn-Teller distortions and the large

broadening of the structural peaks of approximately 40% upon cooling from room tem-

perature to 10 K [31]. In the present study some of the peak had increased widths at low
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temperatures but the effect was much smaller than has been reported for LiNiO2. Therefore,

a similar significant lattice strain did not appear to be present in AgNiO2.

The weak structural reflections, which were undetected in previous X-ray measure-

ments by S̈orgel and Jansen [27], indicated a small structural distortion with a tripling of

the unit cell in the basal plane. The data suggested that this resulted from a periodic con-

traction and expansion of NiO6 octahedra in a three-sublattice structure. The movements

of the oxygen atoms is such that the three-fold rotation axis at each Ni site is preserved but

the Ni sites are not equivalent. The Ni-O bonds are either contracted or expanded from the

ideal P63/mmc structure. In Fig. 3.11 the black circles, which are centred on the three inde-

pendent Ni sites, correspond to average Ni-O distances. The three sites have average Ni-O

bond lengths of 1.934̊A for Ni2 and Ni3 sites (2b and 2d) and 2.022̊A for Ni1 sites (2c).

In Ni4+ oxides [41, 42] the typical Ni-O bond distances are about 1.92Å, whereas in Ni2+

oxides [43, 44, 45] they increase to∼ 2.09Å. Therefore, it may be the case that a charge

disproportionation occurs among the Ni sites on the triangular layers in AgNiO2 between

charge-rich sites Ni2 and Ni3, which are at the centre of a contracted NiO6 octahedron

with valence close to Ni4+, and the charge-depleted Ni1 sites, which are at the centre of an

expanded octahedron with valence close to Ni2+.

A phenomenological bond-valence model [46] is considered to relate the valence of the

central ion to the bond-length:

σ =
∑

i

exp ((r0 − ri) /B) (3.2)

whereri is the bond length of the central ion to oxygen bond,B=0.37Å andr0 = 1.686 Å

for the Ni3+-O2− pair. Using the bond lengths observed experimentally implies nominal

valences in the ionic limit for the three sites: 2.42 for the Ni1 site and 3.07 for Ni2 and Ni3.

This suggests significant, but most probably only partial, charge disproportionation within

the sample in the distorted phase.

The bond lengths found for the Ni-O bond in AgNiO2 are similar to those found in

YNiO3. YNiO3 is disposed to charge disproportionation by forming two Ni sublattices of

valence Ni3±δ whereδ ' 0.35. In that material the Ni-O distances are (Ni1-O)=1.923Å

and Ni2-O=1.994̊A, [47] and so results can be compared with AgNiO2.

A full symmetry analysis of the structural distortion in AgNiO2 has been considered

by Wawrzýnskaet al.in [48] (section V and appendix). The charge order on the nickel

sites and the displacement of the oxygens have been described as an order pattern with
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Figure 3.11: Upper figure is a schematic diagram of the NiO2 layer atz = 1/4 showing
how the displacements (small arrows) of the oxygen ions (small balls) lead to a periodic
arrangement of expanded (large circle, Ni1) and contracted (small circles, Ni2, Ni3) NiO6

octahedra. The thick hexagonal contour indicates the honeycomb network of contracted
sites. The origin of the coordinate system is at the circled Ni2 site. The lower figure shows
the expanded site Ni1 has a staggered zig-zag arrangement between even and odd layers
stacked along thec-axis. Layer 2 in the unit cell (z = 3/4 and−1/4) is obtained from layer
1 by 180o rotation around the central (1/2, /2, z) axis followed by ac/2 translation.
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wave vectorq0 = (1/3, 1/3, 0) within the ideal structure space group P63/mmc. The co-

representation analysis of the distortion has shown that the space group P6322 is uniquely

identified as the low symmetry space group describing AgNiO2 below 365 K.

Magnetic Structure

The negative Currie-Weiss temperature indicated dominant antiferromagnetic interactions

and the high Currie-Weiss temperature but low magnetic transition temperature pointed to-

ward large fluctuations. These results may have arisen from the low dimensionality and

frustration of the triangular lattice planes, which would have led to a suppression of the

magnetic order in the triangular plane. The transition temperature that was observed from

the magnetic order parameter curves,TN = 23.7(3) K , was slightly offset from the loca-

tion of the specific heat anomaly near 19.7(3) K, and susceptibility maximum near 21(1) K.

This was probably a result of a small temperature calibration offset in the neutron measure-

ment, where the sensor was at some distance from the sample. The specific heat transition

temperature was perhaps the most accurate value and it was consistent with the value found

in recentµSR results [36].

The low-temperature diffraction pattern was fitted to a magnetic structure where only

one sublattice was observed to order. The goodness-of-fit parameter was larger than in

the case of the crystal structure because fewer Bragg peaks were observed: also there was

difficulty in defining the OSIRIS profile pattern at lowQ. The magnetic order pattern re-

inforced the structural analysis, where the Ni1 site carried a large moment in comparison

to the other two sites. At complete charge disproportionation the Ni1 site would have been

Ni2+ and therefore haveS = 1. Although the data did not rule out the possibility of a

small magnetic moment of order0.1µB along the c-axis on the Ni2 and Ni3 sites, including

this possibility did not improve the fit to the data. Therefore, the simplest model was that

where only the Ni1 site ordered. The fact that the magnetic moment was aligned along

the c-axis indicated that there was a strong uniaxial anisotropy. Yet the proposed magnetic

structure of ferromagnetic stripes arranged antiferromagnetically in the basal plane is un-

usual. That is because the up-up-down structure, shown in Fig. 3.10 b), is the ground state

of the isotropic triangular lattice with nearest-neighbour antiferromagnetic exchange for

the case of a strong uniaxial anisotropy [17]. The possible Hamiltonian that would stabilize

the observed magnetic structure is discussed in the following section.
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Figure 3.12: A sketch of a single Ni lattice within AgNiO22 with the in-plane exchange
interactions indicated in a) and inter-layer indicated in b). The Ni sites which order, the Ni1
sites, are plotted in red and they form an isotropic triangular lattice. The Ni2 and Ni3 sites
form a honeycomb network around the Ni1 sites. Plot a) shows the the nearest-neighbour
and next-nearest-neighbour interactions and plot b) shows the inter-layer interactions for
the Ni1 lattice including the oxygen and silver layers in the sketch.

3.3 Magnetic Excitations of AgNiO2

Low-spin triangular-lattice magnets are systems suitable for investigating the interplay be-

tween quantum fluctuations and geometric frustration. The frustration generated by the

geometry of the lattice and the quantum fluctuations, due to the low-spin state of the sys-

tem, have been predicted to produce both unconventional ordered phases and unusual ex-

citations [49].

The delafossite materials of the type X NiO2 are generally thought of as possible two-

dimensional frustrated magnets because a network of edge-sharing NiO6 octahedra make

up a triangular lattice of Ni ions in a plane spaced with layers of X+ ions. If the Ni3+

is in the spin-half state then a low-spin triangular-lattice is formed. Two materials have

been studied extensively of this type. In the first, LiNiO2, no long-range order has been

observed in. In the second, NaNiO2, elastic and inelastic neutron scattering measurements

have found that the Ni3+ is a spin-half system with in-plane ferromagnetic interactions and

weak antiferromagnetic inter-plane coupling [33]. AgNiO2 has been less well studied but

it shows dominant antiferromagnetic in-plane interactions and thus promises to have an

interesting excitation spectrum [29].

As discussed in the previous section, it has been proposed that, in the triangular lattice

of Ni ions, charge disproportionation is a means of avoiding the orbital frustration effects
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that have been inferred from the observed small distortion of the NiO6 octahedra [48]. The

expansion and contraction of the NiO6 octahedra has indicated that the transition of the

unpaired electron in the ideal structure, 3e1
g → e2

g + e0.5
g + e0.5

g , forms three independent Ni

sites within one Ni layer. BelowTN ∼ 20 K, a transition to a magnetically ordered state

has been observed [48]. It has been suggested that the so-called Ni1 sites are ordered and

form an isotropic triangular lattice, as shown in Fig 3.12. With a valence close to Ni2+, the

Ni1 sites have a spin stateS = 1. The other two independent sites, Ni2 and Ni3, with a

valence close to Ni3.5+, have no sizeable magnetic moment. The spins on Ni1 sites order

with moments aligned collinearly into ferromagnetic stripes arranged antiferromagnetically

in the basal plane (see Fig. 3.10 a) as opposed to the more usual Up-Up-Down structure

(UUD)( see Fig. 3.10 b). The UUD state is the ground state of the isotropic triangular

lattice where there is nearest-neighbour antiferromagnetic exchange and a strong uniaxial

anisotropy [17]. The striped ground state is quite unusual for the triangular antiferromag-

net. The strong quantum fluctuations, due to the large frustration of the lattice, stabilize

the antiferromagnetic stripes in this case. In fact, calculations of the two dimensional tri-

angular lattice, with nearest (J) and next-nearest neighbour(J’) antiferromagnetic coupling

and a large easy-axis anisotropy, have shown that the antiferromagnetic stripes structure

is stabilized when J’/J>1/8 by an order-by-disorder mechanism [50]. The inter-layer cou-

pling shown in Fig. 3.12 b) is thought to be weak because of the large distance between

the layers. The easy-axis anisotropy is such that spins align along the c-axis and so they

are perpendicular to the triangular lattice layers. Therefore, the magnetic structure bal-

ances the antiferromagnetic nearest and next-nearest-neighbour exchange couplings within

the triangular lattice layer, and the ferromagnetic inter-layer interactions and an easy-axis

anisotropy.

The remainder of this section describes inelastic neutron scattering measurements on

a powder sample of hexagonal AgNiO2. It is shown that the observations are consistent

with a generic sinusoidal dispersion and an antiferromagnetic structure factor. With this

model, the observed powder-averaged spin spectrum could be parameterized and a quan-

titative measure of the bandwidth and main energy scales could be gained within the or-

dered phase. These results were compared with linear spin-wave theory calculations and

with two models in particular. The nearest and next-nearest neighbour model calculated

by Chubukov and Jolicoeur [50] and then an extended model Hamiltonian which included

inter-plane couplings and a uniaxial anisotropy. While a set of parameters could be found

to describe the gap and bandwidth, the intrinsic two-dimensional dispersion in this model
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predicts large in-plane dispersion along the stripes and smaller in-plane dispersion between

the stripes, but this is not captured by the linear spin-wave theory of the extended model

Hamiltonian.

3.3.1 Experimental Details

The powder samples that were described in§3.2.1 were used for all the measurements. The

space group, cell parameters and fractional co-ordinates of the three Ni sites are given in

Table 3.1 for this polymorph.

Inelastic neutron scattering measurements up to 10 meV energy transfer gave an overview

of the excitations. They were made using the direct geometry time-of-flight spectrometer,

MARI at the ISIS Facility of the Rutherford Appleton Laboratory in the UK. MARI was

also used to probe higher energy excitations. For the main measurements it was set up with

an incident energy of 18 meV, achieving a resolution of 0.61(1) meV on the elastic line.

Measurements were also made at higher incident energy settings. The low-energy part of

the spectrum was investigated using the IN6 spectrometer at the ILL. It was operated at

an incident energy of 3.86 meV and achieved an energy resolution of 0.142(1) meV on the

elastic line. Measurements were taken between a base temperature of 1.8 K and 300 K.

Both data sets were normalized to absolute units ofS(Q,E) of mbarns/meV/sr/Ni1, using

the sample mass together with the results of the measurements of a vanadium standard.

The low-energy IN6 data was also corrected for neutron absorption effects calculated for a

flat-plate sample shape.

3.3.2 Measurements and Results

The powder averaged spectrum from both spectrometers is shown in Fig.3.13. Fig. 3.13 a)

shows a band of scattering below the magnetic ordering transition temperature ofTN ∼20 K.

The band of intensity is seen to begin above an energy gap and extend to∼ 7.5 meV.

The intensity is seen to reduce with increasingQ and so this confirms its magnetic ori-

gin. Fig. 3.15, left plot, shows a density of states over a wideQ range. Within the ordered

phase a band of excitations is seen to extend above1.8 meV and up to7.5 meV, where the

intensity decays to the background level.

The excitation band is seen to have further structure at its low-energy edge. Fig. 3.13

c) shows the high-resolution measurement in the lower energy transfer and lowQ region.

A clear modulation in the shape of the low edge of the excitation band can be observed.
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Figure 3.13: Powder-averaged magnetic excitation spectrum of AgNiO2 measured with an
incident energy, Ei = 18meV (left column) and Ei=3.86meV (right column) plotted as a
function of wave vector,Q and energy transfer, E. Colour indicates the intensity in units
of units ofS(Q,E) of mbarns/meV/sr/Ni1. The upper plots a) and c) give the measured
spectra in the magnetically ordered phase showing a band of excited states above an energy
gap of∼1.8 meV. The streak of intensity in plot c) near Q=1.1Å−1 is due to an acoustic
phonon from the (0, 0, 2) structural Bragg peak. At high temperature above the magnetic
ordering transition in plots b) and d) a filling of the energy gap is observed and there appears
to be little structure in the intensity pattern as a function ofQ. The intensity shown in panel
d) was rescaled by a factor of1

3
such that it is shown on the same scale as the rest of the

figure. The grey dotted lines on all the plots indicate the edge of the measured region. The
black arrows marked A-D indicate theQ value of the plots in Fig. 3.14.
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There are minima in the intensity distribution atQ ∼0.7Å−1 and∼0.9Å−1. These min-

ima correspond to the positions of the two magnetic Bragg wave vectors, (1/2, 0, 0) and

(1/2, 0, 1) respectively, as can be seen by comparing the plot in Fig. 3.14. The elastic line

plot in Fig. 3.14 was measured made with the diffractometer GEM at ISIS, as described in

§3.2.1. The plot shows strong magnetic Bragg peaks that were observed below the mag-

netic transition temperature. The upper plot in Fig. 3.14 shows the data from the higher

resolution IN6 measurements at an energy transfer of 2 meV, which is just above the en-

ergy gap. It shows that the minima in the dispersion are at the sameQ as the magnetic

Bragg peaks. The streak of intensity in Fig. 3.13 c) originates on atQ = 1.1Å−1 and arises

from an acoustic phonon mode from the intense nuclear reflection (0, 0, 2).

In Fig. 3.15 and other plots the estimated background level is shown as a green line for

comparison. The background level was estimated by fitting a smooth function between the

low energy and lowQ data within the energy gap, and at high energy beyond the excitation

band.

The low-energy edge of the band of intensity is seen to be shaped in Fig. 3.13 c) with a

sharp onset edge at lowQ that has a steep intensity gradient. The estimated lower boundary

of the scattering is displayed as black crosses in the plots of Fig. 3.19. The crosses show

where intensity was observed to be above a threshold for various values ofQ. Cuts through

planes in the directions B and C give the intensity in Fig. 3.14. The figure demonstrates

the change in onset energy at differentQ values. The different onset energy at the two

wave vectors (Q ∼ 0.7 Å−1, associated with the wave vector (1/2, 0, 0), Fig. 3.14 B and

Q ∼ 1.1 Å−1 associated to the (1/2, 0, 1) Fig. 3.14 C) indicates a dispersion of the lower

boundary of approximately0.5 meV. This will be shown below to be determined mostly by

the inter-layer dispersion of the excitations.

Fig. 3.15 shows that upon heating above the magnetic ordering temperature the spin gap

energy region increased in intensity and no energy gap could be observed at a temperature

of 30 K. Deep into the paramagnetic phase at 300 K a broad over-damped signal is observed

as shown in Fig. 3.13 b) and Fig. 3.15.

A search for high-energy excitations was made in order to measure crystal field excita-

tions. The first excitation was observed at366(1) meV. Fig. 3.16 shows that the intensity

of the mode decreased with increasingQ and this showed that it had a magnetic origin due

to a decreasing magnetic form factor. It was likely to be a crystal field excitation because

this excitation was at a much higher energy compared to the exchange interactions in the

material. It may have been due to the excitation of one electron from the filledt2g level to
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Figure 3.14: The lettering A-C of these plots refer to the markings in Fig. 3.13. Plot A: The
upper plot shows the high resolution data just above the onset of the excitation band at a
constant energy of 2 meV. The minima seen in the excitation edge are above the magnetic
Bragg wave vectors seen in the elastic line data taken on the GEM diffractometer ISIS
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Figure 3.15: Left: A cut in energy over a broadQ range through the lower resolution data.
This is a density of states type plot within the magnetically ordered phase and equivalent
cut from the data set above the magnetic ordering temperature. A band of excitations is
observed up to 7.5 meV at low temperature. It is seen that the energy gap to this band of
excitations is filled with intensity as the temperature is increased. Right:A cut in energy
through the high resolution data about the magnetic Bragg reflection (1/2, 0, 0) which
shows the variation of the energy gap with temperature and the increase in intensity at low
energies on moving above the magnetic ordering temperature of 20 K. The lines are guides
to the eye.

theeg level. A schematic diagram for the strongly magnetic Ni1 ion is shown in the insert

of Fig. 3.16. This transition may also occur for the other two Ni sites in the unit cell, which

have been proposed to have an itinerant character [48].

3.3.3 Analysis

Parameterization Model

A simple model was constructed to understand the main energy scales in the system and

in an attempt to parameterize the dispersion. A gapped sinusoidal three-dimensional dis-

persion was constructed to have minima at the magnetic Bragg peaks and included three

independent dispersions along the three non-equivalent directions: firstly along the stripes

of collinear spins; secondly perpendicular to the stripes within the plane; and thirdly an

inter-planar dispersion. In detail the dispersion used was:

(h̄ωQ)2 = ∆2 + (E2
1 −∆2) sin2(πk)

+(E2
2 −∆2) sin2(π(2h + k)) + (E2

3 −∆2) sin2(πl)
(3.3)
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Figure 3.16: A high energy mode is seen in data taken using MARI with an incident energy
Ei=600 meV. The cut at lowQ (black closed points) shows a mode centered at 366(1) meV
which is not present in the highQ cut (green open points). The large energy of this ex-
citation suggests it could be a crystal field excitation from a t2g level to the eg level. The
decrease in intensity of the mode at highQ values, open points in the plot, further indicates
its magnetic character. The scenario for the strongly magnetic Ni1 site is indicated in the
top left diagram, but it may also be due to the other Ni sites in the unit cell.

where the wave vector,Q = (h, k, l), is expressed in terms of the reciprocal lattice units

of the hexagonal unit cell. The dispersion for two models is plotted in Fig. 3.17. Branches

along key directions for the hexagonal space group are shown, which are labeled in the

Brillouin zone and plotted in Fig. 3.17 left. The dispersion given by Equation 3.3 has a

minimum energy gap,∆, at the magnetic Bragg peaks and has a sinusoidal shape along

the three non-equivalent directions, namely two in the plane and one between the planes.

E1, E2 andE3 measure respectively the maximum energy of the dispersion: in-plane along

the stripes of collinear spins; in-plane perpendicular to the stripes; and the inter-layer dis-

persion. An ordered magnet with collinear spins along the z-direction is expected to have

spin-wave modes polarized in the xy-plane. Therefore, the functional form of the dynamic

correlations is assumed to be:

Sxx(Q, ω) = Syy(Q, ω) = C
1− γQ

2ω
G(ω − ωQ) (3.4)

where C is a normalization constant andγQ = cos(πk) cos(π(2h + k)). For the best-fit

model C=700±10. The factors(1 − γQ)/2 and 1/ω are a geometric factor and an energy

dependence factor respectively that concentrate intensity near the antiferromagnetic Bragg
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Figure 3.17: Upper: Brillouin zone for the triangular lattice of ordered Ni1 spins projected
on the (a, b)-plane. The solid green points indicate nuclear Bragg reflections and the red
stars indicate the locations of the magnetic Bragg reflections arising from the collinear
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for the hexagonal space group and are indicated in the top labels in the right plot. Lower
plot: Dispersion along the high symmetry directions in the three-dimensional Brillouin
zone. Best fit to the data, model I (solid lines), gives largest dispersion along the in-plane
stripe direction. In Model II (dashed lines) the largest dispersion is in-plane transverse
to the stripe (this does not model the data successfully). The parameters for Model I are
E1 = 5.73 meV, E2 = 4.15 meV and in Model IIE1 = 4.15 meV, E2 = 5.73 meV with
E3 = 2.33 meV,∆ = 1.78 meV.
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peak wave vectors. These factors replicate the intensity distribution of many standard anti-

ferromagnetic spin-wave models.G(ω−ωQ) is a gaussian function which models the reso-

lution of the measurements. A powder average of the intensity distribution, which included

the polarization factor and magnetic form factor for the Ni2+ ion, was taken for compari-

son with the experimental results. It is shown in the lower panels of Figs. 3.21 and 3.19. An

estimate of the experimentally observed non-magnetic background scattering was added to

the magnetic scattering calculated from the parameterization model. In particular, the inco-

herent quasi-elastic scattering was added to the calculation to make it directly comparable

with the data.

The difference between lattice parameters was used to identify dispersion branches both

within the plane and between planes and thereby to parameterize the model. In this way,

it was possible to identify the dispersion branches along various directions in the Brillouin

zone which shaped the lower edge of the excitation band, as shown in Fig 3.13 c). Having

identified the relevant dispersion branches, the parameters were estimated and gave an

indication of the main energy scales in the system.

As shown in Fig. 3.18 plot B, the minimum energy gap occurred at theQ values corre-

sponding to the magnetic Bragg peaks. The energy scan above the Bragg point (1/2, 0, 0)

was fitted with the parameterization model to extract the size of the gap and this gave

∆=1.78±0.04 meV. The solid lines in Fig. 3.18 show the equivalent calculated intensity

distribution for the best-fit model.

A steep sharp-edged boundary to the scattering at lowQ was observed before the first

magnetic Bragg peak (1/2, 0, 0). The (h, 0, 0) branch connecting (0, 0, 0) to the (1/2, 0, 0)

shapes this edge as shown in Fig. 3.19 a). This branch is most sensitive to the dispersion

transverse to the stripes, that is the E2 energy scale, and a fit to the low energy section

of Fig. 3.18 D gave a value ofE2 = 4.15 ± 0.04 meV. Therefore the modelled dispersion

between the stripes does not lead to the full bandwidth observed in the data. However, the

bandwidth can be reproduced by fittingE1. With E2 fixed by the sharp dispersion edge at

low-Q, the overall bandwidth was fitted by varying the dispersion along the stripes which

is associated withE1, since the inter-layer dispersion was presumed to be small. Thus

the largest dispersion was assumed to be along the stripes of collinear spins. By fitting

the parameterization model to the full experimental bandwidth in Fig. 3.18 D, gave a value

E1=5.73±0.04 meV.

Figure 3.18 C, shows a larger energy gap atQ=1.1Å−1 than the value of 1.8 meV which
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Figure 3.18: Plots comparing the best-fit of the model(see text) to the data for the scans
B-D in Fig. 3.13. To quantitatively fit the lower energy edge of the band of excitations
low Q scans were taken of the type B and C and the equivalent scans are shown for the
parameterization calculation. Cut D shows the full bandwidth of the data. The bandwidth
is reproduced by construction and this fit was used to determine the in-plane inter-stripe
energy scale. The green dashed lines in the plots indicate a fit to the background points.
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Figure 3.19: The parametrization of the data with the three energy scale E1, E2, E3 model
given in the text is plotted for the key branches which define the low-energy edge of the
dispersion in plot a) and the powder average spectrum is given in plot b) for the best fit
values. The black crosses on both plots indicate the onset of the intensity distribution from
the data which are given for comparison and show there is a good fit to the data. The black
arrows indicate the relevant cuts in the calculation given in plots A to C in Figs. 3.18 and
3.20.
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Q of the magnetic Bragg peaks show in the lower plot.
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Figure 3.21: Comparison of the data from the power sample, plot a, and the parametriza-
tion model, plot b, discussed in the text. The calculations include an estimate of the ex-
perimentally observed non-magnetic background scattering. In particular, the incoherent
quasi-elastic scattering was added to the calculation to make it comparable to the data. The
bold arrow labeled D indicates the location of the scans plotted in Fig. 3.18 and the grey
dotted lines on both plots indicate the edge of the measured region.
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was observed atQ=0.7Å−1 (plot B). Because of the dissimilar lattice constants, it is pos-

sible to differentiate between dispersion branches within the triangular plane and between

planes. The pointQ=1.1Å−1 was identified as the mid-point between the two magnetic

Bragg peaks, (1/2, 0, 1) and (1/2, 0, 2), which are along the inter-layer direction. Therefore

the inter-layer energy scale,E3, determines the size of gap at thisQ point from a branch

such as (1/2, 0,h), as shown in Fig. 3.19.E3 was estimated asE3 = 2.33 ± 0.04 meV by

fitting the energy gap in Fig. 3.18 C.

The lower panel in Fig. 3.19 shows the powder averaged spectrum for the best-fit model.

The black points indicate the onset energy of the observed scattering. The black points do

not take into consideration the resolution effects of the measurements and so the dispersion

branches lie slightly away from the points. The model reproduced the shape of the lower

edge of the intensity distribution at low-Q values and the overall features at low energy.

Furthermore the model gave clear minima in the intensity distribution above the magnetic

wave vectors and this is demonstrated in Fig. 3.20 A.

The model compared well to the data at low energy as shown in Fig. 3.20 A and

Fig. 3.18 plots B and C. By construction, the bandwidth was reproduced as shown in

Fig. 3.21. The form of the intensity distribution within the excitation band was not repli-

cated in detail. This can be seen by comparing the observed with the modelled intensity

in Fig. 3.18 D, which covers the full bandwidth. The calculation gave a more pronounced

trough in intensity in the middle of the band; This was probably due to the over-simplified

model. The model did identify two in-plane dispersion scales, an inter-plane interaction

energy and an energy gap. The in-plane inter-stripe dispersion had a bandwidth of 60%

that of the in-plane along the stripe dispersion bandwidth, whereas the inter-plane disper-

sion bandwidth was smaller, being 14% of the in-plane along-the-stripe bandwidth. This

dispersion was above an energy gap of1.78± 0.04 meV.

The lower boundary of the intensity distribution greatly constrained the relative size

of the energy scales of the model. In order to demonstrate the sensitivity of the model,

the observed intensity distribution was compared with that predicted by the best-fit model

and with a model where the two in-plane dispersion maxima are exchanged. The latter

is referred to as model II and the dispersion its plotted as the dashed lines in Fig. 3.17.

The dispersion of the modes in model II was largest transverse to the rows and within the

triangular plane, i.e.E2 > E1. The shape of the sharp leading edge of the excitation band is

defined by the dispersion branch between the wave vectors (0, 0, 0) to (1/2, 0, 0). In model

II this dispersion branch is steeper than in model I.E2 must be reduced in order to reduce
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Figure 3.22: Powder averaged intensity distribution for Model II where the in-plane disper-
sion between the stripes is larger than along the stripe direction. The parameters are given
in Fig. 3.17. This model should be compared directly to the data given in Fig. 3.13 a). It is
seen that the sharp edge to the excitation band at low energy and lowQ is steeper than that
observed in the data indicating the sensitivity of the model to the in-plane inter-stripe band
width which is too large in this model.

the gradient of the dispersion about the wave vector (1/2, 0, 0). Since this is the largest

energy scale in model II the full bandwidth would be become smaller than that observed

in the data. The powder average intensity distribution of model II, shown in Fig. 3.22, is

inconsistent with the distribution observed. The figure demonstrates clearly that the edge

produced at lowQ and low energy transfer is too steep and it demonstrates the sensitivity of

the model to the inter-stripe energy scale. Therefore model II, where the in-plane dispersion

transverse to the stripes is larger, is eliminated because it is an inappropriate model.

Linear Spin-Wave Analysis

The linear spin-wave excitation spectrum from the magnetically ordered state provides

insight into the exchange mechanisms within the lattice. The Hamiltonian that was con-

sidered was based on the crystal structure. It modelled layers ofS = 1 Heisenberg spins

on an isotropic two-dimensional triangular lattice coupled antiferromagnetically within the
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Figure 3.23: A sketch of the four sublattices used in the spin-wave calculation of the Ni1
sites. The crystallographica andb lattice vectors are shown, and the magnetic unit cell is
enclosed in the thick grey lines. The numbers innumerate the sublattices and the symbols
indicate Ni1 spins collinear with the c-axis and within a layer at z=1/4 and z=3/4 for layer 1
and layer 2.

planes and ferromagnetically between the planes. The Hamiltonian was:

H =
∑
NN

<ij>

JSi · Sj +
∑
NNN
<il>

J′Si · Sl +
∑
Inter−layer
<ik>

J⊥Si · Sk −D
∑

i

(Sz
i )

2. (3.5)

HereJ, is an in-plane nearest-neighbour exchange,J′ is an in-plane second-neighbour ex-

change, andJ⊥ a ferromagnetic inter-layer coupling. The final term in Eqn 3.5 is an easy-

axis anisotropy which could possibly originate from crystal field effects. It was introduced

to reflect the spin ordering direction along the c-axis and the energy gap in the excitation

spectrum. The couplings are indicated in the diagram of the lattice in Fig. 3.12.

The proposed magnetic structure is unusual for a triangular lattice of spins with nearest-

neighbour coupling. Therefore, the possible ground states of the system will be considered

in order to illustrate this choice of the model Hamiltonian. Firstly, the reduced model of

a triangular Heisenberg lattice with nearest-neighbour and next-nearest-neighbour interac-

tions (J′ = 0, J⊥ = 0,D = 0) is a highly frustrated model. The classical ground state for

that model is a120o spiral magnetic structure. It has Bragg peaks at the corners of the tri-

angular lattice Brillouin zone, which are points equivalent to the point K in Brillouin zone

plot in Fig. 3.17.
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Figure 3.24: The powder average intensity distribution of the J, J’ model including the
quantum corrections as calculated by Chubukovet al.[51, 50], calculated for J=4.8 meV
and J′/J=1/8. It demonstrates the failure of model to replicate the distribution observed in
the data particularly the energy gap.

Spin-wave theory of theJ, J′ model

Secondly, if the next-nearest neighbour interaction,J′, is increased there are many possible

degenerate ground states. Jolicoeuret. al have shown by spin-wave analysis that spins

align into ferromagnetic stripes ordered antiferromagnetically from the ‘order by disorder’

mechanism ifJ′ ≥ J/8 [51, 50]. The magnetic structure is shown in Fig. 3.10 a). Such a

magnetic structure gives the Bragg peaks at the mid-faces of the Brillouin zone hexagon

and these are points equivalent to M in Fig. 3.17. The dispersion found from the linear

spin-wave calculation has gapless modes at points such as K in the Brillouin zone and

yet these are not Bragg peaks in this structure [50]. These modes become gapped when

the first quantum corrections are included within the calculation because they renormalize

the spin-wave result. Therefore the quantum fluctuations have a large effect on the main

features in the linear spin-wave spectrum because the model is highly frustrated. A powder

averaged intensity distribution of the spin-wave results, which includes the first quantum

corrections, is shown in Fig. 3.24. To calculate the intensity distribution, the transverse

dynamic correlation functions were assumed to follow the general formalism for a two
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sublattice antiferromagnet:

Syy(Q, ω) = Sxx(Q, ω)

=
(S −∆S)

2
|uQ + vQ|2G(ω − ωQ), (3.6)

whereuQ = cosh(θQ), vQ = sinh(θQ), tanh(2θQ) =
BQ

AQ
. The values of AQ andωQ come

from the linear spin-wave calculation including the first quantum corrections ( see Eqns. 5

and 7 in [50]). ∆S =
∑

Q v2
p is the reduction in spin due to the quantum fluctuations.

G(ω − ωQ) is a gaussian function which models the resolution of the measurements. A

polarization factor and magnetic form factor for the Ni2+ ion is also included. The energy

scale of nearest-neighbour coupling, J, was chosen to give a bandwidth similar to that

observed in the data. The intensity distribution was calculated for the critical value of J′

which is where J′ =J/8. Fig. 3.24 demonstrates the failure of the J, J′ model to describe the

data. For example, one of the main features of the data, that of the energy gap to the band of

excitations, is not present. There is no structure in the low-energy edge of the scattering and

this is partially a result of the over-simplification of using one layer and not two coupled

layers as is actually the case in AgNiO2. The energy gap that was observed indicated that

an easy-axis anisotropy was present and so such a situation is now discussed.

Easy-axis anisotropy and inter-layer interaction

A uniaxial state, such as sketched in Fig. 3.10, is further stabilized on a triangular lattice

if there is an easy-axis anisotropy. In the regime of a large anisotropy,D, and considering

only nearest-neighbour interactions in the triangular plane,J′ = 0, the ground state changes

from the 120o spiral structure to a uniaxial structure whenD ≥ 3J/2. In the uniaxial

structure the three sublattice spins of the120o spiral structure move to an up-up-down

arrangement (UUD) as sketched in Fig. 3.10 [17].

In the limit whereD is large the physics of the Hamiltonian (Eqn. 3.5 whereJ′ = 0 and

J⊥ = 0) would be expected to approach that of an Ising triangular antiferromagnet where

the ground state is infinitely degenerate for only nearest-neighbour interactions. However,

the introduction of finite next-nearest-neighbour couplings,J′ > 0, lifts the degeneracy and

stabilizes the antiferromagnetic spin stripe order [52]. The degeneracy is also lifted if an

inter-layer exchange is considered.

In the case of an inter-layer exchange,J⊥ 6= 0, the stacked antiferromagnetic stripe

state is more favourable than the UUD state. This can be understood by considering the
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energy per spin of the ground state. For a ferromagnetic inter-layer exchange (J⊥ < 0) and

a magnetic structure of antiferromagnetic stripes in the plane, each spin has four favourable

and two unfavourable inter-layer bonds. Whereas, in a stacked UUD structure, only two-

thirds of the sites have two net favourable bonds and the remaining one third have two

net unfavourable inter-layer bonds. Therefore, a ferromagnetic inter-layer coupling would

give the energy per spin from the inter-layer exchange as Energystripe=2J⊥ compared with

EnergyUUD =J⊥/3. Hence, the antiferromagnetic stripes structure is the lower energy state

of the two structures.

Linear-spin-wave calculation of full model Hamiltonian

In the discussion above, a simple J, J′ model was shown to be insufficient to model the ob-

served scattering distribution. There was evidence of an easy-axis anisotropy and a small

ferromagnetic inter-layer interaction. A linear spin-wave calculation (LSWT) of the full

model Hamiltonian was considered in an attempt to capture the main features of the excita-

tions. A four sublattice model was used, in the linear spin-wave analysis, and this included

the two lattices of up and down spins on the two Ni1 layers in the unit cell, as shown

in Fig. 3.23. An easy-axis nearest-neighbour triangular antiferromagnet with additional

weak in-plane next-nearest-neighbour antiferromagnetic exchange or weak ferromagnetic

inter-layer couplings was considered. All these factors were incorporated into the model

Hamiltonian in Equation 3.5.

Initially the minimal model, whereJ′ = 0, is considered. In such a situation a collinear

model is stable classically only ifD ≥ 3J/2. The antiferromagnetic stripe order of AgNiO2

is stabilized as the ground state if there is a ferromagnetic inter-layer exchange, J⊥ < 0.

An example of the powder averaged spin-wave calculation is plotted in Fig. 3.25 b). The

best-fit value ofD was that which reproduced the observed energy gap in Fig. 3.18 B.

The best-fit value of the inter-layer coupling, J⊥, was that which best modelled the on-

set of scattering atQ ∼ 1.1 Å−1, in Fig. 3.18 C. The best-fit value of J was that which

reproduced the observed bandwidth. Therefore, the model captured the overall bandwidth,

the energy gap and the inter-layer coupling. Yet, the LSWT calculation does not fit the

observed intensity distribution, demonstrated by taking a broad cut inQ though the inten-

sity as shown in Fig. 3.25 a). The intensity distribution predicted by the LSWT calculation

peaks at the onset energy within a slope to the end of the band of intensity. By contrast

the data gave a more uniform block of intensity across this broadQ range. The shape

of the low-energy band is not reproduced and the clear minima are not apparent in the
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Figure 3.25: Spin-wave calculation results for the model parameters J=0.97 meV, J’=0,
J⊥=-0.54 meV,D=1.40 meV. a) A broad plot of the intensity averaged over a broad range
in Q. It shows the intensity distribution is not captured properly. b) The powder averaged
simulation of the low resolution data for the spin-wave calculation shows the large intensity
at low energies. The model captures the overall bandwidth observed in the data but not the
intensity distribution.



72

energy gap at theQ points of the magnetic Bragg peaks. It was found that introducing

next-nearest-neighbour couplings had the effect of making higher energy modes more in-

tense and produced a more uniform intensity distribution in the broadQ cut. Although this

fitted better to the data, the overall intensity distribution did not match the data because the

low Q and low-energy edge of the excitation band was too shallow. This result was due to

minima in the LSWT dispersion atQ points which are not Bragg peaks.

Chubukov and Jolicoeur [50], have found, by investigating the J, J′ model within a sin-

gle triangular layer, that the gapless modes at points such as K in Fig. 3.17 become gapped

when quantum corrections are considered. Therefore it may be expected that if quantum

corrections were to be considered the dispersion at low energies could change consider-

ably and greatly improve the agreement between the LSWT calculation and the data. The

dispersion may then approach something similar to that of the parametrization model.

3.4 Conclusions on AgNiO2

These experiments have shown that AgNiO2 displays a very different structural distortion

and magnetic order from the current theoretical models. The high resolution diffraction

measurements indicated a periodic contraction and expansion of NiO6 octahedra in a three-

sublattice structure. This was due to charge disproportionation on the Ni sites. The low-

temperature magnetic diffraction pattern was explained by a collinear antiferromagnetic

order of ferromagnetic chains with ordered moments present only on the electron-rich Ni

sites. Both the magnetic order and structural distortion reported here are very different

from theoretical models by Mostovoy and Khomskii [25] for Jahn-Teller transition metal

ions coupled in a triangular lattice arrangement by near 90o metal-oxygen-metal bonds.

That model predicted ferro-distortive orbital order and dominant ferromagnetic in-plane

interactions, and this has been observed in NaNiO2 [32, 33, 34, 35].

The observed low temperature dispersion was parameterized with a simple model that

indicated the major dispersions were within the triangular plane. A smaller inter-layer dis-

persion was also probable. The data was compared to the results of two models. Firstly,

the previous spin-wave calculation of Chubukov and Jolicoeur in which a single triangu-

lar later was considered which had both J and J′ coupling and which included quantum

corrections. Secondly, the model Hamiltonian which included further terms from which

a linear-spin-wave calculation was made. Although a ferromagnetic inter-layer exchange

and an easy-axis anisotropy was added to the Hamiltonian, the data was not modeled fully.
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The main features of the energy gap and band of excitations were replicated but the inten-

sity distribution did not match that observed. The ordered magnetic moment of the NI1

sites, 1.552(7)µB, was reduced, (µ = 2µB for a S = 1 system andg = 2) implying some

quantum fluctuations. Although within the measured powder-average excitation spectrum

no clear evidence for the effects of quantum fluctuation were found, it was realized that

inclusion of quantum corrections could have a considerable impact on the key features in

the spin-wave distribution because of the level of frustration. That has been highlighted

by the work of Chubukov and Jolicoeur when considering the J, J′ model. Therefore, it

would be interesting to include these quantum corrections into the LSWT result for our

model Hamiltonian to investigate whether a better agreement with the observations could

be obtained.



Chapter 4

Quantum Phase Transition in the Quasi

One-Dimensional Ising Ferromagnet

CoNb2O6 in a Transverse Field
This chapter presents the magnetic phase diagram and the spin excitations as a function of

applied field, for the quasi one-dimensional Ising ferromagnet, CoNb2O6 where the mag-

netic field was applied transverse to the Ising direction of the spins. The magnetic order of

CoNb2O6 is suppressed at sufficiently large fields such that a transition occurs to a para-

magnetic phase. Therefore the aim of these experiments was to observe how the magnetic

order and excitations would evolve through the field-driven quantum critical point. The

chapter firstly presents single-crystal neutron diffraction measurements of the magnetic or-

der at low temperatures as a field was applied perpendicular to the Ising axis. Secondly, it

presents inelastic neutron scattering measurements of the excitation spectrum close to the

critical field. The phase diagram observed for the magnetic structure had three ordered

phases and a paramagnetic phase. In the ordered phase gapless modes were observed to-

gether with the expected higher energy modes and in the high-field paramagnetic phase

sharp magnon modes were observed.

74
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4.1 Introduction

CoNb2O6 has been characterized as a quasi one-dimensional Ising-like ferromagnet with a

relatively low exchange energy and this makes it an ideal system in which to study a quan-

tum phase transition in an applied field. The Ising magnet in a transverse field is a simple

system to explore the physics of quantum phase transitions. By applying a transverse field

perpendicular to the Ising direction, the system undergoes a quantum phase transition at

a field comparable to the intra-chain exchange energy. At low temperature quantum fluc-

tuations largely drive the phase transition and the quantum fluctuations are increased by

increasing the applied field. As the quantum fluctuations increase, the system moves from

an ordered ferromagnet, with an ordered moment along the Ising direction, to a paramag-

netic state where, on each site, the spins fluctuate between the two possible states, up or

down.

The three-dimensional dipolar coupled Ising ferromagnet LiHoF4 has been studied in

a transverse field and inelastic neutron scattering has been used to studied the behaviour

of the energy gap [53]. The excitations that have been observed in the case of LiHoF4 are

magnons on both sides of the phase transition because the couplings are three-dimensional

and long-range. Therefore the behaviour is well described by a mean-field approximation

where spin-waves are excited on both sides of the transition. In addition, the hyperfine cou-

pling to the nuclear spin is large and becomes relevant very close to the critical field when

the gap is small. In that case the combined electron and nuclear spin had to be considered

in order to understand the mechanism of the transition and so this was a departure from the

simple model of Ising spins in a transverse field.

CoNb2O6 has been characterized as an Ising-like chain system with strong ferromag-

netic couplings along the chains. The columbite crystal structure of CoNb2O6 is shown in

Fig. 4.1 and it has the orthorhombic space group Pbcn. It has similarb andc lattice parame-

ters (b = 5.7019(2) Å, c = 5.0382(1) Å) and thea lattice parameter is nearly three times

their length,a = 14.1337(2) Å at 2.5 K [54]. It forms layers of slightly distorted oxygen

octahedra which are perpendicular to thea-axis. Within each layer, the edge sharing oxy-

gen octahedra form chains along thec-axis. The main interaction is expected to be between

neighbouring Co ions along thec-axis through a near 90o Co-O-Co bond. This bond is ex-

pected to be ferromagnetic due to the overlap of the outer d electron orbitals of the Co with

orthogonal p-orbitals of the oxygen. In Fig. 4.1 b) the area marked in grey demonstrates

the anisotropic triangular lattice in the (a, b) plane and the Co chains which run along the
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Figure 4.1: a) Unit cell of the crystal structure of CoNb2O6 the CoO6 octahedra are
coloured blue and the NbO6 octahedra are coloured green. b) A quasi 1-D Ising like ferro-
magnet with magnetic chains running along thec-axis and the Ising direction is indicated
by the double headed arrow [57].

c-axis. The canting angle of the moment of the Co2+ is 32o to thec-axis and it lies in the

(a, c) plane [55].

Neutron diffraction measurements have revealed long-range magnetic order below 3 K

where the spins in the chains order ferromagnetically. The order between the chains is more

complex because the chains form an anisotropic antiferromagnetic triangular lattice in the

(a, c)-plane. The chains order in an incommensurate magnetic structure below 3 K. Below

1.97 K a commensurate antiferromagnetic ordered state has been observed with a moment

µ = 3.05(3)µB and ordering wave vector (0, 0.5, 0) [56]. A series of neutron diffraction

experiments have been carried out in zero magnetic field [56, 58] and with applied magnetic

fields at a series of angles within the (a, c)-plane [57, 60, 61] and have mapped out the

magnetic phase diagram at low fields. In further neutron scattering measurements the quasi

one-dimensional character of the system has been confirmed by the observation of a diffuse

sheet-like scattering in the (a∗,b∗)-plane indicating chains of spins along thec-axis [62, 63].

Single crystal susceptibility measurements have shown that the susceptibility is sig-

nificantly smaller along theb-axis than along the other crystallographic directions which
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implies that the easy-axis direction must be perpendicular to theb-axis [56].

Specific heat measurements have shown a peak in the heat capacity at 3 K and a further

anomaly at approximately 1.9 K which is indicative of a spin gap [64, 65]. Hanawaet

al. have modelled the peak shape in the heat capacity by a two-dimensional spin-half

Ising model and have found an effective ferromagnetic exchange J=6 K (0.52 meV) and

inter-chain couplings J’=0.062 K (5.3µeV) [64]. However these values should be taken

as qualitative since the geometry of the interactions should have been modelled as one-

dimensional.

Magnetization measurements have been made for magnetic fields applied within a se-

ries of directions in the (a, c)-plane [65]. The measurements have been fitted to a Hamil-

tonian including crystal field levels, exchange couplings and dipolar interactions and have

indicated that there is an intra-chain coupling between the true spins J= 3.5 K (0.30 meV)

and antiferromagnetic inter-chain couplings of approximately J’=-0.09 K (7.7µeV). That

analysis has been fitted to a crystal field model where the lowest energy state of the Co2+

ion is the Kramer’s doublet of the S=3/2 state and therefore the high-spin state. The octa-

hedral field around the Co2+ of CoNb2O6 splits the4F state and produces the orbital triplet
4T1 ground state. The local C2 distortion of the CoO6 octahedra lifts the threefold degen-

eracy of the octahedral field. These levels are further split by the spin-orbit coupling and

exchange interaction into six Kramer’s doublets, the lowest of which is the S=3/2 state.

ESR measurements have been made with a field applied along thea-axis, which is 59o

from the two Ising axes [66]. The results have been fitted to an anisotropic Heisenberg type

spin model where, for the intra-chain coupling, the ratio of the coupling for spins aligned

along the Ising axis to spins aligned perpendicular is J/J⊥ = 0.11. Ising-type behaviour

is common in Co2+ compounds and has been seen in other cobalt compounds such as

CsCoCl3[67] or CoF2[68].

Pfeuty has calculated the that the critical field for an Ising chain in a transverse field

is BC=J/(2gµB), below which there is magnetic order at zero temperature. Given the es-

timated intra-chain coupling of 0.52 meV [64] andg = 2.72, the critical field has been

estimated to be less than 10 T. Therefore the critical field of the Ising chain should be ac-

cessible with the magnets currently available for use in neutron scattering experiments.

Inelastic neutron scattering measurements in zero field have confirmed dominant one-

dimensional interactions along thec-axis [69]. Those measurements have shown that there

is a ferromagnetic Ising exchange, J∼ 1.5 meV, and other anisotropic terms have been

estimated to be of order 0.5 meV. Fig. 4.2 shows how the excitation energy gap decreases
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Figure 4.2: The energy gap to the first excitation measured at the (1.5, 0, 0) as a field is
applied perpendicular to the Ising direction of the chains [69]. The transition field is esti-
mated to be 5.3 T. Since (1.5, 0, 0) is not at a magnetic Bragg position the energy gap is not
expected to close completely at this wave vector.

with an applied transverse field and then increases again which indicates a critical field at

the energy gap minimum at BC ∼5.3 T.

In summary, neutron scattering measurements, susceptibility, specific heat and ESR

measurements have shown that CoNb2O6 is a quasi one-dimensional Ising-like ferromag-

net. The transition from the ferromagnetically ordered state to the high-field paramagnetic

state occurs at an accessible magnetic field. This makes CoNb2O6 an ideal system to study

the phenomena of quantum phase transitions and explore the change in energy gap of an

Ising magnet and the excitations on either side of the transition.

4.2 Phase Diagram of CoNb2O6 in a Transverse Magnetic

Field

The aim of the experiments described in this section was to explore the phase diagram of

CoNb2O6 in an applied magnetic field that was transverse to the Ising direction. CoNb2O6

has been identified as a quasi one-dimensional Ising-like magnet in a series of studies [60,

64, 65, 66]. By applying a field transverse to the Ising direction, quantum fluctuations are

expected to suppress the magnetic order and to drive a transition to a paramagnetic phase

at a field comparable to the intra-chain exchange energy. Also, since large single-crystal

samples can be grown, neutron scattering experiments are feasible and the intensity of the
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Figure 4.3: Predicted phase diagram of Ising chains with dominant intra chain coupling
and much weak inter-chain couplings in a transverse field [71].

inelastic magnetic scattering is measurable [70]. Therefore CoNb2O6 is a good compound

to the study the Ising chain in a transverse field model because its small exchange couplings

should lead to an experimentally accessible phase transition.

In contrast, as stated earlier in§ 4.1, LiHoF4 is a three-dimensional Ising magnet and

magnon modes have been seen on both sides of the phase transition whereas in a one

dimensional Ising magnet the excitations are solitions in the low field phase and magnons

in the high field phase. The fact that there are two distinctly different excitations on either

side of the transition leads to the interest in investigating the nature of this transition.

There are two properties of CoNb2O6 that are relevant to its magnetic structure. First the

overriding feature is that it has chains of Ising-like spins. Second, its weak antiferromag-

netic inter-chain couplings are geometrically frustrated. CoNb2O6 is quasi one-dimensional

because it is composed of Ising chains with relatively stronger intra-chain coupling com-

pared with its weaker inter-chain couplings. A system of weakly coupled Ising chains is

predicted to show predominantly one-dimensional Ising physics in the ordered phase and

far from the transition field [71]. Fig. 4.3 sketches the predicted phase diagram for an Ising

chain in the case of weak inter-chain couplings. The effect of the inter-chain coupling is

to increase the critical field of the transition and also stabilize long-range order at a finite

temperature.

The weaker inter-chain couplings are frustrated. The reason is that the Ising chains

are arranged in the (a, b)-plane in a triangular lattice which frustrates the weak antiferro-

magnetic inter-chain couplings. The effect of the frustration in this arrangement is also
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relevant to the phase diagram of this material and is seen to affect the development of the

zero-field magnetic structure. The zero-field magnetic order has been investigated in a se-

ries of studies [54, 56, 60]. The long-range magnetic order which has been observed in

those studies can be understood from the physics of the classical Ising model on the an-

tiferromagnetic triangular lattice with spatially anisotropic couplings. The system in zero

field and at temperatures aboveTN1=2.96 K is a paramagnet. BelowTN1, the spins order

in an incommensurate spin-density wave along theb-axis, which is the strongest coupling

direction of the triangular lattice. The magnetic Bragg peaks that have been measured in

this phase have been indexed with an ordering wave vector(0, qy, 0) whereqy = 0.37 at

TN1 [56]. As the temperature of the system is reduced toTN2=1.97 K the ordering wave

vector varies smoothly fromqy = 0.37 to qy = 0.5. At TN2 a first-order transition occurs to

a commensurate antiferromagnetic state whereqy = 0.5. The commensurate antiferromag-

netic phase is more stable atT = 0 because, compared with the incommensurate phase, it

has a lower mean-field energy.

The present work investigated the change in the magnetic ordering of CoNb2O6 as

a magnetic field was applied transverse to the Ising direction. A transverse field does not

commute with the Ising exchange Hamiltonian whereas a field parallel to the Ising direction

does commute. The quantum fluctuations introduced by a transverse magnetic field are

expected to drive a quantum phase transition at a critical field and so this was the focus

of this study. In CoNb2O6 the application of a magnetic field perpendicular to the Ising

direction is made difficult because there are two Ising directions in the unit cell. The Ising

chains in the unit cell are tilted from thec-axis by±32o within the (a, c)-plane. Previous

studies, have investigated the phase diagram with a field applied within the (a, c)-plane.

They have always had a component of the field along the Ising direction and therefore

along an easy axis of the system such that at low fields a series of phase transitions have

been observed [57, 60, 61, 72]. For a field along the crystallographicc-axis, above 0.1 T, a

ferrimagnetic phase, indexed by(0, 1/3, 0), has been observed below 3 K. At higher fields

and higher temperatures two phases with the ordering wave vectors (0, 1/3, 0) and (0, 1/2, 0)

have been seen to co-exist. Similarly, a series of phases have been observed when a field is

applied along the crystallographica-axis. The phase diagram for a series of field directions

in the (a, c)-plane has also been investigated by Weitzelet al.[65].

The aim of the present study was to observe the effect of a field which was purely

transverse to the Ising direction and therefore the field had to be applied along the crys-

tallographicb-axis because the two Ising directions lay in the (a, c)-plane. Therefore the



81

(a) A 6.7 g single crystal mounted withb∗-
axis vertical for use in vertical magnetic
fields.

(b) A 4.6 g single crystal mounted withb∗-axis within the
horizontal plane for use in horizontal magnetic fields.

Figure 4.4: Photographs and sketches of the single crystal samples mounted onto an oxygen
free copper support that ensured the crystal was kept firmly in place in an applied field. The
white paint in a) on the oxygen free copper support is gadolinium paint and the grey foil
in b) is gadolinium foil which masks most of the copper illuminated by the beam which
reduces the background scattering.

phase diagram could be explored as the applied field smoothly varies the quantum fluctua-

tions in the system.

4.2.1 Experimental Details

The neutron single-crystal diffraction experiments were performed in different scattering

planes using both vertical and horizontal applied fields. In this way an overview of the

phase diagram could be obtained together with an understanding of the sensitivity of the

system to the alignment of the field with respect to the direction transverse to the Ising axis.

The advantage of the vertical field magnet was that there were few restrictions on the avail-

able regions in the horizontal scattering plane and therefore by using an array of detectors

a large area of reciprocal space could be observed in one measurement. However, in this

setup the angle of the applied field with respect to theb∗-axis was fixed. Experiments with

a horizontal field magnet allowed for measurements to be made where the field direction

was tilted away from theb∗-axis and therefore the sensitivity of the measurements to the

field direction could be tested.

The experiments were performed on single crystal samples. They had been cut from

the same batch of crystals that have been described in [70]. The sample was mounted in an

oxygen-free copper support as shown in the photographs and sketches in Fig. 4.4. Because

the field was applied perpendicular to the large magnetic moment of the ferromagnetic
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chains, a large torque was exerted on the sample. The sample mount ensured that the

crystal did not rotate in the applied field and the oxygen-free copper ensured a good thermal

contact with the sample stick at temperatures of tens of milli-kelvin.

Experiments Using Vertical Field Magnets

For these experiments the sample was mounted such that the crystallographicb-axis was

vertical and the (h, 0,l) reflections were accessible in the horizontal scattering plane. A

6.7 g single crystal was used. These experiments were technically challenging with the

conventional vertical-field magnets that were used because it was necessary to have detec-

tors that could measure the magnetic scattering out of the horizontal plane. This was in

order to measure the magnetic Bragg reflections, which were at wave vectors of the type

(0,k, 0). Two methods were used to achieve this. At the reactor source at the HMI the

Flat-Cone-Diffractometer E2 was used, which has a tilting multi-detector bank. At the

spallation source ISIS the large detector array time-of-flight instruments, GEM and MAPS,

were used.

Low field measurements using the E2 diffractometer

The initial experiment at low fields was performed using the Flat-Cone-Diffractometer E2

at the HMI. The sample was mounted on a dilution fridge insert in the cryomagnet VM-

4 which had a large vertical opening angle. Therefore, a base temperature of 30 mK and

a maximum vertical field of 4 T could be achieved. The crystal was mounted with the

crystallographicb-axis vertical and the (a, c)-axes in the horizontal plane. The instrument,

E2, had a tilting multi-detector bank, which could be tilted out of the horizontal plane, and

it also had a tilting sample table that allowed the magnet to be tilted at the same angle.

So measurements could be made of reflections (h, k, l), whereh andl were variable and

k was fixed by the vertical angle of the detector. Fig 4.5 a) shows a sketch of the setup.

The wavelength used wasλ = 5.19Å (kf = 1.21Å−1), which meant a 6.1o angular tilt of

the sample and detector bank was necessary to reach (h, 1/2,k) reflections. The angular

width of the detector bank,±1.5o from the nominal position, was such that the detectors

integrated the intensity over a range ofk values,δk±0.12 atk = 0.5, as shown in Fig. 4.5 a).

Overview of phase diagram using the GEM and MAPS instruments

Further experiments were carried out using the diffractometer GEM and the chopper spec-

trometer MAPS at ISIS. The sample was mounted on either a dilution stick insert or a
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Figure 4.5: a) A sketch of the set up for accessing magnetic Bragg reflections using the
lifting arm detector on the E2 instrument. Both the sample and the detector were tilted by
6.1o to access Bragg peaks (h, 1/2,l), yet due to the finite height of the detector bank mea-
surements integrated the intensity of scattering over a range of wave vectors (h, 1/2±ε, l) as
indicated in the lower sketch of the scattering triangles. Plot b) shows two measurements
made at zero field and at 4 T at the nominal wave vector (-1, 1/2, 0). The colour indicates
the intensity in counts/(mon= 10000) approximately 30 s counting time. The change in the
integrated area of the reflection with field is plotted in c) which shows a large decrease in
intensity at approximately 2 T and there is a significant drop in the intensity by 4 T.
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sorbtion insert, which reached base temperatures of 50 mK or 300 mK respectively. Again,

a cryomagnet was used to apply fields of up to 8 T in the vertical direction, along theb∗

axis of the crystal. Magnetic Bragg peaks were observed in the out-of-plane low-angle

detectors, which were not masked by the vertical edges of the magnet window on the GEM

diffractometer. The low-angle detectors, bank 1, were used such that certain magnetic

Bragg reflections could be detected by rotating the sample. Fig. 4.6 a) shows the regions of

the reciprocal lattice space covered by that bank of detectors for the position of the sample

used for most measurements. The lines indicate the four sections of bank 1 and the hashed

region shows the area of reciprocal space covered by the detectors.

The position-sensitive detectors of the MAPS spectrometer allowed better wave vector

resolution measurements to be made. Fig 4.7 shows the large region of reciprocal space

accessible with the MAPS large array of detectors and with the large vertical opening angle

of the magnet. This angle was±7o. The lines show high resolution coverage of a large

region of reciprocal space in which there is a series of Bragg peaks. This was a much larger

area than that covered by the GEM diffractometer and the resolution of the measurements

was better, which made it easier to identify and distinguish different reflections.

Experiments Using Horizontal Field Magnets

The horizontal field magnet experiments used the cold neutron triple axis spectrometer

V2 at the Berlin Neutron Scattering Center (BENSC), Germany. The sample was a 4.6 g

single crystal of CoNb2O6. It was mounted on a dilution stick insert in the horizontal field

cryomagnet, HM1, which allowed for a base temperature of 30 mK and a maximum field of

6 T. The crystal was aligned with the crystallographicb- andc-axes in the scattering plane.

Again, a sample mount was made such that the crystal would be held firmly in place during

the experiment as shown in Fig. 4.4 b).

The spectrometer was set up with a vertically focused Pyrolytic Graphite (002) mono-

chromator and a horizontally focused PG(002) analyser. Elastic measurements were made

at a wavelength,λ = 4.19 Å (kf =1.5Å−1) in order to align the crystal. The second-order

scattered neutrons were used to observe nuclear Bragg peaks within the region of scatter-

ing angles allowed by the wedges of the magnet. The final neutron wavelength was fixed at

λ = 5.61 Å (kf = 1.12 Å−1) for the diffraction and inelastic measurements since it gave a

narrow energy resolution. A liquid-nitrogen cooled beryllium filter was placed between the

monochromator and the sample to eliminate the neutrons from higher-order scattering off
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Figure 4.6: a) The detector coverage of the reciprocal space of CoNb2O6 by the low angle
banks of the GEM diffractometer when thea∗-axis is 83o to the incident beam direction.
This setup was used to observe changes in the magnetic structure. The hashed lines indicate
the region of reciprocal space integrated over by the detectors which lie along Debye Sherer
rings. b) A plot of a typical measurement indicating the Bragg reflections observed in the
low angle banks of detectors at zero field. Counted for 10µA. c) A typical plot showing the
commensurate phase and incommensurate phase observed in the measurements at higher
temperatures.



86

Figure 4.7: Detector coverage of the MAPS spectrometer. The region of reciprocal space
covered by the MAPS detectors is coloured blue and the hashed section indicates the region
of reciprocal space integrated over by a section of the GEM detector bank.

Figure 4.8: a) Diagram of the regions of reciprocal space masked by the horizontal magnet
wedges. The sample was aligned such that theb-axis was parallel to the south(S)-north(N)
direction in the magnet. The positions of the wedges are coloured pink. The red dots indi-
cate the strong nuclear Bragg reflections. The black lines indicate the direction of the inci-
dent, Ki, and final, Kf , beam positions to achieve a wave vector transfer,Q, Q=(0, 0.5, 0)
for an initial and final energy of 2.6 meV (Kf=1.12Å−1). b) A plot of the intensity at the
wave vector transferQ = (0, 0.34, 0) as the north-south magnetic field direction is rotated
with respect to the sample while theb∗-axis with respect to the spectrometer is kept fixed.
Therefore, this highlights the need for precise alignment of the sample since a small com-
ponent of the field along thec-axis can considerably affect the magnetic order.
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the monochromator. A 60′ collimator was used between the monochromator and sample.

The setup used a horizontal magnet with four large wedges, which were present because

of the coils of the magnet, and through which the beam could not pass. Figure 4.8 a) shows

a diagram of the wedges in the horizontal plane and the necessary alignment of the sample

to access the (0, 0.5, 0) wave vector transfer. The wedges of the magnet caused restrictions

on the wave vector positions that could be explored.

The sample was positioned such that the field was aligned along theb-axis for the

measurements. This required initial alignment of the magnetic Bragg peaks with the central

North-South regions of the magnet at zero field. It was necessary to adjust the angle of the

sample to the applied field as shown in Figure 4.8 b).

4.2.2 Measurements and Results

The initial experiment using E2 explored the low field and low temperature phases of

CoNb2O6 while the GEM and MAPS experiments investigated high fields and higher tem-

perature regions. Finally, the horizontal field measurements allowed for detailed measure-

ments of the behaviour close to the critical field at low temperatures. The results from each

type of measurement with be discussed in turn.

Low Field Measurements

The sample was cooled at zero field and at low temperatures the field was increased in

order to explore the phase diagram. Measurements were made at a series of temperatures

and field values in order to map out the phase diagram.

The measurements from the E2 diffractometer mapped the intensity distribution for

different rotation angles,ω, and scattering angles,2θ. The intensity profiles were fitted with

two-dimensional gaussians in (ω, 2θ) space and corrected for the magnetic form factor and

Lorentz factor. The Lorentz factor converts from (ω, 2θ) to reciprocal space of the crystal.

The Lorentz factor,L,:

L−1 = sin(γ) cos(µ),

whereµ is tilt of the sample and detector with respect to the incident beam andγ is the

projection of the scattering angle,2θ, onto the horizontal plane [73]. Thereforeγ can be

derived as:

cos(2θ) = cos(γ) cos(µ).
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In this way the integrated intensities of the Bragg peaks were converted to magnetic struc-

ture factors. These integrated intensity values were then compared with the calculated

intensity of the Bragg reflections for the nuclear structure and magnetic structure as given

by Heidet al.[60]. The results were as follows.

At zero field the analysis agreed with the nuclear and magnetic structure suggested by

Heidet al.. Magnetic Bragg peaks were observed, which could be indexed by the ordering

wave vector (0, 1/2 0), where the chains of collinear spins were arranged antiferromagneti-

cally along theb-axis. Therefore, the Ising chains were ordered in an up-down arrangement

along theb-axis. The 4 T data showed no change in the magnetic structure but, as expected,

the intensity of the peaks decreased considerably as shown in Fig, 4.5 for the (-1, 0.5, 0)

magnetic Bragg reflection. There was a significant drop in intensity above 2 T but Bragg

peaks were still observed up to 4 T. Because of the larger vertical integration of the detector

bank it was not clear if this drop in intensity was due to peaks at (h, 0.5, l) reducing in

intensity or due to peaks moving to anotherk position. The measurements taken above the

ordering temperature, at the higher temperature of 5 K, showed no magnetic peaks above

background intensity. Analysis of the (h, 0,l) peaks showed no change in the crystal struc-

ture within the same range of temperature and field settings as were used for the magnetic

Bragg measurements. The intensity of the magnetic Bragg peaks took some time to stabi-

lize following a change in field and so this meant that the field was always changed slowly

to avoid anomalous hysteresis effects. Further measurements would be needed to investi-

gate the full field and temperature behaviour of this relaxation effect, though experiments

into this relaxation have been reported at much weaker fields [57, 74].

High Field Measurements

High field experiments on the GEM diffractometer were made at a base temperature of

1.5 K with an applied field of up to 8 T. Again, measurements were made at a series of

field and temperatures to form a phase diagram of the magnetic structure. Figure 4.6 shows

the temperature dependence of the magnetic Bragg reflection (2, 1/2, 0) which, upon heat-

ing, split into two incommensurate peaks at (2, 1/2±ε, 0). These measurements were in

agreement with the zero-field measurements of Scharfet al.[56]. A similar transition to an

incommensurate phase was seen when a magnetic field was applied.

Higher resolution measurements were made on the MAPS spectrometer at a base tem-

perature of 300 mK. Since MAPS had a large array of position-sensitive detectors it was
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Figure 4.9: Plots a) and b) show a section through the MAPS white-beam diffraction data
for a current of 10µA. A series of magnetic Bragg peaks were observed in one measure-
ment. The colour indicates the intensity and shows the change from a commensurate an-
tiferomagnetic phase at zero field in plot a) to an incommensurate phase when a field is
applied in plot b). Plots of integrating the intensity across one Bragg peak are given in
c) and d) and they show the change in behaviour of the magnetic Bragg reflections at in-
creased temperature, plot c, and in an applied field, plot d. Series of measurements were
made in order to build the phase diagram in Fig. 4.10. Plots e) and f) show the change in the
position (red) and integrated intensity (black) of the magnetic Bragg reflections at (2, k, 0)
as the field is varied at two temperatures, 0.3 K and 1.5 K.
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possible to observe a large section of reciprocal space in one measurement and this is

shown in Fig. 4.9 a) and b). The two figures show two measurements at zero field and

3 T where the colour indicates the intensity of the scattering. As a field was applied, the

magnetic structure changed from a commensurate antiferromagnetic structure to an incom-

mensurate magnetic structure. Plots of the intensity of one magnetic Bragg reflection are

given in Fig. 4.9 c) where the magnetic Bragg peak is observed to move fromk = 1/2 to

k ≈ 2/3. Measurements were also made at higher temperatures and Fig. 4.9 d) shows the

Bragg peaks observed in an incommensurate phase at zero field which also had been ob-

served in the GEM experiment. Three different ordered phases were identified by making a

series of these measurements. They were the commensurate antiferromagnetic phase (AF),

the incommensurate phase (INC), where the wave vector varied in field or temperature,

and the phase where the ordering wave vector was approximately(0, 0.34, 0) and where it

‘locked in’ to a stable structure over a range of fields and temperatures. The ordering wave

vector of the phase near the critical field wasq ∼ (0, 0.34 ± 0.01 0), within the accuracy

of the measurements, and this phase is indicated in Fig. 4.9 asq ∼ (0, 1/3 0) because an

incommensurate wave vector close to 1/3 was also consistent with the measurements. The

majority of measurements were made as the applied field was increased at a fixed temper-

ature. The results of two such measurements are shown in Fig. 4.9 e) and f). They show

the variation in intensity and wave vector and the associated phases as the field was in-

creased. The behaviour was different at low and high temperature. At low temperature the

change from the antiferromagnetic phase persisted up to higher fields and the change to the

incommensurate phase was sharper than at 1.6 K.

Fig. 4.10 shows the phase diagram which summarises the main results of the measure-

ments in these high field experiments. At low temperature and low fields the commensu-

rate (0, 1/2, 0) phase was observed. Again at zero field the commensurate phase was seen

to move into an incommensurate phase at higher temperatures, indexed with the ordering

wave vector(0, qy, 0). A third phase was seen at higher fields. Above 2.8 T, at the base

temperature of 300 mK, the magnetic Bragg peaks were indexed with an incommensurate

wave vector. At 3.6 T the ordering wave vector was taken as (0,∼1/3, 0) since the magnetic

Bragg peaks were seen to be at (0,∼1/3, 0) and (0,∼2/3, 0). At 300 mK the transition to a

paramagnetic phase occurred at 5 T.
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Figure 4.10: Phase diagram of the results extracted from the MAPS (circles) and GEM
(triangles) experiments. Three phases were observed which were indexed with an ordering
wave vector of (0, 1/2, 0), an incommensurate wave vector which varied with field and
temperature and a phase indexed with (0,∼1/3, 0). The points indicate the measurements
and the lines are guides to the eye.

Exploring the Sensitivity of the Phase Diagram to the Field Alignment

The experiments in a horizontal magnetic field allowed for an investigation of the stabil-

ity of the q∼ (0, 1/3, 0) phase as the field direction was rotated away from theb∗-axis.

Therefore a small field component was applied along thec∗-axis also. In this experiment

it was seen that close to the critical field in theq ∼ (0, 1/3, 0) phase the ordering wave

vector was (0,0.34 ± 0.01, 0). Figure 4.8 b) shows the result of measuring the intensity at

the incommensurate wave vector (0,0.34, 0) Bragg peak as the North-South direction of

the magnet was varied with respect to theb∗-axis of the crystal. This measurement indi-

cated that the magnetic structure was extremely sensitive to the alignment of the magnetic

field transverse to the Ising direction. Figure 4.8 b) shows that a variation of 0.5o from the

optimum position would indicate no Bragg peak intensity at (0, 0.34, 0) and this suppressed

that phase and possibly stabilized order at other wave vectors in reciprocal space. At a field

of 3.9 T a 0.5o rotation of the field from theb∗-axis would lead to a component of the field

of 0.034 T along thec∗-axis.

All measurements in the horizontal field were made at the base temperature of 30 mK.

Figure 4.11 a) shows two magnetic Bragg peaks observed at the base temperature and high
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Figure 4.11: a) Measurements across the magnetic Bragg reflections (0,k, 0) where
k = 0.34, 0.66 at 30 mK. The intensity of the magnetic Bragg reflections decreases in
magnetic field. b) The change in intensity of the (0, 0.34, 0) magnetic Bragg peak measured
with kf = 1.12Å−1 and 1.3̊A−1. The line shows a fit with a power law form below a critical
field of 5.45(5) T

field. The intensity of the magnetic Bragg peaks reduced to zero above 5.45(5) T. Above

this field a search for Bragg peaks was made in the (0,k, 0) region of reciprocal space

and no reflections were measured. This signalled that either the order was suppressed

completely or that the Bragg peaks moved to other points in reciprocal space. Inelastic

experiments, to be described in the next section, showed that the excitation energy gap

increased upon increasing the applied field aboveBC=5.45 T, which is consistent with the

behaviour expected for a paramagnet. It was therefore concluded thatBC=5.45 T was the

critical field to the paramagnetic phase.

4.2.3 Analysis

It would seem that the low field measurements were not in agreement with the higher

resolution measurements made on MAPS and GEM. Yet because the E2 multi-detector had

a large vertical integration, it could have led to intensity from Bragg peaks at (h, 1/2 −
ε, l) coming into the detector at the (h, 1/2, l) position. Therefore the intensity at 4 T

observed in the E2 experiment at the (1, 1/2, 0) position may have been from the tail of

the (1, 0.34, 0) incommensurate Bragg peak, which was observed in the higher resolution

experiments using MAPS and V2.

The phase diagram given in Fig. 4.10 shows the regions where three ordered phases
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Figure 4.12: Sketches of the possible magnetic structures for three ordered phases ob-
served: a) The Up-Up-Down structure (UUD), b) an incommensurate spin-density wave
structure along theb-axis in the (a, b)-plane, c) antiferromagnetic structure (AF). The +/-
symbols indicated chains of spins along thec-axis which align into or out of the (a, b)-plane

were observed. The three magnetic structures associated with those phases are given in the

three sketches in Fig. 4.12. The long-range magnetic order is a result of the antiferromag-

netic couplings of the spins in the (a, b)-plane which couple the Ising spins. The system

is an anisotropic triangular lattice, where Ja 6=Jb, as indicated in the schematic diagram of

Fig. 4.12.

The Ising model on the isotropic antiferromagnetic triangular lattice does not order

down toT = 0 because there is a macroscopic number of degenerate ground states [17].

This degeneracy is lifted in the presence of a small longitudinal field and the system is

then expected to develop a three sub-lattice order in a ferrimagnetic state. In this state the

spins are aligned in a ‘up-up-down’ sequence(UUD) along each of the three equivalent di-

rections of the lattice as shown in Fig. 4.12 a) [75]. In the case of an anisotropic coupling

between the spins a spin-density wave structure is formed, where the ordering wave vector

minimizes the energy of the system at that temperature. Therefore as the fluctuations in the

system are reduced the ordering wave vector varies [76]. A sketch of the spin-density wave

structure is given in Fig. 4.12 b) forq =(0, 0.34, 0). Upon cooling to low temperatures the

magnetic structure of CoNb2O6 is incommensurate as the ordering wave vector, (0,k, 0),

varies in the interval0.37 ≤ k ≤ 1/2. At a high magnetic field, the incommensurate region

at low temperature is characterized by1/3 < k ≤ 1/2. The anisotropic couplings lead to

order along the strongest coupling direction, Jb. Analytical temperature dependence of the

incommensurate wave vector, derived by considering the creation of domain walls due to



94

thermal fluctuations, has compared well with measurements on CoNb2O6 in zero field [65]

where Ja/Jb=0.63. As the temperature is reduced the thermal fluctuations decrease and

the ordering wave vector is dependent on the couplings and occurs at the value which mini-

mizes the free energy of the system. In the mean-field approach, the energy of the system is

minimized when the Fourier transform of the exchange couplings is minimized [76]. There-

fore, the ratio of the inter-chain couplings is given by Ja/Jb=2 cos(πk) = 0.79, k = 0.37,

where the the incommensurate ordering wave vector is (0,k, 0) when the order first devel-

ops.

At low temperature and in low fields the fluctuations of the spins on each site were small

and therefore a commensurate magnetic order was achieved whereby the spin on each site

was maximized. The commensurate phase was characterized by the ordering wave vector

(0, 1/2, 0) and it had antiferromagnetic order along theb∗ direction as shown in Fig. 4.12

c). The antiferromagnetic state becomes more favourable at zero temperature because the

energy is minimized. The energy of the spin-density wave state at zero temperature to the

antiferromagnetic state is:

EAF = −JbS
2 ESDW = −JbS

2
(
1− 3J2

a

2J2
b

)
. (4.1)

The strong hysteresis indicated that the transition from incommensurate order to antiferro-

magnetic order was probably a first-order phase transition. A first-order phase transition

between the spin-density wave and antiferromagnetic order may be expected as the mag-

netic order ‘locks in’ to a commensurate wave vector and this is shown by the sharp change

in the magnetic Bragg peak positions in Fig 4.9, plots e) and f). Heidet al. have concluded

that the zero-field incommensurate-commensurate transition is a first-order transition due

to the jump they have observed in the ordering wave vector [60].

When a small field is applied along the Ising direction it can stabilize the UUD state

q = (0, 1/3, 0) as opposed to the antiferromagnetic state atq = (0, 1/2, 0). This can

easily be seen by calculating the mean-field energies of the two states atT = 0. The

energy per spin of the antiferromagnetic state is lower at zero field than the UUD state but

the UUD state becomes more favourable as the field is applied, as shown below:

EAF = −JbS
2 EUUD = −JbS

2

3
− 2JaS

2

3
− gµBBS

3
. (4.2)
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Figure 4.13: Sketches of the spins projected along thec- anda-axis for the UUD state in
CoNb2O6. Because the two different Ising chains in the unit cell are tilted in the (a, c)-plane
differently, the spin structure when projected onto thea- or c- axes appears different. Left:
A schematic diagram for thec component of the spins in the UUD structure which gives
rise to magnetic Bragg reflections at (h,k± 2/3,l). Right: The schematic diagram for thea
component of the spins in the UUD structure which leads to magnetic Bragg reflections at
(h,k± 1/3,l). The selection rules areh + k = 2n andl = 2m wheren andm are integers.

A transition to the UUD state is therefore expected above a field,

B ≥ 2S(Jb − Ja)/gµB.

At high fields the ordered phase in CoNb2O6 appears to be close to the commensurate

UUD phase. Fig. 4.13 (left sketch) shows the magnetic structure for an UUD arrangement

of the spins when projected onto thec-axis. The projection of the spin along thea-axis

leads to a different structure because of the alternating tilt±γ, γ = 32o, of the Ising axis

away from thec-axis for the two chains in the unit cell. Fig. 4.13 shows that the magnetic

structure of thea-component of the spins consists of a diamond arrangement of spins in the

same sense. The arrangement is repeated every threeb-lattice vectors and the surrounding

spins are aligned in the opposite sense. The structure of thec-axis spin projection gives

rise to magnetic Bragg reflections at (h,k± 2/3,l) and thea-axis spin component leads to

to magnetic Bragg reflections at (h,k± 1/3,l), where the selection rules areh+k = 2n and

l = 2m wheren andm are integers.

In the phase diagram of Fig. 4.10 the transition from the (0,∼1/3, 0) phase to a paramag-

netic phase is seen at 5 T at 300 mK. In the horizontal field measurements the (0, 0.34, 0)
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magnetic Bragg reflection was observed to persist until 5.45 T at 30 mK and the phase dia-

gram was also observed to be very sensitive to a slight change of the field direction from the

crystallographicb-axis. In those experiments it was seen that, with a field of 0.034 T along

thec-axis, the (0, 0.34, 0) phase was suppressed well below the critical field ofB||b∗ =5.5 T

and may have been replaced by another phase with Bragg peaks not along theb∗-direction.

Figure 4.11 indicates that the critical field was 5.45 T. Above 5.45 T a monotonic increase

in the energy gap was seen from inelastic scattering measurements, described in the follow-

ing section, and this was the behaviour expected for a paramagnetic phase. Therefore, the

results above 5.45 T are consistent with a paramagnetic phase and not with another ordered

phase with Bragg peaks at other points in reciprocal space. A misalignment could not be

tested in the vertical field experiments because, in those diffraction measurements, the an-

gle of the sample to field direction was fixed. Nevertheless, it is likely to have affected the

phase diagram.

In summary, these measurements have investigated the phase diagram of the weakly

coupled Ising ferromagnet as a function of a transverse field. The ordered antiferromag-

netic structure was seen to undergo a first-order phase transition at zero field to an incom-

mensurate phase before a transition to a paramagnetic phase. In transverse applied field, the

quantum fluctuations were tuned and led to an incommensurate spin-density wave which

was similar to an UUD state. At zero temperature, the transverse field drives a transition to a

quantum paramagnetic state. At high fields, and therefore large quantum fluctuations, there

was a transition to a paramagnetic phase at 30 mK when the critical field was 5.45(5) T. The

nature and physics of this transition is further explored in the following inelastic scattering

experiments.

4.3 Magnetic Excitations of CoNb2O6 in an Applied Mag-

netic Field Transverse to its Ising Axis

This section describes an inelastic neutron scattering experiment to investigate the interac-

tions and excitation spectrum of CoNb2O6 in a magnetic field. As an Ising ferromagnet,

the system can go through a phase transition when a transverse magnetic field is applied

perpendicular to the Ising direction. The previous section showed that the application of

the transverse field led to the suppression of long-range order and so to a paramagnetic

state. Since CoNb2O6 is a quasi one-dimensional system, the two phases are expected to
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Figure 4.14: The excitation spectrum of a one-dimensional Ising ferromagnet: a) In the or-
dered phase, at low fields, two domain walls are excited creating a continuum of scattering
between the plotted two lines. b) At high fields, in the paramagnetic phase, the excitations
are single spin reversals opposite to the field direction which can propagate coherently
leading to a single sharp mode.

have two distinctly different excitation spectra: at low fields pairs of solitons are excited

in the ordered phase; spin flips are created at high fields in the paramagnetic phase. The

aim of the experiment was to explore the change in the excitation spectrum in CoNb2O6 at

transverse magnetic fields above and below this phase transition.

The Ising model in a transverse field was introduced in Chapter 1. At zero temperature

the transverse field introduces quantum fluctuations that drive a quantum phase transition

at a field comparable to the exchange energy. The Hamiltonian for the system is:

H = −J
∑

i

Sx
i Sx

i+1 − gµBB
∑

i

Sz
i , (4.3)

where J is a positive constant and is the magnitude of the ferromagnetic coupling.B is a

field applied transverse to the Ising direction. The spectrum for the one-dimensional Ising

chain in a transverse field is given in Fig. 4.14 for low and high fields. In the single Ising

chain in the low-field case, there is a continuum of states between the two lines plotted

in Fig. 4.14 a) which correspond to exciting two solitons by a scattered neutron. In the

high-field phase one mode is observed as a spin is flipped opposite to the field direction

and a magnon is created. The energy gap is lowest at the ferromagnetic Brillouin zone

centre,l = 0, and is expected to decrease to zero as the magnetic field is increased from
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the low-field phase. The critical field for the one-dimensional Ising chain isB = J/2gµB.

CoNb2O6 is predicted to have a sufficiently small ferromagnetic coupling that the critical

field is experimentally accessible. In fact the previous section described how, at the critical

field of 5.45(5) T at 30 mK, the system was observed to change from an ordered phase to a

paramagnetic phase.

CoNb2O6 is a quasi one-dimensional system with inter-chain couplings that stabilize

a long-range ordered phase at low temperatures. The spectrum considered for the one-

dimensional Ising chain is also relevant to the quasi one-dimensional case. The inter-chain

couplings are not expected to dominate the behaviour far from the transition field and so

one-dimensional physics is relevant [71]. In the quasi one-dimensional system the disper-

sion of the excitations is expected to be three-dimensional around the critical field when

the energy gap is small. In the paramagnetic phase the quasi-particles are spin flips from

spins aligned along the field direction. Therefore the energy gap is increased again because

of the Zeeman energy cost in reversing a spin opposite to the field axis.

The main coupling is along the Ising chains through a 90o Co-O-Co bond [56] because

the exchange occurs via orthogonal oxygen orbitals and, according to the Goodenough-

Kanamori rules, it is ferromagnetic. Analysis of heat capacity measurements and magneti-

sation measurements have shown that the main chain interaction is ferromagnetic and of the

order of 1 meV. Also, the inter-chain interactions are weaker and in the (a, b)-plane where

there is a series of exchange paths through a double Co-O-O-Co bond. Work by Heidet al.

into the phase diagram of CoNb2O6 has identified some small antiferromagnetic inter-chain

couplings within the triangular lattice of the order of 1µeV [61].

The inelastic scattering measurements described next indicated the presence of strong

magnon modes above the critical field. Below the critical field two components were seen

in the inelastic scattering. There was low-energy scattering, which was possibly gapless, in

addition to the scattering at higher energies, which would be expected from a soliton pic-

ture. The low-energy scattering was associated with the three-dimensional incommensurate

magnetic order and so the inter-chain couplings appeared to have a significant effect.

4.3.1 Experimental Details

The experiment used the cold neutron triple-axis spectrometer, V2, at the HMI, which

was described in§ 4.2.2. The final neutron wavelength was fixed atλ = 5.61 Å (kf =

1.12 Å−1). Again, the large wedges of the magnet restricted what measurements could
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Figure 4.15: Diagram of the regions of accessible reciprocal space in the horizontal field
magnet (blue dotted region). The sample was aligned such that theb-axis was parallel
to the south(S)-north(N) direction in the magnet. The positions of the magnet wedges
are coloured pink. The red dots indicate the strong nuclear Bragg reflections. The grey
lines indicate the direction of the incident, Ki, and final, Kf , beam positions to achieve
a 0.2 meV energy transfer and wave vector transfer, Q=(0, 0.34, 0) for a final energy of
2.6 meV (Kf=1.12Å−1). The blue dots are the result of a Monte-Carlo simulation of the
possible wave vector transfer positions accessible for the given energy transfer.
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be made during the experiment. Figure 4.15 shows the necessary alignment of the spec-

trometer for a small energy transfer near the ordering wave vectorq ∼(0, 0.34, 0). The

available incident and exit angles for the neutron beam were very restricted and added to

the difficulty of the experiment. The figure shows the extent of restrictions on the parts

of reciprocal space that could be explored. The accessible regions are coloured in blue in

the figure. It shows the limitations set by the small open sections of the magnet. There

was a slight offset of the elastic line for which the data points are corrected. This setup

gave a full-width half maximum of the elastic incoherent scattering of 0.062(2) meV and

0.053(3) meV.

4.3.2 Measurements and Results

The observations of the magnetic structure in the previous section indicated that at 30 mK

the phase transition from the ordered structure to the paramagnetic phase occurred at a

transverse field of 5.45(5) T. These inelastic measurements explored the excitation spec-

trum above and below the transition field. In the following, the measurements of the

magnon dispersion in the paramagnetic phase are discussed first, followed by the mea-

surements within the ordered phase.

Measurements within the Paramagnetic Phase

Fig. 4.16 a) shows that two sharp modes were observed at magnetic fields above the transi-

tion field. The two modes had a strong dispersion and a minimum energy gap of 0.168(3) meV

at 6 T above the magnetic Bragg peak positions of the low-field ordered phase. Constant

wave vector scans were made in order to probe the dispersion of these modes along the

inter-chain direction, (0,k, 0), and intra-chain direction, (0, 0,l). Fig. 4.16 shows the mea-

sured dispersion of the modes at 6 T in the direction (0,k, 0). In order to extract the energy

of the modes from each constant wave vector scan, firstly the modes were fitted to gaussian

profiles, as shown in Fig. 4.16 a), and secondly the centres of the gaussians were located.

The results are plotted in the dispersion curve shown in Fig. 4.16 b). The inter-chain dis-

persion shows two modes dispersing through the Brillouin zone and one mode that was

consistently lower in intensity than the other.

The intra-chain dispersion was probed by energy scans at constant wave vectors for

variousl values near the inter-chain dispersion minimum (0, 0.34, 0) and near the crossing

point of the two modes (0, 0.5, 0). Fig 4.17 a) shows that two modes were observed in the
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of fitting the constant wave vector scans at 6 T. Therefore, the inter-chain dispersion was
mapped out along the (0,k, 0) direction. The two lines are quadratic fits to the data with the
parameterization model given in Eqn. 4.4 where the dashed line indicates the less intense
mode.

Field=6 T 

Energy Transfer (meV)

0.10 0.15 0.20 0.25 0.30 0.35 0.40

In
te

ns
it

y 
(c

ou
nt

s/
m

on
it

or
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0 (0, 0.34, 0.00)
(0, 0.34, 0.03)
(0, 0.34, 0.04)
(0, 0.34, 0.07)

l

0.00 0.02 0.04 0.06 0.08

E
ne

rg
y 

T
ra

ns
fe

r 
(m

eV
)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

ω− (0, 0.34, l) 

ω+ (0, 0.34, l)
(0, 0.50, l)

Field=6 T 

ω+ 

ω− 

Figure 4.17: Left: Energy scans to probe the dispersion along thel direction at fixedk =
0.34. Right: Extracted dispersion of the two modes observed in the (0, 0.34,l) scans and
the single mode at (0, 0.5,l). The lines are fits to the data with the parameterization model
Eqn. 4.4.



102

Field || b-axis (T)

5.5 5.6 5.7 5.8 5.9 6.0

E
ne

rg
y 

G
ap

 (
m

eV
)

0.0

0.1

0.2

0.3

L=0.00  ω-
L=0.00  ω+
L=0.07  ω-
L=0.07  ω+

Field || b-axis (T)

5.5 5.6 5.7 5.8 5.9 6.0

L=0.04
L=0.00

(0, 0.34, L) 
 (0, 0.34, 0)

Energy Transfer (meV)

0.10 0.15 0.20 0.25 0.30 0.35 0.40

In
te

ns
it

y 
(c

ou
nt

s/
m

on
it

or
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 6.00 T
5.60 T 
5.45 T 

(0, 0.5, L) 

a) b) c)

ω− ω+

Figure 4.18: a) Constant wave vector scans at the dispersion minimum as the magnetic field
strength was decreased showing that the two modes moved to lower energy. b) The ex-
tracted gaussian centres of the two modes observed at the dispersion minimum, (0, 0.34, 0)
and at the wave vector (0, 0.34, 0.07) with a fitted straight line for both. c) The field de-
pendence of the single mode at (0, 0.5, 0) and (0, 0.5, 0.04), also fitted with a straight line.
The gradients of the straight line fits are different for differing values of L implying the
dispersion changes as the field is decreased.

(0, 0.34,l) measurements. One mode was observed at the crossing point of the two modes

and this was (0, 0.5,l). The line shape of that mode did not change with varyingl. The same

method was used to find the energy of the modes as that used for the (0,k, 0) dispersion.

The dispersion curve is plotted for bothk = 0.34 andk = 0.5 in Fig 4.17 b). The figure

shows that the dispersion was much steeper in the intra-chain direction in comparison with

the inter-chain direction and this was expected for a quasi one-dimensional system where

the chains run along thec-axis. The dispersion in the intra-chain direction was very similar

for both the modes, atk = 0.34 and atk = 0.5.

When lowering the field below 6 T the two magnon modes moved to lower energies.

Constant wave vector scans were made at a series of fields approaching the transition field

to measure the field dependence of the energy gap. Fig. 4.18 a) shows the variation of the

two modes that was observed at (0, 0.34, 0), the wave vector of the dispersion minimum.

As the magnetic field decreased, the two modes were observed to move to lower energies

and therefore the energy gap to the excitations decreased. The change in the energy gap

is shown in Fig. 4.18 b), where it is seen that the positions of the modes decreased linearly

upon lowering the field. Around the transition field the gap remained level although, as

can be seen in Fig. 4.18 a), the magnetic Bragg peaks of the incommensurate ordered phase
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were at this wave vector and so the measurements of the energy gap became more difficult

and inaccurate as soon as the incommensurate ordered phase was approached. Therefore

scans at constant wave vector were made at various other wave vectors away from the

Bragg point. Fig. 4.18 b) and c) show the results for scans at (0, 0.34,L) and (0, 0.5,L),

respectively. They show that the dispersion does not have the same field dependence at

all points in the Brillouin zone. The slope is greatest atL = 0. This indicates that the

dispersion may have changed slightly as the critical field was approached. AtL 6= 0 the

dispersion appears not to move to lower energies as rapidly with field as theL = 0 modes.

Therefore, from these results, it appears as though the dispersion is not simply shifted

linearly down in energy, as the field is reduced to approach the critical field, but that the

dispersion is slightly modified and the points near the energy gap minimum drop faster than

higher energy points.

The energy gap varied linearly with the applied field at high fields such that the Zeeman

energy reduced. The gradient of the line fitted to the data in Fig. 4.18 b) at the zone centre

(0, 0.34, 0) is 0.205(8) meV/T. Assuming a simple Zeeman form the gradient isgµB where

g is an effectiveg-factor ofg = 3.5(1). This is larger than the value ofg = 2.72 that has

been found in a low-field ESR study [66]. The difference may have been due to the mixing

of higher energy crystal field levels into the ground state doublet in the large transverse

field.

Parameterization of High Field Dispersion

A simplified parameterization model was used to understand the main exchange within the

system. The dispersion that was assumed is given below:

h̄ω(Q)− = ∆ + v2
b (k − 0.34)2 + v2

c l
2

h̄ω(Q)+ = ∆ + v2
b (k − 0.66)2 + v2

c l
2.

(4.4)

This model is based on the assumption that the quasi-particle dispersion is quadratic near

the minimum of the band and therefore,ε(q) ≈ ∆ + q2v2 at low q, wherev is the velocity

of the excitations. In the Eqns 4.4,Q = (h, k, l) is expressed in terms of the reciprocal

lattice units of the CoNb2O6 unit cell; ∆ is an energy gap to the dispersion;vb andvc are

associated with the dispersion in theb andc directions respectively. The dispersion was set

up to create minima at the Bragg peak positions at (0, 0.34, 0) and (0, 0.66, 0). The model

was fitted to the 6 T data shown in Fig. 4.17 and Fig. 4.16. The fitted model corresponds
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to the lines plotted in those figures and the fit parameters are∆ = 0.17(1) meV, where

vb = 1.0(1) meV0.5 andvc = 3.8(1) meV0.5. The parameterization model indicates that the

largest dispersion was along the (0, 0,l) direction, which was along the chain direction and

was expected to have the largest coupling. It also indicated significant in-plane dispersion,

suggesting that the inter-chain couplings were sizeable.

Measurements within the Ordered Phase

Measurements at fields within the long-range ordered phase were made in order to measure

the excitation spectrum. Figure 4.19 provides a summary of the main results. Figure 4.19

a) shows a plot of the raw data whereas the other plots in the figure are shown with a

background scan subtracted, such as the zero field scan at (0, 0.34, 0). The scattering was

much lower in intensity than at high field strength and the features were much broader.

Figure 4.19 b) shows that there were two distinct parts to the inelastic scattering. At 4.50 T

a low-energy section, which extends towards the elastic line, was present as well as some

scattering at higher energies. At higher fields the low energy scattering intensity increased

and the higher energy scattering moved to lower energies such that the two components

merged to form a continuous band of scattering at 5.10 T. The field dependence of the

scattering at low energies was studied further by measuring the intensity at fixed wave

vector and at fixed energy transfer as the applied field was changed. Figure 4.19 c) shows

the results for an energy transfer of 0.11 meV. The intensity at the elastic line is shown for

comparison. Fig. 4.19 c) shows that the scattering at the inelastic position increased at an

increasing rate as the transition field was approached. The scattering at low energies was

still present well below the transition field, reinforcing the result shown in Fig. 4.19 b).

A series of scans was made at both the magnetic Bragg reflection wave vector, (0, 0.34, 0),

and at the Brillouin zone boundary, (0, 0.5, 0). Fig. 4.19 d) demonstrates that at low fields,

4.5 T, at both wave vectors there were two separate parts to the scattering. At (0, 0.5, 0)

wave vector transfer, the low-energy scattering seemed not to extend down to the elastic

line, as was seen at the magnetic Bragg peak position. This was expected if the excitations

were dispersing alongk. A comparison of two measurements at (0, 0.34,L), L = 0, 0.07

is shown in Fig. 4.19 e). It indicates that the band of scattering at low energies dispersed to

higher energies along the (0, 0,l) direction, reinforcing its magnetic character.

When approaching the transition field of 5.45(5) T the intensity increased across the

whole energy range probed. Fig. 4.20 a) and b) show measurements at fields close to the
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Figure 4.19: a) The raw data plot of the and the 4.8 T data and the background scan which
has been subtracted from the data in plots b), d) and e). Atk = 0.34 the background scan
was the zero-field scan and atk = 0.5 it was the 3 T scan. The background scans do not
have the Bragg peaks present that occur at these wave vectors. b) The development of the
inelastic scattering as the field strength is increased at the wave vector transfer (0, 0.34, 0)
showing two components of the scattering developing. The arrow in plot a indicated the
position of energy transfer of measurement in plot b. c) The signal measured as the field
strength was increased at 0.11 meV for monitor=4 × 105 ≈ 4.5 mins and one third of the
signal at the elastic line for monitor=2 × 103 ≈ 1.5 s. Far from the transition there was a
small signal and the scattering increased rapidly approaching the critical field. Plots d) and
e) show the wave vector dependence of the scattering within the ordered phase. d) Scans at
wave vector transfer (0, K, 0) where K= 0.34, 0.5 at 4.5 T. e) Scans at wave vector transfer
(0, 0.34,L) whereL = 0, 0.07 at 4.8 T. In both plots the scattering at low energies moves
to higher energies away from the magnetic Bragg peak position.
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Figure 4.20: Constant wave vector scans at fields close to the transition. Plot a) A constant
wave vector scan at (0, 0.34, 0) showing the increase in intensity of the band of excitations
and the two modes developing above the critical field. Plot b) constant wave vector scans
at (0, 0.5, 0.04) showing the increase in intensity of the main mode and a tail of scattering
to higher energies. Plot c) shows the change in line shape of the scattering where at 6 T a
single mode was observed which at 5.45 T was less intense and extends to higher energies.
Plot d) shows the scattering at the critical field, at 5.45 T, at the wave vector of the magnetic
Bragg peak, (0, 0.34, 0), and at wave vectors (0, 0.34, L), L= 0.06, 0.07.
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transition field. The magnon modes observed at high fields were broad at fields just above

the transition and the band of scattering observed below the transition field appeared to in-

crease overall in intensity. The difference in line shape of the excitations is seen in Fig. 4.20

c). The measurements were at the crossing point of the two dispersions where at 6 T a sin-

gle mode was observed. So at this wave vector the difference in line shape was that of a

single excitation. At 5.45 T the measurement shows a strong mode with a tail of scattering

extending to higher energies, in comparison with the single sharp mode at6 T. The change

in the scattering along the (0, 0l) direction at the transition field was also measured. In

Fig. 4.20 c), measurements along the (0, 0.34,L) direction showed that the broad band of

scattering observed at 5.45 T at the magnetic Bragg peak position moved to higher energies

at largerL.

4.3.3 Analysis

Two sharp modes were observed above the critical field at 6 T, with dispersions which

crossed at the (0, 0.5, 0) point. The minima occurred at the wave vector positions of the

magnetic Bragg reflections associated with the ordered phase at low field, as would be

expected since it was at these points where the energy gap was expected to soften at the

transition field. There are two different chains in the unit cell and therefore these two

magnon modes could be associated with couplings between magnon modes on these two

chains. In order to analyse these observations the classical and quantum predictions for the

one-dimensional Ising chain are now reviewed.

Mean Field Picture of the Ising Magnet in a Transverse Field

Single Ising chain in a transverse field

The energy gap in the high-field phase decreased linearly upon lowering the field strength.

This behaviour would be expected from lowering of the Zeeman energy of a spin-flip ex-

citation. The measurements of the high-field energy gap of the modes at (0, 0.34, 0) was

fitted with a straight line:

Energy gap = gµBB −∆0, (4.5)

whereB is the field andgµB = 0.205(8) meV/T and∆0 = 1.05(5) meV. This fit to the

high field data implies that the effectiveg-value wasg = 3.55 and the field at which the

energy gap was closed was∆0/gµB = 5.1(4) T.
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In the case of a single Ising chain spin-half system in a transverse field the Hamiltonian

is:

H = −
∑

i

JcS
x
i Sx

i+1 −
∑

i

gµBBSz
i (4.6)

In the classical picture at zero field the spins align along the Ising direction,Sx, whereas

at high fields the spins align along the field directionSz. Hence, the Hamiltonian has two

phases separated by a transition at a critical field. Therefore, in order to understand the

high field magnon modes that were observed, spin deviations from the high field phase

were considered where spins aligned along the field direction. A spin-wave calculation

using the Holstein-Primkoff transformation leads to the dispersion of the mode as:

(h̄ωq)
2 = gµBB(gµBB − 2J(q)S), (4.7)

whereJ(q) = Jc cos(πl) is the Fourier transform of the couplings assuming the spacing

between the sites is c/2;g is theg-factor; µB is the Bohr magneton; andB the magnetic

field. The energy gap as a function of field, atl = 0, is plotted in Fig. 4.21. At very high

field, where2JcS/(gµBB) ¿ 1,

h̄ωq ≈ gµBB − J(q)S. (4.8)

The energy gap is at the minimum of the dispersion and this occurs atl = 0. Therefore the

energy gap, at high fields, as a function of field is expected to be:

Energy gap ≈ gµBB − JcS. (4.9)

By comparing Eqn. 4.9 and Eqn. 4.5 an estimate of intra-chain ferromagnetic couplings was

found to be Jc ≈ 2 meV. This value was consistent with the relatively steep dispersion along

the intra-chain direction. In the classical picture spins are classical vectors pointing along

the Ising axis in zero field and tilting toward the field axis at finite field. The equilibrium

position is found by calculating the optimal angleθ for the minimum energy per spin, E:

E(θ) = −JcS
2 cos2 θ − gµBBS sin θ (4.10)
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Therefore the angle

θ = π
2

when B ≥ 2SJc

gµB

sin θ = gµBB
2JcS

when B < 2SJc

gµB

therefore the magnetisation is calculated as:

Sz = S sin θ = S for B ≥ 2SJc

gµB

= S gµBB
2JcS

for B < 2SJc

gµB

(4.11)

The ordered moment along the Ising direction is:

Sx = S cos θ = 0 for B ≥ 2SJc

gµB

= S

√
1−

(
gµBB
2JcS

)2

for B < 2SJc

gµB

(4.12)

Therefore, within the classical picture, the critical field separating the two phases isBcl =

2JcS/(gµBB) = 10.2(8) T. This is twice the observed critical field. The change in energy

gap expected from this classical picture is shown in Fig. 4.21. The high-field linear behav-

iour observed in Fig 4.18 expected from Eqn. 4.7 is not present close to the critical field.

Quantum Solution for the Ising Chain in a Transverse Field

The mean field approximation considered above neglects quantum fluctuations and this

alters the physics significantly, in particular close to the critical field. A full quantum

solution of the Ising model in a transverse field, Eqn. 4.6, can be obtained by a full Jordan-

Wigner spin-fermion mapping which gives the order parameter,〈Sx〉, as [9]:

〈Sx〉 =
1

2

(
1−

(2gµBB

Jc

)2) 1
8
. (4.13)

The ordered moment and the magnetisation,〈Sz〉, is plotted in Fig. 4.21 b). It shows that the

ordered moment has a very different behaviour to the classical predictions. By comparing

Eqn. 4.13 and Eqn. 4.12 it can be seen that the functional form of the two equations is

different. In the classical description the order parameter has the critical exponent,β = 1/2

whereas in the quantum caseβ = 1/8. The magnetisation is also quite different in the

quantum description. By comparing the two plots Fig. 4.21 a and b it can be seen that the

magnetisation tends towards saturation only at infinite fields whereas in the classical case
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Figure 4.21: Plots a) and b) show the change in ordered moment,〈Sx〉, and magnetisation,
〈Sx〉, as the transverse field is varied for the classical and quantum Ising chain atT = 0.
The quantum solutions results are taken from calculations by Pfeuty [9]. They show that
the classical critical field is twice that of the quantum case. The critical exponent in the
classical case isβ = 1/2 and in the quantum caseβ = 1/8. Plots c) and d) the energy gap
dependence is given for both cases. In the classical picture spin-waves are excited on both
sides of the transition.In the quantum case two solitons are excited in the low field phase
and in the paramagnetic phase the excitation is the spin-flip from the field direction.
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saturation is reached at the critical field.

At zero temperature, the dispersion as calculated by Pfeuty is [9]:

(h̄ωq)
2 = (gµBB2 − gµBBJc cos(πl) + J2

c/4). (4.14)

Therefore the energy gap at the dispersion minimum,l = 0 is:

Energy gap = |gµBB − Jc/2|. (4.15)

The dependence of the energy gap with field is plotted in Fig. 4.21. The classical solution

approaches the quantum solution in Eqn. 4.15 at high fields as seen in Eqn. 4.8. The critical

field in the quantum case isBc = Jc/(2gµB) = Bcl/2 which is half the classical result for a

spin-half system. The physical interpretation of this result is that the quantum fluctuations

prevent the energy gap from closing at the classical critical field and therefore the gap

closure occurs at lower fields.

Mean-Field Solution of Coupled Ising Chains in a Transverse Field

At sufficiently high fields above the critical field the mean-field dispersion, Eqn. 4.7, tends

to the full quantum solution, Eqn. 4.14. This shows that as the field strength tends to in-

finity the quantum fluctuations become small and the semi-classical spin-wave calculation

of the excitations is appropriate. Therefore a more complete spin-wave calculation was

considered in order to analyse the magnon dispersion more thoroughly.

CoNb2O6 departs from a perfect one-dimensional Ising chain in two aspects. The first

is that there are two types of Ising chain in the unit cell which have the Ising axis tilted

with respect to each other. Therefore two modes are expected in the high-field phase.

Secondly, the inter-chain couplings have a frustrated triangular geometry and stabilize order

at a point in the three-dimensional Brillouin zone atQ = (0, Qk, 0) whereQk ∼ 1/3. To

understand the effect of the inter-chain couplings between the Ising chains a simpler model

is considered of a triangular Ising lattice.

The single Ising chain Hamiltonian is extended to include inter-chain couplings and

the two different Ising directions of the two chains in the unit cell. Again the ground state

is assumed to be the classical high-field state, where the spins are assumed to be ordered

along the field direction, which is perpendicular to the Ising direction. The Ising direction
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Figure 4.22: Left: The triangular lattice of spins in the (a, b)-plane, showing the couplings
between the spins and the two sublattices used in the linear spin-wave derivation of the
dispersion. The two lines of spins shown have Ising directions tilted from thec-axis by
±32o. Right: A plot of the magnon dispersion branches derived from a linear the spin-
wave calculation of the triangular lattice with coupled Ising spins and compared to the
experimental data at (0k, 0).

alternates along thea-axis, as shown for sites 1 and 2 in Fig. 4.22 left. The Hamiltonian is:

Ht =
∑

il

JbS
x
i Sx

l +
∑
im

JbS
x′
i Sx′

m +
∑

ik

JaS
x
i Sx′

k −
∑

i

gµBBSz
i

wherex andx′ are the two local Ising directions in the unit cell,z is along the field direction

and is perpendicular to bothx andx′. Ja and Jb are the inter-chain couplings in the triangular

lattice in the (a, b)-plane shown in Fig. 4.22 Left. It is important to note that only couplings

between the components along the local Ising direction are included. The dispersion is

derived using the Holstein-Primakoff transformations for the two sublattices and the result

is:

ω2
± = A(A− 2B′)− 4C2Γ±

√
2(2A2 −B′2(1 + 12Γ))(1− 4Γ)C2 (4.16)

where,
A = gµBB,

B′ = S
2
Jb cos(2πk),

C = S
2
Ja(cos(π(h + k)) + cos(π(h− k))),

Γ = cos2 γ sin2 γ,

whereQ = ha∗ + kb∗ + lc∗ refers to the reciprocal lattice in the Pbcn space group.
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Figure 4.23: Left: The Ising chains are arranged in a triangular lattice. Along a chain
the spins are in a zig-zag arrangement in the (b,c)-plane where each site is translated by
(0,δ, 0.5), δ = 0.3686 along a chain. Jc is the coupling along the chains and connects
sublattice points with the Ising axis in the same direction: 1 to 3 and 2 to 4. Right: Plots
of the two lower dispersion branches for a set of parameters which compares well with the
measurements made in the (0, 0.34,l) direction, yet this solution does not fit the (0,k, 0)
measurements.

The two-dimensional triangular Ising lattice has two modes in the high-field paramagnetic

phase with incommensurate minima at wave vectors which depend on the ratio Ja/Jb. Two

modes occur because of the two non-equivalent sublattices with rotated Ising axes. In

order to approach the observed dispersion for the two modes in the (0,k, 0) direction, the

effective parameters,B = 1.5 T, Ja = 0.42 meV, Jb = 0.28 meV andg = 3.5 andγ = 32o

were used as shown in Fig 4.22. These are ‘effective’ parameters because the effect of the

main coupling along thec-axis was not considered in the model. This model gave minima

at the positions of the magnetic Bragg reflections of the ordered phase but required a very

small field in order to reach the energy scale of the observed excitations. Therefore, by

using the the Ising model on an anisotropic triangular lattice, the magnitude of the small

in-plane coupling between spins was determined which led to the small dispersion. These

couplings were small in comparison with the main intra-chain coupling of 2 meV exchange

which was calculated from the field dependence of the energy gap. Nevertheless the set

of inter-chain dispersions were significantly larger than those found by Heidet al. when

modelling the phase diagram in an applied field within the (a, c)-plane [61].

A more realistic model should include the main coupling, which is along thec-axis.
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Therefore a model of Ising chains on each site in the triangular lattice was used such that

the Hamiltonian was:

H = Ht +
∑
ij

JcS
x
i Sx

j +
∑
ij

JcS
x′
i Sx′

l ,

where Jc is the coupling along the Ising chain direction. Four sublattices were used to

model the four Co2+ ions in the unit cell, two on each Ising chain forming two layers of

Co2+ ions. The four sub-lattices are shown in the diagram in Fig. 4.23. The dispersion was

derived to be:

ω2
u± = ω2

± + 2
√

(ω2± −D2 sin2(2πkδ))D2 (4.17)

ω2
l± = ω2

± − 2
√

(ω2± −D2 sin2(2πkδ))D2 (4.18)

(4.19)

whereD = S
2
Jc cos(πl) andδ = 0.3686 and it results from the zig-zag of the chains in the

(b, c)-plane. Again, the wave vectorQ = ha∗ + kb∗ + lc∗ refers to the reciprocal lattice

in the Pbcn space group. Attempts were made to fit the modes given by Eqn. 4.17 to the

data. No complete set of parameters was found that fitted both the dispersion along the

direction (0,k 0) and (0, 0,l). In the figure a plot of the this spin-wave model is given for

a set of parameters that fits the (0, 0.34,l) data,B = 6.9 T, Ja = 0.11 meV, Jb = 0.08 meV,

Jc = −3.8 meV, γ = 32o. However the model did not fit the (0,k, 0) dispersion. The

main coupling is along the Ising chains and it dominates the dispersion along the (0,k, 0)

direction due to the smallk dependence of the coupling along the the Ising chain. The

adjustment of the field from 6 T is also a sign that the model does not properly describe the

system.

The above model of Ising chains coupled in a triangular arrangement by frustrated inter-

chain couplings captures general features of the excitations in the high field phase since two

modes are predicted above an energy gap with minima at incommensurate wave vectors.

Yet the dispersion calculated from the mean-field approximation does not describe the de-

tailed functional form observed for the dispersion and this suggests that a renormalization is

required. One of the reasons may be because the mean-field approximation neglects quan-

tum fluctuations as they may renormalize the dispersion sufficiently close to the critical

field. Similar behaviour is seen in the case of the one-dimensional Ising model.
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Magnon Hopping Model

It is expected that the high-field phase is a paramagnetic phase and that the excitations are

magnons which hop coherently through the lattice. Therefore, a more general model of

magnon excitations hopping on a three-dimensional lattice of stacked triangular layers was

considered in order to parameterize quantitatively the observed dispersion. Ifha, hb, hc

are the magnon hopping terms along the main nearest-neighbour coupling directions the

Hamiltonian takes the form:

H =
∑
ij

(hb + hc)(a
†
iaj + b†ibj) + haa

†
ibj + ∆(a†iai + b†ibi) (4.20)

wherea†i , ai create and annihilate magnons at sitei and the dispersion is of the form:

h̄ω− = ∆− 2ha cos(πh) cos(πk) + hb cos(2πk) + hc cos(πl) (4.21)

h̄ω+ = ∆ + 2ha cos(πh) cos(πk) + hb cos(2πk) + hc cos(πl) (4.22)

where∆ is the energy gap. Equations 4.21 and 4.22 model hopping on an anisotropic

triangular lattice in the (a, b)-plane and a dispersion between the lattice along thec-axis.

If this dispersion is to reproduce the dispersion minima at the magnetic Bragg peaks, the

hopping terms must satisfy the condition:

cos(πk0) = ± ha

2hb

= ±0.4817 for k0 = 0.34, 0.66.

The difference between the two inter-chain hopping terms is small since the ordering wave

vector is close tok0 = 1/3 whenha = hb. Modelling the data in the (0,k, 0) direction

gave a best-fit value forhb = 0.051(1) meV andha = 0.049(1) meV. Modelling the data

of the (0, 0,l) dispersion gavehc = −2.5(1) meV. The model is shown in Fig. 4.24 and fits

the data reasonably well. The hopping terms should be interpreted as effective values of

the exchange parameters corresponding to the bonds and including a renomalisation factor.

The hopping terms are similar to the values of the simple quadratic form given in Eqn. 4.4

and described the low energy dispersion. As expected the largest exchange is along the

Ising chains which are along thec-axis.
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Figure 4.24: Plots of the fit to the data at (0,k, 0,)(left) and (0, 0.34,l)(right) of the magnon
hopping model as given in Eqn. 4.21.

Below the Transition Field

At fields within the ordered phase, below the critical field, the line shape of the excitations

changed to broad line shapes from the sharp magnon modes observed above the critical

field. The Ising chains ordered within the triangular lattice in the (a, b)-plane which resulted

in magnetic Bragg peaks at the wave vectors near (0, 0.34, 0) and (0, 0.66, 0). As shown

above, this suggested slightly anisotropic inter-chain couplings within the triangular lattice.

Upon approaching the critical field from lower fields the zero point quantum fluctuations

increased within the system and the ordered moment decreased, as observed in Fig. 4.19 c).

As the ordered moment was reduced the scattering at low energies increased. This was to

be expected because the energy gap to the two-soliton scattering is reduced as the critical

field is approached. Therefore as the scattering moves to lower energies, the signal at a

fixed energy transfer is expected to increase about the transition field. Fig. 4.19 c) shows

such a measurement where the intensity at a finite energy transfer above the Bragg peak was

seen to increase rapidly upon approaching the transition field. An unusual feature of the

scattering at 0.11 meV was the existence of a signal far below the transition field. Energy

scans at a series of fields indicated that there existed low energy scattering far below the

critical field which was distinct from the high energy scattering. The possible origins of the

two components are now discussed.

The high-energy scattering measured below the transition field within the ordering

phase is expected to result from the creation of domain walls within the Ising chains, as
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shown schematically in Fig. 4.14 a). A spin-flip caused by the scattered neutron creates

two domain walls, solitons, which propagate creating a continuum (shown as the shaded

area in Fig 4.14 a)). If inter-chain couplings exist then there is a small longitudinal mean

field, along the Ising axis, predicted to split the states in the continuum and thereby cause

a series of separate modes. The high-energy scattering is expected to be seen as series of

sharp modes with a small energy separation. The individual excitations are not expected

to be resolved within the resolution of the present measurements. Instead a band of inten-

sity is expected to be observed which moves to lower energies as the field is increased, as

expected for the field dependence of the solitons in an Ising chain given by Eqn. 4.14.

The presence of low-energy excitations is surprising and is not expected in the model

of the one-dimensional Ising chain because the excitations are gapped across the whole

Brillouin zone, see Fig 4.14 a), and the energy gap only closes near to the critical field. In

addition any commensurate three-dimensional Ising order is also expected to be gapped at

all fields apart from the the critical field. Therefore an UUD structure with an ordering

wave vector(0, 1/3, 0) is expected to be gapped at all fields apart from the critical field.

The presence of low-energy excitations well below the critical field can be explained

if the order between the chains is not exactly commensurate but is an incommensurate

spin-density wave. Incommensurate magnetic order was implied by the resulting Bragg

reflection (0, 0.34, 0). Such structures have been observed in the rare earth metals Er and

Tm [77, 78]. In these systems longitudinal spin excitations, which are fluctuations along

the ordered moment direction, are gapless modes caused by the translational invariance of

the magnetic structure. Inelastic neutron scattering experiments on Er have shown that, in

addition to the usual transverse excitations, broad longitudinal excitations with a linear gap-

less dispersion exist [77]. The modes have no energy gap and the linear dispersion relation

has been predicted theoretically by Liu and Cooke [79]. In the present measurements on

CoNb2O6 it was possible that the low energy scattering had no energy gap at the ordering

wave vector (0, 0.34, 0). Some evidence was found that the low-energy scattering dispersed

in energy slightly upon moving away from the Bragg peak position both in the intra-chain

direction and intra-chain direction. In Fig. 4.19 c) and d) the low energy scattering was

observed to move to higher energies at wave vectors away from (0, 0.34, 0). The overall

intensity of the low-energy scattering increased as the critical field was approached. This

was partly because the high-energy one-dimensional scattering moved to lower energy and

combined with the scattering from the longitudinal fluctuations. The intensity of the lon-

gitudinal modes might have been expected to scale with the size of the ordered moment on
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the Ising chains, yet as the ordered moment on the Ising chains decreased, the intensity of

the low energy scattering increased. Future higher resolution measurements may help the

understanding of the origins of the low-energy scattering so that better measurements of

the field and wave vector dependence can be made.

The three-dimensional Ising ferromagnet LiHoF4 [80] has been studied in a transverse

field. Neutron scattering experiments have explored the behaviour of the energy gap in

order to observe the energy gap closing [53]. Those measurements have shown that, when

lowering the transverse field from the paramagnetic phase, the high field mode follows the

predictions of the semi-classical spin-wave description [53]. When the gap was observed

to become very small the coupling between the electronic spin component and nuclear

spin moments due to the hyperfine interaction became important. This coupling prevents

the closing of the gap for the spin-wave mode which results from the oscillations of the

electron spin moment [81].

In the present measurements on the quasi one-dimensional system, CoNb2O6, attempts

also were made to follow the change in the energy gap as the field was reduced from the

high field phase. The excitations in the three-dimensional ordered phase just below the

critical field are most likely gapless and the lowest energy excitations are phason modes

of the spin-density wave order of the chains. In the paramagnetic phase the dispersion did

not appear to move down in energy at the same rate across the whole Brillouin zone, and

this implied that the dispersion of the magnon modes changed as the field approached the

critical field. Therefore, since measurements at the dispersion minimum are hindered due

to the increased intensity at the elastic line as the transition field is approached, it is difficult

to infer the energy gap from scans at wave vectors close to the dispersion minimum and

only an upper bound can be estimated. If there is an energy gap at the critical field then it

is below 0.08 meV and therefore less than 4% of the main exchange energy J.

The applied field direction was precisely applied in the (b, c)-plane to be along theb-

axis. However it is still possible that the field was slightly inclined towards thea-axis by

an angle of order 0.5o. This would have had the effect of creating a small longitudinal

field along the Ising direction which may have prevented the total closure of the energy gap

at the critical field. It is important to note that any small misalignment of the field from

the perfect transverse direction will create a net longitudinal field along the Ising direction

and in the case of a ferromagnet this will prevent the gap from closing because there is no

longer a symmetry breaking.

The magnon modes also change in shape close to the transition field and so the gaussian
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profile used to fit the modes becomes less appropriate. Therefore these do not show clearly

the behaviour of the energy gap very close to the critical field but they do show that the

energy gap in the ordered phase does not open away from the critical field as would be

expected from the one-dimensional Ising system.

4.4 Conclusions on CoNb2O6

The aim of these measurements was to observe the phase transition which occurs when

applying a field transverse to an Ising axis in an Ising-like system. CoNb2O6 is an Ising-

like ferromagnet and the phase diagram for the system in a field purely transverse to the

Ising direction has not been studied before. Inelastic neutron scattering experiments have

not been made about a magnetic Bragg position and therefore the observation of the change

in the minimum energy gap had not been observed before.

The main exchange interaction in CoNb2O6 couples the Ising-like spins into ferromag-

netic Ising chains. Yet CoNb2O6 has demonstrated a more complex excitation spectrum

than that expected from the isolated Ising chain in a transverse field.

Above the transition field a paramagnetic phase was observed in which sharp magnon

modes dispersed along the Ising chains and slightly dispersed between the chains. The

dispersion was described by a magnon hopping-model where the hopping along the chain

was largest with a small hopping between the chains. The linear spin-wave calculation

assumed completely Ising-type spins and was not successful in modelling the data. This

may have been an over-simplification of the system since the spins may not be purely

Ising-type and there may be corrections to the effective spin-half system. Also the classical

ground state assumed in the linear spin-wave description is an approximation of the actual

ground state of Ising chains in the paramagnetic phase. Therefore it may be expected that

as quantum effects are considered, the parameters in the dispersion would be renormalized

in the linear spin-wave model.

Three ordered phases were observed within the neutron diffraction measurements which

explored the magnetic structure below the transition field. The observations imply that,

close to the transition field, an incommensurate ordered phase was stabilized and this was

further supported by the observation of gapless modes in the excitation spectrum away

from the transition field. These are new results and indicate a transition between a gapless

incommensurate ordered phase to gapped paramagnetic phase.
x51]Mb?w



Chapter 5

Neutron Scattering Study of the Layered

Spin-Half Antiferromagnet CuSb2O6

This chapter presents a neutron scattering study of the layered copper-oxide materialβ-

CuSb2O6. The spin-half Cu2+ ions form a square lattice with a strong antiferromagnetic

coupling across one diagonal of the square and the crystal structure consists of layers

of Cu2+ ions. Firstly, single-crystal diffraction measurements were made to determine

the low-temperature magnetic structure at zero field using both polarized and unpolarized

neutrons. Further, unpolarized diffraction measurements investigated the development of

the magnetic structure as a magnetic field was applied along the ordered moment direction.

At low fields a spin-flop transition was observed and there are indications of a transition

at high field. Secondly, inelastic neutron scattering measurements investigated the low-

temperature magnetic excitation spectrum. An unusual intensity distribution was observed

for the in-plane dispersions and a strong resonance feature was observed at 13 meV at the

Brillouin zone boundary. This energy agreed with the predicted Brillouin zone boundary

dispersion maximum for a one-dimensional spin-half Heisenberg chain with a coupling of

4.2 meV. An initial investigation of the low-energy phonon modes, using inelastic scattering

at room temperature, showed that the energy of the resonance feature was close to that of

a phonon mode associated with the bending of the bond through which the main super-

exchange interaction occurs.
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Figure 5.1: a) A sketch of unit cell of the crystal structure of CuSb2O6. The black lines
indicate the unit cell and the orange balls represent the copper ions, red the oxygen and
blue the antimony. b) Schematic diagram of the Cu2+ lattice and the main exchange path
for the two layers of Cu atz = 0 andz = 0.5. The arrows indicate the two Cu2+ sites. c)
A sketch of the magnetic structure at zero field. The magnetic unit cell is indicated by the
dotted lines and the arrows indicate the alignment of the Cu2+ spins at zero magnetic field.

5.1 Introduction

The following chapter presents a neutron scattering study of the layered copper-oxide ma-

terial β-CuSb2O6, whose unit cell is shown in Fig. 5.1. The spin-half Cu2+ ions form a

square lattice in the basal plane with a strong antiferromagnetic coupling across one di-

agonal of the square. The crystal structure consists of layers of Cu2+ ions surrounded by

oxygen octahedra. The outer nine electrons of the Cu2+ are in the 3d shell, such that there

is one unpaired electron which lies either in theeg or t2g level. For both possibilities the

orbital angular momentum is quenched and therefore the Cu2+ has a moment composed

of the spin,S = 1/2. Susceptibly measurements on powder samples have confirmed that

the Cu2+ ion is in a spin-half state [82] because fitting the observed high-temperature sus-

ceptibility to the Curie-Weiss law gives an effective momentµeff = 1.758 µB close to that

expected for a spin-half (forS = 1/2, g = 2.21 [83], µeff = 1.914 µB). The two Cu2+

ions in the unit cell form two square lattice layers of spin-half ions in the (a, b)-plane as

shown by the shaded planes in Fig. 5.1 a). The two layers stack along thec-axis such that

one Cu2+ion is translated to the other by the fractional coordinates (1/2, 1/2, 1/2).

The β polytype exists below 380 K whereα-CuSb2O6 undergoes a slight monoclinic

distortion from a tetragonal structure. Measurements have shown that the a and b lattice

parameters,a = 4.6349(1) andb = 4.6370(1), are very similar and thec lattice parameter,
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c = 9.2931(1), is nearly twice their value withβ =91.124(2)o in the space group P2n1 [82].

The two copper atoms in the unit cell at positions (0, 0, 0) and (1/2, 1/2, 1/2) are connected

by a screw axis parallel to theb-axis.

Koo and Whangbo [84] have investigated the coupling strengths inβ-CuSb2O6 by cal-

culating the spin correlation interaction energies of two adjacent spin sites. The strongest

exchange interaction is predicted to be across the diagonal of the square between next-

nearest neighbouring ions, as shown in Fig. 5.1 b). The exchange path is through the

chemical Cu-O-O-Cu bond, where the bond angle is close to180o, and is predicted to

be antiferromagnetic. The nearest-neighbour interaction is relatively smaller since the Cu-

O-Cu bond is closer to90o. These couplings are predicted to be antiferromagnetic and of

similar magnitude in both thea andb directions. The results of fitting the line widths of

electron spin resonance measurements (ESR) have indicated that the exchange couplings

are extremely anisotropic and that the sign of the couplings changes for spins aligned along

theb-axis with respect to spins aligned along thea-axis [83].

Gibsonet al.[85] have fitted their susceptibility measurements to a Bonner-Fisher curve

[13] and have estimated the main quasi-one-dimensional exchange to be 4.2 meV. There-

fore, the main exchange path is predicted to be antiferromagnetic, with a coupling strength

of approximately 4.2 meV across one diagonal of the square lattice of spin-half sites, as

in Fig. 5.1 b). Previously, in Chapter 1, the J1-J2 spin-half square lattice model was dis-

cussed. In that model the two diagonal exchanges, J2, of the square lattice were large and

equivalent. The calculated phase diagram was rich and showed that, for certain ratios of

J2/J1, non-classical behaviour was dominant. In CuSb2O6 only one diagonal on the square

lattice is significant and antiferromagnetic but theoretical calculations of the phase diagram

in such a scenario are currently not available. The system is frustrated if the predicted cou-

pling scheme exists: the strong diagonal exchange and nearest-neighbour exchanges are

all predicted to be antiferromagnetic and so cannot all be satisfied. The low spin of this

system and its frustration would lead to quantum fluctuations and again to the possibility

of non-classical behaviour.

Kato et al.[86] have observed three-dimensional long-range magnetic order below

8.9 K and indexed it with a propagation vector (1/2, 0, 1/2). They have suggested that the

spins align into ferromagnetic lines along theb-axis and into antiferromagnetic lines along

the a-axis which are parallel to the neighbouring layers, as shown in Fig 5.1. Gibsonet

al. [85] have suggested that spins on neighbouring planes are canted away from theb-axis

toward thea-axis. The canting has been found to be different for the two layers, atz = 0
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Figure 5.2: Phase diagram of CuSb2O6 for a field applied parallel to the crystallographicb-
axis. These measurements show that the spin-flop field is nearly constant up to the ordering
temperature [87].

and z = 0.5. The ordered moment has been found to be reduced to a value of 0.5µB

from the possible 1.12µB (S = 1/2, g = 2.23 [83]) suggesting that substantial quantum

fluctuations are present [85].

An abrupt change in the magnetization has been observed indicating that there is a

spin-flop transition for an applied magnetic field of about 1.25 T along the b-direction [83].

The phase diagram for the spin-flop region is given in Fig. 5.2 and shows that it persists

up to the ordering temperature of 8.9 K. Susceptibility measurements have suggested that

the spin-flop transition will cause the spins to flop from theb-axis to thea-axis. At low

temperatures there is a sharp drop in the susceptibility. Measurements on single crystals

have shown that, at low temperature, the susceptibility is lowest for a small field along the

b-axis and maximum for a field along thec-axis [85]. Therefore, since the susceptibility is

considerably reduced along theb-axis it is expected that in zero field the ordered moment

will be predominantly along this axis. The spins will then move to thea-axis as the critical

field is applied along theb-axis.

The results of the ESR measurements [83] would suggest an unusual spin-flop transi-

tion. They predict that the couplings would change sign for spins aligned along theb-axis

to those aligned along thea-axis. If the coupling scheme were to change dramatically be-

fore and after the spin-flop transition then the two phases would be expected to show two
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different ordering wave vectors. The zero field structure has been indexed with the order-

ing wave vector (1/2, 0, 1/2) therefore this may change as a completely different structure

is stabilized.

The measurements discussed in this chapter investigated the magnetic structure present

at zero field and in an applied magnetic field of 11.5 T. This field was much higher than

the spin-flop field and so the development of the magnetic structure could be probed. Low-

temperature inelastic scattering measurements of the excitation spectrum out to an energy

transfer of 17 meV. These measurements were motivated by the possibility of exploring the

frustrated couplings and the effect of quantum fluctuations in the system.

5.2 Low-Temperature Magnetic Structure of CuSb2O6

In this section, single crystal neutron diffraction measurements on CuSb2O6 are presented.

The zero-field long-range magnetic order was investigated, using unpolarized and polarized

neutrons. This study was motivated by the two different results given in the literature by

Kato et al. [86] and Gibsonet al. [85] for the zero-field magnetic structure. The spin-half

Cu2+ ions form two square lattices atz = 0 andz = 0.5. Although both the Kato and the

Gibson studies have indexed the Bragg reflections measured with the ordering wave vector

(1/2, 0, 1/2), Katoet al. have fitted a structure of collinear spins on the two lattices of Cu2+

sites, whereas Gibsonet al. have fitted a canting of the spins between the two lattices.

In the experiments reported below, the magnetic order was observed continually as an

increasing magnetic field was applied along theb-axis, up to a magnetic field strength of

11.5 T. Therefore, the magnetic structure could be investigated before and after the spin-

flop transition and at high fields. The spin-flop transition was predicted to be an unusual

transition, given the results of ESR measurements [83] and susceptibility measurements

[85], because the couplings were predicted to be highly anisotropic such that the coupling

scheme would change when going through the spin-flop phase.

5.2.1 Experimental Details

Sample Growth

The single crystal sample was grown by A. Prokofiev using the chemical vapour transport

method [88]. Twinning occurred in the crystal because of the monoclinic to tetragonal

structural distortion at 380 K. The sample used in the experiments was pressure treated
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7mm

5mm

Figure 5.3: Right: The single crystal sample used in the measurements and mounted on an
aluminium pin. Right: A Laue pattern taken of the sample which indicated that there was
a large single crystal and small twinned crystallites present in the sample.

through this transition in order to de-twin the crystal of approximately 30 mm3. It was the

same sample used in the experiments of Gibsonet al. [85]. Figure 5.3 displays a neutron

Laue pattern taken with the instrument Orient Express at the Institut Laue-Langevin (ILL).

It shows an intense set of peaks with the addition of small peaks in the pattern. Although

most of the sample was a single crystal, there were small crystallites and these produced

weak Bragg peaks.

Unpolarized Diffraction

The instrument used for the unpolarized measurements was the two-axis neutron diffrac-

tometer, D23 at the ILL. The sample was mounted in the (h, 0,l) horizontal plane in a

cryomagnet with a base temperature of 2 K and maximum field of 12 T. The magnetic field

was applied along the crystallographicb-axis and most measurements were made in the

three-dimensional magnetically ordered phase, at the base temperature of 2 K. A neutron

incident wavelength,λ = 1.276Å was used to check the nuclear structure and zero-field

magnetic structure. Reflections out of the horizontal scattering plane were measured by

making use of the lifting arm of the detector. A series of 87 integer (h, k, l) reflections

at zero field were measured to fit the nuclear structure. A variety of other disallowed

magnetic reflections were also measured including positions such as (h, 0.5,l). Zero in-

tensity was observed for these points in agreement with the published propagation vector

(0.5, 0, 0.5) [85]. In the measurements discussed below, a wavelength ofλ = 2.377Å was

used together with a graphite filter to filter out second-order scattering and to optimize the
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measurements of the magnetic structure.

Measurements were made at zero field, 6 T and 11.5 T to observe changes in the mag-

netic structure with increasing field strength. A series of peaks with (h±0.5, 0, l±0.5) and

four nuclear peaks were measured to confirm that the crystal structure did not noticeably

change. As a result it was possible to study the magnetic structure before and after the

spin-flop and at high applied magnetic fields. Within the accuracy of the measurements, no

change in the nuclear structure was seen in an applied field nor was any ferromagnetic com-

ponent observed. All these peaks were measured again at 90 K with zero field to establish

the background intensity and second-order feed through by the filter.

Polarized Diffraction

The polarized experiments were performed on the triple-axis spectrometer IN20 at the ILL.

The single crystal of CuSb2O6 was mounted in a standard orange cryostat and aligned with

(h, 0, l) in the scattering plane. A Heusler monochromator and analyzer were used. Mea-

surements were performed at a fixed wavelength ofλ = 2.360Å, with three polarization

orientations of the incident beam on the sample: parallel toQ; perpendicular toQ and in

the scattering plane; and perpendicular toQ and out of the scattering plane. These are sum-

marized in Table 5.2. These measurements enabled a direct determination of components

of the moments along the crystallographic axes.

5.2.2 Results

Zero Magnetic Field

The measurements permitted the reanalysis of the zero-field magnetic structure and, in

particular, the effect of the twinned crystallites in the sample. The twinning produced small

peaks in addition to the larger Bragg peaks from the main single crystal. These small side

peaks increased the measured integrated intensity of the Bragg peaks as shown in Fig 5.4.

The main Bragg intensity was extracted by fitting a series of gaussians to the observed

spectra and extracting the integrated intensity of the main reflection. This method removed

most of the effect of the small crystallites in the sample but it could not take account of

small peaks which overlapped completely with the main Bragg reflection.

The extracted integrated intensity was corrected for the Lorentz factor and was fitted to

the allowed magnetic structures using the program FullProf, which minimised a weighted



127

Ω (degrees)

14 15 16 17 18
In

te
ns

ity
 (

10
3 

C
ou

nt
s/

m
on

=
13

00
00

)
0

5

10

15

20

25

30

(6,0,0)

Figure 5.4: Plot demonstrating the effect of the small twinned crystallites on the sample
which leads to side peaks. The method used to extract he main peak integrated intensity is
shown by the red line.

Table 5.1: The possible magnetic moments for the two Cu2+ ions at the 2a site in the P21/n
space group with propagation wave vectork=(0.5,0,0.5).

(x,y,z) Γ1 Γ2

(0, 0, 0) (ma,mb,mc) (ma,mb,mc)
(1/2, 1/2, 1/2) (-ma,mb,-mc) (ma,-mb,mc)

sum of squares. The fitted peaks had an ordering wave vector at (0.5, 0, 0.5). Within the

symmetry of the crystal this ordering wave vector allowed for two possible relative orien-

tations of the spins on the two Cu2+ ions in the unit cell. The possible orientations of the

spins are given in Table 5.1.

Γ1 gave the best fit to the zero field measurements. The best fit had the moment aligned

along theb-axis with an ordered moment component ofmb = 0.389 ± 0.011µB giving

Rf = 9.6% 1. However after allowing for components of the moment along thea- or c-

axes, in addition to theb-axis component, the resulting moments were not significantly

different from zero (ma = 0.07± 0.20µB , mc = 0.12± 0.10µB).

It was possible to measure directly the three projections of the ordered moment along

the crystallographic axes using polarized neutron diffraction. Table 5.2 shows the con-

tributing components to the intensity for the spin-flip and non-spin-flip channels in the

three polarization orientations. Each of the measurements in Table 5.2 were made for three

1

RF = 100
∑

n[|Gobs,n −Gcalc,n|]∑
n Gobs,n

where G is the structure factor and n runs over all observables.
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Table 5.2: The contributing components to the intensity for the spin-flip and non-spin-
flip channels in the three polarization orientations.µ⊥ is the component of the moment
perpendicular toQ, thereforeµ⊥ = ma cos(α) + mc sin(α) andα is the angle ofQ to the
a∗ axis. µb is the component of the moment along theb-axis, out of the scattering plane.
BG is the background in the spin-flip and non-spin-flip channel. N is the nuclear scattering
and I is the nuclear spin scattering.

Polarization,P Spin-Flip Non-Spin-Flip
P ‖ Q 2

3
I+BGSF+µ2

⊥+µ2
b

1
3
I+N+BGNSF

P ⊥ Q in scattering plane 2
3
I+BGSF+µ2

b
1
3
I+N+BGNSF+µ2

⊥
P ⊥ Q ⊥ scattering plane 2

3
I+BGSF + µ2

⊥
1
3
I+N+BGNSF+µ2

b

Table 5.3: Calculated values for the tilt of the moment from theb-axis,β. These results are
consistent with the unpolarized diffraction results thatβ = 0, within the error.

(h, k, l) β ∆β

(1/2, 0, -1/2) 7.2 ±3.1
(1/2, 0, 3/2) 0 ±4.3
(-1/2, 0, 5/2) 0 ±12.5

different magnetic Bragg peaks. The six channels listed in Table 5.2 were measured on the

peak maximum for three magnetic Bragg peaks. The tilt of the moment from theb-axis,β,

was then calculated. Table 5.3 lists the results and shows that they are consistent with the

unpolarized diffraction result,β = 0, within the error.

Applied Magnetic Field

The intensity of key magnetic Bragg reflections was measured as the magnetic field was

increased, as shown in Fig. 5.5. The spin-flop transition was observed as the magnetic field

was applied along the main moment direction, where spins moved from being predomi-

nantly along theb-axis to within the (a, c)-plane. The spin-flop field was measured to be

1.30(0.02) T, as shown in Fig. 5.5. Refinement of the magnetic structure at 6 T suggested

that the moments flopped from being predominantly along the crystallographicb-axis to

having a component along both thea- andc-axes. The fits of the high field magnetic Bragg

reflections gave a structure in which the two spins in the unit cell were related byΓ2, where

the moment lies such that at (0, 0, 0):

(ma, mb, mc) = (0.256 ± 0.019, 0.054 ± 0.032, 0.318 ± 0.009) µB
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Figure 5.5: The change in the normalized integrated intensity of a series of peaks which
indicates a change in the magnetic structure at the spin-flop transition.

Figure 5.6: a) The intensity of the (-0.5, 0, -5.5) reflection is reduced considerably on mov-
ing from zero field to 1.4 T. b) The fitted magnetic structure above the spin-flop transition
field where spins are aligned within the (a, c)-plane.
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Figure 5.7: Omega scans over the magnetic Bragg reflection (1.5, 0, -3.5) and nuclear Bragg
reflection (0, 0, -2) at increasing fields. The plots have not been displaced or normalized,
but indicate that at high field the background around the magnetic Bragg reflections in-
creased. The nuclear background around the nuclear Bragg reflection was constant. The
high temperature scan of the (1.5, 0, -3.5) shows a flat back ground considerably lower than
all the scans in the ordered phase.

giving Rf = 14.6%. Fig. 5.6 a) demonstrates this clearly by showing that the change in

intensity of the (-0.5, 0, -5.5) reflection drops considerably on moving above the spin-flop

field. In contrast, the (0.5, 0, -0.5) reflection shows little variation in intensity, as seen in

Fig. 5.5. The spin-flopped magnetic structure is given in Fig. 5.6 b). In both the zero-field

and the spin-flopped phase the magnetic moments were approximately perpendicular to the

wave vector transfer at (0.5, 0, -0.5). Therefore the intensity of the Bragg reflection was

large and the change in intensity was small because the magnetic scattering is proportional

to the size of moment perpendicular to the wave vector transfer. In contrast, the (0.5, 0, -5.5)

magnetic Bragg reflection was perpendicular to the magnetic moment in the zero field phase

but in the spin-flopped phase was at an angle of 136o to the moment direction. Therefore

the intensity changed considerably at the spin-flop transition.

The integrated intensity of a series of Bragg peaks measured at an applied field of 11.5 T

revealed no change from the 6 T structure. At 11.5 T the best-fit values for the moment were

(ma, mb, mc) = (0.253± 0.018, 0.039± 0.055, 0.320± 0.0102) µB

where the goodness of fit was Rf = 10.2%. At high fields approaching 11.5 T the back-

ground around the measured magnetic Bragg reflections was seen to increase, as shown in

Fig. 5.7 for the (1.5, 0, 3.5) reflection. For comparison, the background around the nuclear
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Bragg peak (0, 0 -2) is shown in Fig. 5.7 where it is clear that no increase was observed at

high fields. The scan above the ordering temperature at 90 K shows a flat background and

therefore there was no second-order scattering from the nuclear Bragg peaks present. The

scan also shows that the intensity of the background was considerably higher at zero field

and further increased at higher magnetic fields.

5.2.3 Discussion

In this study, the zero-field magnetic structure was found to be spins aligned into ferro-

magnetic lines along theb-axis and in antiferromagnetic line along thea-axis. Spins in

two adjacent layers were collinear. The goodness of fit parameter, R=9.6%, was reasonable

for a single crystal study and was comparable to the value achieved by Gibsonet al. of

R=7.4%. This zero-field magnetic structure agreed with the structure given by Katoet al.

[89] to describe single crystal diffraction from a 1 mm3 crystal. In contrast, the measure-

ments of Gibsonet al. [85], which were taken on the sample used in the present experiment,

suggested that there was a small component of the ordered moment off theb-axis. They

fitted a model in which the magnetic moment ofµ = 0.51(2)µB lay in the (a, b)-plane.

Their model had a canted spin structure, where the spins were 103(6)o at the (0, 0, 0) site

and 70(5)o at the (1/2, 1/2, 1/2) site away from thea-axis. This implied a mixture of differ-

ent irreducible representations but this was not expected in connection with a second-order

phase transition.

In this study the long-range magnetic order resulted from spins aligned along theb-axis

within the Cu2+ planes with both Cu2+ spins aligned along the b-direction. The unpolarized

neutron diffraction indicated no canting of the spins from theb-axis and, therefore, no

canting between Cu2+ in the unit cell, assuming a second-order phase transition. A small

canting of the spins along from theb-axis on both Cu2+ sites would have been within the

error of the measurements. Even so, the results did not overlap with the size of the angle

proposed by Gibsonet al..

The observed low magnetic moment ofµ = 0.39(1)µB is not unusual for a spin-half

low-dimensional system where quantum fluctuations and frustration reduce the ordered

magnetic moment. For example, the one-dimensional spin-half antiferromagnet Sr2CuO3

has a moment of 0.06µB[90]. Covalency could have led to further reductions from the full

ordered moment of 1.12µB (usingg = 2.23 [83]). The ordered moment calculated from

the present study was lower than the result given by Gibsonet al. and this may be the
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result of the inclusion of the intensity from the Bragg reflections originating from the small

twinned crystallites within in the sample. If this were the case the ratio of the intensity

of the nuclear Bragg reflections and magnetic Bragg reflections would be effected. The

discrepancy may have arisen between this study and the Gibson magnetic moment result

because the twinning had been accounted for to some extent within the analysis in this

study.

The observed spin-flop field of1.30(0.02) T, was in agreement with magnetisation mea-

surements, where a small jump in the magnetisation has been seen at about 1.25 T [83].

This small spin-flop field implied a small anisotropy, which stabilised the spin ordering

along the crystallographicb-axis. The magnetic structure measured above the spin-flop

transition at 6 T had the same ordering wave vector as at zero field. This implies that the

zero field coupling scheme did not change as dramatically as predicted by the results of

ESR measurements. Yet the magnetic structure observed was unusual. It did not agree

with predictions made from the susceptibility measurements, where the susceptibility was

lower for thea-axis than thec-axis. Therefore it was expected that the spins would align

along thea-axis. Instead the moment was nearly equally along both the a- and c-axes.

The anisotropy may in fact be complex, such that the local anisotropy is different at the

z = 0 andz = 1/2 Cu2+ site. Therefore the effective anisotropy may change when going

through the spin-flop transition. For such a case an inter-layer coupling between the two

Cu2+ sites must exist. The symmetry of the crystal allows for two inter-layer couplings, Jγ

and Jδ. Jγ links spins in the same sense on adjacent layers in the (1/2,±1/2, 1/2) direction.

Jδ links spins in the opposite sense Jδ on adjacent layers in the (−1/2,±1/2, 1/2). Classi-

cally, the magnetic structure is stabilized if Jγ is ferromagnetic and Jδ antiferromagnetic.

If Jδ=Jγ, a structure of collinear lattices is also expected. In such a case the mean field

produced by one lattice on the other is zero and it may be assumed that the two lattices are

independent of each other. Shender [91] has found that, when considering quantum fluctu-

ations, the lattices are coupled and the quantum fluctuations select a collinear arrangement

of the spin direction of the two sublattices.

At high field the increased background that was observed around magnetic Bragg re-

flections may have resulted from critical scattering due to the onset of a phase transition at

higher magnetic fields. There was a large difference between the spin-flop field, an indica-

tion of a small anisotropy in the system and the high field caused the increased background.

This difference is further developed in the next section.
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5.3 Inelastic Neutron Scattering Study of the Excitation

Spectrum of CuSb2O6 at Zero Field

5.3.1 Introduction

The experiments described in this section investigated the spin dynamics of CuSb2O6. The

main exchange paths of CuSb2O6 are in the basal (a, b)-plane where Cu2+ ions form a

square lattice. The next-nearest neighbour exchange path is along the diagonal of the

square of Cu2+ ions, where the angles of the Cu-O-O-Cu bond are close to 180o. This

exchange path is expected to be the dominant strong antiferromagnetic interaction [84]. It

is across only one diagonal of the square lattice and the coupling is frustrated by weaker

nearest-neighbour interactions predicted to be antiferromagnetic. Previously, susceptibil-

ity measurements of CuSb2O6 have indicated quasi-one-dimensional Heisenberg behav-

iour with a Bonner-Fisher exchange of 49 K (4.2 meV) [85]. Within the spin-half one-

dimensional Heisenberg model the excitations are expected to extend up toπ J [13]. There-

fore, given the Bonner-Fisher exchange, J≈ 4.2 meV, the excitations are predicted to extend

to πJ≈ 13meV.

A phase transition into a 3D phase has been observed at 8.6 K[86]. As shown in the

previous section, spins are aligned along theb-axis in an antiferromagnetic arrangement

with ordering vector (1/2, 0, 1/2). In that section, diffraction measurements with a magnetic

field applied along theb-axis, revealed that after the spin-flop transition, spins moved from

theb-axis to within the (a, c)-plane. ESR measurements had suggested highly anisotropic

couplings, where the coupling between spins would change sign as the alignment changed

from theb- to thea-axis. The diffraction results suggested that those predictions of highly

anisotropic coupling may not be present since the same ordering wave vector described

both magnetic structures before and after the spin-flop transition. Although no change in

the magnetic ordering was observed at high fields, increase in the background around the

magnetic Bragg peaks suggested critical scattering, which could have indicated a transition

at higher fields.

Before the present study, no inelastic neutron scattering studies had been performed

on this system. Raman measurements on polycrystallineβ-CuSb2O6 samples have shown

phonon modes are present at approximately 15 meV [92, 93]. The experiments performed

in this study were technically challenging due to the small volume of the crystal. Neutron
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inelastic scattering experiments at low and high energy were performed at low tempera-

tures, within the magnetically ordered phase, and at higher temperatures. The experiments

investigated both the spin and lattice dynamics of the system.

The experiments showed that the layers of Cu2+ ions were weakly coupled with domi-

nant in-plane interactions. The room temperature inelastic scattering experiments indicated

a phonon mode in which the oxygen atoms of the the Cu-O-O-Cu bond oscillate; this led

to the modulation of the main exchange path. Therefore an unusual intensity distribution

of the excitations was observed and this was different to the one-dimensional spin chain

intensity distribution predicted by the Bonner-Fisher model.

5.3.2 Experimental Details

A single crystal of CuSb2O6 of approximately 10 mm3 was used as described in§5.2.1.

It was mounted in a cryostat with the a- and c-axes in the scattering plane, thereby giving

access to scattered wave vectors (h, 0,l). The measured signal was small because the crystal

was small and so the setup needed to have high flux and good background conditions.

These conditions were achieved with a focussing analyser and boron carbide shielding to

reduce background scattering. All the inelastic scattering measurements were carried out

using triple-axis spectrometers. There were four experimental setups, two at low and two

at higher energy, as briefly described below.

Low Energy Setups

The cold neutron triple-axis spectrometers IN12 and IN14 at the Institut Laue-Langevin

(ILL) were used for low energy measurements. Each of them was set up with a pyrolytic

graphite (PG) monochromator and analyser. The monochromators were vertically focussed

and, in addition to the collimation provided by the neutron guide, a 60’ collimator was

placed after the monochromator. The analyser used on IN12 had a fixed vertical curvature

and a variable horizontal curvature. IN14 was set up with a double-focussing analyser,

which helped to improve the measurement of intensity from the small crystal. In addition,

to increase signal, the distances were considerably reduced of the sample to the analyser in

both setups. On IN12 the sample to monochromator distance was also varied.

The final wavelength was fixed atλ = 4.188 Å(kf=1.5Å−1) and a Be-filter was placed

between the sample and analyser to filter any higher-order neutrons scattered from the

sample. The majority of measurements were taken at the base temperature of 1.5 K, which
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was well below the magnetic ordering temperature of 8.6 K. A few measurements were

taken at 12 K, which was above the ordering temperature but below the Bonner-Fisher

temperature of 50 K.

Higher Energy Setups

Investigations at higher energy used the thermal triple-axis spectrometer IN20 at the ILL.

For these measurements, a double-focussing silicon monochromator and a double-focussing

PG analyser were used with a fixed final wavelength,λ = 2.360 Å(kf=2.662Å−1), and a PG

filter placed between the sample and analyser. Two different scattering senses were used

when making the measurements. One scattering sense (SM=-, SS=+, SA=-) was found to

put the detector in line with the direct beam such that certain energy and wave vector trans-

fer positions were contaminated with higher background counts. Therefore, another scat-

tering sense was used for most of the results presented, and this was SM=-, SS=+, SA=+.

The measurements were as follows:

i) the majority were taken at 1.5 K, within the long-range ordered phase;

ii) at 50 K, above the phase transition temperature and close to the Bonner-Fisher tem-

perature;

iii) at 130 K, a temperature above the Bonner-Fisher temperature.

Finally, the thermal triple-axis spectrometer IN3 at the ILL was used in a first search

for phonon excitations. Even though the crystal was in an evacuated cryostat, the measure-

ments were made at room temperature. The sample was mounted in an evacuated cryostat

to reduce air scattering, which would otherwise have increased the background scatter-

ing. A copper monochromator was used with a PG analyser, which had a fixed vertical

and a variable horizontal curvature. Measurements were made at a fixed final wavelength,

λ = 1.532 Å(kf=4.1 Å), and once again, a PG filter was placed between the sample and

analyser.

5.3.3 Measurements and Results

High-Energy Measurements

The main exchange was predicted to be across the diagonal of the Cu2+ square lattice

within the (a, b)-plane. Constant wave vector scans of the type (h, 0, 0.5) were made to
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Figure 5.8: a) Plot of the reciprocal lattice of CuSb2O6. The black stars represent the
locations of possible nuclear Bragg reflections and the blue points represent the locations
of magnetic Bragg reflections. The blue lines indicate the magnetic Brillouin zone. The
red line indicates the line of constantQ scans plotted in b). b) An overview of constant
Q scans made at high energy in the (h, 0, 0.5) plane. A steep intense mode can be seen
originating from the (0.5, 0, 0.5) position and the central section has low intensity. These
high energy measurements indicate a maximum to the dispersion at approximately 13 meV.
The colour indicates the interpolated intensity between the measurements which are shown
as black dots. Selected scans are given in Fig. 5.9
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probe the in-plane interaction because the magnetic moments were aligned along theb-

axis. The set of constant wave vector positions is indicated by the red line in the reciprocal

lattice plot in Fig. 5.8 a) and an overview of the main measurements made is plotted in

Figure 5.8 b). These measurements showed a strong dispersion of a mode that emerged

from both the (0.5, 0, 0.5) weak and the (1.5, 0, 0.5) strong magnetic Bragg reflections.

The dispersion was very steep and levelled off at 13 meV. There was an intense maximum

at 13 meV at the Brillouin zone boundary corner (1.25, 0, 0.5). The intensity was high

close to the magnetic Bragg reflections and decreased at wave vectors close to (1, 0, 0.5).

The drop in intensity in the high energy measurements occurred along the zone boundary

between two nuclear Bragg peaks. In Fig. 5.9 four constant wave vector scans are plotted

which show that the 13 meV resonance appeared to be present across the Brillouin zone

even at the magnetic zone centre. A gaussian profile with a mode at 12.5(4) meV fits the

scanQ = (1.2, 0, 0.5). Figure 5.9 shows that the overall intensity increased greatly on

approaching the (1.5, 0, 0.5) magnetic Bragg reflection and the 12.5(4) meV mode was still

present. In addition another mode was seen in the (1.35, 0, 0.5) scan at approximately

6 meV which may have moved to higher energies at (1.5, 0, 0.5). The four constant energy

scans show that the main dispersion was steep and broad. The low-energy scans show

that there was high intensity about the wave vector transfer position (1.5, 0, 0.5) and the

intensity decreased slightly at higher energy. At 12 meV the mode moved to lowerQ and

the dispersion appeared to bend towards the zone boundary. At 13 meV an intense mode

was measured which was centred at (1.2, 0, 0.5). These scans highlight the lack of clarity in

the measurements due to: the broadQ resolution of the setup, which was needed to achieve

a larger degree of focussing; and the thermal incident energies making the steep dispersion

observed difficult to resolve.

Investigations into the nature of the 13 meV feature were made by taking constantQ

scans over the 13 meV resonance, whereQ was largely along either the a∗− or the c∗-

direction. Two points within the Brillouin zone were measured and these are marked as

points A and B in the sketch of the reciprocal lattice in Fig. 5.11. For each point two wave

vectors were chosen which extended to an equivalent position in the Brillouin zone but

which were approximately aligned with either thea∗ or thec∗ reciprocal lattice vector. The

constant wave vector scans for points A and B are shown in Fig. 5.12 as plots a) and c)

respectively. The intensity of magnetic scattering is proportional to the square of the wave

vector transfer perpendicular the magnetic moment. In zero field the magnetic moment
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Figure 5.9: High energy constant Q scans showing the 13 meV resonance and a mode which
moves from from high energy to low energy. The black lines are guides to the eye and the
green line gives an indication of the non-magnetic background which is taken from fitting
the (1, 0, 0.5) scan. An overview of all the measurements is given in Fig.5.8.
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Figure 5.10: Constant energy scans at increasing energy showing a steep broad mode from
the (1.5, 0, 0.5) position which split into two modes at 12 meV. The feature is most intense
at 13 meV. The black lines are guides to the eye. These measurements were made with the
spectrometer in a different scattering sense to the measurements shown in Fig.5.8 and Fig.
5.9. Therefore although shown with the same monitor value the counts are different due
to a difference in resolution and background. However, the main features of the measured
spectrum should remain the same.
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in CuSb2O6 is perpendicular to botha∗- andc∗-directions and so no difference in inten-

sity, due to the polarization factor, is expected for magnetic scattering. Therefore, since

the wave vector transfer was of a similar magnitude, the magnetic form factor would be

approximately the same for both points. The intensity of a phonon mode is dependent on

its polarization and the wave vector transfer. If phonon modes are present then they may

have a polarization factor which varies between the two orientations and so the intensity of

phonon modes may differ. Plot a) shows that the intensity of the 13 meV resonance was the

same for both wave vector transfers and this would be expected for a magnetic mode.

Constant wave vector scans were also made at equivalent positions in the Brillouin zone

but at larger wave vector transfer values,Q. The intensity of phonon modes is proportional

to Q2 for a particular polarization. The results shown in Fig. 5.12 as plots b) and d) show

large increases in intensity and therefore these indicate the presence of phonons within the

measured energy range.

The intense excitation at 13 meV was measured at three temperatures as shown in

Fig. 5.13. The figure shows that:

i) above the ordering temperature the peak broadened but was still present;

ii) at the Bonner-Fisher temperature the intensity of the peak fell considerably;

iii) at 130 K, the intensity increased but there was no obvious peak about the 13 meV

mode.

In order to probe the dispersion of the observed mode in other directions a series of

constant wave vector scans were made of the type (0.5,0,l) and an overview is plotted in

Fig. 5.14 a). The intensity in the colour plot is given as the natural logarithm to highlight the

lack of any dispersion at high energy transfer. The two constant wave vector scans plotted

in Fig. 5.14 b) show a significant change in the intensity at low energies approaching the

zone boundary at (0.5, 0, 3), indicating a small dispersion at low energies in the (0.5,0,l)

direction.

Low-Energy Measurements

The high-energy measurements established that the dispersion within the (0.5, 0,l) direc-

tion must have been small since no dispersion was observed at higher energy. Therefore,

low-energy measurements were made in an attempt to observe this dispersion. An overview
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Figure 5.11: Sketch of the magnetic Brillouin zone for CuSb2O6. The black stars represent
the locations of possible nuclear Bragg reflections and the blue points represent the loca-
tions of magnetic Bragg reflections. The point A and B refer to the equivalent positions of
the constantQ scans in Fig. 5.12.
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Figure 5.12: Plots of constant wave vector scans at low temperature. The left column and
right column show constant wave vector scans at wave vectors equivalent to points A and B
as plotted in the Brillouin zone given in Fig 5.11. Plot a) shows that the 13 meV feature was
constant on moving from the orientation ofQ nearly parallel toa∗ andc∗. At largeQ values
modes were seen which do show a difference in intensity between the two orientations. The
scan in plot c) shows little difference between the two orientations and plot d) shows that
the equivalent points at largerQ values indicated the presence of phonon modes at low and
high energy.
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Figure 5.13: Intense peak of the 13meV mode at (1.31, 0, 0) and (1.25, 0, 0.5) in the ordered
phase (black), which broadens above the transition temperature(red) and above the Bonner-
Fisher temperature (green) is considerably reduced in intensity. The blue line indicates the
low temperature background.

of the measurements made at (0.5, 0,l) is plotted in Fig. 5.15. It should be noted that the

majority of measurements in Fig. 5.15 do not have the same relative error bar as those in the

colour figure at high energy, where the intensity distribution appeared smoother. The main

features observed were two modes at approximately 2 meV and 3.25 meV which showed

little dispersion. High intensity was observed about the strong magnetic Bragg peaks at

(0.5, 0, -0.5) and (0.5, 0, 1.5). The intensity distribution in Fig. 5.15 suggests that the 2 meV

mode dispersed from the (0.5, 0, -0.5) and (0.5, 0, 1.5) positions. Even if that were the

case, however, some intensity measured at low energies may also have originated from

the (h, 0, 0.5) dispersion because the the resolution ellipsoid extended in energy and in all

Q directions. Lower intensity was measured about the (0.5, 0, 0.5) magnetic Bragg peak

and this had also been observed to be weak in the diffraction measurements. The streak

of intensity marked out by the white ellipse in Figure 5.15 was associated with a small

crystallite, which produced a sharp peak on the elastic line at (0.5, 0, 0.45).

A further set of scans that were counted for longer at selected constant wave vectors

are shown in Fig. 5.16. The low-energy measurements at constant wave vector, shown in

Fig. 5.16, were made in both the IN12 and the IN14 experiments. Key scans, for example at

the Brillouin zone boundary, were repeated to compare results between the two experimen-

tal setups and the IN12 results were normalized to the IN14 measurements. Two modes

were seen to disperse slightly in the direction (0.5, 0,l) through the Brillouin zone within

the ordered phase, and one mode at 3.25 meV was seen to be nearly flat. At the Brillouin
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Figure 5.14: a) Overview of the high energy constant wave vector scans at (0.5, 0, L) where
no high energy modes were seen. The colour indicates the natural logarithm of the interpo-
lated intensity. b) Two constant wave vector scans highlight that the intensity only changed
at low energy.

zone boundary the energy gap to the three modes was maximized and had a value of ap-

proximately 2 meV. In Fig. 5.16, the constant wave vector scan at (0.5, 0, -0.5), shows that

there was an energy gap of approximately 1.25 meV at the Brillouin zone centre. Measure-

ments of the gap were hindered at this wave vector since the Bragg reflection was strong yet

at the weaker (0.5, 0, 0.5) Bragg reflection the intensity from the crystallite at (0.5, 0, 0.45)

was observed.

Fig. 5.17 shows a constant wave vector scan at (0.5, 0, 1) taken below and above the

magnetic ordering temperature. The figure shows that the modes that were observed at low

temperature were no longer measured above the long-range magnetic ordering temperature.

Therefore no inter-layer dispersion of the modes was seen at temperatures higher than the

ordering temperature.

Phonon Calculation and Preliminary Phonon Measurements

Phonon modes observed at low temperature should be more intense and therefore more

easily observed at room temperature and so room temperature inelastic measurements were

made to investigate low-energy phonon modes. A search was made to observe excitations

in the region of the strong mode at 13 meV measured at low temperature. Fig. 5.18 shows
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Figure 5.15: Overview plot of the measurements made on IN14. The black points indicate
the measurements made. The white ellipse covers an region of intensity associated with a
small crystallite producing a Bragg reflection on the elastic line at (0.5 0, 0.45).

a series of constant wave vector scans in which a phonon mode is visible at approximately

15 meV. The mode dispersed through the Brillouin zone in both the (h, 0, 0.5) and (0.5, 0,l)

directions.

Initial theoretical calculations of the phonon modes, using the PHONON[94] and VASP

software, were made based on the high temperature phaseα-CuSb2O6 structure. VASP

(The Vienna Ab-initio Software Package) was used to find the ground-state position of the

atoms in the lattice and the forces on atoms displaced from the ground state due to the po-

tential of the surrounding atoms. The resulting matrix of force constants was diagonalized

using PHONON to give the energy of the levels and the eigenvectors which described the

associated displacements. In this way a map of the dispersion of the phonons was made

by diagonalizing the force matrix for a series of wave vectors. The results are shown in

Fig. 5.18.

In order to compare the observations with the expected results from the theory, the

intensity of the modes was first calculated using PHONON and then convolved with a

gaussian to replicate the observed resolution. These plots were for comparison with the

observations since the difference in symmetry of the two systems would have impacted on



145

(h,0,0.5)

-1.0 -0.8 -0.5 -0.3 0.0

E
ne

rg
y 

(m
eV

)

0.5

1.0

1.5

2.0

2.5

3.0

3.5
(0.5, 0, -0.75)

 S
ca

le
d 

C
ou

nt
s

10

20

30

40

50
(0.5, 0, -0.35)

 S
ca

le
d 

C
ou

nt
s

10

20

30

40

50

(0.5,0.-0.5)

Energy Transfer (meV)

0 1 2 3

Sc
al

ed
 C

ou
nt

s

10

20

30

40

(0.5, 0, 0)

Energy Transfer (meV)

1 2 3 4

In
te

ns
ity

 (
co

un
ts

/m
on

)

0

10

20

30

40

IN12

IN14 IN14

IN14

Figure 5.16: Left: Low-energy measurements of modes observed to disperse slightly along
the (0.5, 0,l) direction. IN12 measurements scaled with the data taken IN14 measurements.
The black lines indicate a fit to the data using a gaussian profile. Right: The centres of the
peaks are plotted for each constant wave vector scan.

the forces on the atoms and therefore on the energy and number of phonon modes. The

calculation did give an indication of the position of the phonon modes and the associated

movement of the lattice. These calculations guided the preliminary phonon measurements

such that the phonon mode identified as potentially relevant to the magnetic excitations

could be measured.

Figs. 5.12 b) and d) show the results of low temperature investigations of possible

phonon modes in the region of the 13 meV feature. The figure shows that phonon modes

were measured with large intensity at large wave vector transfer,Q. Constant wave vector

scans at equivalent points in the Brillouin zone showed little variation at lowQ, but a large

difference at highQ. These observations indicated that the 13 meV feature had some mag-

netic contributions to the intensity but may have been influenced by phonon contributions.

Fig 5.18 shows that at room temperature a phonon mode occurred at the nuclear Bragg peak

(4, 0, 0) at 15 meV.

The phonon mode measured at 15 meV was close to a mode calculated at 11 meV within

theα-CuSb2O6 structure. This mode was associated with a displacement of the chemical

Cu-O-O-Cu bond which links two Cu2+ ions across the diagonal of the square lattice. The

vibration consisted of the oscillation of the oxygen atoms about the midpoint of the O-O

bond.
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Figure 5.17: Low energy constant wave vector scan at (0.5, 0, 0) shows a strong mode
present in the ordered phase (black), which is not present on moving above the transition
temperature(red) to 12 K.

5.3.4 Analysis

The inelastic scattering measurements in the (h, 0, 0.5) direction showed a steep dispersion

of a mode which has a maximum at approximately 13 meV. A Bonner-Fisher fit to the sus-

ceptibility measurements characterized the system as a one-dimensional spin-half chain,

where the magnitude of the main interaction was J= 4.2 meV [85] and the zone bound-

ary was therefore expected atπJ= 13.1 meV. This was consistent with the strong 13 meV

zone boundary energy measured that was actually measured. At the zone boundary point

(1.25, 0, 0.5) there was a resonance at 13 meV. The temperature dependence of the 13 meV

feature indicated the contribution to its high intensity from magnetic interactions. The fact

that at the Bonner-Fisher temperature the intensity of the peak fell considerably, demon-

strated that there was a magnetic contribution to the intensity of the 13 meV resonance in

Fig. 5.13.

The (0.5, 0,l) dispersion was related to the inter-layer couplings and therefore the smaller

dispersion indicated that the inter-plane couplings were weaker than the in-plane couplings.

The modes were not observed above the transition temperature. The temperature depen-

dence of the measurements suggested that the couplings were weak and that they brought

about long-range order.

Three modes were measured in the (0.5, 0,l) direction. A very small dispersion was

observed within the ordered phase. The mode with the highest energy had a maximum of

3.25 meV. The bandwidth of the dispersion along the (0.5, 0,l) direction gave an indication
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Figure 5.18: Room temperature inelastic scattering measurements. Left column: The
14.6 meV mode observed in Raman spectra was observed in constant wave vector scans
about the (4, 0, 0). The mode was seen to disperse through the Brillouin zone. In the right
column an overview of the predicted intensities are given from the phonon calculations.
These measurements are in reasonable agreement with the calculation of the dispersion of
the phonon modes in the high temperature undistorted structure,α-CuSb2O6. This mode
is predicted to bend the Cu-O-O-Cu bond, which is the main exchange path way. The
coloured dotted lines on the calculation plots indicate the scans measured and plotted on
the left.

of the inter-layer couplings between the Cu2+ planes. The measurements at low energy

indicated that the inter-layer exchange was small in comparison to the in-plane exchange

because the maximum of the dispersion in the (0.5, 0,l) direction was 25% of the maximum

dispersion in the (h, 0, 0.5) direction. The measurements above the transition temperature

at 12 K, shown in Fig. 5.17, indicated that the formation of long-range order in the crystal

was due to the inter-layer coupling because no modes were observed. The crystal structure

would suggest that these were the weaker couplings since the copper planes would have

been separated by planes of antimony.

Spin-Wave Calculation

A spin-wave calculation was carried out to derive the dispersion relations to analyse the

data further and to investigate the coupling scheme in this system . The initial Hamiltonian
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Figure 5.19: Sketch of the displacements of the oxygen atoms as calculated by phonon
calculations for the phonon mode at 11 meV. The orange balls indicate the Cu ions, the
red oxygen and blue antimony. The arrow indicate the the movement of the atoms and the
dashed blue line indicates the main exchange path.

considered took the form:

H =
∑

in Jn(Sx
ri
Sx

ri+rn
+ Sy

ri
Sy

ri+rn
+ (1 + ε)Sz

ri
Sz

ri+rn
) (5.1)

whereε modeled a symmetric coupling anisotropy within the system. It was introduced

because of the observed spin-flop transition and the flat modes measured in the low energy

spectrum. In this equation the exchange couplings are:

• JA Exchange between next-nearest neigbours in the direction (1,1,0) and (-1,-1,0) in

layer atz = 0, and (1, -1, 0) and (-1, 1, 0) atz = 0.5;

• Ja and Jb Exchange between nearest-neigbours along thea- andb-axes;

• Jγ Exchange between adjacent layers ie atz = 0 andz = 0.5. This exchange couples

the two sets of sub-lattices along the (1/2,±1/2, 1/2) direction;

• Jδ Exchange between adjacent layers ie atz = 0 andz = 0.5. This exchange couples

the two sets of sub-lattices along (-1/2,±1/2, 1/2).
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Figure 5.20: Sketch of the zero field magnetic structure indicating the four sublattices in
the two Cu2+ ayers and considered in the spin-wave calculation and the couplings between
the sublattices.

All the couplings are shown in Fig. 5.20. The couplings were introduced such that the

crystal symmetry was respected, that is, bonds which were transformed into each other

by a symmetry element were given the same label and kept the same strength. If no such

symmetry requirement had existed, for example Ja 6=Jb, a new interaction would have been

introduced.

The spin-wave calculation was made by taking the ground state as a structure of an-

tiferromagnetically ordered collinear lines of spins within the plane and collinear to the

neighbouring planes, as shown in Fig. 5.20. The calculation was set up by considering two

types of spin site, which formed two sublattices in a plane, corresponding to the two senses

parallel to theb-axis within the (a, b)-plane. Therefore there were four sublattices in the

unit cell. The four sub-lattices are labeled in Fig. 5.20. The details of the calculation are

given in Appendix F. For the assumed Hamiltonian there are two dispersion branches which

are both two-fold degenerate. The dispersion relations for this model are:

ω+(Q) =
√

(AQ + BQ + CQ + DQ)(AQ −BQ − CQ + DQ) (5.2)

ω−(Q) =
√

(AQ + BQ − CQ −DQ)(AQ −BQ + CQ −DQ) (5.3)

whereQ = (h, k, l) in reference to the reciprocal lattices of the monoclinic reciprocal

lattice vectors. Fork = 0:
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Figure 5.21: The spin-wave dispersion showing two modes which are both two fold degen-
erate. This model gave a small energy gap. In the (h, 0, 0.5) direction the mode extends to
13 meV and in the (0.5, 0, l) direction the maximum is at approximately 2 meV.

AQ = 2(JA + Ja + 2Jγ − 2Jδ)(1 + ε)

BQ = 2JA cos (2πh) + 2Ja cos (2πh)

CQ = −4Jδ(cos (πh) cos (πl) + sin (πh) sin (πl))

DQ = −4Jγ(cos (πh) cos (πl)− sin (πh) sin (πl))

Equations 5.2 and 5.3 demonstrate that measurements at wave vector transfer (h, 0,l)

do not probe the nearest-neighbour coupling in the b-direction and that both couplings in

the a-direction can be taken as an overall coupling, J=JA+Ja.

Fig 5.21 shows a plot of the dispersion for a set of representative parameters. It shows

that the in-plane coupling was the largest and produced a high energy mode with a maxi-

mum of 13 meV where the in-plane coupling was J= 6.5 meV. The energy of the branch at

(0.5, 0, 0) indicated the strength of the inter-layer couplings. The inter-layer couplings in

this model are Jγ and Jδ and these couple adjacent layers of spins.

In the following discussion of the (0.5, 0,l) dispersion, the range of possible Jγ, Jδ and

ε are considered. In the spin-wave calculation Jδ and Jγ couple spins aligned in the same

sense and opposite sense, respectively. Therefore, for a ferromagnetic Jδ, Jδ < 0, and for an

antiferromagnetic Jγ, Jγ > 0, reinforcing the stability of the ground state. Fig. 5.15 shows

an overview of measurements in the (0.5, 0,l) direction. A coarse interpretation of these

measurements could be that a 2 meV energy gap was observed to a dispersion that extended
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to 3 meV. Such a case would give a maximum value to the anisotropy factorε. A 2 meV

energy gap,∆, is modeled byε ≈ ∆2

8J2 = 0.012. If ε, Jγ and Jδ are small, as observed in the

measurements, then

ω2
± = 8J2ε + 16J(Jγ − Jδ)(1 + ε± sin(πl)).

Therefore, the bandwidth of the (0.5, 0,l) dispersion was of the order 16J(Jγ-Jδ). For a

band-width of approximately 1 meV above a 2 meV energy gap, Jγ-Jδ = 0.012 meV. If in-

stead the measurements are interpreted as flat modes then, to achieve a dispersionless mode

in the (0.5, 0,l) direction, Jγ-Jδ = 0. The measurements would suggest that the maximum

possible bandwidth of the excitations was 3 meV. Therefore considering no energy gap,

then the couplings would be Jγ-Jδ = 0.022 meV.

The spin-wave model captures the possibility of an energy gap as was observed in the

data. The zero-field magnetic structure is stabilized whenε is positive, indicating an Ising-

type Hamiltonian. The Ising-type anisotropy was further supported by the observation of

the spin-flop transition and gapped excitations. The spin-flop field that had been measured

from magnetisation measurements was HSF = 1.25 T [83]. Using the spin-flop field and

exchange interaction from the spin-wave model, J= 6.5 meV, an estimate of the magnitude

of the anisotropy could be calculated using a mean field approach [95]. The HSF , in terms

of an anisotropy field, HA, and exchange field, HE, is:

HSF =
√

2HEHA −H2
A,

where,

HA =
2JS

gµB

, HE =
ε2JS

gµB

.

Using g = 2.21 as calculated from ESR measurements [83] and setting S=1/2 then,ε =

3 × 10−4. This leads to an energy gap,∆, of approximately 0.3 meV. This is a quarter

of the size expected from the inelastic measurements which suggested a minimum energy

gap of approximately 1.25 meV and therefore a deviation from the isotropic exchange of

ε ≈ 1 × 10−3. The inelastic measurements could not discount a low energy mode with a

small dispersion at 0.3 meV because of the steep increase in intensity about the (0.5, 0, -0.5)

scans at low energy which could have been due to the broad in-plane dispersion.

In the model used so far the gap arises as a result of the anisotropy of the main in-plane

exchange. If this model were true the modes should have been present above the ordering
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temperature. The initial model assumed that all the couplings, in-plane and inter-plane,

were anisotropic to the same degree. Fig. 5.17 shows that the observed modes were no

longer present above the ordering temperature. This suggests that if they were gapped

because of an anisotropy they were not linked to the one-dimensional coupling. If the

observed modes were associated with the in-plane coupling then they would be expected

to be present above the ordering temperature but to be dispersion-less. That is, the gapped

modes should be associated with the inter-chain couplings, responsible for the 3D-order.

Therefore a second model was considered in which the Hamiltonian takes the form:

H =
∑

i, n=A,a,b Jn(Sri
· Sri+rn) +

∑
i, n=γ,δ Jn(Sx

ri
Sx

ri+rn
+ Sy

ri
Sy

ri+rn
+ (1 + ε)Sz

ri
Sz

ri+rn
).

(5.4)

In this case the dispersion of the two modes can be described with equations 5.2 and

5.3 whereAQ, BQ, CQ, DQ are fork = 0:

AQ = 2(JA + Ja) + 4(Jγ − Jδ)(1 + ε),

BQ = 2JA cos (2πh) + 2Ja cos (2πh),

CQ = −4Jδ(cos (πh) cos (πl) + sin (πh) sin (πl)),

DQ = −4Jγ(cos (πh) cos (πl)− sin (πh) sin (πl)).

In this case again assuming small Jγ, Jδ andε the dispersion can be approximated to:

ω2
± ≈ 16J(Jγ − Jδ)(1 + ε± sin(πl))

In this model no energy gap,∆, is present for anyε if Jγ =Jδ because∆ ≈ √
16J(Jγ − Jδ)ε.

Therefore, the model predicts that gapped modes due to an anisotropy of the couplings must

also be associated with some dispersion of those modes. The bandwidth of the dispersion

is approximately
√

16J(Jγ − Jδ). The observed modes are gapped with a small dispersion.

Therefore for a large gap with respect to the dispersion bandwidthε À 1. This is the case

for flat gapped modes as seen in the data.

The same equations as above hold forHSF andHE. Assuming small inter-layer cou-

pling, and using the mean field approach to estimate the magnitude of the anisotropy con-

stant from the spin-flop field, the anisotropy field is now:

HA =
4ε(Jγ − Jδ)S

gµB

.
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At a spin-flop field of 1.25 T,ε(Jγ − Jδ) = 0.001 leads to an energy gap of the order of

0.3 meV and once again this does not explain an energy gap of approximately 1.25 meV.

For such an energy gapε(Jγ − Jδ) = 0.015.

The spin-wave calculation describes some key features of the observed dispersion but

it does not give the correct number of modes or the full dispersion that was measured. The

results of the spin-wave calculation would be consistent with the largely one-dimensional

spin-half chain predicted by susceptibility measurements but the measured intensity dis-

tribution was not consistent with such a one-dimensional system. The three modes seen

in the (0.5, 0,l) direction cannot be explained by the calculation, in which two modes are

predicted which are two-fold degenerate. A canting of the spins in one layer with respect

to the next may cause a small splitting of the degenerate modes although this would not be

expected to cause a splitting as great as 1 meV, which was actually observed between the

2 meV and 3 meV modes.

The energy gap that was observed of approximately 1.25 meV is inconsistent with the

small spin-flop field of 1.25 T. The modes were not present above the ordering transition

temperature and therefore the dispersion and associated anisotropy were linked to the onset

of long-range order. A classical spin-wave calculation cannot explain the flat gapped modes

that were observed using a simple anisotropy for the Cu2+ sites atz = 0 andz = 1/2.

The anisotropy may also have been less trivial.The elongation of the CuO6 octahedra

in theβ−CuSb2O6 phase is known to lead to the unpaired spin on the Cu2+ in the dx2−y2

orbital, which lies within the equatorial plane of the oxygen octahedra [84]. The plane is

inclined in the same direction for all Cu2+ sites within a layer. This may mean that a local

anisotropy symmetry axis would lie perpendicular to the plane. The tilt of the equatorial

plane is different for the two Cu2+ sites in the unit cell and can be transformed into the

other site by symmetry operations of the crystal space group. An inter-layer coupling of

the two copper sites may lead to an overall effective Ising-type anisotropy while the local

anisotropy in the plane may be quite different. Theb-axis is unique and leads to the de-

scription of the overall effect of the anisotropy as Ising-type along theb-axis. Alternatively,

a more complex anisotropy where the two Cu2+ sites have different local anisotropy axes

(eg. planar-type within the octahedron equatorial plane) may be necessary to explain the

observations. This may lead to a more complex relationship between the spin-flop field,

the anisotropy gap and the inter-layer couplings.

Another consideration is that the quantum nature of the system may have led to gapped

modes. In the spin-half quasi one-dimensional Heisenberg antiferromagnet, KCuF3, a
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gapped mode has been observed which is present only below the ordering transition tem-

perature. Measurements on KCuF3 have shown the presence of a longitudinal bound state

due to weak inter-chain coupling and the onset of three dimensional order [96]. Therefore

the mode is only observed below the magnetic ordering temperature. The energy gap of the

longitudinal mode is predicted to be proportional tom2
0, wherem0 is the ordered moment

per spin site [97]. The ordered moment per spin in KCuF3 is 0.54µB. The zone boundary

energy is about53.5 meV [98] and the longitudinal mode is predicted to be at 17.4 meV

[97]. The mode is measured to be at 15.8(0.1) meV if localized and 14.9(0.1) meV if dis-

persive [96]. The elastic measurements, presented in the previous chapter, have indicated

a highly reduced ordered moment in CuSb2O6, suggesting quantum fluctuations. The or-

dered moment per spin was 0.39(0.01)µB and the zone boundary energy was measured

as 12.5(0.4) meV. The ratio of the zone boundary energies of the two materials is 0.234.

Therefore, simply by naively scaling the energy gap of the longitudinal mode by this ratio

and considering the ratio ofm2
0 the gapped longitudinal mode would be expected at ap-

proximately 1.7-1.2 meV. The reduced ordered moment implies large quantum fluctuations

and is smaller in CuSb2O6 than in KCuF3. Therefore the probability of quantum effects

is increased. Hence, it may be possible that similar bound states as have been observed in

KCuF3 also occur in CuSb2O6.

The spin-wave calculation predicted a large in-plane interaction and susceptibility mea-

surements indicate a spin-half antiferromagnetic chain, yet this seems inconsistent with

the intensity distribution that was actually observed where the excitation spectrum had a

resonance at the zone boundary. The intensity distribution of the excitations of a one-

dimensional Heisenberg chain for the classical Néel ground state is calculated to be:

I⊥(q) = A tan(qπ),

whereA is a constant. For the spin-half quantum case the intensity decreases more rapidly

with q [99]. Therefore the spin-half Heisenberg chain does not have a peak in the intensity

at the Brillouin zone boundary. Instead the intensity drops rapidly from the Brillouin zone

centre,q = 1/2, as has been observed in the material KCuF3 [100]. The intensity distrib-

ution for CuSb2O6 does not follow that measured for the predicted spin-half square lattice

either. An experimental realization of the square lattice antiferromagnet is CFTD (copper

deuteroformate tetradeurate). The calculated quantum mechanical structure factor for the
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spin-half square lattice is [101]:

S(q) = 1− cos2(qxπ) cos2(qyπ),

which is a maximum atq = (1/2, 1/2). Measurements on CFTD support a similar intensity

distribution to that calculated[102]. Neither of these cases show a peak in the intensity at

the zone boundary as observed in the present study of CuSb2O6.

The unusual resonance at 13 meV led to a brief investigation of phonon modes about

this energy transfer range using PHONON. From these preliminary calculations it appeared

probable that the phonon mode, which was measured at 15 meV, was the one in which the

Cu-O-O-Cu bond was bending, so it is probable that the bending mode was linked to the

magnetic coupling.

The room temperature measurements indicated a phonon at 15 meV about the wave

vector transfer,Q = (4, 0, 0), which was close to the 11 meV mode predicted from the

calculation at the sameQ. The discrepancy between the calculation and measured energy

may be resolved if the calculation were to be preformed by taking into consideration the

unpaired spins at the Cu2+ site. The calculated movement of the lattice was such that the

oxygen octahedron around the Cu2+ site rotates about thec-axis. The movement of the

lattice and the structure factor of the phonon modes is believed to be more accurate than

the calculated energies in the diagonalization calculation carried out with PHONON. The

results of the phonon measurements agree with earlier Raman measurements on polycrys-

talline β-CuSb2O6 which have shown a mode at 118 cm−1 (14.6 meV) [92]. The same

measurements have shown that the mode is also present in theα-CuSb2O6 phase. A later

study on a ceramic sample has observed the lowest mode near 130 cm−1(16.1 meV) and

has found no further modes down to 100 cm−1 [93]. The association of the lowest fre-

quency mode with this type of phonon is in accordance with other studies of the rutile-type

structures.

Spin exchange coupling calculations have considered the overlap between adjacent

magnetic orbitals [84]. In that work the strongest exchange was found to be the diago-

nal exchange over the chemical Cu-O-O-Cu bond running along the (1, 1, 0) direction in

thez = 0 layer. The (1, -1, 0) direction is very weak within that calculation, weaker than

the nearest neighbour interaction. Hence the chemical Cu-O-O-Cu bond was predicted to

give the strongest coupling between the Cu2+ ions. This main exchange path was associ-

ated with JA coupling in the spin-wave calculation above. The O-O bond in the measured
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phonon mode is predicted to oscillate about the mid point therefore producing a change

in the Cu-O-O-Cu bond angle. The present measurements have suggested that the phonon

contribution to the low-temperature 13 meV mode was related to the bending of the main

exchange interaction.

In the material CuGeO3 the bond angles in the main exchange paths are also bent in

a low-energy phonon mode. There the main exchange path is through a Cu-O-Cu bond,

which has a bond angle close to 90o and is a ferromagnetic exchange. A low-energy phonon

mode modulates the bond angle such that the main anti-ferromagnetic exchange is induced

[103]. This has been predicted to be the case in a calculation of the overlap of the electronic

orbitals of the oxygen and copper ions [104]. Inβ-CuSb2O6 the present work found that

a low energy phonon mode was related to the bending of the two Cu-O-O-Cu bonds as-

sociated with the main antiferromagnetic exchange coupling. Therefore it is possible that,

in a similar way to CuGeO3, the main exchange path is linked to the bond angles of the

Cu-O-O-Cu bond which vary in the low energy phonon mode measured at 15 meV. It may

be a weaker coupling than the case of a 90o Cu-O-Cu bond but since a series of superex-

change mechanisms are possible [3], a change in bond angle may still be significant for the

interaction strength.

5.4 Conclusions on CuSb2O6

The investigations of the low-temperature magnetic excitations have measured an unusual

intensity distribution for the main interactions. Measurement of the in-plane interactions

showed that there was a strong resonance feature at 13 meV at the Brillouin zone boundary.

This energy was in accordance with the predicted Brillouin zone boundary dispersion max-

imum for a one-dimensional spin-half Heisenberg chain with a coupling of 4.2 meV but it

would not be expected to be an intense mode. The resonance feature energy was close to

a low energy phonon mode which may modulate the main exchange interaction, and this

suggests a magnon-phonon coupling.

The reinvestigation of the zero field magnetic order has indicated that the spins align

along theb-axis and the spins of the two Cu2+ ions in the unit are collinear forming a

collinear structure of antiferromagnetic stripes of spins. The small spin-flop field implies

a small anisotropy, which would stabilize this structure, although the excitation spectrum

appears to show an energy gap to at least two modes which is larger than expected for that

associated with the spin-flop field. The magnetic structure in the spin-flop phase is unusual
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since the spins align along both thea- and c-axis although susceptibility measurements

show the susceptibility is lower for thea-axis than thec-axis. Therefore, it appears that

the anisotropy in the sample may be complex, since a symmetric Ising-type anisotropy was

not able to describe the inelastic scattering results and the spin-flop field. The inter-layer

couplings were seen to be weak and linked to the low temperature long-range order. The

energy gap was only observed within the magnetically ordered phase and so if it were

associated with the anisotropy of the exchange couplings it would be linked to the inter-

layer couplings.

At high field the background around the magnetic Bragg peaks was seen to increase,

suggesting the presence of critical scattering due to a phase transition at higher field and

may be associated with the gapped modes observed in the inelastic scattering data. These

observations indicated that the energy gap observed at zero field was decreased because of

Zeeman splitting as a magnetic field was applied, and thus at about 12 T the gap would be

expected to close.

The ordered magnetic moment was found to be considerably reduced and the couplings

within the lattice are predicted to be frustrated. Therefore it is probable that some consid-

eration of non-classical behaviour is necessary to fully understand the excitation spectrum

and energy gap observed in these measurements.



Chapter 6

Conclusions and Perspectives

Three low-dimensional, low-spin, frustrated systems were studied in this thesis. It has been

shown that the behaviour of these systems reflects the presence of strong quantum fluctu-

ations and the behaviour could not be explained with classical descriptions. The experi-

ments presented in this thesis explored the spin-one triangular antiferromagnet, AgNiO2,

in Chapter 3, the spin-half Ising chain ferromagnet, CoNb2O6, in Chapter 4 and the spin-

half layered antiferromagnet, CuSb2O6 in Chapter 5.

The triangular lattice antiferromagnet, AgNiO2, is geometrically frustrated and this

frustration was also true for the cooperative Jahn-Teller distortion of the NiO6 octahedra.

This system had not been studied extensively and in particular no neutron scattering mea-

surements had been made before. The investigation of the crystal structure identified a

structural distortion whereby the NiO6 octahedra periodically contract and expand across

the lattice to form a three-sublattice structure. It was proposed that charge disproportiona-

tion on the Ni sites was responsible for the distortion because it relieved the frustration. In

addition the low-temperature magnetic diffraction pattern that was observed was explained

by order on the electron-rich spin-one sites. The triangular lattice of spin-one sites ordered

in a collinear antiferromagnetic order of ferromagnetic chains. Investigations of the mag-

netic excitations at low temperature indicated that the main dispersions were within the tri-

angular plane. The data was compared to the previous spin-wave calculation of Chubukov

and Jolicoeur [50]. Their calculation of the antiferromagnetic nearest-neighbour (J) and

next nearest-neighbour (J′) interactions on an isotropic triangular lattice included quantum

corrections. However, it did not capture the main features of the dispersion. Therefore, a

linear spin-wave calculation was made for a model Hamiltonian that included inter-layer

158
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exchange and an easy-axis anisotropy. The main features of the energy gap and band of ex-

citations were replicated by this calculation but the intensity distribution did not match that

observed. Since quantum corrections had a significant effect on the single triangular layer

in the calculation of Chubukov and Jolicoeur, it is probable that the inclusion of quantum

corrections would be necessary in the model Hamiltonian for the system that was used in

Chapter 3. Further work is necessary to determine the extent of the charge disproportion-

ation predicted for the distorted structure of AgNiO2. Single crystal measurements would

give clearer measurements of the crystal structure and magnetic structure. Single crystal

inelastic scattering measurements would provide clearer information about the dispersion

and would allow investigation of particular points in the Brillouin zone. Further work to in-

vestigate the phonon modes of the high temperature structure should help in understanding

why there is this particular distortion at lower temperature. Also, investigation of the three-

layered ploytype 3R-AgNiO2 may also bring insight since the published crystal structure

would also imply orbital frustration.

CoNb2O6 had been previously identified as a quasi one-dimensional Ising ferromagnet.

It had not been studied within a field purely transverse to the Ising direction. Neutron single

crystal diffraction was used to investigate the phase transition which occurs when applying

an increasing field transverse to the Ising axis in an Ising-like system. Three ordered phases

were observed in the phase diagram of CoNb2O6 as the field was increased. The Ising-like

spins in CoNb2O6 are coupled into ferromagnetic chains which order at low temperatures

due to weaker inter-chain couplings. The inter-chain couplings are frustrated because the

Ising chains are arranged on an anisotropic antiferromagnetic triangular lattice. Therefore,

a spin-density wave structure was stabilized along the largest coupling direction within the

triangular lattice. A transition to a paramagnetic phase was observed at 5.45(5) T. The tran-

sition from an incommensurate ordered phase to a paramagnetic phase by the application

of a transverse field was further investigated by inelastic neutron scattering. Interesting be-

haviour was observed when the system was in a field just below the transition field. There

were low energy, probably gapless, modes which added further evidence to support the idea

that there was an incommensurate ordered phase just below the transition field. In addition

higher energy scattering was observed which moved to lower energies as the critical field

was approached. The higher energy scattering was attributed to two-soliton scattering. At

higher field, in the paramagnetic phase, no low-energy scattering was observed away from

the critical field and at higher energies sharp magnon modes were observed. The dispersion

of the magnon modes was mapped and an analysis of the magnon dispersion implied that
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there was a need for renormalization of the classical dispersion. As expected, the disper-

sion along the chain direction was largest because this was where coupling was predicted

to be strongest. The dispersion was weaker between the chains within the triangular plane.

The energy gap was observed to decrease as the field approached the critical field from the

paramagnetic phase and in the ordered phase gapless modes were observed. A question that

remains to be investigated is whether there is a sharp change in the energy gap at the phase

transition or if the gap closes smoothly. Further work is also required to understand the

development of the energy gap close to the transition field by studying how the dispersion

changes as the transition field is approached. More measurements need to be made close

to the transition field and models beyond the linear-spin wave models need to be developed

to explain the magnon dispersion observed at 6 T. The effective spin-half system may have

sizeable terms in the Hamiltonian which are not Ising-like. High energy inelastic scattering

measurements have been made to investigate the crystal field levels of the Co2+ ion and

the analysis is in progress to develop the effective spin-half Hamiltonian. Therefore a more

detailed model of the interactions could be eventually calculated.

The spin-half layered antiferromagnet CuSb2O6 has a square lattice of Cu2+ ions in

which the main interaction is across one diagonal of the square. The two Cu2+ ions in

the unit cell form two square lattices. The edge interactions frustrate the system. Inelastic

scattering measurements had not been previously made on this material. Initial neutron

diffraction measurements of the zero-field magnetic order reinvestigated measurements by

Gibsonet al.. The results suggested that, contrary to the Gibson result, the system was

in a collinear antiferromagnetic state with a reduced ordered moment. The subsequent

measurements went on to investigate the change in the magnetic structure as a field was ap-

plied along the moment direction. At a field of 1.35(5) T the spin-flop was observed where

the spins flop to within the (a, c)-plane whereas susceptibility measurements would have

indicated a flop to thea-axis. It was proposed that a more complicated anisotropy than

a Ising-type anisotropy was needed to explain the results. At high field the background

around the magnetic Bragg peaks was seen to increase, suggesting the presence of critical

scattering due to a phase transition at higher fields. Also, the zero-field inelastic neutron

scattering observations could not be described with a simple Ising-type anisotropy within

the exchange couplings of the Hamiltonian. The inter-layer dispersion was much smaller

than the in-plane dispersion, which had an intense maximum at 13 meV at the Brillouin

zone boundary. The modes observed had an energy gap which was associated with the

indication of a phase transition at high fields close to 12 T. The ordered magnetic moment
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was found to be considerably reduced and the couplings within the lattice were predicted

to be frustrated. The preliminary phonon measurements suggested that there were low

energy phonon modes close to the 13 meV feature. Further work is now necessary to inves-

tigate this unusual magnetic excitation spectrum and to characterize fully these excitations.

Clearly, a more complete analysis and experimental study of the phonon modes is neces-

sary. For example, polarized inelastic scattering measurements would help to confirm the

magnetic origin of the resonance feature but these will be difficult because of the small

volume of the single crystal currently available. High magnetic field elastic and inelastic

neutron scattering measurements are necessary to investigate the high field transition and

to observe the change in the excitation spectrum to see if a transition is present at 12-15 T.



Appendix A

Low-Temperature and

High-Temperature Structure Factors

from Powder-Diffraction Measurements

on AgNiO2

This appendix refers to Chapter 3§3.2 and presents the results from the powder diffraction

experiments on AgNiO2. The observed intensities for a series of Bragg reflections is given

and indexed within the distorted P6322 group and the ideal structure P63/mmc space group.

A selection of nominal reflections of the ideal structure is given in Table A.1. Table A.2

lists the supercell peaks observed. The magnetic Bragg peaks are given in Table A.3. The

structures were fitted using FULLPROF [38].
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Table A.1: A list of the nominal peaks with the observed and calculated structure factors for
the model of expanded and contracted Ni-O bonds shown in Fig. 3.11. The observed|F |2
is the peak intensity, divided by the peak multiplicity and normalized per unit cell of the
P6322 group. In this table a selection of the nominal peaks of the ideal structure P63/mmc
space group.

Q (h, k, l) (h, k, l) |F |obs |F |calc

(Å−1) P6322 P63/mmc (−14m) (−14 m)
1.026
2.052
2.469
2.523
2.675
2.911
3.080
3.212
3.562
3.947
4.105
4.278
4.359

002
004
110
111
112
113
006
114
115
116
008
300
117

002
004
100
101
102
103
006
104
105
106
008
110
107

6.24
7.19
1.14
5.89
5.86
2.79
4.49
5.83
6.40
11.36
5.69
18.07
5.34

6.36
6.76
0.94
5.98
6.12
2.90
4.30
5.92
6.52
11.40
5.43
16.55
5.40
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Table A.2: List of supercell structural peaks associated with the tripling of the unit cell in
the basal plane with the observed and calculated structure factors for the model of expanded
and contracted Ni-O bonds shown in Fig. 3.11. The observed|F |2 is the peak intensity,
divided by the peak multiplicity and normalized per unit cell of the P6322 group. The peak
indices are given in both space groups.

Q (h, k, l) (h, k, l) |F |obs |F |calc

(Å−1) P6322 P63/mmc (10−14 m) (10−14 m)
1.425
1.515
1.756
2.097
2.851
2.898
2.936
3.031
3.393
3.514
3.807
3.836
3.865
3.910
4.074
4.105
4.295
4.562
4.586
4.998
5.166
5.209
5.242
5.366
5.535
5.575
5.703
5.726
5.745
5.794
5.821
5.870

010
011
012
013
020
021
015
022
016
024
211
025
017
212
213
026
214
215
027
028
311
217
312
313
314
218
040
041
315
042

0 1 11
0 2 10

2/3 -1/3 0
2/3 -1/3 1
2/3 -1/3 2
2/3 -1/3 3
4/3 -2/3 0
4/3 -2/3 1
2/3 -1/3 5
4/3 -2/3 2
2/3 -1/3 6
4/3 -2/3 4
4/3 1/3 1
4/3 -2/3 5
2/3 -1/3 7
4/3 1/3 2
4/3 1/3 3
4/3 -2/3 6
4/3 1/3 4
4/3 1/3 5
4/3 -2/3 7
4/3 -2/3 8
5/3 2/3 1
4/3 1/3 7
5/3 2/3 2
5/3 2/3 3
5/3 2/3 4
4/3 1/3 8
8/3 -4/3 0
8/3 -4/3 1
5/3 2/3 5
8/3 -4/3 2
2/3 -1/3 11
4/3 -2/3 10

0.15
0.24
0.05
0.02
0.31
0.57
0.23
0.14
0.00
0.00
0.35
0.53
0.46
0.60
0.37
0.39
0.73
0.30
0.49
0.35
0.67
0.37
0.71
0.56
0.77
0.63
0.54
0.89
0.56
0.41
0.22
0.17

0.16
0.24
0.09
0.02
0.35
0.53
0.23
0.19
0.16
0.15
0.22
0.50
0.26
0.62
0.42
0.35
0.66
0.26
0.56
0.22
0.67
0.19
0.74
0.48
0.77
0.58
0.60
0.90
0.65
0.32
0.21
0.12
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Table A.3: List of magnetic Bragg peaks with the observed and calculated unit cell struc-
ture factors for the magnetic structure in Fig. 3.11. The observed|F |2 is the peak intensity
corrected for instrumental resolution effects, divided by the peak multiplicity and normal-
ized per unit cell of the P6322 group. The peak indices are given both in the distorted
(P6322) and the ideal (P63/mmc) crystal structures.

Q (h, k, l) (h, k, l) observed|F | calculated|F |
(Å−1) P6322 P63/mmc (10−14 m) (10−14 m)
0.714
0.879
1.236
1.250
1.339
1.607
1.697
1.889
1.957
1.957
1.974
2.142
2.150
2.150
2.173
2.202

1/2 0 0
1/2 0 1
1/2 -1 0
1/2 0 2
1/2 -1 1
1/2 -1 2
1/2 0 3
1/2 1 0
1/2 1 1
3/2 -1 1
1/2 -1 3
3/2 0 0
1/2 1 2
3/2 -1 2
1/2 0 4
3/2 0 1

1/6 1/6 0
1/6 1/6 1
1/2 0 0

1/6 1/6 2
1/2 0 1
1/2 0 2

1/6 1/6 3
-1/6 5/6 0
1/6 5/6 1
1/6 5/6 1
1/2 0 3
1/2 -1 0
1/6 5/6 2
1/6 5/6 2
1/6 1/6 4
1/2 -1 1

0.61
0.28
0.00
0.37
0.74
0.00
0.16
0.58
0.34
0.34
0.48
0.00
0.50
0.50
0.15
0.70

0.71
0.33
0.00
0.39
0.72
0.00
0.16
0.63
0.35
0.35
0.45
0.00
0.53
0.53
0.20
0.68



Appendix B

Linear Spin-wave Theory for Stacked

Triangular Layers with Stripe Order in

AgNiO2

This appendix refers to Chapter 3§3.3 and presents an outline of the derivation of the

magnon dispersion relations for a system of stacked triangular layers as appropriate for

AgNiO2 within linear spin-wave theory. The spin-wave calculation was made taking the

antiferromagnetic stripe order as the ground state. The calculation was setup by consid-

ering two types of spin sites (spin in and out of the triangular planes) forming two sub-

lattices in the plane, giving four sublattices in the unit cell, as show in Fig. 3.23. The

Hamiltonian resulting from the four sublattice description is given in Eqn. F.2, using the

Holstein-Primakoff transformations and the model Hamiltonian in Eqn. 3.5:

H = ΣqX
†HX + E0 (B.1)

whereE0 is the energy of the ground state of the system and each bond J is counted once

in the summation and given

X† = [α†q, γ
†
q , β−q, ε−q, ],
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where the operatorsα†q, β
†
q , etc. create magnon modes localized on each of the four sublat-

tices and theg matrix is the commutator matrix for the operator basis, hence

g = X(X∗)T − (X∗XT )T =




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1




,

then

H =




A Bδ C Dδ2∗

Bδ∗ A Dδ2 C

C Dδ2∗ A Bδ

Dδ2 C Bδ∗ A




(B.2)

taking

A = 2(SJ(cos(2πk)− 1) + SJ′(cos(2π(2h + k))− 1)

+2SJ + 2SJ′ − SJ⊥) + SD
B = 4SJ⊥ cos(πk) cos(πl)

C = 4SJ cos(πk) cos(π(2h + k))

+4SJ′ cos(3πk) cos(π(2h + k))

D = 2SJ⊥ cos(πl)

δ = e−(2h+k)πi/3,

whereQ = ha∗ + kb∗ + lc∗ refers to the reciprocal lattice in the P6322 space group.

Diagonalising this Hamiltonian gives the magnon dispersion relations:

(h̄ω±)2 = A2 + B2 − C2 −D2±√
4|ABδ − CDδ−2|2 − 2B2D2|δ−3 − δ3|2

(B.3)

where± indicates the two two-fold degenerate dispersion branches present. The intensity

distribution is proportional to the correlation functions which are:

Sxx(Q, Ω) = S
2

(
|(W (−ω+)+X(−ω+)+Y (−ω+)+Z(ω+))|2

N(−ω+)
+

|(W (ω+)+X(ω+)+Y (ω+)+Z(ω+))|2
N(ω+)

)
G(Ω− ω+)

+S
2

(
|(W (−ω−)+X(−ω−)−Y (−ω−)+Z(ω−))|2

N(−ω−)
+

|(W (ω−)+X(ω−)−Y (ω−)+Z(ω−))|2
N(ω−)

)
G(Ω− ω−)

(B.4)
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where,
W (ω) = −(A + ω)(A2 + B2 − C2 −D2 − ω2)+

B(2AB − CD(δ−3 + δ3))

X(ω) = C(A2 + B2 − C2 + D2 − ω2)−
ABD(δ−3 + δ3)− ωBD(δ−3 − δ3)

Y (ω) = δ5(δ−6B((A + ω)2 −B2 + C2)−
2C(A + ω)Dδ−3 + BD2)

Z(ω) = δ2(D(A2 + C2 −D2 − ω2) + B2Dδ−6

−2ABCδ−3)

N(ω) = | −WW ∗ + XX∗ − Y Y ∗ + ZZ∗|.

G(Ω − ω) are gaussian functions with a FWHM which models the resolution broadening

of the modes. For comparison with the data the dynamical correlation functions need to be

multiplied by the pre-factor

(1 +
Q2

z

Q
)
(gγf(Q)

2

)2 (2π)3

v0

wheref(Q) is the magnetic form factor, theg-factor is taken to beg = 2, v0 is the magnetic

unit cell andγ = 5.39fm. Qz is the component of Q parallel to thec-axis. A powder

average of this intensity was taken to simulate the experimental sample conditions.



Appendix C

Measured Magnetic Bragg Intensities in

the Single-Crystal Diffraction

Measurements on CoNb2O6

This appendix refers to Chapter 4§4.2 and presents the results from the measured mag-

netic Bragg intensities for the zero field (Table C.1(a)) and 4 T (Table C.1(b)) measurement

which have been scaled for comparison to the calculated intensities based on the structure

the study by Heidet al.[60].
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Table C.1: Observed intensities and calculated intensities of the peaks measured at zero
field and 4 T. The calculated intensities are for the magnetic structure as given by the Heid
study.[60]

(a) Zero Field

(h,k, l) Scaled Experimental IntensityCalculated Intensity
-1, 1/2, 0 18(1) 17.5
-2, 1/2, 0 14(3) 15.0
-3, 1/2, 0 13(1) 12.8
-4, 1,2, 0 11(1) 10.9
-5, 1/2, 0 8.5(1) 8.9
-6, 1/2, 0 7.5(1) 7.1
-7, 1/2, 0 5(1) 5.5
0, 1/2, 1 2(0.5) 2.0
0, 1/2, 2 3(0.5) 2.9
-2, 1/2, 1 3(0.5) 2.4

(b) 4 T

(h,k, l) Scaled Experimental IntensityScalled Calculated Intensity
-1, 1/2, 0 17 (2) 17.5
-2, 1/2, 0 14(2.5) 15.0
-3, 1/2, 0 15(3) 12.8
-4, 1,2, 0 7(3) 10.9
-5, 1/2, 0 12(2.5) 8.9
0, 1/2, 1 8(2) 2.0
0, 1/2, 2 5(2) 2.9



Appendix D

Linear Spin-Wave Calculations of the

Magnon Dispersion Relations of the

Ising Chains in CoNb2O6

This appendix refers to Chapter 4§4.3 and presents the main elements of the linear spin-

wave calculation of the magnon dispersion relations for a system of Ising spins on a trian-

gular lattice and then extended to coupled Ising chains on a triangular lattice as appropriate

for CoNb2O6. In both cases the ground state was assumed to be made up of spins aligned

along the field direction. Initially the calculation was setup by considering two types of

spin sites corresponding to the two Ising directions to the chain, see Fig. 4.22. The initial

Hamiltonian considered was:

Ht =
∑

il

JbS
x
i Sx

l +
∑
im

JbS
x′
i Sx′

m +
∑

ik

JaS
x
i Sx′

k −
∑

i

gµBBSz
i

Using the Holstein-Primakoff transformations the Hamiltonian in terms of the basis states:

X† = [a†q, b
†
q, a−q, b−q],

and the commutator matrix for this operator basis is a diagonal matrix:

g = diag{1, 1,−1,−1}
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which create magnon modes localized on each sublattices becomes

H = ΣqX
†HX + E0 (D.1)

whereE0 is the energy of the ground state of the system and H was:

H =




A B C D

B A D C∗

C∗ D A B

D C B A




, (D.2)

where,
A = S

2
Jb cos(2πk) + gµBB,

B = S
2
Ja(cos(π(h + k)) + cos(π(h− k)))(cos2 γ − sin2 γ),

C = S
2
Jb cos(2πk)(cos2 γ − sin2 γ + 2i cos γ sin γ),

D = S
2
Ja(cos(π(h + k)) + cos(π(h− k))).

The dispersion relations were derived by diagonalizing the Hamiltonian. The Hamiltonian

was then adapted to include the intra-chain interaction Jc. This coupled the spins into Ising

chains within a triangular lattice see Fig. 4.23. The Hamiltonian considered was:

H = Ht +
∑
ij

JcS
x
i Sx

j +
∑
ij

JcS
x′
i Sx′

l ,

The intra-chain coupling coupled spins with the same Ising axis, therefore, using the basis

states:

X† = [a†q, α
†
q, a−q, α−q],

and the commutator matrix:

g = diag{1, 1,−1,−1}.

the Hamiltonian was as in D.1 with

H =




E G 0 F

G E F 0

0 F E G

F 0 G E




, (D.3)
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where,
A = ω±

E = S
2
Jc cos(πl) exp(2πikδ)(cos2 γ − sin2 γ − 2i cos γ sin γ),

F = S
2
Jc cos(πl) exp(2πikδ),

andω± is defined in Eqn. 4.16 and the diagonalized solutions are given in Eqn. 4.17.



Appendix E

Integrated Magnetic Bragg Intensities

for the Single-Crystal Diffraction

Measurements on CuSb2O6

This appendix refers to Chapter 5§5.2. Using the integrated intensities of the Bragg peaks

the best-fit magnetic structure was using FULLPROF [38]. The fitted magnetic moment

are given in Table E.1 and the observed and calculated integrated intensities for the fits at

0, 6 T and 11.5 T are given in Tables E.2(a), E.2(b) and E.2(c).

Table E.1:
Field (T) ma (µB) mb (µB) mc (µB)

0 0 0.389± 0.011 0
6 0.256± 0.019 0.054± 0.032 0.318± 0.009

11.5 0.253± 0.018 0.039± 0.055 0.320± 0.010
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Table E.2: Observed intensities and calculated intensities of the peaks measured at zero
field, 6 T and 11.5 T. The calculated intensities are for the Cu magnetic moment as given in
Table E.1.

(a) Zero Field

(h, k, l) Iobs Icalc

1/2 0 -1/2 136.65 123.17
-1/2 0 1/2 137.45 123.17
3/2 0 -3/2 102.46 81.27
-1/2 0 -7/2 101.64 73.95
1/2 0 -5/2 99.21 95.89
3/2 0 -7/2 74.54 55.46
1/2 0 -9/2 64.17 54.99
5/2 0 -5/2 63.49 38.26
3/2 0 1/2 62.57 87.06
3/2 0 5/2 53.56 67.51
5/2 0 -1/2 51.05 46.73

-1/2 0 -11/2 44.99 37.34
5/2 0 3/2 44.51 42.62

3/2 0 -11/2 39.73 29.26
5/2 0 7/2 32.91 29.39
1/2 0 1/2 3.67 0.00

1/2 0 -11/2 1.71 0.00

(b) 6 T

(h, k, l) Iobs Icalc

1/2 0 -1/2 126.68 125.92
-1/2 0 1/2 126.52 125.92
3/2 0 -3/2 97.54 83.10
5/2 0 -5/2 61.46 39.13
3/2 0 -6/2 55.19 57.49
1/2 0 -5/2 49.37 77.29
5/2 0 -9/2 42.34 25.69
5/2 0 -1/2 40.79 34.78
3/2 0 1/2 35.55 40.75

5/2 0 -11/2 22.13 26.61
1/2 0 -9/2 20.60 35.24
5/2 0 3/2 18.97 14.43
5/2 0 7/2 10.79 2.47
3/2 0 3/2 8.45 0.00

-1/2 0 -7/2 6.65 11.18
-1/2 0 -11/2 3.93 8.62

1/2 0 1/2 1.54 0.00
5/2 0 1/2 0.64 0.00

(c) 11.5 T

(h, k l) Iobs Icalc

1/2 0 -1/2 129.14 126.51
-1/2 0 1/2 127.15 126.51
3/2 0 -3/2 97.81 83.50
5/2 0 -5/2 58.97 39.31
3/2 0 -7/2 57.97 57.33
1/2 0 -5/2 54.38 76.52
5/2 0 -1/2 33.13 35.23
3/2 0 1/2 32.19 41.63
1/2 0 -9/2 27.24 34.74
3/2 0 -11/2 25.42 26.42
5/2 0 3/2 18.44 14.83
5/2 0 7/2 8.04 2.63
-1/2 0 -7/2 6.55 10.69
3/2 0 5/2 6.39 3.187
-1/2 0 -11/2 6.04 8.33
1/2 0 1/2 1.26 1.26
5/2 0 1/2 0.04 0.47



Appendix F

Linear Spin-Wave Calculations of the

Magnon Dispersion Relations of

Heisenberg Spins in a Square Lattice in

CuSb2O6

This appendix refers to Chapter 5§5.2 and outlines the linear-spin wave derivation of the

magnon dispersion relations for a system of square lattices which are stacked along the

c-axis. The ground state was assumed to be the observed zero-field magnetic structure

shown in Fig. 5.20. The calculation was set up by considering two types of spin sites in the

two senses along theb-axis forming two sublattices in the plane, giving four sublattices in

the unit cell, as show in Fig. 5.20. The initial Hamiltonian that was considered is given in

Eqn.F.1.

H =
∑
in

Jn(Sx
ri
Sx

ri+rn
+ Sy

ri
Sy

ri+rn
+ (1 + ε)Sz

ri
Sz

ri+rn
) (F.1)

By using the four sublattice description and the Holstein-Primakoff transformations and

the basis of states:

X† = [α†q, γ†q , β−q, η−q],

where the operatorsα†q, β
†
q , etc. create magnon modes localized on each of the four sublat-

tices and the g matrix is the commutator matrix for the operator basis, where

g = diag{1, 1, −1, −1}.
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the Hamiltonian can be written as

H = ΣqX
†HX + E0 (F.2)

whereE0 is the energy of the ground state of the system and each bond J is counted once

in the summation. The matrixH is then:

H =




A B C D

B A D C

C D A B

D C B A




(F.3)

where
AQ = 2(JA + Ja + Jb(cos(2πk)− 1) + 2Jγ − 2Jδ)(1 + ε)

BQ = 2JA cos (2π(h + k)) + 2Ja cos (2πh)

CQ = −2Jδ(cos (π(−h + k + l)) + cos (π(h + k − l)))

DQ = −2Jγ(cos (π(h + k + l)) + cos (π(h− k + l))).

whereQ = ha∗ + kb∗ + lc∗ refers to the reciprocal lattice in the P21/n space group. The

Hamiltonian was then diagonalized to give the dispersion relations of Eqn. 5.2 and 5.3.

The second Hamiltonian considered was:

H =
∑

i, n=A,a,b

Jn(Sri
·Sri+rn)+

∑

i, n=γ,δ

Jn(Sx
ri
Sx

ri+rn
+Sy

ri
Sy

ri+rn
+(1+ε)Sz

ri
Sz

ri+rn
). (F.4)

The same basis states were used and the Hamiltonian can be described with Eqn.F.3 where

AQ, BQ, CQ, DQ are defined as:

AQ = 2(JA + Ja + Jb(cos(2πk)− 1)) + 4(Jγ − Jδ)(1 + ε),

BQ = 2JA cos (2π(h + k)) + 2Ja cos (2πh)

CQ = −2Jδ(cos (π(−h + k + l)) + cos (π(h + k − l)))

DQ = −2Jγ(cos (π(h + k + l)) + cos (π(h− k + l))).
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