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INTRODUCTION 
 

Solid state physics in concerned with the study of the electrons and nuclei of materials 

in the solid phase. In its modern form, the subject began in 1897, with the discovery of 

the electron by J.J. Thomson. In 1911, Rutherford developed his theory of the atom in 

which negatively charged electrons orbit a dense positive nucleus. Two years later, 

Niels Bohr explained the electromagnetic stability of the atom by combining 

Rutherford’s model with Max Plank’s theory of quantisation [1]. In 1912, a paper was 

presented to the Bavarian Academy of Sciences in Munich. This paper contained a 

general theory of diffraction, formulated by Max von Laue, and the first experimental 

observation of the diffraction of X-rays by a periodic lattice of atoms by Friedrich and 

Knipping. In 1913, W.L. Bragg published a simpler explanation of the diffracted 

beams from crystalline materials [2] and proceeded to perform the first structure 

determinations [3]. The majority of the progress in solid state physics has been made 

investigating crystalline materials, although recently considerable attention has been 

paid to more disordered materials [4] [5] [6].  

 

A complete description of the behaviour of the electrons and nuclei in a material 

would involve the inclusion of all the electrostatic, magnetic and quantum mechanical 

exchange interactions between all the constituent elements. Although the relative 

magnitudes of these interactions varies, enabling some to be neglected, the huge 

number of atoms present in a macroscopic sample makes such a calculation 

impossible. In order to proceed, mathematical techniques have been developed that 

reduce this complexity, such as replacing the individual effect of many particles with 

an average or using a phenomenological approach that neglects the details of the 

interactions completely. At first sight, these simplifications may seem rather drastic, 

but both the qualitative and quantitative predictions of the calculations are often 

strikingly accurate as is shown by the huge success of the electronics industry. 

Traditionally, the electrons in solid materials have been placed in one of two distinct 

categories: localised electrons which are constrained to move only around their 

respective nucleus, and itinerant electrons that are free to move throughout the whole 

material. 
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The interactions between the electrons in solid state materials are responsible for a 

wide range of interesting co-operative phenomena, such as superconductivity and long 

range magnetic order. Heavy fermion and valence fluctuation behaviour are other co-

operative effects in which the traditional distinction between localised and itinerant 

electronic behaviour breaks down. In many compounds, different types of co-

operative phenomena are displayed simultaneously and a large amount of research has 

been dedicated to understanding the interplay between them, particularly where one 

suppresses another.  

 

The rare earth nickel borocarbides (RNi2B2C) are the subject of this thesis. In several 

of the compounds, [R = Dy, Ho, Er and Tm], superconductivity and long range 

magnetic order coexist [7]. In YbNi2B2C, neither superconductivity nor long range 

magnetic order have been observed although it does exhibit heavy fermion 

behaviour [8]. The majority of this thesis is dedicated to the examination of the heavy 

fermion state in the ytterbium compound using the technique of neutron scattering and 

investigating its role in the suppression of the other types of correlated electron 

behaviour. The neutron scattering experiments in this thesis have been conducted at 

the Institut Laue Langevin (I.L.L.) in Grenoble, France, and at the ISIS facility of the 

Rutherford Appleton Laboratory in Didcot, U.K. 

 

Chapter 1 begins with an outline of the history of the study of correlated electron 

behaviour in compounds containing rare earth ions. This is followed by a discussion 

of the known properties of the rare earth nickel borocarbide series. 

 

In Chapter 2, the different types of rare earth correlated electron behaviour are 

discussed in detail. The chapter is divided into two parts. The first deals with the rare 

earth standard model that provides an accurate description of many rare earth 

compounds. The second part describes heavy fermion and valence fluctuation 

behaviour in compounds that have dilute and concentrated distributions of Kondo 

ions. In both parts, the interplay between long range magnetic order, heavy fermion or 

valence fluctuation behaviour and superconductivity is stressed. 

 



INTRODUCTION                                                                                                       3                                                                                                              

 

The theory of neutron scattering is described in Chapter 3. The first part introduces the 

basic concepts and experimental procedures. This is followed by detailed descriptions 

of the specific experimental techniques used in this thesis. 

 

Chapter 4 outlines the data analysis techniques used in this thesis. It describes how 

Bayesian probability theory provides a unifying mathematical framework for deriving 

the procedures of least squares refinement and maximum entropy image construction. 

 

The experiments to determine the magnetisation density in YbNi2B2
11

C, ErNi2B2
11

C, 

HoNi2B2
11

C and LuNi2B2
11

C are described in Chapter 5. These experiments were 

performed on the D9 and D3 diffractometers at the I.L.L. This chapter also contains a 

description of an experiment performed using the D10 diffractometer at the I.L.L. that 

was designed to search for long range magnetic order in the YbNi2B2
11

C compound at 

low temperatures. An elastic scattering experiment using the D1B diffractometer at 

the I.L.L. is also included in this chapter. This experiment was used to determine the 

amount of Yb2O3 impurity present in the YbNi2B2
11

C polycrystalline sample that was 

used in some of the inelastic scattering experiments. 

 

Chapter 6  contains the inelastic scattering experiments conducted on the YbNi2B2
11

C 

compound. Two experiments, performed using the H.E.T. spectrometer at ISIS and 

the IN20 spectrometer at the I.L.L., were designed to look for and study the 

Crystalline Electric Field (C.E.F.) transitions in the compound. Three experiments, 

performed using the IN5, IN14 and IN6 spectrometers at the I.L.L., were designed to 

study the low energy transfer scattering. The H.E.T. and IN5 experiments were 

performed on a polycrystalline sample of YbNi2B2
11

C. The IN20, IN14 and IN6 

experiments were performed on a single crystal mosaic sample. 

 

The final chapter provides a summary of the main conclusions of the experiments. 

Suggestions for further work needed to obtain better images of the magnetisation 

density in the RNi2B2
11

C series and gain a clearer understanding of the excitation 

scheme of YbNi2B2
11

C are included in this chapter. A brief appendix gives the dates 

at which all the experiments, mentioned above, were performed. 
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CHAPTER 1 
 

THE RARE EARTH NICKEL 

BOROCARBIDES 

 

This chapter begins with an outline of the history of the study of correlated electron 

behaviour in compounds containing rare earth ions. This is followed by a discussion 

of the known properties of the rare earth nickel borocarbide series. 

 

1.1 A brief history of the study of the coexistence of superconductivity and 

magnetism. 

 

In 1957, Bardeen, Cooper and Schrieffer published their famous microscopic theory of 

superconductivity [1]. The first investigation into the coexistence of superconductivity 

and magnetism was made shortly afterwards when Ginzburg predicted that the 

coexistence of long range ferromagnetic order and superconductivity was almost 

impossible [2]. In the following year, the first experimental studies were 

performed [3]. 

 

The history of this subject falls into several periods, each associated with the study of 

a different class of compounds. From 1958 until around 1975, experiments were 

performed on superconducting binary compounds containing small amounts of 

magnetic rare earth impurities. These experiments were largely inconclusive, as the 

magnetic order seen was often short range and difficult to characterise. However, the 

experiments provided a basis for a theoretical understanding of the effect of adding 

paramagnetic impurities into a superconducting matrix. The most important theory on 

this subject was provided by Abrikosov and Gor’kov [4]. 

 

From 1975 until around 1986, rare earth ternary compounds such as RRh4B4, RMo6S8 

and RMo6Se8 were studied. In these compounds, magnetic ordering of the rare earth 

electrons can coexist with superconductivity of the conduction electrons as exchange 

interactions between the two are weak. In most of the compounds studied, 
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superconductivity coexists with antiferromagnetic order. However, in a few 

compounds, superconductivity and ferromagnetic order coexist over a small 

temperature range close to the magnetic ordering temperature. If the temperature is 

lowered much below the ordering temperature, the superconductivity is destroyed. In 

the region where ferromagnetic order and superconductivity coexist, the interaction 

between the two leads to the formation of a sinusoidally modulated magnetic 

structure. 

 

The high TC  cuprate superconductors were discovered by Bednorz and Müller in 

1986 [5]. The parent compounds have formulas such as R2CuO4 and RBa2Cu3O7, and 

display long range three dimensional antiferromagnetic order of the copper ions. As 

the oxygen content is reduced, in order to precipitate superconductivity, this magnetic 

order is suppressed. However, strong antiferromagnetic correlations between the 

copper ions still exist. Several theories postulate that fluctuations between the copper 

spins are responsible for the electron pairing in high TC  superconductors. The rare 

earth ions in these compounds enter a long range magnetically ordered state, but at 

temperatures typically two orders of magnitude lower than TC . 

 

In 1994, superconductivity coexisting with long range magnetic order was discovered 

in a new type of quaternary intermetallic compound, the rare earth nickel borocarbides 

(RNi2B2C) [6]. These compounds are the subject of this thesis and are described in 

detail in the following section. 

 

A separate, but highly related, study began in 1930, with the discovery of a resistivity 

minima in metals containing dilute concentrations of magnetic ions. It was not until 

1964 that Kondo provided an initial understanding of this phenomenon [7]. He 

described a ground state in which strong antiferromagnetic correlations exist between 

the magnetic moments of the impurity ions and the conduction electrons, substantially 

increasing the scattering of the conduction electrons at low temperatures. This effect 

gives rise to heavy fermion and valence fluctuation behaviour which is described in 

detail in § 2.2. 
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Some of the most important theories, mentioned above, concerning the coexistence of 

superconductivity and magnetism are outlined in § 2.1.4.  

 

1.2 The properties of the rare earth nickel borocarbides. 

 

Since the discovery of superconductivity in the rare earth nickel borocarbides they 

have attracted a great deal of attention. Superconductivity and long range magnetic 

order coexist in four of the compounds in the series, [R = Dy, Ho, Er and Tm]. 

However, unlike the ternary rare earth superconductors and the high TC  

superconductors, mentioned above, the critical temperatures for the two types of order 

are the same order of magnitude [ TN 1.5 K (Tm) to 10.6 K (Dy) and TC  = 6 K (Dy) 

to 11 K (Tm)]. This means that the interplay between superconductivity and 

magnetism is much stronger than in the two previous compound classes. The 

borocarbides containing rare earth atoms that are lighter than dysprosium (Dy) are not 

superconducting but RNi2B2C [R = Pr, Nd, Gd and Tb] display long range magnetic 

order [8]. YbNi2B2C is anomalous in being neither superconducting nor magnetically 

ordered at any temperature investigated ( T  0.3 K) [9]. Its properties will be 

discussed in more detail below. 

 

The borocarbides have a body centred tetragonal crystal structure, space group 

I4/mmm, and consist of alternating layers of rare earth / carbon and nickel / boron 

ions. The lattice parameters are approximately a b~ ~3.5 Å and c ~ 10.5 Å across the 

whole series [8]. 
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Fig 1.1 :   Structure of the rare earth nickel 

borocarbides. 

 

The superconducting transition temperatures in the heavy rare earth borocarbides are 

relatively high and there is still some debate over the pairing mechanism. The 

borocarbides were initially thought to be similar to the high TC  superconductors 

despite the three dimensional character of the superconductivity. There is some 

evidence from neutron scattering measurements that the nickel ion possess a small 

magnetic moment [10]. Some muon spin rotation experiments suggest that an exotic 

pairing mechanism such as fluctuations amongst the nickel magnetic moments may 

have a role in the borocarbide superconductivity [11]. However, the large isotope 

effect [12] and the behaviour of the lattice dynamics [13] strongly suggest that the 

borocarbides are conventional electron-phonon coupled superconductors. The high 

transition temperatures are thought to arise because of the high electronic density of 

states at the Fermi level, the strong electron-phonon coupling, and the high average 

phonon frequency seen in the superconducting state [14]. The high electronic density 

of states at the Fermi level was initially predicted from band structure 

calculations [15] and was later confirmed by experiment [16]. The position of the 

maximum in the density of states is a function of the ratio of the lattice parameters 

c a . In the light rare earth borocarbides, this maximum is shifted away from the 

Fermi level as compared with the heavy rare earth compounds. This partially explains 

the lack of superconductivity in these compounds [17]. Evidence for the strong 

electron-phonon coupling comes from the heavy damping of phonons seen in inelastic 

neutron scattering experiments [18]. The strength of the coupling depends on the rare 
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earth atom present and it is larger for the heavy rare earth compounds. This is another 

factor in the removal of superconductivity in the light rare earth borocarbides [17]. 

 

The borocarbides display a wide variety of structures in the magnetically ordered state. 

The magnetic structures seen in the ternary rare earth superconductors are heavily 

influenced by the dipolar interaction between the rare earth ions [19]. In the 

borocarbides, the magnetic transition temperatures are too high for the dipolar 

interaction to be important. The magnetic structures are predominately determined by 

a competition between the indirect exchange interaction between the rare earth ions, 

the R.K.K.Y. interaction, and the crystalline electric field (C.E.F.) at each rare earth 

site. The R.K.K.Y. interaction usually favours the formation of a magnetically ordered 

structure that is incommensurate with the crystal lattice. This is because the 

wavevector associated with R.K.K.Y. ordering depends on the geometry of the Fermi 

surface, which may be entirely independent of the crystal periodicity (see § 2.1.2.2). 

The C.E.F. interaction breaks the directional degeneracy of the rare earth magnetic 

moment and introduces a preferred direction, the ‘easy’ axis, along which it is 

energetically favourable for the magnetic moment to align. As this effect is identical at 

each rare earth site, the C.E.F. interaction favours the formation of commensurate 

magnetic order (see § 2.1.2.1). 

 

Below TN  = 10.6 K, the DyNi2B2C compound has a commensurate antiferromagnetic 

structure. The moments in the a-b plane are ferromagnetically aligned with an easy 

axis of [110]. The structure is antiferromagnetically aligned along the c axis with 

wavevector (0, 0, 1). The ordered moment has a magnitude of 8.47  B  and 

superconductivity coexists with this structure below a temperature of TC  = 6 K [8].  

 

The ErNi2B2C compound is superconducting below TC  = 11 K and orders 

antiferromagnetically below TN  = 6.8 K. The structure is a transversely polarised spin 

density wave with a modulation wave vector of (0.5526, 0, 0) or (0, 0.5526, 0) with 

the moments pointing along the b or a axes respectively. As the temperature is 

lowered, higher order harmonics develop, indicating that the sinusoidal magnetic 

structure is squaring up. The magnitude of the low temperature magnetic moment is 
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7.19 B . A commensurate magnetic structure is not observed at low temperatures and 

superconductivity coexists with the magnetic order at all temperatures below TN  [10].  

 

The HoNi2B2C is the most interesting compound in which superconductivity and 

magnetism coexist. It becomes superconducting at a temperature of TC  = 8 K. At all 

temperatures below TN  = 8.5 K, the magnetic structure contains a component that is 

identical to that of DyNi2B2C. At the Neel temperature, another structure, in which the 

ferromagnetic sheets in adjacent layers along the c axis have a relative orientation of  

~ 163.4 instead of 180  seen in the commensurate structure) develops. These two 

magnetic structures grow in intensity at the same rate as the temperature is lowered. 

At a temperature of ~ 6.25 K, a third structure with a modulation wave vector of  

(0.55, 0, 0) begins to develop. Just below the onset of the a axis modulation, at around 

5 K, the superconductivity is suppressed, as is indicated by a minimum in the upper 

critical field HC . On further cooling, both the incommensurate structures disappear 

and only the commensurate structure remains. This coincides with an increase in HC . 

At low temperatures, the magnetic moment has a magnitude of 8.62 B  [20].  

 

The TmNi2B2C compound becomes superconducting below TC  = 11 K and orders 

magnetically at TN  = 1.5 K. The structure is very different from those seen in the 

other borocarbides.  The structure is a transversely polarised spin density wave with a 

modulation wave vector of (0.093, 0.093, 0) and moments pointing along the c axis. 

As the temperature is lowered, higher order harmonics develop as the magnetic 

structure squares up. The low temperature magnetic moment is 3.78  B . The 

magnetic ordering coexists with the superconductivity at all temperatures [21]. 

Lutetium does not posses a magnetic moment as it has a full 4f shell (n = 14). 

Therefore, the LuNi2B2C compound has shows no magnetic order. It is 

superconducting below TC  = 17 K [8]. 

 

The YbNi2B2C compound is particularly interesting. De Gennes scaling predicts it 

will become superconducting below ~ 13 K, which is not observed experimentally, 

and no long range magnetic order has been observed to date. Substitutional studies 

with YbxLu1-xNi2B2C show that superconductivity is completely destroyed by 
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x = 0.15 [22]. The large linear contribution to the specific heat, with a Sommerfield 

coefficient of   ~ 530 mJ/ mol K
2
, classes YbNi2B2C as a heavy fermion 

compound [9].  

 

A broad peak in the specific heat (fig. 1.2) is seen at  ~ 8 K which is often a 

characteristic of spin fluctuations in heavy fermion compounds. Crystal field 

calculations suggest that the J  7 2  Yb +3 ground state multiplet, predicted by 

Hund’s rules, should be split into four doublets. Above the peak, there are additional 

contributions to the specific heat, perhaps due to excitations between these crystal 

field split doublets. 
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Fig 1.2 : Magnetic specific heat 

versus temperature for 

YbNi2B2C. This plot was 

obtained by subtracting the 

specific heat measured for 

LuNi2B2C to remove the 

lattice contribution [23]. 

 

The static magnetic susceptibility (figs. 1.3 and 1.4) of YbNi2B2C is larger when the 

applied field is aligned parallel to the c axis. This is similar to the TmNi2B2C 

compound. The susceptibility measurements show Curie-Weiss behaviour above 

~125 K, with an effective magnetic moment that is similar to that predicted for the 

ground state of the ytterbium +3 ion. At temperatures below ~125 K, the susceptibility 

deviates from this behaviour indicating that a paramagnetic local moment model is 

insufficient to describe the properties of this compound. However, at low 

temperatures, the susceptibility continues to rise as the temperature is lowered. This is 

in contrast to the ‘typical’ temperature independent Pauli-like behaviour of many other 

heavy fermion and valence fluctuation compounds (see § 2.2.3.2) and indicates that 
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the 4f electrons still possess a substantial localised character. Separate evidence for 

this is provided by X-ray absorption spectroscopy from which it was deduced that the 

Yb ions are still in a stable +3 ionisation state at low temperatures [9]. 

 

For other members of the borocarbide series, [R = Dy, Ho, Er and Tm], the 

susceptibility shows a Curie-Weiss temperature dependence above temperatures 

comparable with the antiferromagnetic ordering temperatures. The Weiss 

temperatures also agree with the Neel temperatures in these compounds.  
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Fig 1.3 : Magnetic susceptibility, 

normalised per mole Yb, 

versus temperature for 

YbNi2B2C. Data shown for 

1 kOe applied field parallel 

(closed) and perpendicular 

(open) to crystallographic c 

axis [23].  
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Fig 1.4 : Inverse magnetic 

susceptibility versus 

temperature for YbNi2B2C. 

Data shown for 1 kOe 

applied field parallel 

(closed) and perpendicular 

(open) to crystallographic c 

axis [23]. 
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Measurements of the nuclear magnetic resonance of 
11

B in YbNi2B2C (fig. 1.5) also 

indicate a gradual crossover between local moment behaviour for T > 50 K, to 

itinerant correlated electron behaviour for T < 5 K. 
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Fig 1.5 : Nuclear spin-lattice 

relaxation rate of 
11

B in a 

single crystal of YbNi2B2C. 

Data shown for field parallel 

(closed) and perpendicular 

(open) to crystallographic c 

axis [24]. 

 

Above T ~ 100 K, the electrical resistivity (figs. 1.6 and 1.7) is approximately linear, 

and increases with temperature. Below this temperature, d dT  begins to increase 

with decreasing temperature. Below T ~ 40 K, the decrease in resistivity with 

decreasing temperature is substantially more rapid as compared with the high 

temperature behaviour. This rapid decrease in resistivity is often seen in concentrated 

heavy fermion compounds and is usually associated with the onset of coherence 

between individual Kondo scattering sites. In concentrated heavy fermion compounds, 

a peak is often seen in the resistivity, associated with a maximum in the Kondo 

scattering of the conduction electrons before the coherent state is entered (see 

§ 2.2.4.1). However, such a peak is not seen in the resistivity of YbNi2B2C. At 

temperatures below T ~ 1.5 K, the resistivity displays a quadratic temperature 

dependence which is often associated with the formation of an enhanced Fermi-liquid 

ground state. 
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Fig 1.6 : Resistivity in the a-b plane 

versus temperature for 

YbNi2B2C [23]. 
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Fig 1.7 : Resistivity in the a-b plane 

versus the square of 

temperature at low 

temperatures for YbNi2B2C 

[23]. 
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CHAPTER 2 
 

RARE EARTH CORRELATED 

ELECTRON BEHAVIOUR  
 

In this chapter, the different types of rare earth correlated electron behaviour are 

discussed. The first part describes the rare earth standard model that provides an 

accurate description of many rare earth compounds. The second part describes heavy 

fermion and valence fluctuation behaviour in compounds that have dilute and 

concentrated distributions of Kondo ions. In both parts, the interplay between long 

range magnetic order, heavy fermion or valence fluctuation behaviour and 

superconductivity is stressed. 

 

2.1 The rare earth standard model. 

 

The rare earth or lanthanide series is made up of the fifteen elements from lanthanum 

to lutetium. The electronic structure consists of a xenon core with a partially filled 4f 

shell surrounded by a singularly occupied 5d shell and a full 6s shell.  

 

Rare earth electronic configuration   =   xenon   +   4f  
n
 [ 5d 

1
 6s 

2
 ] , 

(lanthanum has n = 0, lutetium has n = 14). 

 

The series is further divided into the light and heavy rare earths, depending on whether 

the 4f shell is less or more than half filled [1]. 

 

2.1.1 The free atom. 

 

2.1.1.1 Solution of the non-relativistic Hamiltonian. 

 

The non-relativistic Hamiltonian for a free rare earth atom is  
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Eq 2.1 

 

The first two terms correspond to the kinetic energy of the electrons and their coulomb 

interaction with the nucleus respectively. The last term represents the coulomb 

interaction of the electrons with one another. In the Hamiltonian’s present form, the 

calculation of the eigenstates of the atom is impossible due to the complexity of the 

intra-atomic coulomb interaction. In order to determine the eigenstates, the problem 

can be reformulated as a series of single electron Hamiltonians where the coulomb 

interaction of an electron with all the other charges in the atom is replaced with an 

effective potential V reff ( ) ,  

 

    
2

2

2m
V reff . 

Eq 2.2 

 

If this is done, the resulting single electron wavefunctions can be calculated. The 

solutions can be written as a product of a radial function, a spherical harmonic and a 

spin function  

 

       n l m m
l

n l l m ml s l s
r i R r Y r,  . Eq 2.3 

 

One of the most important features arising from the above analysis is that the 4f radial 

function lies within the 5d and 6s radial functions which is extremely important in 

explaining the properties of rare earth ions in compounds. The increasing nuclear 

charge and incomplete screening results in a decrease in the radii of the ion as n 

increases which is referred to as the lanthanide contraction. The angular dependence 

of the 4f wavefunctions leads to highly anisotropic charge distributions with 

pronounced multipoles [2].  
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Fig 2.1  : The radial functions of   

the single electron atomic 

wavefunctions [2].   

 

Cerium ( n  1) and 

Thulium ( n  13) are 

shown. 

 

The electronic wavefunction for the whole atom is constructed from a sum of the 

single electron wavefunctions. The exchange interaction between the electrons 

couples their spins si  to give the total spin S , and the coulomb interaction couples 

the orbital angular momenta l i  to give the total orbital angular momentum L . The 

state with lowest energy is that which has the maximum values of S and L [3]. 

 

2.1.1.2 The spin-orbit interaction. 

 

Relativistic effects are important in the rare earths due to their large atomic masses 

and may be added as perturbations to the non-relativistic Hamiltonian. The most 

important relativistic effect is the coupling of the total orbital angular momentum L  

and the total spin S  to give the total angular momentum J L S   [2]. This is called 

the spin-orbit interaction and the magnitude of the total angular momentum J in the 

ground state is given by 

 

J
L S

L S

f

f






(

(

4

4

  subshell is more than half full )

  subshell is less than half full )
. 

Eq 2.4 

 

The degeneracy of this ground state g  is given by  

 

g J 2 1           as  M J JJ   , .. , , .. ,0 , Eq 2.5 
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and the effective magnetic moment associated with it is 

 

   

 
   

  











 

3

2

1 1

2 1

S S L L

J J
J g JB J B . 

Eq 2.6 

  

2.1.2 Interactions with other ions. 

 

When rare earth atoms are placed in a metallic compound, the 5d and 6s electrons 

leave the atom and contribute to the itinerant conduction band. In the majority of 

compounds, the 4f electrons remain localised to the nucleus, resulting in a rare earth 

valence of +3. The localised nature of the 4f electrons means that the wavefunctions, 

derived above, may be used as a basis for calculating the rare earth ground state in rare 

earth compounds. However, inter-ionic interactions are important and must be 

included in order to calculate the properties of the compound.  

 

2.1.2.1 The crystalline electric field (C.E.F.) interaction. 

 

The rare earth 4f electrons experience a coulomb interaction with all the electronic and 

nuclear charges on the neighbouring ions. As the 4f electrons are shielded by the 5d 

and 6s electrons, the C.E.F. interaction is weaker than the spin-orbit interaction, but it 

may still have a significant effect on the magnetic properties of the rare earth ions. 

The potential between the 4f electrons of a single rare earth ion and the surrounding 

charge distributions can be expanded in spherical harmonics, 

 

 
 

 V r
e R

r R
d R A r Yl

m

l m

l
l
m


 


 , , 

Eq 2.7 

 

where 

 

 
 

 
 A

l

R

R
Y d Rl

m m
l l

m 
 


1

2

2 1 1

 
 , , 

Eq 2.8 
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and  ( )R  is the charge density of the external electrons and nuclei. The number of 

terms in the expansion depends on the nature of the wavefunction in the crystal field. 

For the 4f wavefunction, terms with l  6  are not included and m  is less than or 

equal to l  always. The number of terms may be reduced further depending on the 

symmetry of the rare earth site. For example, in the rare earth nickel borocarbides, the 

tetragonal symmetry of the unit cell allows only the terms A2
0 , A4

0 , A4
4 , A6

0  and A6
4 . 

Calculations of the transition matrix elements of equation 2.7 are greatly simplified by 

first expressing the spherical harmonics in terms of Cartesian coordinates. The 

Wigner-Eckart theorem then allows the crystal field Hamiltonian to be written in 

terms of the operator equivalents, which are functions of the projection of the total 

angular momentum operator J  onto the Cartesian axes ( J J Jx y z, , ). If this is done, 

and a sum over the lattice sites performed, the crystal field Hamiltonian can be written 

as 

 

   cf   A r O J B O Jl
m

l
l

l m
l
m

i
i

l
m

l m
l
m

i
i

 , Eq 2.9 

 

where the  l  are the Stevens factors which are functions of L, S and J, the < r l > are 

the expectation values of the 4f electron radii, and the O Jl
m

i( )  are the Stevens 

operator equivalents which are tabulated. In principle, the crystal field parameters Bl
m  

can be calculated. In practice, this is usually not attempted due to the difficulty in 

determining   R , and their values are measured experimentally. The effect of the 

C.E.F. interaction is to break the directional degeneracy of the 4f magnetic moment. A 

preferred direction, or ‘easy’ axis, is introduced along which it is energetically 

favourable for the magnetic moment to align. As this effect is identical at each rare 

earth site, in compounds that magnetically order, the C.E.F. interaction favours the 

formation of commensurate structures [4]. 
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2.1.2.2 The exchange interaction. 

 

As the rare earth 4f electrons are highly localised and lie within the 5s and 5p 

electrons, there is virtually no overlap of their wavefunctions and therefore the direct 

exchange interaction is negligible. However, an indirect exchange interaction, the 

Ruderman, Kittel, Kasuya, Yosida (R.K.K.Y.) interaction, does occur via direct 

exchange with the conduction electrons. The Heisenberg direct exchange Hamiltonian 

for the interaction between a rare earth ion at position R , with total angular 

momentum J , and a conduction electron spin density s r( )  can be written as 

 

         f s g j r R J s r dr g H r s r drJ B      1 . . , Eq 2.10 

 

where j r R( )  is the exchange parameter. Therefore, the effective magnetic field 

experienced by the conduction electrons due to the rare earth ion is given by  

 

 
 

 H r
g

g
j r R J

J

B





1


. 

Eq 2.11 

 

Using equations 2.11 and 3.13, the spin density induced in the conduction electrons at 

position r  by a rare earth ion at position Rk , with total angular momentum J k , is 

 

     
 

   s r
g V

r r H r dr
g

g V
r r j r R J drk

B
k

J

B
k k  


  

1 1

2 2



' ' ' ' ' , 

Eq 2.12 

 

where  ( ' )r r  is the non local susceptibility which can be written as a scalar if the 

crystal is unmagnetised and the spin-orbit coupling of the conduction electrons is 

ignored. The indirect exchange Hamiltonian for the interaction between a rare earth 

ion at position Ri , with total angular momentum J i , and this spin density is therefore 
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   ik g H r s r drB i k   .  

       
 

      


  
g

g V
j r R J r r j r R J dr dr

J

B
i i k k

1
2

2 2
 ' ' . 

Eq 2.13 

 

If the Fourier transform of the above equation is taken, and a sum over rare earth 

lattice sites performed, it becomes 

 

 
      RKKY  


















1

2

1

2

2

2 2
2V

N

g

g
j q q i q R R J J

J

B q
i k

ik
i k


 exp . . , 

Eq 2.14 

 

which is the Hamiltonian for the R.K.K.Y. interaction. The expression in square 

brackets is the indirect exchange parameter between the rare earth ions and is a 

function of the direct exchange parameter and the conduction electron susceptibility. It 

can be seen from equation 2.14 that the R.K.K.Y. interaction will favour an 

arrangement of the rare earth magnetic moments that is modulated by a wavevector 

that corresponds to a maxima in the product | ( )| ( )j q q2 . Assuming the above 

approximations, the conduction electron susceptibility can be written as 

 

 


q
V

f f

E E

B k k q

k q kk











2 2

. 
Eq 2.15 

 

Evaluation of this expression for a real rare earth compound requires a detailed 

knowledge of the Fermi surface. However, it is clear that a large contribution to the 

sum over k  is made by pairs of electronic states with similar energies, separated by a 

wavevector q . Therefore, the conduction electron susceptibility will have a large 

value at q Q , if the Fermi surface has large parallel regions separated by a 

wavevector Q . This is called ‘nesting’ of the Fermi surface, and the peaks it gives rise 

to in the conduction electron susceptibility are called Kohn anomalies. These are often 

extremely important in determining the modulation wavevectors of the rare earth 
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magnetic moments in the magnetically ordered state. As the modulation wavevectors 

do not depend on the periodicity of the crystal lattice, the R.K.K.Y. interaction usually 

favours the formation of incommensurate magnetic order [4]. 

 

2.1.2.3 The dipolar interaction. 

 

In addition to the R.K.K.Y. interaction, the rare earth magnetic moments interact via 

the classical dipolar interaction. The Hamiltonian for the dipolar interaction between 

two rare earth ions with magnetic moments J i  and J j , at positions Ri  and R j , is 

given by 

 

 
  

dp 


g
J J J r J r

r
J B

i j i j


2

3

3. .  . 
, 

Eq 2.16 

 

where r R Ri j | | . This interaction extends over a long distance and is highly 

anisotropic. In many rare earth compounds, it is considerably weaker than the 

R.K.K.Y. interaction. In the heavy rare earth nickel borocarbides, it plays no role in 

determining the magnetically ordered structure. The above Hamiltonian can be 

expressed in a similar form to equation 2.14, and the combined anisotropic 

Hamiltonian for the indirect exchange and dipolar interactions can be written as 

 

     RKKY/dp RKKY dp
  






1

2
j j J Ji k i k

ik
i k      

 

 , 
Eq 2.17 

 

where   and    represent the Cartesian coordinate axes [2].  

 

2.1.3 Magnetic structures and the mean field approximation. 

 

From equations 2.9 and 2.17, the total Hamiltonian for the lattice of rare earth ions in 

a compound can be written as  
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 REL CF RKKY/dp
.  Eq 2.18 

 

The second term in this Hamiltonian contains two ion operators of the form J Ji k. . If 

the magnetic structure of the rare earth lattice is to be calculated, these two ion 

operators must be decomposed into terms containing only single ion operators. The 

two ion operator may be expanded as  

 

   J J J J J J J J J J J Ji k i i k k i k k i i k. . . . .      . 
Eq 2.19 

 

The first term on the right hand side is associated with two site fluctuations, and can 

be neglected in the mean field approximation as only the static magnetic structure is 

being considered. Therefore, the above expansion allows the R.K.K.Y./ dipolar 

Hamiltonian to be written in the form 

 

 RKKY/dp
  









 

1

2

1

2
J J j Ji i i k

k
k

i
    

 

. , 
Eq 2.20 

 

where the right hand side of the dot-product is the   th  component of the mean field 

at the i th  site. The above equation can be combined with the crystal field Hamiltonian 

to give the mean field approximation to REL . Provided that there are no other 

significant contributions to the rare earth lattice Hamiltonian, REL  can be used to 

calculate the magnetic structure of the rare earth lattice in the magnetically ordered 

state. The magnetic structure is determined by a competition between the R.K.K.Y./ 

dipolar interaction, tending to produce incommensurate structures, and the C.E.F. 

interaction, which favours the formation of commensurate magnetic order [2].   

 

2.1.4 Coexistence of magnetism and superconductivity. 

 

In most compounds, consisting of rare earth ions embedded in a metallic environment, 

superconductivity does not occur. This is because the exchange interaction between 



RARE EARTH CORRELATED ELECTRON BEHAVIOUR                             10 

the rare earth 4f magnetic moment and the conduction electrons prevents the 

formation of the superconducting electron pairs. This occurs as the exchange 

interaction has the effect of raising the energy of one of the electrons in the pair and 

reducing the energy of the other. This is called magnetic pair breaking. However, in 

some compounds, where the rare earth ions are well isolated from the conduction 

electrons, the interaction between the two is weak and superconductivity can occur. 

Magnetic pair breaking still exists, but now it results in a suppression of TC  rather 

than a complete removal of superconductivity [5].  

 

2.1.4.1 Abrikosov-Gor’kov theory and the de Gennes factor. 

 

The Abrikosov-Gor’kov theory predicts the TC  of an alloy produced by dissolving 

rare earth ions in a superconducting matrix [6]. The theory holds for positive values of 

the exchange parameter between the conduction electrons and the rare earth ions j . 

The drop in the superconducting transition temperature from the undoped value with 

increasing concentration of the rare earth ions n  is given by 

 

     
dT

dn
k g j g J J

C

n
B c J



 










  

0

2
1 2 2

2
0 1 1


, 

Eq 2.21 

 

where gc ( )0  is the conduction electron density of states, and J is the total angular 

momentum of the rare earth ion. The factor ( ) ( )g J JJ  1 12  is called the 

de Gennes factor. 
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Fig 2.2 : The de Gennes factor 

(closed) and the value of 

S S( )1  (open) for the rare 

earth ions. 

 

The de Gennes factor scales roughly with the value of S S( )1  and reaches a 

maximum for Gadolinium where the 4f shell is exactly half full ( S  7 2 , L  0  and 

J  7 2 ).  

 

2.1.4.2 The suppression of superconductivity by the Kondo effect. 

 

A rare earth or actinide ion that has a negative exchange parameter with the 

conduction electrons of the a host compound is called a Kondo ion. If such an ion is 

placed in a superconducting compound, there is a competition between the formation 

of a superconducting ground state with energy E k TS B C 0 , and the formation of a 

Kondo singlet with energy E k TK B K  due to local antiferromagnetic correlations 

between the Kondo ion 4f electrons and the conduction electrons. Here, TC 0  is the 

superconducting transition temperature of the undoped compound. For T TK C 0 , the 

value of TC  is depressed by an amount larger than that predicted by the Abrikosov-

Gor’kov theory. This depression reaches a maximum at T TK C 0  when 

superconductivity is completely removed. For T TK C 0 , there can be re-entrant 

superconducting behaviour: on cooling, at temperatures below the onset of 

superconductivity at an upper critical temperature TC1, the increase in the scattering 

due to the Kondo effect causes the compound to re-enter the normal state at TC 2  [7]. 
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2.1.4.3 Coexistence of long range magnetic order and superconductivity. 

 

The onset of long range magnetic order in a superconductor establishes a static 

exchange field at the superconducting electron sites. If this field exceeds the 

paramagnetic limiting field given by   

 

H
g

P
c

n s














( )0
1

2

 
 , 

Eq 2.22 

 

where gc ( )0  is the superconducting electron density of states,   is the energy gap, 

and  n  and  s  are the normal and superconducting electron magnetic 

susceptibilities, the superconductivity will be destroyed [8]. If  s  can be increased, 

HP  will also increase, and the coexistence of superconductivity and a static exchange 

field will be more favourable.  

The paramagnetic limiting field is considered in several theories describing the 

coexistence of superconductivity and ferromagnetic order. The Gor’kov and Rusinov 

theory provides a simple explanation of the re-entrant superconductivity seen in some 

of the ferromagnetic rare earth ternary compounds [9]. Below the superconducting 

transition temperature, in the presence of spin orbit or exchange scattering,  s  will 

have a finite value, and R.K.K.Y. ordering of the magnetic ions can occur. The raised 

value of the superconducting electron susceptibility also allows the superconducting 

order to persist in the presence of the static exchange field. However, as the 

temperature is lowered, the exchange field increases, eventually exceeding HP , and 

the compound re-enters the normal state. The above theory neglects the q dependence 

of the superconducting electron susceptibility. The Anderson and Suhl theory suggests 

that the ferromagnetic order will contain an oscillatory modulation corresponding to 

the q value for which  s q( )  attains a maximum [10]. A sinusoidally modulated state 

coexisting with superconductivity has been observed in ErRh4B4 [11]. However, the 

formation of this state has been attributed to effects other than the exchange 

interaction considered by Anderson and Suhl, such as the formation of spontaneous 

vortex lattices [12] or the electromagnetic interaction between the rare earth magnetic 

moments and the persistent current [13].  
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The first theory describing the coexistence of superconductivity and commensurate 

long range antiferromagnetic order was provided by Baltensperger and Strässler [14]. 

They concluded that superconductivity and antiferromagnetic order are not mutually 

exclusive if the exchange field averages to zero over the superconducting coherence 

length. However, the magnetic order still has a large effect on the superconductivity. 

Their most striking prediction was the finite momentum pairing of the 

superconducting electrons into states ( , )k k Q     where Q  is a reciprocal lattice 

vector. Subsequent theories have described other modifications of the 

superconductivity. These include a prediction that, around TN , magnetic moment 

fluctuations increase the magnetic pair breaking, and below TN , magnons decrease 

the strength of the phonon mediated electron-electron pairing mechanism [15]. To 

date, no accepted theory of the coexistence of incommensurate antiferromagnetic 

order and superconductivity has been put forward. A theory by Morozov describing 

the suppression of superconductivity by incommensurate order in HoNi2B2C 

concludes that an interaction between the incommensurate Bragg planes and the 

electron Fermi surface allows superconductivity to be destroyed by small 

concentrations of non-magnetic impurities [16]. This interaction is not present when 

the compound is in a commensurate antiferromagnetic ordered state. 

 

2.2 Heavy fermion and valence fluctuation behaviour in rare earth compounds. 

 

2.2.1 Introduction. 

 

Heavy fermion and valence fluctuation behaviour can arise in compounds containing 

rare earth elements such as Ce or Yb, or actinide elements such as U or Np. This 

thesis is concerned with rare earth compounds; therefore, the actinide compounds will 

not be considered here. The rare earth standard model describes compounds in which 

the rare earth 4f electrons are localised. The conduction band is made up of the rare 

earth 5d and 6s electrons and electrons from other ions in the compound. In heavy 

fermion and valence fluctuation compounds, the 4f electrons are not completely 

localised and, to varying degrees, hybridise with the conduction electrons. At high 

temperatures, the thermal population of energetic conduction electron states ensures 
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that these compounds exhibit behaviour broadly consistent with the standard model. 

For example, the static susceptibility is indicative of non-interacting local moment 

paramagnetism of the 4f electrons. As the temperature is lowered below a 

characteristic temperature, TK  or the Kondo temperature, the thermodynamic 

behaviour of these compounds becomes dominated by excitations within the rare earth 

4f / conduction electron correlated system. The explanation of the low temperature 

behaviour presents a major challenge to theoretical physicists and is one of the main 

reasons for experimental interest in heavy fermion and valence fluctuation 

compounds. For example, heavy fermion compounds, in particular, display coexistent 

localised and itinerant electronic behaviour which is difficult to reconcile with 

traditional theoretical models. The behaviour of heavy fermion and valence 

fluctuation compounds is often described using Fermi liquid theory. The interactions 

between the 4f and the conduction electrons are considered to renormalise or scale the 

properties of the non-interacting conduction electrons. The resulting quasi-particles 

therefore possess, to some extent, the character of both the conduction and the 4f 

electrons. 

 

In valence fluctuation compounds, the 4f / conduction electron mixing is strong 

enough to cause both spin fluctuations and fluctuations in the 4f charge. The values of 

TK  are high in these compounds (~ 100 K). In heavy fermion compounds, the mixing 

is too weak to produce charge fluctuations and only the spin fluctuations remain. The 

values of TK  are much lower than in valence fluctuation compounds and the more 

localised behaviour of the quasi-particles results in extremely large values of the 

effective mass. 

 

In compounds with a low concentration of rare earth ions, the interactions between 

different rare earth sites can be ignored. If spin-orbit and crystal field effects are 

included, the properties of these compounds can be understood in terms of 

4f / conduction electron mixing occurring independently on each rare earth site. The 

Anderson model, outlined below, describes this situation very well. In more 

concentrated compounds, the interactions between different rare earth sites can no 

longer be ignored. Exchange interactions between the rare earth sites can lead to long 



RARE EARTH CORRELATED ELECTRON BEHAVIOUR                             15 

range magnetic order and coherence between the sites can lead to superconductivity. 

The concentrated compounds are more difficult to understand as it is here where the 

coexistence of localised and itinerant behaviour is most conspicuous. Models are often 

based on the formation of  narrow itinerant bands of interacting quasi-particles. 

 

2.2.2 The Fermi liquid theory. 

 

The phenomenological Fermi liquid theory describes an interacting fermion system. In 

dilute heavy fermion and valence fluctuation compounds the interactions are taken to 

be those between the 4f and the conduction electrons. In a simple model, the band 

structure of the conduction electrons is ignored and they are approximated by a free 

electron gas. The interactions are considered to readjust the Fermi sphere of the 

conduction electrons. The energy required to add an electron near the surface of this 

readjusted Fermi sphere is calculated to be 

 

  k
k

m
k k

F
F  

2

*
. 

Eq 2.23 

 

As the entire Fermi sphere has been readjusted as a result of the interactions, the 

energy of this electron is different to that of a free electron. The interactions are said to  

‘dress’ the electron and its consequential lack of physical identity results in it being 

referred to as a quasi-particle. The increase in the energy required to create a quasi-

particle in moving away from the Fermi surface is characterised by an effective mass 

m
*
. If more quasi-particles are introduced into the system, their energies will be 

different from those predicted by equation 2.23 as the energy of any one quasi-particle 

is now a function of the distribution of all the others. If the quasi-particle distribution 

function is known, the thermodynamic properties of the interacting system can be 

calculated. It can be shown that the electronic specific heat of the Fermi liquid has the 

same form as an ideal gas but with m  replaced by m
*
. Similarly, the static 

susceptibility is proportional to the Pauli susceptibility of a free electron gas, but is 

enhanced by a factor depending on m
*
/ m. Therefore, both the conduction electron 

mass, or the electronic specific heat, and the static susceptibility are enhanced or 

renormalised by the interactions with the 4f electrons. In more concentrated heavy 
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fermion and valence fluctuation compounds, the interactions between different rare 

earth sites can be incorporated within the Fermi liquid theory by considering 

interactions between the quasi-particles [4]. 

 

2.2.3 Dilute compounds. 

 

If spin-orbit and crystal field effects are taken into account, the electronic properties of 

dilute heavy fermion and valence fluctuation compounds are described very well by 

the Anderson model [16].  

 

In this model the conduction electrons form a single band consisting of the 5d and 6s 

electrons from the rare earth ions and the conduction electrons from other ions in the 

compound. In the absence of mixing with the conduction electrons, the ground state of 

the 4f electrons, subject to spin-orbit and crystal field effects, is described by the rare 

earth standard model. However, interactions via the R.K.K.Y. exchange between the 

4f electrons on different rare earth sites are neglected as the rare earth concentration is 

low. 

 

The Anderson Hamiltonian describes a mixing between the ground state multiplet of 

the 4f electrons and the conduction band,  

 

 A k k m k m
k m

f m
m

m m k m k m m
k m

m
m m

m m mc c f f V f c c f U f f f f        



    
, , '

' ' . 

Eq 2.24 

 

The first term is the energy of the electrons in the conduction band;  k  is the 

conduction electron energy, and ck m
  and ck m  are the creation and annihilation 

operators. The second term is the energy of the 4f electrons; fm
  and fm  are the 

creation and annihilation operators for a 4f  electron with energy  f . The hopping 

matrix element which describes the mixing of the 4f and the conduction electrons is 

V . The last term represents the interaction of the 4f electrons with each other. The 

Fermi level lies at an energy of zero and the unhybridised 4f electron level lies below 
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it ( f  is negative). The conduction electron bandwidth is given by D , and V  is 

related to the hybridised width of the 4f electron level   (when the 4f electron 

interaction energy U  is zero) by 

 

    g Vc 0 2 , Eq 2.25 

 

where  gc 0  is the conduction electron density of states for both spin directions at the 

Fermi level. 

 

In valence fluctuation compounds, the hybridised width of the 4f electron level is 

greater than its separation from the conduction band ( | | f   ). This overlap gives 

rise to charge fluctuations. In heavy fermion systems, the hybridised width of the 4f 

electron level is much less than its separation from the conduction band ( | | f   ), 

and charge fluctuations do not occur. 

 

If | | f   , U    and U f 2 0 , the Anderson Hamiltonian represents heavy 

fermion behaviour, and in this region can be transformed into the Coqblin-Schrieffer 

Hamiltonian [18] 

 

CS k k m k m
k m

k m m m k m
k k mm

c c j c f f c    
,

' ' '
', '

, Eq 2.26 

 

which represents the weak 4f / conduction electron mixing as an effective exchange 

interaction with coupling constant 

 

 
j V

U

Uf f




2

 
. 

Eq 2.27 

 

For U f  0  , the exchange constant is negative and this results, at low 

temperatures, in a reduction in the effective magnetic moment at the rare earth site.  
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For heavy fermion systems where the lowest crystal field multiplet is a doublet and 

excitations to the excited multiplets sufficiently energetic to be ignored, the Coqblin-

Schrieffer Hamiltonian can be further transformed into the Kondo Hamiltonian 

 

K k k k
k

k k
k k

c c j J c c    


 
 ,

' ' '
', '

, Eq 2.28 

 

where J  and   give the angular momentum associated with the rare earth site and 

conduction electrons respectively [19]. 

 

A solution of the Anderson, Coqblin-Schrieffer or Kondo Hamiltonians gives a value 

for the Kondo temperature, below which valence fluctuation or heavy fermion 

behaviour are displayed 

 

T
D

k gK
B

f










exp

 


, 

Eq 2.29 

 

where g  is the degeneracy of the unhybridised 4f multiplet. Below the Kondo 

temperature, the thermodynamic behaviour of these compounds becomes dominated 

by excitations within the rare earth 4f / conduction electron correlated system. These 

quasi-particle excitations give rise to a large peak in the electronic density of states 

near the Fermi level. This phenomenon is known as the Kondo resonance and is one 

of the main theoretical predictions associated with heavy fermion and valence 

fluctuation behaviour. It can be experimentally observed by X-ray absorption 

spectroscopy. At temperatures above the Kondo temperature, the resonance is washed 

out as higher energy excitations become important in determining the properties of the 

compound. 
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Fig 2.3 : The Kondo resonance. The density of states of the quasi-particles 

verses energy. EF  is the Fermi level and  f  is the position of the 

unmixed 4f electron level. U  is the 4f electron self interaction energy. 

 

The thermodynamic behaviour of the quasi-particles is similar in many respects to that 

of a non-interacting electron gas. However, the large density of quasi-particle states at 

the Fermi level leads to an effective electronic mass scaled by 

 

m

m

T

T

F

K

*

 . 
Eq 2.30 

 

For heavy fermion compounds, where TK  is low (~ 10 K), the effective mass is often 

of the order 103 m . In many compounds, as the temperature tends towards absolute 

zero, the antiferromagnetic correlations amongst the 4f and the conduction electrons 

leads to a complete removal of the rare earth magnetic moment. In this case, the 

ground state of the compound is a non-magnetic singlet [20]. 

 

2.2.3.1 Magnetic specific heat. 

 

If the phonon contribution is subtracted, the Kondo resonance is clearly visible in the 

specific heat of heavy fermion and valence fluctuation compounds. 
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Fig 2.4 : Typical magnetic specific 

heat verses temperature for 

a dilute heavy fermion or 

valence fluctuation 

compound. 

 

The general form of the magnetic specific heat is the same for heavy fermion and 

valence fluctuation compounds. The exact position and width of the Kondo peak is 

dependent on the degeneracy of the 4f ground state. Variations from the above form 

can occur in dilute compounds where the crystal field splitting is the same order of 

magnitude as the Kondo energy. In these compounds, the Kondo peak may be shifted 

in temperature and superimposed on a background due to transitions to the excited 

crystal field levels. In heavy fermion compounds, the linear contribution to the 

specific heat is very large (the Sommerfield coefficient lies in the range 

400 mJ mol K-1 -2 < < 16. J mol K-1 -2 ) due to the enhanced electron effective 

mass [21]. 

 

2.2.3.2 Static susceptibility. 

 

The form of the static susceptibility depends on the extent to which the compound 

exhibits heavy fermion or valence fluctuation behaviour. This is reflected in the value 

of the average rare earth 4f  valence n f . In the case of cerium or ytterbium ions, a 

valence of unity corresponds to the rare earth ion having an ionisation state of +3. In 

this state, a cerium ion will posses one 4f electron, and a ytterbium ion will posses one 

4f hole (or 13 4f electrons). As n f  decreases, and the compound moves towards 

valence fluctuation behaviour, a cerium ion will tend to lose its 4f electron, and a 

ytterbium ion will tend to lose its 4f hole (or gain an electron). These two processes 
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are related by an electron/ hole inversion and are qualitatively analogous. The static 

susceptibility also depends on the degeneracy of the 4f ground state multiplet involved 

in the formation of the Kondo resonance. 
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Fig 2.5 : Typical static susceptibility 

verses temperature for a 

dilute valence fluctuation or 

heavy fermion compound. 
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average rare earth valence 
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for Yb)  are shown for a 4f 

ground state degeneracy of 

g  6 . 
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Fig 2.6 : Typical static susceptibility 

verses temperature for a 
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heavy fermion compound. 

Different values of g  of the 

rare earth ground state 

multiplet are shown. 

 

The most significant feature in figures 2.5 and 2.6 is the different types of behaviour 

above and below TK . Above this temperature, the susceptibility is indicative of non-

interacting local moment paramagnetism. As the temperature is reduced below TK , 

the effective rare earth magnetic moment is reduced. This leads to a reduction in the 

paramagnetic contribution to the susceptibility. At very low temperatures, the 

susceptibility is entirely due to the temperature independent Pauli susceptibility of the 
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quasi-particles. Figure 2.5 shows the variation of the form of the static susceptibility 

as a function of n f  for a rare earth ground state multiplet with g  6 . As the value of 

n f  decreases (moving towards valence fluctuation behaviour), the peak in the 

susceptibility below TK  becomes more pronounced. Figure 2.6 shows the variation in 

the susceptibility as a function of the value of g of the rare earth ground state 

multiplet. The peak in the susceptibility becomes less pronounced as the value of  g 

decreases. For g  2 , and values of n f  close to unity, the behaviour of the compound 

is described by the Kondo formulation of the Anderson Hamiltonian, and the 

susceptibility peak disappears completely [22]. 

 

2.2.3.3 Resistivity. 
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Fig 2.7 : Typical resistivity verses 

temperature for a dilute 

heavy fermion or valence 

fluctuation compound. 

 

The form of the resistivity for heavy fermion and valence fluctuation compounds is 

the same. As the temperature is lowered, the proportion of conduction electrons 

involved in the formation of the Kondo resonance increases. This equates to an 

increase in the scattering of the conduction electrons by the rare earth 4f electrons. As 

the temperature tends towards absolute zero, the Kondo resonance becomes fully 

formed and the resistivity achieves a maximum. This behaviour should be contrasted 

with the resistivity of more concentrated rare earth systems [21]. 
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2.2.4 Concentrated compounds. 

 

In compounds with a high concentration of rare earth ions, the interactions between 

different rare earth sites become important. There is now a competition between the 

formation of a non-magnetic ground state via the Kondo effect and the formation of a 

magnetic ground state via the R.K.K.Y. interaction. The energy of both these ground 

states depends on the 4f / conduction electron exchange parameter j  and the 

conduction electron density of states at the Fermi level. For small values of | ( )|j gc 0 , 

the energy of the R.K.K.Y. interaction is the greater, and the rare earth sites in the 

compound have stable local moments consistent with the standard model. For values 

of | ( )|j gc 0  close to unity, the Kondo energy is the greater, and the compound 

displays valence fluctuation behaviour; in this regime, the magnetic moment of the 4f 

electrons is completely compensated by the conduction electrons, and the inter-site 

magnetic interactions are unimportant. In between these two extremes, the properties 

of the compound are more difficult to predict; in many heavy fermion compounds, 

hybridisation of the 4f / conduction electrons is observed coexisting with long range 

magnetic order of the substantially reduced 4f magnetic moments. 

 

One theoretical description of concentrated heavy fermion and valence fluctuation 

compounds is given by the periodic Anderson Hamiltonian 

 

  PA k k m k m
k m

f mi
m i

mi i k m mi
k m i

c c f f V ik R c f         
, , , ,

exp . .h.c  

U f f f fmi
m m i

mi m i m i





',

' ' , Eq 2.31 

 

where the intra-site electron hopping term of the Anderson Hamiltonian is replaced by 

a summation over all rare earth lattice sites at positions{ }Ri . A solution of this 

Hamiltonian predicts the formation of narrow itinerant bands of independent quasi-

particles. The narrowness of these bands is responsible for the large density of states at 

the Fermi level (or Kondo resonance) seen in concentrated compounds. The energy 

profile of the Kondo resonance is more complicated than in dilute compounds, and 
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may no longer be isotropic, as it is now a function of the quasi-particle band structure 

and crystal symmetry of the compound. The R.K.K.Y. interaction can be included in 

the above analysis by introducing interactions between the quasi-particles; it can also 

be added explicitly to the periodic Anderson Hamiltonian. Both approaches predict 

long range magnetic order in the itinerant quasi-particle Fermi liquid [22]. This 

description has similar features to the Stoner theory of itinerant magnetic order in the 

transition metal elements [4]. 

 

2.2.4.1 Resistivity. 

 

One of the most striking differences between the behaviour of concentrated and dilute 

compounds is seen in the resistivity. 
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Fig 2.8 : Typical resistivity verses 

temperature for a heavy 

fermion or valence 

fluctuation compound for 

different concentrations of 

the Kondo ion x . 

 

In concentrated compounds, as the temperature is lowered below another 

characteristic temperature T TK0  , coherence can arise between the individual 

Kondo hybridised rare earth lattice sites. In this region, the magnetic moments of the 

rare earth ions either vanish due to complete spin compensation or they form a 

periodic magnetic structure. In both cases, the elastic scattering of the conduction 

electrons is substantially removed. Below the coherence temperature T0 , many 

properties of the compound can be described by the Fermi liquid theory. This theory 

successfully predicts the quadratic temperature dependence of the resistivity which is 
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observed in many concentrated compounds below T0 . A gradual progression between 

dilute and concentrated resistivity behaviour is shown in figure 2.8 [20].  

 

2.2.4.2 Heavy fermion superconductivity. 

 

Some concentrated heavy fermion compounds become superconducting. Initially this 

may seem unlikely, as small concentrations of  ‘Kondo’ rare earth ions added to a 

‘non-Kondo’ rare earth superconductor can suppress the formation of the 

superconducting pairs and drastically reduce the transition temperature as compared 

with the non-doped compound (see § 2.1.4.2). However, in many superconducting 

heavy fermion compounds, the jump in the specific heat on entering the 

superconducting state corresponds to the enhanced effective mass. This implies that 

the superconducting pairs are formed by the quasi-particles. The nature of the quasi-

particle attraction is still unclear. Some theories rely on conventional electron-phonon 

coupling while others consider that the pairing is due to quasi-particle - quasi-particle 

interactions analogous to those responsible for pairing in superfluid 
3
He [23]. One 

reason for the adoption of the latter approach is that Fermi liquid theory is used to 

describe both the properties of superfluid 
3
He and the non-superconducting behaviour 

of heavy fermion compounds (see § 2.2.2). 

 

2.2.5 Inelastic neutron scattering experiments on dilute and concentrated 

compounds. 

 

The relationships between the partial differential cross section for the magnetic 

scattering of neutrons, the magnetic correlation function and imaginary part of the 

magnetic susceptibility are given in § 3.2.4.3. The following discussion assumes that 

the instrumental resolution function has been deconvolved. For non-interacting rare 

earth ions, without any interaction with the conduction electrons, the imaginary part of 

the magnetic susceptibility consists of a series of delta functions  

 

 
i

i )()(  , Eq 2.32 
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where i  is the energy of the i
th

 C.E.F. level. In the case of paramagnetic rare earth 

ions, interacting with the conduction electrons via a direct exchange (without heavy 

fermion or valence fluctuation hybridisation), the resulting relaxation pathways lead to 

a broadening of these delta peaks. The main contribution arises from the spin-spin 

interactions, and this leads to a Korringa-like Lorenztian linewidth )(T  associated 

with each of the peaks 

 

TkjggT BC

2)]0()1[()(  . Eq 2.33 

 

The width of the zero-energy transfer peak is governed solely by this broadening and 

goes to zero as 0T . The inelastic peak widths have additional broadening 

contributions arising from interactions between the C.E.F. transitions, and remain 

finite as the temperature goes to absolute zero. A theoretical description of the above 

scheme is given by the Becker-Fulde-Keller (B.F.K) theory [25]. The hybridisation of 

the rare earth and conduction electrons in heavy fermion and valence fluctuation 

compounds results in a substantial departure from the B.F.K. predictions for the low 

energy magnetic susceptibility. For moderate heavy fermion compounds, the 

Korringa-like line width is replaced by 

 

2
1

0)( bTT  , 
Eq 2.34 

 

where the residual Lorenztian width at T = 0, 0 , gives an estimate of the energy scale 

of the rare earth/ conduction electron hybridisation ( KBTk~20 ). For more 

heavily hybridised valence fluctuation compounds ( KT  is large), the temperature 

dependent part of this line width is less significant than 0 , resulting in a temperature 

independent line width up to high temperatures. 

 

In concentrated compounds, interactions between the rare earth ions, or the onset of 

superconductivity, can cause departures from this simple scheme. For example, in 

compounds where the residual magnetic moments enter an ordered state, the quasi-

elastic peak may move to finite energies and gain a q dependence in addition to that 
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determined by the C.E.F. selection rules [22]. In some compounds, interactions 

between the C.E.F. transitions and the lattice excitations introduce further relaxation 

pathways. In these cases, the excited peaks may be additionally broadened, their 

degeneracy broken, and their position in energy moved [24].  
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CHAPTER 3 
 

NEUTRON SCATTERING 
 

This chapter describes the theory of neutron scattering. The first two sections 

introduce the basic concepts and experimental procedures. This is followed by 

detailed descriptions of the specific experimental techniques used in this thesis. 

 

3.1 Introduction. 

 

Neutron scattering is an experimental technique used in a wide range of scientific 

subjects to study the nuclear and magnetic structure and excitations of materials. 

There are many different types of neutron scattering experiment, but all of them 

depend on the same general principle:  

 

A beam of neutrons is directed at a sample of the material to be studied. These 

neutrons are scattered by the sample. The neutrons can be produced with wavelengths 

that are comparable to the interatomic spacing in materials, and with energies that are 

comparable to the separation of their energy levels. Therefore, analysis of interference 

effects between the scattered neutrons gives information concerning the structure of 

the sample, and analysis of the energies of the neutrons gives information concerning 

the nature and spacing of the energy levels of the sample. 

 

3.2 General neutron scattering. 

 

3.2.1 The production of neutrons. 

 

The neutron scattering experiments in this thesis have been conducted at the Institut 

Laue Langevin (I.L.L.) in Grenoble, France, and at the ISIS facility of the Rutherford 

Appleton Laboratory in Didcot, U.K. The method of producing neutrons at these two 

establishments is different. 
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The I.L.L. operates a 58 MW enriched uranium nuclear reactor. The neutrons 

produced within the fuel element have an average wavelength of the order of 10
-4

 Å, 

which corresponds to an energy of several MeV. Therefore, to be of use in scattering 

experiments, these neutrons have to be slowed down or moderated. This is done by a 

tank of heavy water that surrounds the fuel element. In this tank, the fast neutrons are 

slowed down by repeated collisions with the D2O molecules. The wavelength 

distribution of the neutrons that emerge is dependent on the temperature of the tank. 

The temperature of the tank at the I.L.L. is 300 K, which corresponds to a neutron 

wavelength range of 1 Å to 3 Å. Neutrons with these wavelengths are called thermal 

neutrons, and are suitable for use in many types of scattering experiment. However, 

certain experiments require longer or shorter wavelengths, and these are produced 

using different moderators. A liquid deuterium moderator at a temperature of 25 K is 

used to produce neutrons with wavelengths in the range 3 Å to 30 Å, which are 

referred to as cold neutrons. Neutrons with wavelengths below 1 Å are called hot 

neutrons, and are produced using a graphite moderator at a temperature of 2400 K [1]. 

 

At ISIS, neutrons are produced by bombarding a depleted tantalum target with highly 

energetic protons from a particle accelerator. Each proton produces many neutrons 

when it hits the target nuclei. These neutrons also have too much energy to be used in 

scattering experiments and have to be moderated. Different final wavelength ranges 

are obtained using water (316 K), liquid methane (100 K), and liquid hydrogen (20 K) 

moderators. In contrast to the I.L.L., the neutrons at ISIS are produced in pulses at a 

frequency of 50 Hz, which allows certain types of experiment to be performed more 

easily [2]. 

 

3.2.2 Interaction of the neutron with matter. 

  

A free neutron interacts with an atom in two ways: with the nucleus via the strong 

nuclear force, and with the electrons via the electromagnetic force. The neutron does 

not have a charge and is therefore able to penetrate into the interior of a sample 

without being scattered by the coulomb interaction with the atoms. Therefore, it can 

be used to study the bulk properties of the sample. 
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3.2.2.1 The strong nuclear force interaction. 

 

Neutrons are hadrons, and therefore interact with the nuclei of atoms via the strong 

nuclear force. The potential between a neutron and the nucleus of an atom can be 

written as 

 

V r
m

b r( ) ( )
2 2




, 
Eq 3.1 

 

where m  is the mass of the neutron. This potential is called the Fermi 

pseudopotential, and is very short range (~ 10
-14

 m to 10
-15

 m), hence the definition in 

terms of a delta function. The constant b  is called the scattering length. It is a measure 

of the strength of the interaction, and is defined as 

 

b A B i   , Eq 3.2 

 

where ( / )1 2   is the spin of the neutron, i  is the spin of the nucleus, and A  and B  

are constants. In general, the scattering length is complex; the imaginary part 

represents absorption of the neutron by the nucleus; the real part may be positive or 

negative, depending on the energy of the neutron and the type of nucleus, and 

represents scattering of the neutron. For the majority of nuclei, the imaginary 

component is considerably smaller than the real component; in this case, the real part 

is assumed to be independent of the energy of the neutron while the imaginary part is 

considered to be a function of the neutron energy. For a small number of nuclei, 

neutron absorption corresponds to the formation of a compound nucleus close to an 

excited state; in this case, the imaginary component of the scattering length may be 

large, and both the real and imaginary components are considered to be dependent on 

the incident neutron energy [3].  
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3.2.2.2 The electromagnetic force interaction. 

 

Neutrons have a spin of 1 2 , and an associated magnetic moment. Therefore, they also 

interact with the magnetic moment of the unpaired electrons in atoms via the 

electromagnetic force. The potential between a neutron with Pauli spin operator  , 

and an electron with spin s  and linear momentum p  is 

 

V r
s r

r

p r

r
N B( ) .

 
   









 














   0

4
2

1
2 2

. 
Eq 3.3 

 

The two terms on the right hand side of the above equation are referred to as the spin 

and orbital contributions respectively. It should be noted that the potential is long 

range, and both terms correspond to non central forces [3]. 

 

3.2.3 The detection of neutrons. 

 

There are several different types of detector used in neutron scattering experiments. 

One of the most common is the 
3
He gas detector. It consists of a stainless steel tube 

containing 
3
He gas under pressure. A thin tungsten wire, charged to a high voltage, 

runs down the centre of the tube. The detection process starts with the absorption of a 

neutron by a 
3
He nucleus 

 

3 - +He  +   n  H   +   p   +   Energy 3 .  

 

The high energy ions that are produced cause further ionisation of 
3
He atoms, and this 

triggers a cascade discharge to the tungsten wire. The voltage of this discharge is 

small, and it must therefore be amplified before it is transferred to the detection 

electronics [4].   
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3.2.4 A general neutron scattering experiment. 
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Fig 3.1 : Geometry of a general neutron scattering experiment. 

 

A neutron in a state with wavevector k
i
, energy Ei  and spin state  i  is directed onto 

a sample of the material to be investigated. The sample is at a temperature T , and has 

a finite probability of being in one of a range of states {Li }. The probability P iL  that 

the sample is in a state Li  is proportional to the product of the thermodynamic 

occupation factor and the degeneracy for that state. 

 

 P
E

k Ti
i

B
iL

L
L 









 exp g  

Eq 3.4 

 

Let us assume that the sample is in a state Li . After the neutron enters the sample, it 

will interact with the atoms via the processes described in § 3.2.2. As a consequence 

of these interactions, the neutron will be scattered into a state with wavevector k f , 

energy E f  and spin state f . If E Ei f  (or | k i | = | k f | ) , then the scattering is 
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elastic and the sample remains in the state Li . If E Ei f  (or | k i
|   | k f

| ) , then the 

scattering is inelastic and the sample will change to a state L f , such that the law of 

conservation of energy, E E E Ei f i f  L L , is satisfied. The process whereby the 

sample goes from a state Li  to a state L f  is called an excitation. In a neutron 

scattering experiment, many neutrons are scattered in this way, and they will, in 

general, all have different values for  k f
, E f  and  f .  

 

A number of quantities are defined to describe the scattering. The flux   of neutrons 

in the incident beam is defined as  

 

   number of neutrons per second,  per unit normal area . Eq 3.5 

 

The total scattering cross section of the sample is defined as 

 

 
total number of neutrons scattered per second.


. 

Eq 3.6 

 

The differential cross section of the sample is defined as 

 

d

d

d

d

 q j

W

W

 W


number of neutrons scattered per second,  into solid angle  in 

the direction 

,

, .
. 

 

Eq 3.7 

 

The partial differential cross section of the sample is defined as 

 

d

d dE

d

E E dE

d dEf

f f f

f

2 q j

W

W

 W




number of neutrons scattered per second,  into solid angle  in

the direction   with final energy between  and 

,

, , .
. 

 

Eq 3.8 

 

For an arbitrary interaction potential V , the partial differential cross section for the 

process where neutrons are scattered from a state ( k
i
, Ei , i ) to a state 

( k f , E f , f ), and the sample changes from a state Li  to a state L f , is given by 
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    , 

Eq 3.9 

 

where the delta function represents the conservation of energy in the scattering 

process. There may be other transitions within the sample that scatter neutrons into a 

state ( k f
, E f , f ) , and this equation must be summed over Li  and L f  in order to 

include these 
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    . 

Eq 3.10 

 

In the case of the scattering of neutrons from an arbitrary distribution of N  nuclei via 

the strong nuclear force, the above equation reduces to 

 

   
d

d dE

k

k
P b iK n E E

N

f
k E

k E

f

i
i

i f

f f n

n

N

i i i f

i i i
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W
L LL

L L

L L















    


exp  , 

Eq 3.11 

 

where the difference between the initial and final wavevector and energy of the 

neutron is K k ki f   and   E Ei f  respectively. The  position of the n th  

nucleus is n , and its scattering length is bn . This equation gives a connection between 

( K ,  ,i ,  f ) and the nuclear structure and excitations of the sample. This 

connection is not obvious as the equation is written in a very general form. Its use 

becomes more transparent when it is applied to a specific type of neutron scattering 

experiment and sample [5]. 
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In the case of the scattering of neutrons from an arbitrary distribution of M  electrons 

via the electromagnetic force, equation 3.10 becomes 
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 , 

Eq 3.12 

where 

 

     Q iK m K s K
i

K
p K

P m m
m

M

     








 exp   


1

. 
 

 

The position, spin and linear momentum of the mth  electron are m , sm  and p
m

 

respectively. This equation gives a connection between ( K ,  , i ,  f ) and the 

magnetic structure and excitations of the sample. As with equation 3.11, the use of 

this equation becomes more clear when it is applied to a specific type of neutron 

scattering experiment and sample [6]. 

 

If the values of K ,  , i  and  f  are measured for a large number of neutrons, then 

the function d d dE KN f i f
2   / ( , , , )W  can be experimentally determined. It can 

then be compared with equation 3.11 (applied to the specific type of experiment and 

sample) to give information concerning the nuclear structure and excitations of the 

sample. The function d d dE KM f i f
2   / ( , , , )W  can be determined in the same 

way, and compared with equation 3.12 (again, appropriately applied) to give 

information concerning the magnetic structure and excitations of the sample. 

 

To map out the above functions for all useful values of K ,  , i  and f would take 

a very long time. In practice, in any one neutron scattering experiment, the above 

functions are only measured for  small regions of ( K ,  , i ,  f ) space. The region 
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of this space that is measured defines the type of neutron scattering experiment. Most 

of the different types of experiment fall into four groups: unpolarised elastic, 

unpolarised inelastic, polarised elastic, and polarised inelastic neutron scattering.  

 

3.2.4.1 Unpolarised elastic neutron scattering. 

 

In unpolarised elastic neutron scattering experiments, the value of i  for each neutron 

is random and the value of  f  is not measured. In most experiments, only k i  and the 

direction of k f  are measured. As | k f | ( or   ) is not measured, there is no way to 

determine if the neutron has been scattered elastically or inelastically. This does not 

present a large problem when the number of inelastically scattered neutrons is much 

less than the number of elastically scattered neutrons as only a small error is 

introduced if it is assumed that all the neutrons have been scattered elastically. 

However, in some experiments, the number of inelastically scattered neutrons is large, 

and theoretical corrections must be made; if this is not possible, an experiment can be 

performed where | k f | is measured and the inelastically scattered neutrons subtracted. 

These types of experiments are used to give information concerning the structure of 

the sample and are often referred to as diffraction experiments. The experiments 

described in § 5.1, 5.3 and 5.4 use this technique [3]. 

 

3.2.4.2 Unpolarised inelastic neutron scattering. 

 

In unpolarised inelastic neutron scattering experiments, again, the value of i  for each 

neutron is random and the value of  f  is not measured. Both K  and   are 

measured, and any region of ( K ,  ) space may be explored. This type of experiment 

is designed to examine the region where   0 , and therefore to study the excitations 

of the sample. The experiments described in chapter 6 use this technique [3]. 
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3.2.4.3 Magnetic susceptibility and inelastic neutron scattering. 

 

The dynamic, q  dependent, susceptibility of a material that has a magnetisation 

M q( , )  induced by a magnetic field H q( , )  is defined as  

 

 
 
 

 



q

M q

H q
,

,

,
 . 

Eq 3.13 

 

In general, the susceptibility is complex, reflecting the fact that a phase difference may 

exist between the induced magnetisation and the driving magnetic field. 

 

          q q i q, , ,' ' '  . Eq 3.14 

 

The partial differential cross section for the magnetic scattering of neutrons, given in 

equation 3.12, can be rewritten in the general form  

 

 
d

d d

k

k

e

mc
S q

M

f

f

i

N
2 2

2

2
1

2



 

 


W












 , , 

Eq 3.15 

 

where S q( , )  is the spatial and temporal Fourier transform of the magnetic 

correlation function. There are two theorems that are especially useful for interpreting 

the results of inelastic neutron scattering experiments. The fluctuation dissipation 

theorem relates the Fourier transformed correlation function to the imaginary part of 

the susceptibility 

 

    


' ' , exp ,q
k T

S q
B

  


















1


. 

Eq 3.16 

 

The factor in square brackets satisfies the principle of detailed balance which is 

needed to correct for the initial thermal population of states within the scattering 
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system. The Kramers-Kronig theorem relates the integral of the imaginary 

susceptibility with respect to   to the static, q  dependent, susceptibility. 

 

   
 

  q q d, ,' ' 






1 1

. 
Eq 3.17 

 

This theorem is useful for relating the results of inelastic neutron scattering 

experiments to static susceptibility measurements performed using laboratory 

magnetometers [7]. 

 

3.2.4.4 Polarised neutron scattering. 

 

In polarised elastic, and polarised inelastic neutron scattering experiments, i  and 

 f  are measured, in addition to the quantities listed above for the unpolarised 

experiments. These experiments are only performed when the required information 

concerning the sample cannot be obtained using unpolarised neutrons. This is because 

the production and detection of polarised neutrons is complicated and the incident 

neutron flux is considerably reduced. The experiment described in § 5.2 uses polarised 

neutrons [8]. 

 

3.3 Neutron scattering techniques. 

 

3.3.1 

 

Determination of the nuclear structure, average crystallite radius and 

mosaic spread of single crystals using unpolarised elastic neutron 

scattering and the D9 diffractometer at the I.L.L. 

 

3.3.1.1 Derivation of the nuclear unit cell structure factor and Bragg’s law. 

 

The partial differential cross section for the scattering of neutrons from an arbitrary 

distribution of nuclei via the strong nuclear force is given by equation 3.11. For a non-

Bravais single crystal sample and unpolarised neutron beam, this equation reduces to 
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d
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k
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 '
' '

exp ' '
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Eq 3.18 

       exp ' , ' , exp , , exp   





 iK u l d iK u l d t i t d t0  , 
 

 

where t  is time, l  is the position of the l th  unit cell and d  is the equilibrium 

position of the d th  nuclei within that unit cell.  

 

l

d

 u l d t, ,

Origin

l     unit cell
th

 

Fig 3.2 : Position vector of the d th  

nuclei in the  l th  unit cell. 

 

equilibrium position

instantaneous position
 

 

The thermal displacement of the nucleus from its equilibrium position is given by 

u l d t( , , ) , and this can be expressed as a sum of the displacements due to a set of 

normal modes 

 

 

     u l d t
M N

e a i q l t e a i q l t
d q jq j

dq j q j q j dq j q j q j, , exp exp








  


 


    


 











  

2

1
1

2


  , 

Eq 3.19 

 

where q , j , q j  and edq j
 are the wavevector, polarisation index, angular frequency 

and polarisation vector of the mode. The mass of the d th  atom is given by Md , and 

there are N  values of  q  in the first Brillouin zone. The creation and annihilation 

operators for the mode q j  are aq j
  and aq j  respectively. The products of the 
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scattering lengths in equation 3.18 are averaged over variations in nuclear spin and 

isotopic composition. 

 

Equation 3.18 implicitly describes two distinct types of scattering, known as coherent 

and incoherent. Incoherent scattering depends on the correlation between the positions 

of the same nucleus at different times; therefore, it does not give rise to interference 

effects. The coherent scattering depends on the correlation between the positions of 

the same nucleus at different times, and on the correlation between the positions of 

different nuclei at different times. This type of scattering gives rise to interference 

effects, and is therefore useful for determining the nuclear structure of the crystal. The 

coherent partial differential cross section is  

 

  
d

d dE

k

k
b b iK l d l d

N

f
k E

k E

f

i
d d

l dld
i i

f f2
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,
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       exp ' , ' , exp , , exp   





 iK u l d iK u l d t i t d t0   
Eq 3.20 

 

The average over the scattering lengths is no longer an average over their product, but 

two separate averages before the product is performed. The coherent elastic 

differential cross section can be derived from the above equation, and is  

 

 
   

d

d
N

v
K F K

N

k

k

N

i
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, coh, el

W









  

2
3

0

2 , 
Eq 3.21 

 

where v0  is the volume of the unit cell,   is a reciprocal lattice vector of the crystal, 

and the nuclear unit cell structure factor is 

 

     F b i d WN d d
d

    sp,iso
exp exp . 

Eq 3.22 

 



NEUTRON SCATTERING                                                                                       14 

The nuclear unit cell structure factor is dependent on the scattering lengths and 

positions of the atoms in the basis, and quantities that are dependent on the thermal 

motions of the atoms which correspond to a superposition of normal mode vibrations. 

These quantities are called the Debye-Waller factors and are given by 

 

W
M N

e

nd
d

dq j

q jq j
q j






4
2 1

2




, 

 

Eq 3.23 

 

where nq j  is the quantum number for the mode q j . It can be rewritten, for an 

orthorhombic crystal, as 

 

 W B ha ha B kb kb B lc lcd d d d
       1

4 11 22 33 , 
Eq 3.24 

 

where ( ha kb lc  , , ) is the reciprocal lattice vector, and B
d11 , B

d22  and B
d33  are 

the anisotropic temperature factors for the d th  atom. These give the axes lengths of 

an ellipsoid that corresponds to the standard deviation of the atom’s distribution in 

space. 

 

Equation 3.21 implies that there is scattering only in directions where the change in 

wavevector of the neutrons K  is equal to a reciprocal lattice vector of the crystal  . 

This principle is known as Bragg’s law, and is fundamental to all elastic scattering 

experiments on periodic structures [3].  
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3.3.1.2 A description of the general technique. 
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Fig 3.3 : The D9 diffractometer [9]. 

 

It is assumed that the lattice parameters of the crystal to be studied are known 

approximately before the following experiment is performed. This will usually have 

been done by performing an elastic neutron, or X-ray scattering experiment, on a 

powder sample of the material under investigation. 

 

In this technique, a monochromatic neutron beam is directed at a single crystal, placed 

inside a cryo-refrigerator, mounted at the centre of an Eulerian cradle. An Eulerian 

cradle is a device with three independent axes of rotation that is used to orientate the 

crystal with respect to the incident neutron beam. If the orientation of the reciprocal 

lattice of the crystal is known with respect to the angles of the Eulerian cradle 

( ,  , f ), and the change in wavevector of the neutrons is known with respect to the 

angle of the detector 2q , then the values for these angles needed to access any 

reciprocal lattice vector can be calculated. The relationship between the angles 

( ,  , f ) and the reciprocal lattice is expressed by a matrix, called the orientation 

matrix, and the values of 2q  for each reflection are calculated using Bragg’s law. In 

practice, due to the geometry of D9, and the magnitude of the neutron wavevector 
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used, there are limitations on the regions of reciprocal space that may be 

accessed [10].  

 

After the orientation matrix has been calculated, the angles  ,  , f  and q  are 

adjusted to move the crystal and detector to positions where the Bragg condition is 

satisfied for a reciprocal lattice vector of the crystal, so that the number of neutrons 

scattered per unit time into the associated Bragg peak can be measured. A single 

crystal consists of many crystallites, all slightly misaligned with respect to one 

another. This misalignment is called the mosaic spread of the crystal, and causes the 

delta function in equation 3.21 to be spread out into a peak of finite width (see 

§ 5.1.4.2). Therefore, in order to include the scattering from all of the crystallites in 

the mosaic, a scan is performed where the value of   is stepped through a series of 

positions either side of the Bragg peak centre. At each of these positions, the detector 

is left to count the number of neutrons scattered for a fixed period of time. Due to the 

finite resolution of the D9 diffractometer, the scattered neutrons for a particular step in 

the scan will have a spread in their final trajectories. In order to count all of these 

neutrons, the D9 detector has a finite aperture. The number of neutrons scattered per 

unit time as a function of   is called the rocking curve for the particular reciprocal 

lattice vector. A two dimensional detector is used on D9 to improve the accuracy of 

centering on the Bragg peaks [9]. 

 

The integrated area under the rocking curve gives the intensity of the Bragg peak, 

which is the total number of neutrons scattered per unit time into the Bragg peak. This 

can be calculated from equation 3.21, and is given by 

 

   I
V

v
FN



q


0
2

3
2

2


sin
, 

Eq 3.25 

 

where   is the wavelength of the neutrons, V  is the sample volume and   is the 

incident neutron flux. In a typical experiment, I ( )  is measured for a large number 

of Bragg reflections. This set of Bragg reflections is usually chosen so that a large 
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unique region of reciprocal space is represented. Using the above equation, the 

corresponding set of { | ( )|FN  2 } are calculated [10].  

 

The set of { | ( )|FN  2 } are used to determine the positions, occupancies and thermal 

parameters of the atoms in the unit cell, and the average crystallite radius and mosaic 

spread of the crystal, as described in § 5.1.5.1. 

 

The values of  ,  , and q  at the centre of each Bragg peak are also recorded. These 

values are used to calculate the real space unit cell lattice vectors more accurately, as 

described in § 5.1.5.2. 

 

3.3.2 

 

Determination of the magnetisation density in single crystal samples 

using polarised elastic neutron scattering and the D3 diffractometer at 

the I.L.L. 
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Fig 3.4 : The D3 diffractometer [9]. 

 

The partial differential cross section for the scattering of neutrons from an arbitrary 

distribution of nuclei via the strong nuclear force and an arbitrary distribution of 

electrons via the electromagnetic force is given by the sum of equations 3.11 and 3.12.  
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where r e me0 0
2 4  /  is the classical radius of the electron.  

 

For a non-Bravais single crystal sample with localised electrons, the above equation 

becomes, in the dipole approximation, 
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where 

 

   f K A B I iK dN d d d
d

    
sp, iso

exp ,         Eq 3.28 

 

     f K K f K iK d K
M d d

d

   














 exp   ,    
Eq 3.29 

 

and the positions of the nuclei are defined as shown in figure 3.2, [3]. The term 

)(Kfd  in the above equation describes the distribution of the electrons orbiting the 

d th  nuclei, and < 
d

> is a unit vector parallel to the average direction of the 

electrons angular momentum operator. For many atoms, this distribution can be 

described by 

 

   f K a F Kd dlm dlm
m l

l

l





 , 

Eq 3.30 
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where the sum is over wavefunctions with azimuthal and magnetic quantum numbers 

given by l  and m , and adlm  is the magnitude of the angular momentum operator 

associated with the unpaired electrons in the lmth  wavefunction. The normalised form 

factor for this wavefunction is  

 

     F K Y l m j Kdlm l d
 , , Eq 3.31 

 

where ),( mlY  is the spherical harmonic, and  j Kl d( )  is the radial integral. The 

values of the radial integrals for a particular ion, and value of l , are calculated using 

Hartree-Fock theory (transition metal elements) and Dirac-Fock theory (rare earth and 

actinide elements) and are given in crystallography tables [11]. 

  

In this technique, a monochromatic polarised neutron beam is directed at a single 

crystal placed inside a cryostat. The crystal is orientated such that the scattering plane  

to be accessed is near the horizontal (in the xy plane in figure 3.4). The polarisation of 

the neutron beam can be such that the neutron spins are aligned parallel (neutron spin 

up, u), or antiparallel (neutron spin down, v) to the positive z direction. The polarising 

monochromator produces a neutron beam in the spin up state. A spin flipper, when set 

to on, is used to give a neutron beam in the spin down state. In this geometry, 

equation 3.27 can be spilt into four terms corresponding to the four spin state 

transitions ( )u u , ( )v v , ( )u v  and ( )v u . For each of these terms, the spin 

matrix elements are given by 

 

       u f K r f K u A B I iK d r f KN M d d d
Z

M
d

       0 0
sp, iso

Zexp , 

       v f K r f K v A B I iK d r f KN M d d d
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M
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            u f K r f K v B I iI iK d r f K if KN M d d
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Eq 3.32 
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The first two terms are referred to as non-spin-flip as the spin state of the neutron is 

not changed on scattering; the second two terms are referred to as spin-flip. The spins 

of the nuclei in the crystal are randomly orientated at all temperatures above a few 

mK. Therefore, an average over their values gives 

 

Id
X

sp
 0 , Id

Y

sp
 0    and   Id

Z

sp
 0 . Eq 3.33 

 

If the above equations are substituted into the spin matrix elements, they become  

 

       u f K r f K u A iK d r f KN M d M
d

      0 0iso
Zexp , 

       v f K r f K v A iK d r f KN M d M
d

      0 0iso
Zexp , 

        u f K r f K v r f K if KN M M M      0 0
X Y      and 

        v f K r f K u r f K if KN M M M      0 0
X Y . Eq 3.34 

 

If a magnetic field is applied to the crystal, strong enough to align the magnetic 

moments of the unpaired electrons along the negative z direction, and only scattering 

within the xy plane is considered, we have 
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Under these conditions, the spin matrix elements are  

 

       u f K r f K u A iK d r f KN M d M
Z

d

      0 0iso
exp , 

       v f K r f K v A iK d r f KN M d M
Z

d

      0 0iso
exp , 

   u f K r f K vN M
   0 0      and 

   v f K r f K uN M
   0 0 , Eq 3.36 

 

and there is no spin-flip scattering. The above equations can be substituted into 

equation 3.27 to give the partial differential cross sections for the two non-spin-flip 

scattering processes. The corresponding coherent elastic differential cross sections can 

then be derived. These are given by 
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Eq 3.38 

 

where   

 

     F K A iK d WN d d
d

   iso
exp exp  Eq 3.39 

 

is the nuclear unit cell structure factor, introduced in § 3.3.11, and 

 

       F K f K iK d WM d d
d

   exp exp  Eq 3.40 

 

is the magnetic unit cell structure factor [6]. 
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After the crystal has been mounted and aligned, the crystal and detector are moved to 

positions where the Bragg condition is satisfied for a reciprocal lattice vector. In 

principle, this is done in the same way as in the D9 experiment; however, the details 

are different. The D3 diffractometer is not fitted with an Eulerian cradle and the 

crystal, once mounted, can only be rotated about the z axis ( ). The detector can 

move through a large angle in the xy plane ( ) and can be rotated by a smaller angle 

out of this plane (-25 < n  < +5), (see figure 3.4). This lack of orientational flexibility 

means that only a limited region of reciprocal space is accessible for each crystal 

mounting and during an experiment the crystal will have to be remounted in order to 

gain access to a larger region (the angle between the incident and diffracted beam 

is 2q ). 

 

After the Bragg peak has been located with respect to the detector angle 2q , a scan is 

performed to find the position of its maximum with respect to  . Once this maximum 

has been located, the spin flipper is set to ‘off’, to give an incident neutron beam in the 

spin up state. The detector is left to count the number of neutrons scattered for a fixed 

period of time. The spin flipper is then set to ‘on’, to give an incident neutron beam in 

the spin down state. The detector is left to count for the same period of time. This 

flipper off / flipper on counting is also performed with the crystal and detector moved 

to positions either side of the Bragg peak; this is done to obtain values for the 

background scattering.  

 

The ratio of the spin up to spin down scattering, at the maximum of the Bragg peak, is 

called the flipping ratio. As the integrated area under the Bragg peak is proportional to 

its maximum, the flipping ratio can be given by the ratio of equations 3.37 and 3.38, 
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Eq 3.41 
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The flipping ratios are measured for a large number of Bragg reflections. The set of 

Bragg reflections is chosen carefully so that a large region of reciprocal space is 

represented. If the nuclear unit cell structure factors can be calculated from a 

theoretical model of the crystal, then a set of magnetic unit cell structure factors 

{ | ( )|FM  } can be calculated using the above equation and the method described 

in § 5.2.5.1. 

 

The analysis described above assume that the electrons are localised around the 

positions of the nuclei. If this is not the case, a more general version of equation 3.29 

is appropriate where the magnetic scattering term is not specific to any electronic 

model of the unit cell. This is given by 
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, 
Eq 3.42 

 

where the magnetisation density vector in the unit cell is  m r  [6]. 

 

If the above equation is used, instead of equation 3.29, in the above derivation, the 

relationship between the projection of the magnetisation density vector along the z 

direction  m r  and the set of magnetic unit cell structure factors is given by 
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1

exp
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. 
Eq 3.44 

 

The set of   FM   can be used to determine the magnetisation density or magnetic 

moment density associated with each atom in the unit cell using the methods 

described in § 5.2.5.2. 
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3.3.3 Determination of the crystal structure of a polycrystalline sample using 

unpolarised elastic neutron scattering and the D1B diffractometer at the 

I.L.L. 

 

 

Monochromator

k

q2

k

K
k

k

i

f

i

f

Multidetector

Polycrystalline 
sample inside
cryostat

 

 

Fig 3.5 : The D1B diffractometer [9]. 

 

The derivation of the Laue equation is given in the description of the D9 experiment 

(§ 3.3.1). This experimental technique is similar to that of D9 in that the sample is 

placed in an unpolarised monochromatic beam. However, now, the Bragg condition is 

satisfied for all the reciprocal lattice vectors of the sample simultaneously by using a 

polycrystalline sample. For a particular reciprocal lattice vector, the elastically 

scattered neutrons emerge in a cone defined by a constant angle 2q  to the direct beam. 

The neutrons are collected by a large flat cone multidetector. The position in 2q  of 

the peaks in intensity can be used to determine the space group and lattice spacings of 

the crystal structure. With the use of equation 3.25 the intensity of the peaks can be 

used to determine the crystal basis. If more than one compound is present in a sample, 

the relative intensities of the Bragg reflections can be used to calculate the 

concentration of each of the compounds [3]. 
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3.3.4 Magnetic inelastic neutron scattering from a polycrystalline sample 

using a direct geometry Time Of Flight (T.O.F.) spectrometer. 
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Fig 3.6 : A direct geometry time of flight spectrometer. 

 

A polycrystalline sample is placed in a non-overlapping pulsed monochromatic 

neutron beam. The method of producing such a neutron beam varies depending on the 

type of neutron source and the particular T.O.F. spectrometer. At a spallation source, 

such as ISIS, the incoming neutrons are already produced in pulses. They must still be 

monochromated and, if the neutron energy is high enough, some pulses may have to 

be removed in order to ensure that they do not overlap. At a reactor source, such as the 

I.L.L., a continuous polychromatic neutron beam is produced. Therefore, it must be 

monochromated and pulsed. The exact method for monochromating and pulsing the 

neutrons for the instruments used in this thesis will be described in the relevant 

experimental sections (§ 6.1, 6.4 and 6.5).  

 

The time that each neutron pulse hits the sample position is recorded. The neutrons are 

scattered into a large angle detector bank with many individual detectors at different 

angles relative to the incident neutron beam. The times that the scattered neutrons 

reach the individual detectors in the detector bank is also recorded. Therefore, the time 

differences can be used to calculate the final energies of the scattered neutrons. In this 

way both the momentum transfer q k ki f   and energy transfer 
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  ( )( ) 2 2 2m k ki f  into the sample can be calculated for the scattered neutrons. If 

the non-magnetic background scattering can be subtracted, the data obtained can be 

compared with the magnetic partial differential cross section given in 

equation 3.12, [12]. The non-magnetic background arises from nuclear scattering from 

the sample and spurious scattering from the instrument itself. A simple method of 

subtracting the former is to measure a non-magnetic sample with the same structure as 

the sample under investigation (for rare earth materials, this involves measuring the 

yttrium or lutetium compounds). An estimate of the instrument background can be 

made by performing measurements with just the sample holder in the beam. These 

techniques are explained further in the relevant experimental sections of this thesis 

(§ 6.1, 6.4 and 6.5). 

 

The magnetic partial differential cross section obtained can be normalised to units of 

‘mb sr
-1

 meV
-1

 [formula unit]
-1

’ by measuring a vanadium sample. Vanadium has a 

high incoherent scattering length and a small coherent scattering length and therefore 

scatters isotropically and can be used for normalising for the solid angles of the 

individual detectors (see § 6.1). 

 

After the above data processing has been completed, equations 3.15 and 3.16 can be 

used to give the imaginary part of the dynamic, q  dependent, susceptibility from the 

magnetic partial differential cross section. This can then be compared with theoretical 

models of the magnetic properties of the sample under investigation [12]. 

 

 It should be noted that as a polycrystalline sample is used, the partial differential 

cross section measured at q  represents an average over all directions of the scattering 

vector in the reciprocal lattice of the sample. No directional information can be 

obtained. 
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3.3.5 Magnetic inelastic neutron scattering from a single crystal sample using 

a triple axis spectrometer. 
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Fig 3.7 : Geometry of a triple axis spectrometer. 

 

A single crystal sample is placed in the sample cryostat so that the scattering plane to 

be studied is approximately horizontal. The sample cryostat may be tilted to a limited 

extent afterwards in order to align the crystal precisely. A polychromatic neutron beam 

is incident on the monochromator. Monochromatic incident neutron beams with 

different values of k i  can be directed towards the sample by altering the angle qM . 

The sample scatters the incident neutrons in all directions with a range of final 

energies. The angle 2q   is adjusted to move the analyser to a position where it 

receives neutrons scattered in a particular direction k f . The angle qA  is adjusted so 

that the analyser selects only those neutrons with a particular final energy E f . In this 

way, adjustment of the angles 2q  and qA  allows the detector to count only the 

neutrons scattered from the sample with a final wavevector k f . Once both k i  and 

k f  have been set, the scattering vector q k ki f   and the energy transfer 

  ( )( ) 2 2 2m k ki f  will have been determined. The scattering vector can be 

orientated with respect to the crystal lattice, within the scattering plane, by altering the 

angle q S . The region of ( q, ) space that may be accessed in this way is governed 

by the values of k i  and k f  that the spectrometer can produce and measure 
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respectively. A triple axis spectrometer is operated in one of two ways: ‘constant-| k i
|’ 

mode, or ‘constant-| k f |’ mode. The constant-| k f | mode keeps qA  fixed at each point 

in a scan through ( q, ) space which enables an easier calculation of the resolution of 

the spectrometer. There are two types of common scan that are performed: a ‘q-scan’ 

where the spectrometer measures neutrons scattered with a constant value of   at 

different positions in q  space, and an ‘ -scan’ where the spectrometer measures 

neutrons scattered with different values of   at the same position in q  space.  

 

If the nuclear inelastic scattering can be subtracted, equations 3.15 and 3.16 can be 

used to give the imaginary part of the dynamic, q  dependent, susceptibility from the 

magnetic partial differential cross section. This can then be compared with theoretical 

models of the magnetic properties of the sample under investigation [12]. 
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CHAPTER 4 
 

DATA ANALYSIS 
 

This chapter outlines the data analysis techniques used in this thesis. It describes how 

Bayesian probability theory provides a unifying mathematical framework for deriving 

the procedures of least squares refinement and maximum entropy image construction. 

A derivation of the appropriate raw errors to be assigned in scattering experiments is 

also given. 

 

4.1 The basic rules of probability. 

 

The basic rules of probability theory are given in two equations: the sum rule, and the 

product rule. The sum rule is 

 

   prob probA I A I  1 , Eq 4.1 

 

and states that the probability that A  is true plus the probability that A  is false is 

equal to one. The symbol ‘|’ means ‘given‘, so everything to the right of this symbol is 

taken to be true. The letter I  stands for the relevant background information that is 

available; this is needed, as calculations in probability are always based on a stated 

group of assumptions, which must be specified if the calculation is to have any 

meaning. The product rule is 

 

     prob prob probA B I A B I B I, ,  , Eq 4.2 

 

and states that the probability that both A  and B  are true is equal to the probability  

that A  is true, given that B  is true, multiplied by the probability that B  is 

true irrespective of A . 
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In general, if  { An
N
1} is a set of parameters, then   prob A I  is an N  dimensional 

function called the probability density function. 

 

4.2 Bayesian probability theory. 

 

The Bayesian formulation of probability theory provides a unified framework for 

deriving results in probability and statistical analysis. At the heart of this framework 

are two equations derived from the basic rules of probability: Bayes’ theorem, and the 

theory of marginalisation.  

 

Bayes’ theorem is 

 

 
   

 
prob

prob prob

prob
A B I

B A I A I

B I
,

,



, 

Eq 4.3 

 

and can easily be derived from the product rule. It is extremely useful for the analysis 

of experimental data, as will be seen in the following sections, as it relates 

 prob A B I,  to  prob B A I, . The theory of marginalisation is 

 

   prob probA I A B I dB





 , , 

Eq 4.4 

 

and provides a mechanism for removing a probability density function’s dependence 

on a variable that is of no interest in an experiment. 

 

Two statistical analysis techniques are used in this thesis: least squares refinement, 

and maximum entropy image construction. The justification for using both of these, in 

the applicable situation, can be found within the Bayesian formulation. The 

calculation of the errors associated with the counting of neutrons can also be 

performed within this framework. 
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4.3 Least squares refinement. 

 

In least squares refinement, a set of experimental data { Dn
N
0 } is compared with a set 

of theoretical data { Fn
N
0 } generated from a model of the sample under investigation. 

Within this model, there are a set of parameters { Xm
M
0 } that can be iteratively 

adjusted until the experimental and theoretical data agree to the desired tolerance. In 

this raw form, least squares refinement is most effective when the sample model is 

well determined and the number of sample parameters is small. 

 

From Bayes’ theorem, the probability that the sample parameters are equal to { Xm }, 

given a set of data { Dn }, is 

 

          prob C prob probX D I D X I X Im n n m m, ,   . Eq 4.5 

 

This is called the posterior probability density function; the denominator in Bayes’ 

theorem has been rewritten as a normalisation constant C , as it is of no importance to 

the following analysis. The term   prob X Im  is called the prior probability density 

function, and reflects everything that is known concerning the sample parameters 

before the collection of the data. If nothing is known, this can be set to a constant 

 

  prob constantX Im  , Eq 4.6 

 

and absorbed into C . The posterior p.d.f. can now be written as 

 

       prob C probX D I D X Im n n m, ,  . Eq 4.7 

 

The term on the right is called the likelihood function, and gives the probability of 

obtaining the set of data  Dn  given that the sample parameters are equal to  Xm . If 

the data are independent, then it can be written as 
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      prob probD X I D X In m n m
n

N

, ,



1

, 
Eq 4.8 

 

using repeated application of the product rule. If the variations associated with the 

experimental measurements form a Gaussian distribution, then the probability of 

measuring an individual datum can be written as 

 

  
   

prob D X I
F X D

n m
n

n m n

n

, exp 


















1

2 2

2

2  
, 

Eq 4.9 

 

where n  is the standard deviation associated with the n th  datum. Equations 4.7, 4.8 

and 4.9 combine to give 

 

    
   

prob X D I C
F X D

m n

n m n

nn

N

, exp 




















2

2
1 2

, 

Eq 4.10 

 

if the coefficients of the exponential terms in equation 4.9 are absorbed into the 

constant C . The above function can vary very rapidly with the values of the sample 

parameters. For this reason, it is often more convenient to work with the logarithm of 

the posterior p.d.f. This gives 

 

     L = ln prob X D I Cm n , ln 
 2

2
, 

Eq 4.11 

  

where  

   




2

2

2
1







F X Dn m n

nn

N

 

Eq 4.12 
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is the sum of the squares of the normalised residuals  R F Dn n n n   . The most 

probable values of the sample parameters  Xm0  will be obtained when L  is a 

maximum. The condition for this maximum L0 , is given by the sets of equations 

 

   





L

Xm X m











 

0

0     and   
   





2

2

0

0
L

Xm X m















 . 

Eq 4.13 

 

The errors associated with the  Xm0  are given by the covariance matrix 

 

 
 



 ij
i j

X

L

X X
i M j M

m

2
2 1

0

1 1 










    



, , , 

Eq 4.14 

 

which is derived from a Taylor series expansion of L  around L0 . The values of the 

  ii  give the standard deviations associated with the values of the  X i0 , and the 

values of the   ij
2  provide information on the correlations between the values of  the 

 X i0  and the  X j0  (for i j ). 

 

In principle, the method for determining the values of the  Xm0  is simple. An initial 

guess in made for the values of the sample parameters  Xmg , and the values of 

    L Xm X mg

 calculated. These local gradient values are used to determine 

changes in the values of the sample parameters  Xm  needed to move nearer to L0 . 

This is repeated iteratively, until equation 4.12 is satisfied and the values of the 

 Xm0  determined. The ease with which this is accomplished is heavily dependent on 

the shape of the function L , which is, in turn, dependent on the function   F Xn m .  
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A measure of the agreement between the experimental and theoretically generated 

data is given by  2 . A good agreement is often thought to have been achieved when 

 2  N , as this implies that each experimental datum agrees on average with its 

theoretical counterpart to a tolerance of the standard deviation of the experimental 

data. 

  

4.4 Maximum entropy and image construction. 

 

If the properties of the sample are not understood very well, the least squares sample 

model will necessarily be very general, and will contain a large number of sample 

parameters in order to provide sufficient flexibility in the refinement. As the number 

of sample parameters increases past a certain point, the function L  will become flat in 

certain directions in the parameter space  Xm , and the technique of least squares 

refinement will cease to be a reliable method of analysis. This is because there will be 

many sets of values of the sample parameters that maximise L , and it will therefore 

be impossible to determine a unique set of the most probable values  Xm0 . In other 

words, the information contained within the data is less than that required to give 

unique values for all the sample parameters. Therefore, in order to proceed, it becomes 

necessary to introduce further information. If it is not possible to increase the number 

of data, or introduce a more specific model that reduces the number of sample 

parameters, the only option is to think more carefully about the assignment of the prior 

probability density function   prob X Im . This situation can arise when the 

experimental data is used to give a real space image of some property in the sample. In 

this case, the sample parameters are the intensities of pixels in this image, and they 

will be large in number to achieve the necessary resolution.  

 

The principle of maximum entropy states that when least squares refinement gives 

more than one set of values for the most probable sample parameters, the set with the 

largest entropy should be chosen. The set with the largest entropy will be the set that 

contains the least amount of information, or is the least complex. This set is more 

formally defined as the set that is most likely to arise out of pure chance while also 
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being compatible with the data. This set is chosen because all the information 

contained within the data has been used in deriving the function L , and there is 

therefore no justification for introducing further complexity into the sample 

parameters. This principle can be used in the assignment of the prior probability 

density function in an improved version of the least squares refinement.  

 

In the case where the sample parameters are used to produce an image, the entropy of 

the image is given by 

 

S X
X

Xm
m

mgm

M

 












 ln

1

. 
Eq 4.15 

 

This form of the entropy is known as the Shannon-Jaynes entropy, as it includes the 

terms  Xmg . In formal maximum entropy theory these terms are known as the 

measure. In effect, they define the position of the global maximum of entropy before 

any data has been introduced. In this context, they are simply the initial guesses of the 

pixel intensities in the image, and are all set to the same value as this corresponds to 

an image with no information or detail. There is still the question of what this value 

should be, as will be discussed in section § 5.2.5.2.3.  

 

The principle of maximum entropy gives an assignment for the prior probability 

density function as 

 

    prob X I Sm  exp , Eq 4.16 

 

which states that, before any data has been collected, the image with the 

highest entropy is favoured. If the above equation is used in the least squares method, 

instead of assigning a value of unity to   prob X Im , equation 4.5 becomes  

 

     L X D E I C ESS m n= ln prob , , ln  
 2

2
. 

Eq 4.17 
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The above equation is the same as the least squares equation, except that it has a 

constraining term ES  which always favours the image containing the least amount of 

information.  

 

The term E  is a function that is used to give a weighting between the entropy term 

and the least squares term. As for the least squares case, the above equation must be 

maximised in order to find the most probable values of the pixel intensities in the 

image. This maximisation can be thought of as a contest between disorder (entropy 

term) and order (least squares term), with E  determining the relative contributions of 

each. If the data is of good quality, E  will have a small value and the least squares 

term will have a large contribution to the maximisation of LS . If the data is of bad 

quality, then E  will have a large value and the entropy term will have a larger 

importance in the maximisation. For the case where the variations associated with the 

experimental measurements form a Gaussian distribution, E  is often chosen such that 

 2  N  after the maximisation has been completed. This will be discussed further 

in § 5.2.5.2.3.  

 

The condition for the maximum value of LS , LS0  is given by the sets of equations 

 

 
 







X
ES

m
Xm
































2

2
0

0

,  and 

   





2

2

2

2
0

0

X
ES

m Xm






























 . 

                                                                                                             Eq 4.18 

 

As for least squares refinement, in principle, the method for determining the values of 

the  Xm0  is simple. The values of the pixel intensities are set to values where they 

have maximum entropy  Xmg . The values of       ES Xm X mg

 and 

     
  2 Xm

X mg

 are calculated, and the changes in the pixel intensities 

 Xm  needed to reduce  2  while keeping S  as large as possible are determined. 
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This is repeated iteratively, until equation 4.18 is satisfied and the values of  Xm0  

determined. 

 

As in the least squares method, the errors associated with the  Xm0  are given by the 

covariance matrix  

 

 
 



 ij
S

i j
X

L

X X
i M j M

m

2
2 1

0

1 1 










    



, , , 

Eq 4.19 

 

As M  is large, the error associated with a particular pixel intensity is likely to be 

large. However, as these pixels are small, a detail in the image may often be spread 

over many pixels. In this case, it is more appropriate to calculate the error associated 

with the sum of the pixel intensities in the entire image detail 

 

d X um m
m

M






1

, 
Eq 4.20 

 

where um is equal to 1 if the pixel is part of the detail and 0 otherwise. The standard 

deviation of d  is given by  

 

 

 




 
d u

L

X X
ui

S

i j
X

j

m






























2 1
1

2

0

. 

Eq 4.21 

 

In this thesis, the technique of maximum entropy is used to give three dimensional 

images of magnetisation density in single crystals from magnetic unit cell structure 

factors measured using the D3 diffractometer at the I.L.L. 
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4.5 Maximum entropy and counting statistics. 

 

In general, neutron scattering experiments involve counting the number of neutrons 

PN  scattered in a particular direction (perhaps with a particular energy and spin state) 

for a fixed period of time T . If any statistical analysis is to be performed on the 

information obtained from such a measurement, the standard deviation   PN  of 

PN  has to be calculated. In order to do this, the probability of measuring a different 

number of neutrons P  in a second hypothetical experiment has to be calculated. In the 

Bayesian formulation, this corresponds to determining the probability density function 

 prob P P IN , . 

 

As P  has only been measured once, the average value for P , P  is equal to PN . 

This can be written as 

 

 P = probP P P I P

P=
N N

0



 , , 
Eq 4.22 

 

and provides the only piece of information concerning this probability density 

function. There will be many probability density functions that satisfy this constraint, 

so more information is needed to arrive at a unique choice. As with deciding amongst 

the equally probable images in the previous section, the principle of maximum 

entropy can provide this extra information. In this case, the Shannon-Jaynes entropy is 

written as  

 

 
 
 

S P P I
P P I

P I
N

P

N
 



















prob
prob

prob
, log

,

0

, 

Eq 4.23 

 

where  prob P I  is the probability density function for P  appropriate before the 

value of PN  has been measured. By comparing with equation 4.15, it can be seen that 

 prob P I  is the measure. It gives the value of P  that one would choose without 
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access to any data, and is assigned by assuming that in any small increment of time 

dT , during the period T , the probability of counting a neutron is the same as the 

probability of not counting a neutron (i.e. equal to 1 2 ). If this is the case, then 

 prob P I  will not be uniform; the probability of counting P  neutrons will be 

proportional to the number of ways that their detection can be distributed over the 

total counting time T . This leads (in the limit of dT  0) to an assignment of the 

measure as 

 

 
 

prob P I
dT

T
dT

P

T

dT

P















lim

!
exp

0
. 

Eq 4.24 

 

The equation that has to be maximised in order to determine  prob P P IN ,  is given 

by 

 

 
 
 

 L P P I
P P I

P I
P P P P IS N

P

N
N N
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 prob
prob

prob
prob, log

,
,

0 0

 . 

Eq 4.25 

 

This equation is of exactly the same form as equation 4.17 as it consists of an entropy 

term that is constrained by the available data. Its solution is 

 

 
   

prob P P I
P P

PN
N

P
N

,
exp

!



, 

Eq 4.26 

 

which is the Poisson distribution. If PN  is large, this can be approximated by the 

Gaussian distribution, and if this is done the value for the standard deviation of PN  is 

found to be 

 

  P PN N . Eq 4.27 
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CHAPTER 5 
 

ELASTIC NEUTRON SCATTERING 

EXPERIMENTS 
 

This chapter contains the experiments to determine the magnetisation density in 

YbNi2B2
11

C, ErNi2B2
11

C, HoNi2B2
11

C and LuNi2B2
11

C. These experiments were 

performed on the D9 and D3 diffractometers at the I.L.L. This chapter also contains a 

description of an experiment performed using the D10 diffractometer at the I.L.L. that 

was designed to search for magnetic order in the YbNi2B2
11

C compound at low 

temperatures. An experiment using the D1B diffractometer at the I.L.L., needed to 

determine the amount of Yb2O3 impurity present in the YbNi2B2
11

C polycrystalline 

sample, is also included.  

 

5.1 

 

Determination of the nuclear structure, average crystallite radius and 

mosaic spread of single crystals of RNi2B2
11

C [R = Yb, Er, Ho, Lu] using 

unpolarised elastic neutron scattering and the D9 diffractometer at the 

I.L.L. 

 

5.1.1 Aims of the experiment. 

 

In order to calculate the magnetisation density in a single crystal from the flipping 

ratios obtained in the D3 experiment (§ 5.2), the nuclear structure, including the 

thermal displacement parameters, average crystallite radius, and mosaic spread of that 

crystal must be known. In this experiment, these quantities were determined for single 

crystals of RNi2B2
11

C, [R = Yb, Er, Ho, Lu].  

 

5.1.2 Sample preparation. 

 

The single crystals used in this experiment were prepared at the Ames laboratory 

using the Ni2B
11

 flux growth technique [1]. The B
11

 isotope was used as it has a 

considerably lower neutron absorption cross section as compared with naturally 
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occurring boron (containing 20% by mass of B
10

). The following grey ‘flat-plate’ 

crystals were obtained: 

 

Crystal 

 

Mass (mg) ~Length (mm)  ~Width (mm) ~Thickness (mm) 

YbNi2B2
11

C 73 5.5 5.0 0.5 

ErNi2B2
11

C 160 4.7 4.5 0.6 

HoNi2B2
11

C 45 3.8 3.5 0.4 

LuNi2B2
11

C 89 7.0 4.5 0.55 

 

Fig 5.1 : Approximate masses and dimensions of the single crystal samples. 

 

5.1.3 Data collection. 

 

For each crystal, sets of Bragg peak intensities { I ( ) } were measured using the 

technique described in § 3.3.1.2. Measurements were made at different neutron 

wavelengths to aid in the determination of the average crystallite radius and mosaic 

spread of the crystal (see § 5.1.4.2). For each set of intensities, a standard reflection 

was periodically measured to check that D9, the reactor and the crystal were stable 

throughout the experiment. 
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YbNi2B2
11

C 15 0.548 881 302 -3 to 10 -8 to 7 -24 to 24 5 to 52 

  0.706 507 153 -4 to 6 -6 to 5 -19 to 19 6 to 40 

  0.840 528 154 -2 to 6 -6 to 5 -19 to 19 4 to 50 

ErNi2B2
11

C 20 0.548 1091 298 -4 to 8 -8 to 7 -24 to 24 5 to 40 

  0.840 652 153 -4 to 6 -6 to 5 -19 to 19 5 to 50 

HoNi2B2
11

C 20 0.548 874 299 -4 to 8 -8 to 7 -24 to 24 5 to 40 

  0.706 586 159 -4 to 6 -7 to 5 -19 to 19 6 to 53 

  0.840 702 163 -4 to 6 -6 to 5 -19 to 19 5 to 53 

LuNi2B2
11

C 15 0.548 1061 297 0 to 10 0 to 8 -24 to 24 5 to 52 

  0.840 664 180 -6 to 6 0 to 6 -20 to 20 5 to 55 

 

Fig 5.2 : The data collected in the D9 experiment. 

 

5.1.4 Correction factors. 

 

Equation 3.25 relates the Bragg peak intensity )(I  to the nuclear unit cell structure 

factor )(NF . This equation is based on a number of ideal assumptions concerning 

the diffraction process. In a real experiment, these assumptions are not valid, and the 

equation must be modified if it is to be used to determine the desired information 

concerning the crystal [2]. 

 

         
2

corr
3

2

0

2
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3

2

0
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q




q


 NN FMEA

v

V
F

v

V
I   

Eq 5.1 

 

The factors )(A , )(E  and M( )  represent corrections made in order to take 

account of absorption, extinction and multiple scattering of the neutrons as they pass 

through the sample crystal. It follows that )(corr NF  is the structure factor that has been 

corrected for absorption, extinction and multiple scattering, and )(uncorr NF  is the 

structure factor that has not. 
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5.1.4.1 Absorption and incoherent scattering. 

 

When a monochromatic neutron beam of initial intensity I0  passes through a 

homogeneous sample of thickness p , its intensity is reduced due to absorption and 

incoherent scattering to 

 

 I I pA  0 exp  , Eq 5.2 

 

where    is the total linear attenuation coefficient. This coefficient is given by 

 

   
i

iIiAi

c

n
m




 , 
Eq 5.3 

 

where mc  is the mass of the unit cell, ni  is the number of atoms of type i in the unit 

cell, and    is the density of the sample. The absorption cross section for the i th  atom 

is  A i , and refers to the capture of neutrons by the nuclei of the atoms; it is a 

function of the neutron wavelength  . The incoherent scattering cross section for the 

i th  atom is I i , and is normally considered to be independent of the neutron 

wavelength; incoherent scattering is included here, as it results in an apparent 

absorption of the coherent beam [2] [3] (see § 3.2.2.1). 

 

It can be seen from the two preceding equations that the absorption of neutrons by a 

sample depends on the physical properties of the unit cell, the wavelength of the 

neutrons, and the path length that the neutrons travel through the sample. Absorption 

is independent of whether the sample is in a powder or a single crystal form. 

 

The above theory can be used to determine the value for A( )  in equation 5.1. The 

physical properties of the unit cell and the neutron wavelength are constant for each 

value of  , but the path length is different. In order to calculate the path length for 

each value of  , the crystal dimensions and the orientation of the crystal with respect 

to its reciprocal lattice must be known. 
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5.1.4.2 Extinction.  

 

Corrections due to extinction are necessary when performing diffraction experiments 

using single crystal samples. In general, a single crystal is not perfect, and consists of 

many crystallites. These crystallites may be of differing sizes, and are misaligned with 

respect to one another. In the mosaic crystal model, a single crystal can be 

characterised by two parameters with respect to these imperfections: the average 

crystallite radius t , and the mosaic spread g  which is a measure of the angular 

variation of the alignment of the crystallites [4].  

 

Extinction is a reduction of the intensity of the incident or diffracted neutron beam 

due to coherent scattering, and exists in two forms: primary, and secondary extinction. 

In general, both types of extinction occur within a crystal. 

 

Primary extinction occurs in crystals where t  is large enough to cause a substantial 

reduction in the intensity of the incident beam within an individual crystallite. In this 

case, after the incident beam has travelled a small distance into a crystallite at the 

surface of the crystal, the majority of it will have been diffracted. This reduction in 

intensity of the incident beam means that crystal planes further inside the crystallite 

contribute less to the diffraction. Also, because of the perfect alignment of the crystal 

planes, the diffracted beam can be rescattered within the crystallite, causing it to 

become parallel to the incident beam again. This causes an overall reduction in the 

intensity of the diffracted beam. These effects can be thought of as an interference 

between the incident and diffracted beams within the crystallite causing a mutual 

transfer of intensity.  
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Reduction in intensity of the 
diffracted beam due to rescattering.

Reduction in intensity of the
incident beam due to diffraction.

Incident beam.
Diffracted beam.

Diffracted beam.

Incident beam.

 

 

Fig 5.3 : Primary extinction. 

 

Secondary extinction occurs in crystals where t is small enough to cause only a small 

reduction in the incident beam intensity within an individual crystallite. However, if 

the mosaic spread is small, the incident beam will pass through many aligned 

crystallites, and after it has travelled a short distance into the crystal, the intensity may 

be substantially reduced. This means that crystallites further inside the crystal will 

contribute less to the diffraction. Also, the diffracted beam from one crystallite can be 

rescattered by another aligned crystallite, causing it to become parallel to the incident 

beam again. This leads to an overall reduction in the intensity of the diffracted beam. 

As with primary extinction, these effects constitute an interference between the 

incident and diffracted beams causing a mutual transfer of intensity. However, with 

secondary extinction, this interference involves beams scattered in many crystallites. 

As the scattering is from different crystallites, there is no phase coherence between the 

scattered beams, unlike in the primary extinction case. 
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Reduction in intensity 
of the diffracted beam 
due to rescattering.

Reduction in intensity 
of the incident beam 
due to diffraction.

Incident beam.

Diffracted 
beam.

a)

b)

a

b

a

Crystallites 
satisfying shown
Bragg condition.

Crystallites not 
satisfying shown 
Bragg condition.

 

 

Fig 5.4 : Secondary extinction. 

 

Simple scattering theory assumes that the incident beam is not reduced in intensity by 

diffraction, and the diffracted beam does not undergo rescattering. As can be seen 

from the above descriptions of primary and secondary extinction, these two 

assumptions are invalid. The corrections to the Bragg peak intensities due to 

extinction are given by 

 

       I E I y y IU C P S C     , Eq 5.4 

 

where I U  is the uncorrected intensity, and IC  is the corrected intensity [5]. The 

corrections for primary and secondary extinction are treated independently, and are 

given by yP  and yS ; these are combined to give the total correction E . The starting 

point in the calculation of both extinction corrections is a differential equation 

expressing the mutual transfer of intensity between incident and diffracted beams  
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Eq 5.5 

 

where ( yx, ) is a general point in the crystal. An analytic integration of this equation 

across the whole crystal is not possible, even for the simplest crystal shapes. 

Therefore, the integration is done numerically, and analytic expressions for yP  and 

yS  are found by a least squares fit to the data. These are 
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Eq 5.6 
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Eq 5.7 

 

where T  is the absorption weighted mean path length through the crystal for the 

reflection, and FN  is the nuclear structure factor. The neutron wavelength is  , v0  is 

the volume of the unit cell, and ),( gtf  is a function of the average crystallite radius 

and mosaic spread of the crystal. The angle between the incident and diffracted beams 

is 2q , and )(qPA , )(qPB , )(qSA  and )(qSB  are functions of q  only [6]. 

 

The relative amounts of primary and secondary extinction, for a particular reflection, 

are determined by the values of T , t , g  and q . The fact that both types of extinction 

are proportional to  3  is important, as this dependence is useful for characterising 

the extinction in an experiment.  
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5.1.4.3 Multiple scattering. 

 

Multiple scattering is a transfer of intensity between the incident or diffracted beams 

of two different reflections k and h [2]. Some of the intensity of the incident beam for 

reflection k can be taken by reflection h, reducing the intensity of the diffracted beam 

for reflection k. This process is known as ‘Aufhellung’. Also, the diffracted beam for 

reflection h can be considered to contribute to the incident beam for the reflection k-h. 

This causes an increase in the intensity of the diffracted beam for the k-h reflection. 

This is called ‘Umweganregung’. Multiple scattering depends on the size, mosaic 

spread and crystallite radius of the sample and the divergence of the incident neutron 

beam. It is almost independent of the neutron wavelength. For crystal structures with a 

high density of reflections, the Umweganregung effect is the more serious. A 

resonable correction can often be made by subtracting a fixed contribution from all the 

reflections [7]. This results in a large percentage reduction in the intensities of the 

weak reflections, but makes a much smaller difference to the more intense reflections. 

Extinction, where the incident and diffracted beams are from the same reflection, is a 

special cases of multiple scattering and is the larger effect. 

 

5.1.5 Analysis of the data. 

 

The processing of the data was performed using three of the standard diffraction data 

analysis computer programs available at the I.L.L: RACER, DATAP and REFORM. 

The least squares refinement was performed using the SFLSQ program of the 

Cambridge Crystallography Subroutine Library (C.C.S.L.) [8]. All the programs are 

written in the FORTRAN language.  

 

For each crystal, RACER, DATAP and REFORM were used to produce sets of 

nuclear structure factors for each neutron wavelength. A SFLSQ refinement was 

performed on each data set to determine the multiple scattering correction needed to 

be made to the output of DATAP (see § 5.1.5.1.2.1). After these corrections had been 

made, for each crystal, the corrected files output by REFORM at different 

wavelengths were combined and the final least squares refinement performed on the 

combined data. 
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5.1.5.1 Determination of the positions and thermal parameters of the atoms in 

the unit cell, and the average crystallite radius and mosaic spread of the 

crystal using least squares refinement. 

 

5.1.5.1.1 RACER. 

 

RACER calculates the integrated Bragg peak intensities from the collected data. The 

raw data from a D9 experiment is stored as a three dimensional array of intensities. 

The three dimensions correspond to the x and z positions of the multidetector, and the 

rotation of the crystal . In order to determine the correct total intensity of the Bragg 

peak, a determination of the 3-D peak profile and background intensity is made, so 

that the three dimensional integration does not include a large contribution from the 

background. This would cause the estimated standard deviation of the peak intensity 

to be artificially high which could prevent a successful measurement of the weak 

reflections. In RACER, the strong reflections are used to determine ellipsoids in x, z 

and  , throughout the observational space, that contain the minimum amount of 

background intensity while still being certain to include the whole peak. These 

ellipsoids are then used as a priori boundaries when performing the integration of the 

weak reflections in the same region of detector space. After RACER has calculated 

the Bragg peak intensities { I ( ) } and their standard deviations { [ ( )]I }, it 

calculates the corresponding set of the squares of the uncorrected nuclear unit cell 

structure factors {   2uncorr || NF } and their standard deviations {   [ | | ]FN
uncorr 2 } [9].  

 

5.1.5.1.2 DATAP. 

 

DATAP takes the output from RACER, along with a file that contains the total linear 

absorption coefficient, the crystal dimensions, and information that allows the 

orientation of the reciprocal lattice of the crystal to be calculated with respect to the 

angles of the Eulerian cradle, and calculates the transmission factors { A( ) }, and the 

absorption weighted mean path lengths { T( ) } for each reflection. The { T( ) } are 

used by REFORM to calculate parameters that are used by SFLSQ to calculate the 

extinction corrections. DATAP then corrects the squares of the nuclear unit cell 
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structure factors for absorption { | ( )| ( )F AN
uncorr  2 }, and calculates the corrected 

standard deviations {  [ | ( )| ( ) ]F AN
uncorr 2 }. DATAP outputs { T( ) }, { A( ) } 

{ | ( )| ( )F AN
uncorr  2 } and {  [ | ( )| ( ) ]F AN

uncorr 2 }. 

 

5.1.5.1.2.1 Multiple scattering correction to the output of DATAP. 

 

For all four crystals, the experimentally determined nuclear structure factors were 

found to be systematically higher than their theoretical counterparts for the weak 

reflections in the initial refinements of the crystal structures (e.g. fig 5.5). This implied 

that the data needed to be corrected for the ‘Umweganregung’ multiple scattering 

process (see § 5.1.4.3). This was done by subtracting a fixed contribution C from all 

of the squares of the nuclear unit cell structure factors { | ( )| ( )F AN
uncorr  2 } output 

from DATAP. The size of this contribution was taken to be the average difference in 

the squares of the experimentally and theoretically determined structure factors of the 

weak reflections output by SFLSQ. 
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Fig 5.5 : Differences in the squares of 

the experimentally and 

theoretically determined 

structure factors of the weak 

reflections for LuNi2B2
11

C 

using a neutron wavelength 

of 0.0840 Å. 

 

C = F
2

exp - F
2

theo = 18. 

 

The multiple scattering correction had little effect on the final refined parameters, but 

will prove important in the analysis of the polarised neutron data (see § 5.2). 
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5.1.5.1.3 REFORM. 

 

REFORM takes the output from DATAP and calculates the nuclear unit cell structure 

factors (corrected for absorption) { F AN
uncorr ( ) ( )  }, and their standard 

deviations {  [ ( ) ( ) ]F AN
uncorr }. It also calculates four parameters C1, C2 , 

C3 and C4 , that are used by SFLSQ to calculate the extinction corrections. 

REFORM outputs  all these quantities. 

 

5.1.5.1.4 SFLSQ. 

 

SFLSQ performs the least squares refinement. Using the notation of § 4.3, the 

experimental data are given by  

 

      D F An
N

N 1
uncorr   , 

Eq 5.8 

 

and their standard deviations by 

 

          n
N

NF A 1
uncorr . 

Eq 5.9 

 

Using equations 5.1 and 3.22, the theoretically generated data are given by  

 

            F E F E b i d Wn
N

N d d
d

    











1    corr

sp,iso
exp exp . 

Eq 5.10 

 

The right hand side of the above equation is calculated from a model of the unit cell, 

average crystallite radius and mosaic spread of the crystal. It is a function of many 

variables, some of which are known before the experiment is performed, and some 

that can be treated as adjustable parameters in the least squares refinement { Xm
M
1}. 
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Known variables.  Adjustable sample parameters  Xm . 

   neutron wavelength. 

   total linear absorption coefficient for   

      the sample. 

    reciprocal lattice vectors for the  

          reflections . 

 p   path lengths for the reflections  

         ( function of crystal dimensions ). 

 bd   scattering lengths for the atoms. 

              

t  average crystallite radius of the crystal. 

g  mosaic spread of the crystal. 

 d   basis positions of the atoms. 

 Biid  anisotropic temperature factors 

             of the atoms. 

 

Fig 5.6 : Known variables and adjustable sample parameters in the least 

squares refinement.  

 

SFLSQ takes the output from REFORM and a file that contains the contains initial 

guesses for the values of the adjustable sample parameters { Xmg }. Equations 5.8, 5.9 

and 5.10 can be substituted into equation 4.10, to give the probability density function 

for the sample parameters 
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2

2
1

2 

. 

Eq 5.11 

 

SFLSQ maximises this function to obtain the most probable values for the sample 

parameters { Xm0 } (a description of the general method used to do this is given in 

§ 4.3). After the refinement, SFLSQ changes the values of the sample parameters to 

their most probable values. An additional file is output that contains the experimental 
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data { F AN
uncorr ( ) ( )  }, their standard deviations {  [ ( ) ( ) ]F AN

uncorr }, 

the theoretically generated data { E FN( ) ( ) corr } and the normalised residuals 

 
         

    
R

E F F A

F A
n
N

N
n

N
n

n N

 

















1

   

  

corr uncorr

uncorr
. 

 

At the end of the output file, there are a set of values that characterise the success of 

the refinement. The most important of these are the sum of the normalised residuals 





N

n

nR
N

R
1

1
 and  




N

n

nR
N 1

22 1
  where N is the number of observed reflections.. 

 

As SFLSQ calculates the extinction corrections in producing the theoretically 

generated data, the set of extinction corrections { E( ) } are also output.  

 

5.1.5.2 Calculation of the real space unit cell lattice vectors using least squares 

refinement. 

 

Accurate values for the real space unit cell lattice parameters were determined using 

another least squares refinement program called RAFD9. It takes an output file from 

RACER, containing the values of  ,  ,    and q  for each Bragg reflection, and a 

file containing the initial guesses for the values of the lattice parameters a , b , c ,  , 

   and  . After the minimisation, the refined values for the lattice parameters are 

output. 
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5.1.6 Results 

 

Crystal T  

(K) 

Wav’th  

(Å) 

Absorption Extinction Multi’ 

scatt’ 

Scale 

factor 

 

     

(mm
-1

) 

 

Amin Amax Emin 

 

C  S 

YbNi2B2
11

C 15 0.548 0.0440 0.87 0.98 0.78 5 5.08 

  0.706 0.0490 0.86 0.98 0.73 7 5.95 

  0.840 0.0550 0.83 0.97 0.71 9 6.96 

ErNi2B2
11

C 20 0.548 0.0976 0.81 0.96 0.78 1 4.14 

  0.840 0.1380 0.66 0.95 0.56 3 5.90 

HoNi2B2
11

C 20 0.548 0.0512 0.89 0.98 0.81 2 4.32 

  0.706 0.0610 0.85 0.97 0.58 2 5.29 

  0.840 0.0694 0.83 0.97 0.55 3 6.12 

LuNi2B2
11

C 15 0.548 0.0575 0.81 0.98 0.60 6 7.71 

  0.840 0.0791 0.70 0.98 0.35 18 16.44 

 

Fig 5.7 Data concerning the absorption, extinction and multiple scattering 

corrections. 

 

The above table shows the linear attenuation coefficient and the minimum and 

maximum absorption and extinction corrections used in the processing of all the 

reflections for each data set. It also gives the value of C ( = F
2

exp - F
2

theo, 

see § 5.1.5.1.2.1) and the scale factor S. For all the data sets Emax was equal to unity. 

 

 YbNi2B2
11

C ErNi2B2
11

C HoNi2B2
11

C LuNi2B2
11

C 

R ITF 0.098(5) 0.127(7) 0.017(8) 0.028(6) 

Ni ITF 0.094(5) 0.152(5) 0.159(6) 0.085(5) 

B ITF 0.26(1) 0.293(9) 0.27(1) 0.239(5) 

 Z 0.36028(5) 0.35961(5) 0.35911(6) 0.36061(3) 

 SITE 1.002(5) 0.993(5) 0.967(6) 0.981(5) 

C ITF 0.238(9) 0.234(8) 0.24(1) 0.174(6) 

MOSC 0.152(3) 0.264(5) 0.316(7) 0.72(2) 



 6.0 3.38 7.31 14.2 

 

Fig 5.8 The refined sample parameters. 
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ITF  (Å
2
) - Isotropic temperature parameter. 

Z  (c) - Position of the boron atom on the crystallographic c axis. 

SITE  - Occupation of the boron site (unity is 100% occupation). 

MOSC  (rad
-1

) - Mosaic spread of the crystal. 



 / N  - 


 divided by the number of data. 

 

Refinement of the value for the crystallite radius was not possible. A value of 70 m 

was used for all four crystals. The site occupation of the boron site was refined 

because the B
11

 isotope used in the production of the crystals contains a small amount 

of B
10

. Refinements with isotropic and anisotropic temperature factors were 

performed; no significant differences in the success of the fit was found.  

 

5.2 

 

Determination of the magnetisation density in single crystals of RNi2B2
11

C 

[R = Yb, Er, Ho, Lu] using polarised elastic neutron scattering and the D3 

diffractometer at the I.L.L. 

 

5.2.1 Aims of the experiment. 

 

This experiment was designed to look for differences in the magnetisation density 

associated with the rare earth site and the nickel/ boron sublattice amongst the four 

compounds RNi2B2
11

C [R = Yb, Er, Ho, Lu]. The electronic properties of these four 

compounds are discussed in detail in § 1.2. 

 

The first aim of this experiment was to look for differences between the magnetisation 

density in the YbNi2B2
11

C compound below and above the Kondo temperature, 

measured at temperatures of 2 K and 40 K respectively. The second aim was to 

compare the magnetisation density in the YbNi2B2
11

C compound with that in the 

ErNi2B2
11

C and HoNi2B2
11

C, to look for differences between the non-superconducting 

heavy fermion compound and superconducting compounds that also exhibit long 

range magnetic order at low temperatures. There has been a debate as to the existence 

of a magnetic moment on the nickel site in the superconducting nickel 

borocarbides [10]. This is an important issue, as the presence of a moment on this site 

would seem incompatible with conventional phonon mediated superconductivity and 
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would perhaps lend weight to the idea that magnetic fluctuation pairing or other exotic 

mechanisms are involved in the superconducting order in these compounds (see 

§ 2.2.4.2). The final aim was to look at the magnetisation density associated with the 

nickel/ boron sublattice of the superconducting, but non magnetically ordered, 

compound, LuNi2B2
11

C. 

 

5.2.2 Sample preparation. 

 

The single crystals used in this experiment were the same ones (necessarily) that were 

used in the D9 experiment (see § 5.1.2). 

 

5.2.3 Data collection. 

 

For each crystal, sets of flipping ratios { R( ) } were measured using the technique 

described in § 3.3.2. All the data were obtained using a neutron wavelength of 

0.840 Å. In order to survey a large enough region of reciprocal space, each set of 

flipping ratios contained data measured with the crystal in two orientations: in the first 

orientation, the magnetic field was approximately parallel to the [100] reciprocal 

lattice vector of the crystal; in the second, the field was approximately parallel to the 

[110] vector. As the crystals have a tetragonal unit cell, the magnitudes of  m r  

projected along these two crystal vectors are equal (to 1
st
 order), and the flipping ratios 

obtained in each orientation could therefore be combined into a single data set. Any 

discrepancies between the magnitudes of the magnetic structure factors obtained from 

the two orientations was absorbed by a small scaling. 

 

5.2.3.1 The YbNi2B2
11

C crystal. 

 

Two sets of flipping ratios were measured at temperatures of 2 K and 40 K. These two 

temperatures were chosen as they lie below and above the Kondo temperature of 

YbNi2B2
11

C. The applied field was 4.6 T. 
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5.2.3.2 The ErNi2B2
11

C and HoNi2B2
11

C crystals. 

 

One set of flipping ratios was measured at a temperature of 20 K for each crystal. This 

temperature was chosen as it is above both the superconducting and magnetic ordering 

temperatures. Another set, measured for less time, was measured at 40 K for each 

crystal. These higher temperature data were needed in order to determine uniquely the 

magnetic structure factors from the flipping ratios (see § 5.2.5.1.3). The applied field 

was 4.6 T. 

 

5.2.3.4 The LuNi2B2
11

C crystal. 

 

One set of flipping ratios was measured at a temperature of 1.5 K, using an applied 

field of 9.2 T. The temperature and applied field were chosen to maximise the 

magnetic signal. Measurements at this temperature were possible as the applied field 

exceeded the critical field of LuNi2B2
11

C [11]. A full set of flipping ratios were not 

measured for this sample as the flipping ratios were all very close to unity and a 

considerable amount of time was needed to achieve convincing statistics on each 

reflection.  
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YbNi2B2
11

C 2 4.6 531 135 -6 to 6 -4 to 5 -19 to 19 5 to 53 

 40 4.6 580 136 -6 to 6 -4 to 5 -19 to 19 5 to 53 

ErNi2B2
11

C 20 4.6 357 123 -5 to 4 -6 to 6 -18 to 19 4 to 52 

 40 4.6 235 123 -5 to 4 -4 to 6 -18 to 19 5 to 52 

HoNi2B2
11

C 20 4.6 737 145 -6 to 6 -4 to 5 -20 to 20 4 to 50 

 40 4.6 317 145 -6 to 6 -4 to 5 -20 to 20 4 to 50 

LuNi2B2
11

C 1.5 9.2 51 17 -2 to 3 -1 to 0 -10 to 10 4 to 33 

 

Fig 5.9 : A summary of the data collected in the D3 experiment. 

 

5.2.4 Correction factors. 

 

Equation 3.41 allows a set of magnetic unit cell structure factors { FM ( ) } to be 

calculated from a set of flipping ratios { R( ) }. However, it must first be corrected for 

the following effects:  

 

5.2.4.1 Polarisation. 

 

The polarisation of a neutron beam is defined as 

 

P
N N

N N


  

  
, 

Eq 5.12 

 

where N   and N   are the numbers of neutrons in the spin-up and spin-down states 

respectively [12]. It is therefore a number between 1 (beam 100 % polarised in the 

spin-up state) and -1 (beam 100 % polarised in the spin-down state). Equation 3.41 

gives the flipping ratio for the case where the spin-up and spin-down beams are 100 % 

polarised. In general, polarising monochromators and spin flippers are not perfect, and 

the polarisation of neutron beams is less than 100 %.  
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If the polarisations of the spin-up and spin-down beams are given by P  

(0 < P  < 1) and P  (   1 0P ) respectively, then equation 3.41 becomes  

 

 
           

           
R

F r F P F r F P

F r F P F r F P

N M N M

N M N M


     

     


      

      

0
2

0
2

0
2

0
2

1 1

1 1

, 
Eq 5.13 

 

where P  is equal to  P E  and E  is the flipper efficiency (0 < E  < 1) . 

 

Before this experiment, P  and E  were determined using two calibration samples, 

Co 0.92Fe 0.08 and Cu2MnAl (Heusler crystal). The cobalt-iron alloy has  FN   equal to 

  r FM0  for the (200) reflection. If this flipping ratio is measured, then 

equation 5.13 gives a relation between P  and E . The Heusler crystal has  FN   

equal to    r FM0  for the (111) reflection. A similar measurement gives another 

equation relating P  and E . The two quantities can be determined by a solution of 

the resulting simultaneous equations [13].  

 

5.2.4.2 Scattering vector tilt. 

 

The above equation assumes that the scattering vector is in the xy plane (see 

figure 3.4 , and equation 3.35) . However, flipping ratios are often measured with the 

final neutron wavevector rotated an angle   out of this plane. If this is taken into 

account, the above equation becomes 

 

 
               

               
R

F r F P F r F P

F r F P F r F P

N M N M

N M N M


       

       


      

      

0
2

0
2

0
2

0
2

1 1

1 1

sin sin

sin sin

 
Eq 5.14 

 

where   is the angle between the scattering vector and the direction of magnetisation 

(z axis) [13] 
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5.2.4.3 Extinction. 

 

A description of extinction is given in § 5.1.4.2. The extinction corrections are 

different for the spin-up and spin-down measurements as the total scattering cross 

sections for the two spin states are different. If these extinction corrections are denoted 

by y   and y  , then the above equation becomes 
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Eq 5.15 

 

If the extinction correction to the nuclear structure factor, described in § 5.1.4, can be 

represented as  F F dNN N
uncorr corr 1 , then the relationship between the magnetic 

structure factor obtained with and without the extinction correction, described above, 

is  F F dNM M
uncorr corr 1 2 . Therefore, the extinction correction to the flipping 

ratios has twice the effect on the quantity of interest as compared with the extinction 

correction in the D9 experiment [14]. 

 

5.2.4.4 Multiple scattering. 

 

A description of multiple scattering is given in § 5.1.4.3. The ‘Umweganregung’ 

transfer of intensity causes an additional contribution to the numerator and 

denominator of equation 5.15, causing the flipping ratio to move closer to unity. This 

effect is more serious for the weaker reflections and results in the magnetic structure 

factors being underestimated. The multiple scattering corrections used in the D9 

experiment were used to make a first order correction to the magnetic structure factors 

obtained using equation 5.15, 
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F

F
F C SM

M

N
N

mul
no mul

calc
calc( )

( )
/


 

2
. 

Eq 5.16 
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)(mul no MF  is the magnetic structure factor obtained from equation 5.15, )(calc NF  is the 

nuclear structure factor calculated from the information obtained in the D9 

experiment, C is the multiple scattering correction applied to the squares of the 

nuclear structure factors in the D9 experiment (see § 5.1.5.1.2.1), and S is the refined 

D9 scale factor. The D9 multiple scattering corrections could be used in this way, 

because in this experiment D3 was operating with a similar neutron wavelength and 

incident neutron beam divergence [15]. 

 

5.2.5 Analysis of the data. 

 

5.2.5.1 Calculation of the magnetic unit cell structure factors from the flipping 

ratios. 

 

Three C.C.S.L. programs were used to calculate the set of magnetic structure factors 

{ FN
calc ( ) } from the set of flipping ratios { )(R }. The data processing was done using 

D3OP97 and ARRNGE. The calculation of the magnetic structure factors was 

performed by SORGAM.  

 

5.2.5.1.1 D3OP97. 

 

D3OP97 is the initial data processing program. It takes the raw data from the D3 

computer and calculates a set of flipping ratios { R( ) } and their standard deviations 

{ [ ( )]R }, and writes these to a file. D3OP97 outputs another file that contains 

information concerning the orientation of the crystal with respect to the angles  , 2q  

and  , and the polarisation of the spin up P  and spin down P  beams.  

 

After D3OP97 has been executed, the output orientational and polarisation 

information is manually merged with the file output by SFLSQ that contains the 

refined nuclear structure, average crystallite radius, mosaic spread and absorption 

parameters (see § 5.1.5.1.4). The resulting file is used by ARRNGE and SORGAM as 

described below. 
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5.2.5.1.2 ARRNGE. 

 

ARRNGE arranges the flipping ratios output by D3OP97 into groups that are related 

by the symmetry of the unit cell, and subgroups of repeated measurements, using the 

space group information contained in the refined parameter file prepared using 

D3OP97 and SFLSQ.   

 

5.2.5.1.3 SORGAM. 

 

SORGAM takes the output from ARRNGE and the refined parameter file, produced 

using D3OP97 and SFLSQ, and calculates the magnetic structure factors from the 

flipping ratios using equations 5.15 and 5.16. The flipping ratio is a quadratic function 

of the magnetic structure factor and has two solutions. For samples where the 

magnetic structure factors are small (i.e. magnetic structure factors << nuclear 

structure factors), the flipping ratio is close to unity, and there is no doubt in deciding 

which solution to accept as the magnetic structure factor as the other solution 

produces an unphysical answer (i.e. very large). In the case of samples with larger 

magnetic structure factors, this may not be the case, and additional information must 

be obtained. The size of a magnetic structure factor should reduce with increasing 

temperature as the thermal motion of the magnetic moments increases. This reduction 

should be proportionately the same for all the structure factors. Therefore, if the 

flipping ratio is measured at two temperatures, both solutions can be found at each 

temperature, giving four magnetic structure factors. Only one of the four ratios of low 

temperature to high temperature structure factors will give the correct value for the 

reduction of magnetic structure factor with increasing temperature. A list can then be 

given to SORGAM to tell it which solution of the flipping ratio equation to take to 

produce the final magnetic structure factors { FM S( ) } to be used to calculate the 

magnetisation density. 
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Fig 5.10 : Flipping ratio versus the 

ratio of the magnetic 

structure factor to the 

nuclear structure factor. 

The solid line (dashed) line 

shows the region of the 

graph giving the smaller 

(larger) magnetic structure 

factor for a given flipping 

ratio 

 

SORGAM averages together repeated measurements of the same flipping ratio and 

those measurements that are related by the symmetry of the unit cell.  

 

5.2.5.2 Calculation of the magnetisation density in the unit cell. 

 

When the magnetic unit cell structure factors have been obtained, the calculation of 

the magnetisation density in the unit cell can be performed. However, this calculation 

is not straight forward as the data set is limited. In any experiment, the time available 

is finite, and this restricts the number of structure factors that can be measured, and 

the precision to which any one structure factor can be determined. The wavelength of 

the neutrons also places a limit on the range of reciprocal space that can be explored. 

We can consider three methods of calculating the magnetisation density: a simple 

Fourier transform of the structure factors, a least squares refinement to a model of the 

magnetisation density, and maximum entropy image reconstruction. 

 

5.2.5.2.1 Calculation of the magnetisation density in the unit cell by performing 

a Fourier transform of the magnetic unit cell structure factors. 

 

The asymmetric unit of the crystal is divided into M  pixels of equal volume vm . The 

magnetisation density within one of these pixels mm  is found by substituting the 

values of the { FM S( ) } obtained from SORGAM into equation 3.43. This gives 
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   m
v

F i rm
B

a
M S m S

  


 



exp , Eq 5.17 

 

where r m  is the position vector of the centre of the pixel, and va  is the volume of the 

asymmetric unit. The above equation can be used to determine the { mm }, and 

construct an image of the magnetisation density in the unit cell. This method is 

simple, but suffers from several significant problems. All the unmeasured structure 

factors are implicitly set equal to zero. As the majority of unmeasured structure factors 

are at high q, the resulting series termination may introduce high frequency spherical 

ripples into the image that can make the detection of small real features difficult. 

Calculations to determine the errors associated with the values of the { mm } are 

difficult [16]. 

 

5.2.5.2.2 Calculation of the magnetisation density associated with each atom in 

the unit cell using least squares refinement.  

 

The problems with the method described above are due to the lack of data and their 

Fourier nature. It would therefore be helpful to introduce some more information. This 

can be done by using a model to describe the magnetisation density. The technique of 

least squares refinement can then be used to refine this model based on the values of 

the { FM S( ) } as described in § 4.3. The difference between the experimental 

structure factors and those calculated from the refined model can be taken. A Fourier 

transform of these difference structure factors can be made. The resulting difference 

image suffers much less from the effects of series termination as the unmeasured 

difference structure factors should have a value of zero.  

 

If the electrons are thought to be localised around the positions of the nuclei, the 

model described in § 3.3.2 can be used. 

 

In this experiment, MPLSQ (a modification of the program SFLSQ used in the D9 

experiment) was used for the least squares refinement. The experimental data   
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    D Fn
N

M S 1  , 
Eq 5.18 

 

and their standard deviations  

 

       n
N

M S
F 1 , 

Eq 5.19 

 

are output from SORGAM. The theoretically generated data are given by  
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N
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1   

calc
exp exp , 

Eq 5.20 

 

where the adjustable sample parameters in the least squares refinement are the  

 

   X am
M

dlm 1 , Eq 5.21 

 

where adlm  is the magnitude of the angular momentum operator associated with the 

unpaired electrons in the lmth  wavefunction of the d th  atom in the unit cell. In a 

refinement, the smallest number of the { adlm } are used that are needed to give a 

satisfactory agreement between the experimental and theoretically generated data. 

Apart from the experimentally determined magnetic structure factors, MPLSQ 

requires an input file containing the  initial guesses for the values of the { adlm }. 

 

Equations 5.18, 5.19, 5.20 and 5.21 can be substituted into equation 4.10 to give the 

probability density function for the sample parameters 
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Eq 5.22 

 

MPLSQ maximises this function to obtain the most probable values for the sample 

parameters { adlm0 }. After the refinement, MPLSQ changes the values of the sample 

parameters to their most probable values. An additional file is output that contains 

information concerning the success of the refinement, similar to the file output by 

SFLSQ in the D9 refinement. 

 

The magnetisation density associated with the d th  atom is given by the Fourier 

transform of the normalised form factors used to model that atom { Fdlm ( ) }, scaled 

by the refined values of the angular momentum operator magnitudes { adlm0 }. The 

total magnetic moment associated with the  d th  atom is given by 

 

 d B dlm
m l

l

l

a 



2 . 
Eq 5.23 

 

This method does not suffer to the same extent from the problems associated with the 

simple Fourier transform method [16]. The standard deviations associated with the 

{ adlm0 } can be calculated from the probability density function. However, in many 

problems, the reason for performing a magnetisation density experiment is to help 

determine a model for the electronic structure of the sample, and if the electrons are 

thought to be delocalised the above atom centred model is of limited use. 
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5.2.5.2.3 Calculation of the magnetisation density in the unit cell using 

maximum entropy image reconstruction. 

 

The maximum entropy image reconstruction in this thesis was performed using 

software written by A. J. Markvardsen [17]. The principle of maximum entropy with 

respect to image construction was outlined in § 4.4. In this context, it allows the 

calculation of the magnetisation density in the unit cell without an a priori theoretical 

model. However, the entropy constraint means that it does not suffer from the 

introduction of noise to the same extent as the simple Fourier transform method. It 

also allows the standard deviations of particular features in the resulting image to be 

calculated more easily from the resulting probability density function. 

 

The data { Dn
N
1} and their standard deviations { n

N
1 } are as given for the least 

squares refinement. The theoretically generated data are given by 
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calc

asym unit, 

exp . , 
Eq 5.24 

 

where mm  and mm are the positive and negative magnetisation densities in the m
th

 

pixel, and the sum is over the M  pixels in the asymmetric unit.  The Shannon-Jaynes 

entropy is given by 

 

  S m m
m

m
m

m

m
m m

m

mg
m

m

mgm

M

  

















 



































 ln ln

asym unit,  1

, 

Eq 5.25 

 

The magnetisation density is split into separate positive and negative images because 

the logarithmic nature of the single entropy term in the simple formalism outlined in 

§ 4.4 is only capable of producing positive images. This method of producing images 

containing positive and negative regions was first used in the analysis of nuclear spin 

density in N.M.R. experiments [18]. It follows that the posterior probability density 

function for the magnetisation density is 
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Eq 5.26 

 

Although a rigid model is not required, there are two a priori parameters that must be 

decided upon before the maximisation procedure can take place. The first parameter, 

E, gives a weighting between the entropy term and the least squares term. 

Sophisticated methods exists for determining its value based on the covariance matrix 

of the posterior probability density function [19]. However, Markvardsen uses a 

simpler approach. He chooses E such that  2  N  at the end of maximisation 

process. This was found to be satisfactory for data of high quality as small variations 

from this criterion do not change the resulting image significantly [17]. The second 

parameter,  mgmgmg mmm , determines the initial average magnetisation density 

in each pixel in the image. A method for finding a suitable value for this parameter 

has been determined by Markvardsen:  

 

The maximisation is performed many times with different values for mgm . For each 

maximisation, the resulting average magnetisation density, m , can be calculated. For 

small values of mgm << m , the calculated values of the magnetic structure factors that 

have not been experimentally measured (usually high q)  are much less than an 

extrapolation of the experimentally determined data would suggest. This situation is 

similar to the one encountered in the Fourier transform analysis of the data 

(see § 5.2.5.2.1). For values of mgm >> m , these calculated values are higher than an 

extrapolation of the experimental data. A value of  mgm ~ m / 4, causes the calculated 

structure factors that have not been experimentally determined to be close to the 

values that would be obtained by extrapolating the experimental data. This is found to 

be the case in all the magnetisation images that have been produced using the 

Markvardsen algorithm to date. Therefore, the most reliable maximum entropy 

constructions are thought to be produced starting with a value for mgm  of m / 4 [17].  
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The values of a priori parameters should be quoted with the results of all data analysis 

techniques. This is especially true of techniques, such as maximum entropy, where the 

prior information has a complex relationship with its effect on the resulting image. 

 

5.2.6 Results. 

 

Assuming a simple model, with spherical magnetisation density on the rare earth, 

nickel, boron and carbon sites, the calculated contributions to all the observable 

magnetic structure factors of RNi2B2
11

C (up to a Q of ~12.5 Å
-1

) are shown in 

fig 5.11. Approximately 60 % of the magnetic structure factors contain contributions 

from all the atomic sites and the remaining structure factors have contributions from 

the rare earth, boron and carbon sites only.  
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Fig 5.11 : The calculated contributions to the magnetic structure factors of 

RNi2B2
11

C from each site. The relative magnitudes of the structure 

factors from different sites are on an arbritrary relative scale. This 

scale varies significantly amongst the compounds. In general, the 

rare earth structure factors are very much larger than the others. 
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The contribution from the rare earth site to an individual structure factor is always 

positive but the nickel, boron and carbon contributions may be positive or 

negative [20]. 

  

For the YbNi2B2
11

C and LuNi2B2
11

C samples, all the measured flipping ratios were 

close to unity. Therefore, there was no difficulty in unambiguously assigning the 

magnetic structure factors from the flipping ratios. For the ErNi2B2
11

C and 

HoNi2B2
11

C samples, many flipping ratios were much larger or smaller then unity. In 

these cases, the method outlined in § 5.2.5.1.3 was used to determine the correct 

solution of the flipping ratio equation.  
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Fig 5.12 : The ratios of the magnetic structure factors obtained from the 

flipping ratio equation at temperatures of 20 K and 45 K for 

ErNi2B2
11

C. S and B denote magnetic structure factors obtained 

using the smaller and larger root of the flipping ratio equation 

respectively. 

 

It can be seen from figure 5.12 that the correct value for the ratio of the low 

temperature to high temperature magnetic structure factor for the ErNi2B2
11

C data 

is ~ 2. Using this plot, and a similar one for the HoNi2B2
11

C sample, magnetic 

structure factors were discarded from each data set where none of the ratios of low 

temperature to high temperature structure factors were near the obvious modal value. 
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The SORGAM program corrects the structure factors for polarisation, absorption, 

extinction and multiple scattering. In order to see the relative sizes of the changes to 

the structure factors from each of these corrections, the above procedure was used to 

produce four sets of structure factors that each contained only one of the corrections. 

The following figure provides a typical example of the relative contributions to the 

magnetic structure factors from each of the corrections for all four crystals: 
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Fig 5.14 : Magnetic structure factors for YbNi2B2
11

C output from SORGAM 

with different corrections (the multiple scattering correction shown 

here is equivalent to the D9 correction). 

 

It can be seen from the above plot that the multiple scattering correction has a much 

larger effect than the other corrections. The correction is proportionately larger for 

those reflections with small nuclear structure factors. Unfortunately, there is a fair 

degree of uncertainty about the size of the multiple scattering corrections to be made 

to the structure factors for all four crystals. The D9 multiple scattering corrections on 

which the D3 corrections are based are determined from graphs similar to the one 

shown in fig 5.5. It is obvious from this graph that there is a significant error 

associated with the determination of C. Also, although similar, the neutron 

wavelength and incident neutron beam divergence of D9 and D3 are not exactly the 

same. As this correction is large and there is uncertainty as to its magnitude, its effect 
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on the resulting magnetisation density maps of the compounds must be studied very 

carefully.  

 

For each compound, five sets of magnetic structure factors were produced with a 

multiple scattering correction of  0, 0.5, 1, 1.5 and 2 times the D9 correction. The 

magnetisation density was calculated from these structure factors using the least 

squares refinement and maximum entropy methods described above. In the least 

squares refinement, initially, the magnetisation density on each site was modelled only 

with their F00  form factors. The higher order anisotropic form factors were then 

introduced to determine if they produced better agreement between experimental and 

theoretical structure factors. After this had been completed, the ytterbium and erbium 

sites were modelled with the F00  and F44  form factors and the holmium site was 

modelled using the F00 , F40 , F60  and F64  form factors. The lutetium site was 

modelled with the F00  form factor only. The nickel, boron and carbon sites in all the 

compounds were modelled with the F00  form factor only. The maximum entropy 

image construction for each set of structure factors was performed as described 

in § 5.2.5.2.3 
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Fig 5.15 : 

Total magnetic moments of the Yb, Ni, B and C sites of YbNi2B2
11

C at 2 K for multiple 

scattering corrections of 0.0, 0.5, 1.5 and 2.0 times the D9 correction. Closed (open) 

circles are data determined by least squares refinement (maximum entropy image 

construction). The F00 and F44 form factors are used for the Yb site least squares 

refinement and the F00 form factors are used for the Ni, B and C sites. The maximum 

entropy a priori parameters are mgm = 0.845 B  and 
2
 = 135 after maximisation has 

finished. 
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Fig 5.16 : 

Total magnetic moments of the Yb, Ni, B and C sites of YbNi2B2
11

C at 40 K for multiple 

scattering corrections of 0.0, 0.5, 1.5 and 2.0 times the D9 correction. Closed (open) 

circles are data determined by least squares refinement (maximum entropy image 

construction). The F00 and F44 form factors are used for the Yb site least squares 

refinement and the F00 form factors are used for the Ni, B and C sites. The maximum 

entropy a priori parameters are mgm = 0.507 B  and 
2
 = 136 after maximisation has 

finished. 
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Fig 5.17 : 

Total magnetic moments of the Er, Ni, B and C sites of ErNi2B2
11

C at 20 K for multiple 

scattering corrections of 0.0, 0.5, 1.5 and 2.0 times the D9 correction. Closed (open) 

circles are data determined by least squares refinement (maximum entropy image 

construction). The F00 and F44 form factors are used for the Er site least squares 

refinement and the F00 form factors are used for the Ni, B and C sites. The maximum 

entropy a priori parameters are mgm = 12.468 B  and 
2
 = 123 after maximisation has 

finished. 
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Fig 5.18 : 

Total magnetic moments of the Ho, Ni, B and C sites of HoNi2B2
11

C at 20 K for multiple 

scattering corrections of 0.0, 0.5, 1.5 and 2.0 times the D9 correction. Closed (open) 

circles are data determined by least squares refinement (maximum entropy image 

construction). The F00, F40, F60 and F64 form factors are used for the Ho site least 

squares refinement and the F00 form factors are used for the Ni, B and C sites. The 

maximum entropy a priori parameters are mgm = 15.123 B  and 
2
 = 145 after 

maximisation has finished. 
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Fig 5.19 : 

Total magnetic moments of the Lu, Ni, B and C sites of LuNi2B2
11

C at 1.5 K for multiple 

scattering corrections of 0.0, 0.5, 1.5 and 2.0 times the D9 correction. Closed (open) 

circles are data determined by least squares refinement (maximum entropy image 

construction). The F00 form factors are used for all sites in the least squares refinement. 

The maximum entropy a priori parameters are mgm = 0.0234 B  and 
2
 = 17 after 

maximisation has finished. 
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The above graphs show the values of the total magnetic moments on the rare earth, 

nickel, boron and carbon sites for the four compounds. In all compounds, the error 

bars are larger for the maximum entropy refinement. This is a reflection of the fact 

that the least squares refinement employs a larger amount of prior knowledge 

concerning the distribution of the magnetisation density. In general, there is fairly 

good agreement between the total magnetic moments determined from the least 

squares and the maximum entropy methods. The agreement is worst for the 

LuNi2B2
11

C compound, which is not surprising as only 17 independent structure 

factors were measured for this compound.  

 

Fig 5.15 shows the magnetic moments of the sites in YbNi2B2
11

C at 2 K, which is 

below the reported value of TK . One of the main aims of this experiment was to study 

the effect of heavy fermion behaviour on the magnetisation density of this compound, 

particularly to look for signs of hybridisation between the ytterbium sites and the 

nickel/ boron sublattice. Unfortunately, the multiple scattering correction has a large 

effect on the magnetisation density in this compound. The effects of this correction 

can be seen in fig 5.15; as the size of the correction increases, positive magnetisation 

density is transferred from the Ni, B and C sites to the Yb site. The signs of the Ni, B 

and C magnetic moments consequently change from positive to negative. As 

mentioned above, a determination of the exact multiple scattering correction to be 

used is extremely difficult with the information obtained in this experiment. However, 

the data presented in fig 5.15 does perhaps provide some clues as to the magnitude of 

the correction. Theoretically, the magnetic moment on the boron and carbon sites 

should be zero. Therefore, it would be sensible to assume the multiple scattering 

correction is 0.4 times the D9 correction as this value leads to a moment of zero on 

both of these sites. As the nickel moment, with all corrections, is close to the value of 

the boron and carbon moments, it follows that the nickel moment will also be zero 

with this multiple scattering correction. Further evidence that this is an appropriate 

correction to make comes from the fact that the value of  2  in the least squares 

refinement passes through a minimum at a value of 0.4 times the normalised D9 

correction. This method of determining the correction (by comparing theoretical and 

experimental structure factors) is similar to the method employed in the D9 
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experiment (see § 5.1.5.1.2.1). Therefore, the data suggests that the Ni moment in this 

compound at 2 K is either zero or has a small finite positive or negative magnetic 

moment which has a magnitude below the resolution of this experiment. 

 

Another aim of this experiment was to compare the magnetisation density of the 

YbNi2B2
11

C compound at temperatures of 2 K and 40 K. The higher temperature data 

are presented in fig 5.16. The magnitude of the ytterbium magnetic moment has 

reduced to ~ 0.6 of its 2 K value. The magnetic moments of the nickel, boron and 

carbon sites display very similar behaviour to the 2 K data with increasing multiple 

scattering correction. Their magnitudes are also broadly similar to the lower 

temperature data. Therefore, the same conclusion can be reached regarding this data as 

was reached for the 2 K data. It is most likely that the magnetic moments of the nickel, 

boron and carbon sites are very close or equal to zero. Therefore, there is no evidence 

of substantial changes in magnetic moment of the nickel site on moving to 

temperatures below TK .  

 

The data for the ErNi2B2
11

C and HoNi2B2
11

C compounds, are presented in figs 5.17 

and 5.18. The magnetic moments of the nickel, boron and carbon sites, for both 

compounds, and for all the multiple scattering corrections shown, are 

indistinguishable (or close to indistinguishable) from zero within experimental error. 

The large errors associated with these moments are due to the proximity of the nickel, 

boron and carbon sites to the very much larger magnetic moments of the rare earth 

ions in these compounds.  

 

The data for the LuNi2B2
11

C compound is presented in fig 5.19. The least squares 

refinement suggests the existence of small moments on the nickel, boron and carbon 

sites. The analogous data from the maximum entropy processing suggest that the 

errors are too large to distinguish all the moments from zero; also, the magnitudes of 

the moments are smaller by a factor of ~ 2. As only 17 independent structure factors 

were measured for this compound, it is probably unwise to draw any firm conclusions 

from this data.  
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This experiment was also designed to look at the rare earth magnetisation density in 

the YbNi2B2
11

C, ErNi2B2
11

C and HoNi2B2
11

C compounds. In the least squares 

refinement, the ytterbium and erbium magnetisation densities were modelled with 

their F00 and F44 form factors, as these gave the best agreement between experimental 

and theoretical structure factors. Likewise, the F00, F40, F60 and F64 form factors were 

used to model the magnetisation density of the holmium site. 

 

 

  

 

Fig 5.20 :  

Magnetisation density contour at 0.007  B / ( . )01 3nm  of the Yb site in YbNi2B
11

2C at 

2 K obtained using maximum entropy image construction (a priori parameters are 

mgm = 0.845 B  and 
2
 = 135 after maximisation has been completed).  
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Fig 5.21 :  

Magnetisation density contour at 0.004  B / ( . )01 3nm  of the Yb site in YbNi2B
11

2C at 

40 K obtained using maximum entropy image construction (a priori parameters are 

mgm = 0.507 B  and 
2
 = 136 after maximisation has been completed).  

 

 
 

 

Fig 5.22 :  

Magnetisation density contour at 0.084  B / ( . )01 3nm  of the Er site in ErNi2B
11

2C at 

20 K obtained using maximum entropy image construction (a priori parameters are 

mgm = 12.468 B  and 
2
 = 123 after maximisation has been completed).  
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Fig 5.23 :  

Magnetisation density contour at 0.105  B / ( . )01 3nm  of the Ho site in HoNi2B
11

2C at 

20 K obtained using maximum entropy image construction (a priori parameters are 

mgm = 15.123 B  and 
2
 = 145 after maximisation has been completed).  

 

It was thought that there might be a significant qualitative difference in the 

magnetisation density of the Yb site in YbNi2B2
11

C measured at 2 K and 40 K, 

perhaps as the result of hybridisation of the 4f electrons and those of the nickel/ boron 

sublattice in the heavy fermion state. However, as is shown in figs 5.20 and 5.21, the 

general shape and anisotropy of the magnetisation density is the same at both 

temperatures. It was also thought that there may be significant differences between the 

Yb magnetisation density and the magnetisation density of the rare earth ions in the 

compounds that display long range magnetic order and superconductivity 

(R = [Er, Ho]). There is a significant difference between the Yb magnetisation density 

and the Ho magnetisation density. Unfortunately, the Yb and Er magnetisation 

densities are very similar. This would suggest that the two forms of rare earth 

magnetisation density do not correspond to a particular type of correlated electron 

behaviour. These general conclusions concerning the anisotropy of the rare earth 

magnetisation density are not effected by the size of the multiple scattering correction 

chosen. 

 

Before this experiment was performed, it was thought that the heavy fermion 

hybridisation in YbNi2B2
11

C might result in measurable magnetisation density in 

between the rare earth ions and the nickel/ boron sublattice; this was not observed. In 

a 

b 

a 

c 
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general, in all four compounds, there was no inter-site magnetisation density that had 

a value larger than its standard deviation. 

 

These results will be discussed further in chapter 7. Some suggestions for further work 

to improve the measurement of the magnetisation density in these compounds will 

also be given. 

 

5.3 

 

Search for magnetic order in a single crystal sample of YbNi2B2
11

C using 

elastic neutron scattering and the D10 diffractometer at the I.L.L. 

 

5.3.1 The D10 diffractometer. 

 

The general operating principle of the D10 diffractometer, when used in the standard 

four-circle configuration, is similar to that descibed for the D9 diffractometer 

(see § 3.3.1). D10 operates with thermal neutrons, and the relatively high flux and low 

background make it ideal for searching for and studying weak diffuse scattering and 

incommensurate magnetic order with small magnetic moments. The Eulerian cradle 

on D10 may be fitted with a dilution fridge enabling the sample to be cooled 

to ~30 mK [21]. 

 

5.3.2 Aims of the experiment. 

 

Measurements of specific heat capacity, resistivity and magnetic susceptibility in 

YbNi2B2C have been made down to temperatures of 0.3 K. No indication of long 

range magnetic order has been found. Neutron powder diffraction measurements have 

also been made but no magnetic Bragg peaks were observed [22]. Other measurement 

techniques, such as NMR, that would be sensitive to ordering of the Yb moments have 

not been extended below 1.5 K [23]. Often, magnetic ordering is difficult to observe 

in heavy fermion compounds. This is because the 4/5f magnetic moments may be 

substantially reduced by the formation of antiferromagnetic correlations with the 

surrounding conduction electrons. Also, if the ordering is short range or two 

dimensional, then one would not expect to observe a sharp anomaly in the bulk 

properties. For example, in heavy fermion UPt3, antiferromagnetic order was 
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discovered by single crystal neutron diffraction and an unusually small ordered 

moment of 0.02  B  was found that has not been observed by any other technique. 

The formation of a magnetically ordered state has been observed in other Yb heavy 

fermion compounds [24].  

 

The aim of this experiment was to search for magnetic order in a single crystal sample 

of YbNi2B2
11

C. The use of a single crystal and the D10 diffractometer meant that this 

experiment was much more sensitive to magnetric Bragg scattering than the 

previously performed polycrystalline neutron diffraction study. 

  

5.3.3 Sample preparation. 

 

The YbNi2B2
11

C single crystal used in this experiment was the same sample that was 

used in the D9 and D3 experiments described in § 5.1 and § 5.2. 

 

5.3.4 Data collection. 

 

q scans were performed in the ab plane to grid a box defined by the corners at 

positions in q of ( 0 7. ,0.4,0), (0.7,0.4,0), (0.7,1.6,0) and ( 0 7. ,1.6,0) with a step 

size of ~0.01 in both the a and b directions. A scan was also performed along the c 

axis from a position of c equal to 0.8 to 2.2. 

 

5.3.5 Results. 

 

In all the q scans performed there was no sign of any scattering in addition to the  

nuclear Bragg peaks. Therefore, no evidence of long or short range Yb-Yb 

correlations was found.  
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5.4 Determination of the concentration of Yb2O3 in the polycrystalline sample 

of YbNi2B2
11

C used in the H.E.T. experiment using the D1B diffractometer 

at the I.L.L. 

 

5.4.1 Aims of the experiment. 

 

The general principle of the D1B diffractometer is described in § 3.3.3. As outlined in 

§ 6.1.3.2, the polycrystalline YbNi2B2
11

C sample used in the H.E.T. experiment 

contained a Yb2O3 impurity phase. Due to the cubic unit cell, large lattice parameters, 

and the large number of formula units per unit cell of Yb2O3, the Bragg reflections are 

relatively few in number, located at low q values, and are weak in comparison with 

those of the YbNi2B2
11

C phase. This experiment was designed to determine the 

amount of Yb2O3 present, in order to perform a satisfactory background subtraction 

for the spectra obtained in the H.E.T. experiment. The D1B diffractometer was chosen 

for this study as it has very good spacial resolution at low q values. 

 

5.4.2 Data collection. 

 

The scattering from the YbNi2B2
11

C/ Yb2O3 sample was measured at room 

temperature using a neutron wavelength of 1.9 Å. The detector covered the angles 

16  < 2q < 158 with a step size of 0.05 

 

5.4.3 Results. 

 

The data collected was processed usind the least squares refinement program 

FULLPROF, avaliable at the I.L.L., dedicated to the analysis of polycrystalline 

neutron and X-ray data. The YbNi2B2
11

C and Yb2O3 compounds were assumed to be 

the only phases present in the sample. The Yb2O3 compound has a cubic structure, 

space group IA3, with a lattice parameter of 10.42 Å. The results of the refinement are 

shown in figure 5.24.  
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Fig 5.24 : Calculated (red) and observed (green) diffraction spectra for 

YbNi2B2
11

C and Yb2O3 samples. Observed spectrum measured on 

the D1B diffractometer using a neutron wavelength of 1.9 Å. 

Magenta line is the subtraction of the observed spectrum from the 

calculated spectrum. Vertical red marks show calculated positions of 

the Bragg peaks for the YbNi2B2
11

C (lower) and Yb2O3 (upper) 

contributing phases.  

 

By comparing the relative intensities of the Bragg reflections, it was determined that 

the Yb2O3 sample constituted ~9 % of the total mass of the sample. 
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CHAPTER 6 
 

INELASTIC NEUTRON 

SCATTERING EXPERIMENTS 
 

This chapter contains the inelastic scattering experiments conducted on the 

YbNi2B2
11

C compound. Two experiments, performed using the H.E.T. spectrometer at 

ISIS and the IN20 spectrometer at the I.L.L., were designed to look for and study the 

Crystalline Electric Field (C.E.F.) transitions in the compound. Three experiments, 

performed using the IN5, IN14 and IN6 spectrometers at the I.L.L., were designed to 

study the low energy transfer scattering. The H.E.T. and IN5 experiments were 

performed on a polycrystalline sample of YbNi2B2
11

C. The IN20, IN14 and IN6 

experiments were performed on a single crystal mosaic sample. 

 

6.1 

 

Search for the crystal field transitions in a polycrystalline sample of 

YbNi2B2
11

C using inelastic neutron scattering and the H.E.T. direct 

geometry time of flight spectrometer at ISIS. 

 

6.1.1 The High Energy Transfer (H.E.T.) spectrometer. 

 

The general principle of a direct geometry time of flight spectrometer is outlined 

in § 3.3.4. The neutron beam emerging from the proton target at ISIS is pulsed, and 

H.E.T. uses a Fermi chopper to monochromate these incident pulses. A Fermi chopper 

is an aluminium drum with thin sheets of highly absorbing material such as boron, 

interleaved with neutronically transparent sheets of aluminium. The rotation of the 

drum is phased to the ISIS pulse, and is only in the transmitting position at the point at 

which it will transmit neutrons with the desired energy. The slits are curved in 

opposition to the direction of rotation to optimise transmission. 

 

A large amount of -radiation is produced when the proton beam hits the target. The 

large background that this causes is reduced using a nimonic chopper placed before 
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the Fermi chopper. This chopper effectively closes the beam tube at the moment the 

proton beam hits the target. 

 

A neutron monitor is installed after the Fermi chopper and before the sample position 

to allow the neutron counts measured in the detectors to be normalised to the 

integrated incident neutron flux.  

 

There are several detector banks on H.E.T: a low angle bank at 4m from the sample 

position covers the angles 3 to 7; another low angle bank at 2.5m covers the angles 

9 to 29; a 4m high angle bank covers the angles 110 to 125, and the angles 130 to 

140 are covered by a detector bank at 2.5m (see fig. 6.4) [1]. 

 

6.1.2 Aims of the experiment. 

 

The spin-orbit 4f electronic ground state of the Yb +3 ion in YbNi2B2
11

C has L = 3, 

S = 1/ 2 and J = 7/ 2, and is eight fold degenerate (see § 2.1.1.2) . The tetragonal 

symmetry of the rare earth site would imply that this ground state is split into four 

doublets 6 CP1, 7CP26 CP3and7 CP4 by thecrystal field 

interaction (see § 2.1.2.1)  Calculations based on the crystal field transitions that have 

been observed in the ErNi2B2
11

C, HoNi2B2
11

C and TmNi2B2
11

C compounds indicate 

that the positions in energy of the excited doublets are as shown below [2]. 
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Fig 6.1 : Energy level diagram of the 

C.E.F. splitting of the 4f 

J = 7/ 2 spin-orbit ground 

state of the Yb +3  ion in 

YbNi2B2
11

C.  Transition 

strengths and selection rules 

are shown; q is the 

scattering vector and a, b 

and c are the 

crystallographic axes. 

 

The aim of this experiment was to search for the C.E.F. transitions in a polycrystalline 

sample of YbNi2B2
11

C and compare them to the scheme presented above. In other 

heavy fermion and valence fluctuation compounds, there is significant movement and 

broadening of C.E.F. levels due to the hybridisation of the rare earth 4f and 

conduction electrons and the introduction of the associated relaxation pathways 

(see § 2.2.5). A non-magnetic Y0.5Lu0.5Ni2B2
11

C background sample was also 

measured to provide a method of subtraction of the nuclear scattering contribution to 

the measured YbNi2B2
11

C spectra. The 0.5/ 0.5 mixture of yttrium and lutetium was 

chosen so that the compound had the same total linear attenuation coefficient as the 

YbNi2B2
11

C compound. 

 

6.1.3 Sample preparation. 

 

The B
11

 isotope was used in the preparation of the following compounds as it has a 

considerably lower neutron absorption cross section as compared with naturally 

occurring boron (containing 20% by mass of B
10

). The samples were prepared at the 

University of Warwick, U.K. 
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6.1.3.1 Polycrystalline Y0.5Lu0.5Ni2B2
11

C.  

 

This sample was produced using an argon arc furnace. An arc furnace is a copper 

chamber with a removable base or hearth into which the unreacted elements are 

placed. The chamber can be evacuated of air and filled with Argon. Two movable 

cathode electrodes with sharply pointed tungsten tips pass through the top of the 

chamber. The hearth acts as the anode. The electrodes are connected to a high current, 

low voltage power supply. If the two electrodes are brought into contact an arc is 

struck between them that may then be used to melt the elements together to form a 

compound.  

 

Water Pipes

for Cooling

Sample

To Vacuum

Pump
To Argon

Supply

Cathodes

Anode and

Hearth

Tungsten

Tips

 

Fig 6.2 : A cross section through an 

argon arc furnace. 

 

A nickel ball was first arc melted with the powdered boron. Then the carbon in 

powdered form and the yttrium and lutetium in ingot form were added. The elements 

were added one at a time and the compound weighed at each stage in order to make 

sure that there were no losses. After all the elements had been added, the resulting 

ingot was turned over and remelted. This was done several times in order to ensure 

that the elements were completely reacted. The final sample mass was 12.0g. 

 

6.1.3.2 Polycrystalline YbNi2B2
11

C.  

 

Ytterbium has a high vapour pressure and YbNi2B2
11

C cannot be produced by the 

argon arc furnace method alone as the ytterbium would vaporise as soon as the arc 

struck the unreacted elements. 
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 A nickel ball and powdered boron were first arc melted together in the standard way 

and  then ground to a very fine powder. This powder was then mixed thoroughly with 

appropriate amounts of powdered ytterbium and carbon. The resulting mixture was 

pressed into pellets. These pellets were placed in molybdenum crucibles. The 

crucibles were welded shut under argon in an arc furnace. The crucibles were in turn 

sealed under vacuum in quartz tubes and slowly heated in a box furnace over a period 

of six days up to a temperature of 1200 C. The temperature was then reduced to 

1050 C and kept there for a further four days to anneal the sample. The sample was 

then furnace cooled. The final sample mass was 13.25g. 

 

An X-ray diffraction experiment was performed on the resulting compound which 

showed the presence of an Yb2O3 impurity phase. Due to the cubic unit cell, large 

lattice parameters, and large number of formula units per unit cell, only a few small 

impurity peaks, located at low q values, were visible in the X-ray specta. It was 

therefore difficult to estimate the amount of impurity present. In order to achieve a 

better estimate, a neutron diffraction experiment was performed on D1B at the 

I.L.L. (see § 5.4). This experiment indicated that the YbNi2B2
11

C sample contained 

~9 % by mass of Yb2O3.  

 

6.1.3.3 Polycrystalline Yb2O3  and Y2O3. 

 

A 14 g sample of Yb2O3 was obtained from Alpha Chemicals (99.9% pure). A 14.2 g 

sample of Y2O3 was obtained from Aldrich Chemicals (99.99% pure). The Y2O3 

sample was used to subtract the lattice contribution to the measured Yb2O3 spectra.  

The vanadium sample used was a standard test sample available at ISIS. 
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6.1.4 Data collection. 

 

The following spectra were taken: 

 

Compound Temp Time 
iE  (meV) Energy range ( E , meV) 

 (K) ( Ahr)  Start End 

YbNi2B2
11

C 5 1875.2 250 -150 200 

  773.1 75 -40 70 

  1295.5 35 -15 30 

Y0.5Lu0.5Ni2B2
11

C 2.7 986.7 250 -150 200 

  500 75 -40 70 

  487.1 35 -15 30 

Yb2O3 20 1500 250 -150 200 

  1598.3 75 -40 70 

Y2O3 20 282.1 250 -150 200 

  300.3 75 -40 70 

Vanadium 300 40.3 250 -150 200 

  40.4 75 -40 70 

  40.1 35 -15 30 

 

Fig 6.3 : The spectra measured on H.E.T. 

 

Measurements of vanadium with a polychromatic beam are made regularly on H.E.T. 

These measurements are used to correct for detector efficiency fluctuations over long 

periods of time. They enable monochromatic vanadium scans to be used in the 

normalisation of sample data that were measured a significant time before the sample 

data were taken [1]. 

 

6.1.5 Analysis of the data. 

 

6.1.5.1 Initial data processing. 

 

The initial processing of the raw data was performed using the HOMER computer 

program available at ISIS [1]:  
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The number of neutrons scattered into an individual detector for a given time channel 

Isam  is divided by the integrated incident neutron flux Fsam  using information from 

the monitor placed in between the Fermi chopper and the sample position. The 

number of neutrons scattered into the same detector and time channel from the 

vanadium sample Ivan  is also divided by the integrated incident flux for that 

measurement Fvan . For the vanadium sample, if this process is repeated for all of the 

time channels of the detector, the integral across those representing the elastic peak 

Evan  can be taken. For the sample, the value of I F Esam sam van/ ( )  gives the intensity 

normalised to incident flux and vanadium scattering. The polychromatic vanadium 

runs are used to correct this result for variations in detector efficiency. This value is 

corrected for the different absorptions of the sample and the vanadium by multiplying 

by ( / )T Tvan sam . The result is multiplied by Nvan van / 4  (where Nvan  is the 

number of vanadium atoms in the sample) as this is the total incoherent scattering 

cross-section of the vanadium sample per unit solid angle. Finally, this is divided by 

the number of formula units in the sample Nsam . If the data in rebinned in terms of 

energy transfer instead of time of flight, the output is in the units ‘ mb sr  meV-1 -1 

[formula unit]-1’. A masking file gives the detectors to be discarded because they are 

abnormally noisy, contain spurious Bragg scattering, or have an efficiency that has 

varied significantly between polychromatic vanadium measurements. The data from 

each detector are grouped according to the angle of the detector. The angles defining 

these groups are given in a mapping file. In this experiment the detector groupings 

were as follows: 

 

Detector group Average angle ( Detector bank 

W1 4.9 4 m low angle 

W2 4.9 4 m low angle 

W3 11.5 2.5 m low angle 

W4 16.5 2.5 m low angle 

W5 21.5 2.5 m low angle 

W6 26.5 2.5 m low angle 

W7 114.9 4 m high angle 

W8 133.4 2.5 m high angle 

 

Fig 6.4 : H.E.T. detector groupings [1]. 
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The above process is summarised in the following equation: 

 

d

d dE
I

F E

T

T

N

N

2 1

4

1 

 [ ]form sam
sam van

van

sam

van van

sam
   

Eq 6.1 

 

6.1.5.2 Non magnetic and Yb2O3 background subtraction. 

 

The cross-section for the magnetic scattering of neutrons is a function of the square of 

the magnetic form factor. Magnetic form factors decrease rapidly with increasing q 

(the form factor for ytterbium decreases to a quarter of its zero-q value by q ~ 7 Å-1). In 

contrast, the nuclear cross-section is proportional to q
2
. These different q 

dependencies provide a method for subtracting the phonon contribution from the 

spectra taken for the YbNi2B2
11

C and Yb2O3 compounds:  

 

The Y0.5Lu0.5Ni2B2
11

C and Y2O3 samples have no magnetic scattering. The intensity 

of the nuclear scattering collected from the low and high angle detector  banks will be 

different. The factors {x} that are needed to scale the high angle Y0.5Lu0.5Ni2B2
11

C 

and Y2O3 data to match their respective low angle data can be calculated. The high 

angle data for the YbNi2B2
11

C and Yb2O3 compounds will contain almost no magnetic 

contribution. Therefore, these data, when multiplied by the corresponding value of x, 

give an estimate of the phonon contributions to the low angle YbNi2B2
11

C and Yb2O3 

data. This method is preferable to simply assuming that the Y0.5Lu0.5Ni2B2
11

C and 

Y2O3 data represent the lattice contributions to the YbNi2B2
11

C and Yb2O3 scattering 

as the two non-magnetic compounds will have slightly different phonon spectrums to 

the Yb compounds.  

 

The high and low angle detector groups were chosen as follows for the different iE  

spectra: 
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iE (meV) Low angle detector group High angle detector group 

250 W1 and W2 W7 

75 W3 and W4 W8 

35 W1 and W2 W7 

 

Fig 6.5 : Detector groups chosen for the background subtraction procedure for 

different values of iE . 

 

After this procedure had been used to subtract the nuclear scattering from the 

YbNi2B2
11

C and Yb2O3 data, a proportion of the Yb2O3 data was subtracted from the 

YbNi2B2
11

C data consistent with a 9 % by mass impurity.  

 

The three resulting YbNi2B2
11

C spectra were corrected for the energy dependent 

absorption of the neutrons by the sample. Finally, the spectra were divided by the 

square of the magnetic form factor )(2 qf  to correct for variations in the strength of 

the magnetic scattering with q. 

 

The results of all the inelastic experiments performed in this thesis are described 

together in § 6.6. 

 

6.2 

 

Search for the crystal field transitions in a single crystal mosaic sample of 

YbNi2B2
11

C using inelastic neutron scattering and the IN20 triple axis 

spectrometer at the I.L.L. 

 

6.2.1 The IN20 spectrometer. 

 

The general principle of a triple axis spectrometer in outlined in § 3.3.5. IN20 operates 

with thermal neutrons, 2.66 Å
-1

 < ki < 4.1 Å
-1

. In this experiment, a variable curvature 

pyrolytic-graphite (P.G.) monochromator [(002), d-spacing 3.355 Å] and a 

horizontally focusing variable curvature P.G. analyser were used. A 60’ collimator 

was placed just after the monochromator and a convergent collimator was placed 

before the entrance to the analyser. Two diaphragms were placed before and after the 

sample position to reduce the beam size to approximately that of the sample. A P.G. 
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filter was placed just before the convergent collimator to remove the  / 2  

contamination of the beam. There are two monitors on IN20: monitor 1 is located 

before the sample position and is used to normalise the detector counts to the 

integrated incident flux; monitor 2 is inside the analyser and is used to detect increases 

in scattering that may be due to spurious Bragg scattering entering the analyser from 

the sample or cryostat [3].  

 

6.2.2 Aims of the experiment. 

 

The YbNi2B2
11

C data from the H.E.T. experiment showed three broad peaks centered 

at energies of 3 meV, 17 meV and 43 meV (see fig. 6.12). As mentioned in § 6.1.3.2, 

the polycrystalline sample used in the H.E.T. experiment contained a 9% by mass 

Yb2O3 impurity. This experiment was designed to re-examine the energy range 

covered by the H.E.T. experiment using a pure single crystal YbNi2B2
11

C sample. As 

a single crystal sample was used, the q dependence of the excitations could be studied, 

enabling comparisons to be made with the calculated selection rules of the crystal 

field transitions of the ytterbium ion shown in fig. 6.1. A non-magnetic LuNi2B2
11

C 

sample was used to give a estimate of the phonon contribution to the scattering 

measured from the YbNi2B2
11

C sample. 

 

6.2.3 Sample preparation. 

 

The YbNi2B2
11

C and LuNi2B2
11

C single crystals used in this experiment were 

prepared at the Ames laboratory using the Ni2B
11

 flux growth technique [4]. In order 

to achieve a reasonable sample mass, mosaic samples were constructed by mutually 

aligning many crystals on a flat aluminium plate. The YbNi2B2
11

C sample consisted of 

forty single crystals with a total mass of 0.945g with a composite mosaic spread of 

~8. The LuNi2B2
11

C sample consisted of six single crystals with a total mass of 

0.486g with a composite mosaic spread of ~7. 

 

 

 



INELASTIC NEUTRON SCATTERING EXPERIMENTS                                11 

6.2.4 Data collection. 

 

IN20 was used in ‘constant- k f ’ mode throughout this experiment. The following 

  scans were performed for the YbNi2B2
11

C and LuNi2B2
11

C samples: 

 

k f ( Å
-1

) q position q mag (Å
-1

) Temp (K) energy (meV) 

 h k l 

 

  start end 

2.662 1.15 0 0.6 2.10 1.5 -5 30 

2.662 1.2 0 0 2.15 1.5 -5 30 

2.662 0 0 3.56 2.13 1.5 -5 30 

4.1 1.9 0 0 3.41 5 -10 75 

4.1 0.4 0 5.7 3.48 5 -8 75 

 

Fig 6.6 : The spectra measured on IN20. 

 

The results of all the inelastic experiments performed in this thesis are described 

together in § 6.6. 

 

6.3 

 

Low energy magnetic excitations in a single crystal mosaic sample of 

YbNi2B2
11

C using inelastic neutron scattering and the IN14 triple axis 

spectrometer at the I.L.L. 

 

6.3.1 The IN14 spectrometer. 

 

The general principle of a triple axis spectrometer in outlined in § 3.3.5. IN14 operates 

with thermal neutrons, 2 Å < i < 6 Å, and is capable of achieving energy resolutions 

of 1 meV to 0.02 meV. In this experiment, a variable vertically curved pyrolytic-

graphite (P.G.) monochromator [(002), d-spacing 3.355 Å] and a horizontally focusing 

variable curvature P.G. analyser were used. No collimation was used before or after 

the sample position. Two diaphragms were placed between the monochromator and 

the sample, and one diaphragm was placed between the sample and the analyser. The 

opening of all the diaphragms was adjusted so that they were just larger than the size 

of the sample. A beryllium filter was placed in between the last diaphragm and the 



INELASTIC NEUTRON SCATTERING EXPERIMENTS                                12 

analyser to remove  / 2  contamination of the beam. There are two monitors on IN14: 

monitor 1 is located before the sample position and is used to normalise the detector 

counts to the integrated incident flux; monitor 2 is inside the analyser and is used to 

detect increases in scattering that may be due to spurious Bragg scattering entering the 

analyser from the sample or cryostat. The base of the cryostat (level with the sample) 

was placed at the centre of a large evacuated cylinder. This reduced air scattering of 

the incident beam. This ‘vacuum box’ was needed so that positions in reciprocal space 

with low energy and q could be reached without the analyser receiving stray neutrons 

from the incident beam [3]. 

 

6.3.2 Aims of the experiment. 

 

A study of the low energy magnetic excitations in a polycrystalline sample of 

YbNi2B2
11

C has been made by C. Sierks et al using the IN5 spectrometer [5]. They 

modelled their low temperature data (T = 1.5 K) data with two inelastic components. 

The first of these was a narrow Lorentzian, centred at ~ 0.34 meV, with a HWHM of 

~ 0.33 meV. The energy scale of this peak corresponds well with a Kondo temperature 

of ~10 K that has been obtained from specific heat measurements [6]. The second 

component, centred at ~3.5 meV, had a much broader width, which they attributed to 

a transition to the first excited C.E.F. level. 
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Fig 6.7 : Low energy transfer 

neutron spectrum of 

YbNi2B2
11

C at T = 1.5 K 

with incident energy of 

3.15 meV. Measured on IN5 

with a polycrystalline 

sample [5]. 
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The aim of this experiment was to study the YbNi2B2
11

C compound over the same 

energy range and at the same temperature as C. Sierks et al. but using a single crystal 

sample. As a single crystal sample was used, the q dependence of the low energy 

scattering could be studied. This would provide more information as to the origin of 

the observed features. As with the IN20 experiment, a non-magnetic LuNi2B2
11

C 

sample was used to give a estimate of the phonon contribution to the scattering 

measured from the YbNi2B2
11

C sample. 

 

6.3.3 Sample preparation. 

 

The YbNi2B2
11

C and LuNi2B2
11

C single crystals used in this experiment were the 

same ones that were used in the IN20 experiment (see § 6.2.3). 

 

6.3.4 Data collection. 

 

The spectrometer was used in ‘constant- k f ’ mode throughout this experiment. The 

following  -scans and q-scans were performed at a temperature of 1.5 K for the 

YbNi2B2
11

C and LuNi2B2
11

C samples: 

 

k f ( Å
-1

) q position q magnitude (Å
-1

) energy range (meV) 

 h k l 

 

 start end 

1.5 0.55 0 0 0.99 -1.5 5.9 

1.5 1.25 0 0 2.24 -1.1 5.9 

1.5 0.4  0.4 0 1.02 -1.5 4.9 

1.5 0 0 3.7 2.21 -1.4 5.9 

 

 

k f ( Å
-1

) Energy (meV) q start position q end position 

  h k l h k l 

1.4 0.5 0.05 0 0 1.05 0 0 

1.5 0.6 0.05 0.05 0 1.05 1.05 0 

 

Fig 6.8 : The spectra measured on IN14. 
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The results of all the inelastic experiments performed in this thesis are described 

together in § 6.6. 

 

6.4 

 

Low energy magnetic excitations in a polycrystalline sample of YbNi2B2
11

C 

using inelastic neutron scattering and the IN5 direct geometry time of flight 

spectrometer at the I.L.L. 

 

6.4.1 The IN5 spectrometer. 

 

The general principle of a direct geometry time of flight spectrometer in outlined 

in § 3.3.4. The neutron beam emerging from the reactor at the I.L.L. is continuous and 

polychromatic. IN5 uses four disc choppers to pulse and monochromate the incident 

beam. A disc chopper is a rotating disc with an opening that allows neutrons to pass 

only when the disc is in a certain portion of its rotation cycle. The first chopper, 

situated furthest from the sample position, produces a pulse of polychromatic 

neutrons. The fourth chopper is synchronised to the first so that only neutrons with the 

desired wavelength pass through to the sample position. The second chopper is close 

to the midpoint between the first chopper and the fourth chopper. It eliminates the 

unwanted harmonics of the selected neutron wavelength. The third chopper can be 

rotated more slowly than the others to blank out some of the pulses generated by the 

first chopper. This facility is needed when fast neutrons from one pulse catch up slow 

moving neutrons from a previous pulse in their passage to the detector banks. This 

‘frame overlap’ makes the time of flight measurement impossible and must be 

removed. IN5 has extremely good energy resolution which makes it ideal for studying 

very low energy excitations such as the quasielastic scattering of heavy fermion 

compounds [3]. 

 

6.4.2 Aims of the experiment. 

 

This experiment was designed to study the low energy magnetic excitations in a 

polycrystalline sample of YbNi2B2
11

C. The aim was to look for the excitations 

responsible for the heavy fermion behaviour exhibited by this compound. As 

mentioned in the description of the IN14 experiment, a study of the low energy 
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magnetic excitations in YbNi2B2
11

C has been made by C. Sierks et al. using IN5 

(see § 6.3.2). When a proposal for this IN5 experiment was submitted, this data had 

not been published.  

 

6.4.3 Sample preparation. 

 

The YbNi2B2
11

C and Y0.5Lu0.5Ni2B2
11

C polycrystalline samples used in this 

experiment were the same ones that were used in the H.E.T. experiment described 

in § 6.1.3. A 10 g sample of Yb2O3 was obtained from Fluka Chemicals (99.9% pure). 

The vanadium sample used was a standard test sample available at the I.L.L. 

 

6.4.4 Data collection. 

 

The following spectra were taken using an incident wavelength of 5 Å. The energy 

range covered was -30 meV to 2.5 meV. 

 

Compound Temp (K) Time (s) 

YbNi2B2
11

C 1.5 42681 

Y0.5Lu0.5Ni2B2
11

C 1.5 43200 

Yb2O3 1.5 41896 

Empty can 1.5 21600 

 100-250 30111 

Vanadium 100-250 5807 

 

Fig 6.9 : The spectra measured on IN5. 

 

6.4.5 Analysis of the data. 

 

The preliminary analysis of the data was performed using the LAMP (Large Array 

Manipulation Program) software available at the I.L.L. [7]. The procedure used to 

normalise the data to units of ‘ mb sr  meV-1 -1 [formula unit]-1’ was similar to that 

performed by the HOMER software used to process the H.E.T. data (see § 6.1.5.1). 

The IN5 data shown in § 6.6 was produced by summing the energy scans measured by 

all the detectors at all positions in q. 



INELASTIC NEUTRON SCATTERING EXPERIMENTS                                16 

The results of all the inelastic experiments performed in this thesis are described 

together in § 6.6. 

 

6.5 

 

Low energy magnetic excitations in a single crystal mosaic sample of 

YbNi2B2
11

C using inelastic neutron scattering and the IN6 direct geometry 

time of flight spectrometer at the I.L.L. 

 

6.5.1 The IN6 spectrometer. 

 

The general principle of a direct geometry time of flight spectrometer in outlined 

in § 3.3.4. The neutron beam emerging from the reactor at the I.L.L. is continuous and 

polychromatic. IN6 uses three composite pyrolytic graphite monochromator crystals to 

select the desired incident neutron wavelength and two choppers to pulse the beam. 

The monochromators can deliver four wavelengths: 4.1 Å, 4.6 Å, 5.1 Å and 5.9 Å. A 

Fermi chopper with a short slot length, to achieve good transmission, is situated 38 cm 

from the sample positions (see § 6.11). At Fermi chopper rotation velocities greater 

than 7500 rpm, a suppresser chopper is placed before the Fermi chopper to eliminate 

frame overlap. The higher order reflections from the graphite monochromators are 

removed by a beryllium-filter situated between the monochromators and the chopper 

assembly [3]. 

 

6.5.2 Aims of the experiment. 

 

As mentioned in § 6.6, the quality of the IN5 data was spoilt by the presence of the 

Yb2O3 impurity in the YbNi2B2
11

C sample. This experiment was designed to study the 

low energy transfer magnetic scattering over a similar energy range to the IN5 

experiment but with a pure single crystal sample. The experiment was conducted 

during a short period of test time on IN6. There was insufficient time to set up the 

instrument in the desired configuration. As a result, the energy loss data contained a 

region of large spurious scattering originating from the cryostat, in the energy transfer 

region of interest. However, the energy gain scattering was not effected. 
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6.5.3 Sample preparation. 

 

The YbNi2B2
11

C single crystals used in this experiment were the same ones that were 

used in the IN20 experiment described in § 6.2.3. The vanadium sample used was a 

standard test sample available at the I.L.L. 

 

6.5.4 Data collection. 

 

The following spectra were taken using an incident wavelength of 4.1 Å. The energy 

range covered was -50 meV to 3.5 meV. 

 

Compound Temp (K) Time (s) 

YbNi2B2
11

C 1.8 7200 

 10 7200 

Empty can 10 4620 

 100 5979 

Vanadium 100 6000 

 

Fig 6.10 : The spectra measured on IN6. 

 

6.5.5 Analysis of the data. 

 

As for the IN5 experiment (see § 6.4.5). 

 

The results of all the inelastic experiments performed in this thesis are described 

together in the following section 

 

6.6 Results. 

 

The scattering observed in all the inelastic experiments performed on YbNi2B2
11

C in 

this thesis is broad in energy or relatively weak in relation to the background 

scattering. These factors have made the identification of real features in the data 

difficult. The most reliable method of identifying the magnetic scattering of interest 

has been to compare measurements produced using different neutron spectrometers 
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and samples of YbNi2B2
11

C. For this reason, the results from all the experiments are 

presented together in this section. 

 

A description of the H.E.T. spectrometer and a list of the scans performed is given in 

§ 6.1. This section also gives a detailed account of the preliminary data analysis. 
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Fig 6.11 : The magnetic scattering from a polycrystalline sample of 

YbNi2B2
11

C at a temperature of 5 K obtained using the H.E.T. 

spectrometer. Data obtained using incident neutron energies of 

35 meV, 75 meV and 250 meV are shown.  

 

The above figure shows the fully processed H.E.T. data obtained with all the incident 

neutron energies overlaid. The features in this data are broad in energy and extend 

beyond 150 meV.  

 

Each sample transition in the above data can be represented by two broadened 

Lorentzians [A (neutron energy loss scattering) and D (neutron energy gain scattering) 

in equation 6.2]. The fractional coefficient of the term in square brackets in 

equation 6.2 and the terms labelled by B, F, C and G ensure that the principle of detail 

balance in satisfied and that the spectral intensity for each peak remains constant as 

the temperature in changed. 
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In the above equations E is the neutron energy transfer and  i , Ei  and i  are the 

amplitude, centre and half width half maximum of the i th  peak.  

 

Three inelastic peaks P1, P2 and P3 were identified in the neutron energy loss 

scattering shown in figure 6.11 (see fig. 6.12). The P1 peak was also treated as a 

quasielastic peak (centred on 0 meV). However, this provided a less good fit to the 

low energy scattering (i.e. P1 and P2) of the data. The data presented in figure 6.12 

can be compared with the theoretically calculated C.E.F. transitions shown in 

figure 6.1. A preliminary comparison would suggest that P2 and P3 can be identified 

with the CP2 and CP3 transitions. It would seem unlikely that P3 would correspond to 

the CP4 transition as there is such a large mismatch in the transition strengths. If this 

assignment is made then P1 must correspond to the ground state (CP1) of the 

theoretically calculated C.E.F. scheme. The theoretical model gives the transition 

intensities for CP1, CP2 and CP3 as 497, 260 and 228 mb sr
-1

 [Yb ion]
-1

 

respectively [2]. Making the identification as above, the relative intensities of P1, P2 

and P3 are broadly consistent with this model although they are all less by a factor of 

~0.7 than predicted. The most striking difference between the H.E.T. data and the 

theoretical model is that the positions of P1, P2 and P3 are roughly a factor of two 

greater than the predicted values. 
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Peak 

 

Centre Ei  

(meV) 

Width HWHM  

i  (meV) 

 

Intensity  i  

(meV
-1

) 

P1 3 3 43 

P2 17 6.5 8 

P3 43 7.5 3 

 

Fig 6.12 : Magnetic scattering, below 70 meV, from a polycrystalline sample of 

YbNi2B2
11

C at a temperature of 5 K obtained using the H.E.T. 

spectrometer. Data obtained using incident neutron energies of 

35 meV, 75 meV and 250 meV are shown. The broken lines represent 

the three component peaks P1, P2 and P3 that make up the overall 

lineshape.  

 

The IN20 experiment was designed to confirm the general features of the magnetic 

scattering seen in the H.E.T. experiment and also to gain information concerning the q 

dependence of the peaks. A description of the IN20 spectrometer and a list of the 

scans performed are given in § 6.2. Figures 6.13 and 6.14 show energy scans taken at 

a temperature of 5 K using a final neutron wavevector of 4.1 Å
-1

, at q positions of 

(1.9,0,0) and (0.4,0,5.7) respectively. A position in q of (0.4,0,5.7) was chosen, 

instead of a position with no ab plane component, as positions with a similar 

magnitude in q lying exactly on the c axis were found to have spurion contamination. 
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Fig 6.13 : Energy scans from single crystal mosaic samples of YbNi2B2
11

C and 

LuNi2B2
11

C at a q position of (1.9,0,0) and at a temperature of 5 K 

obtained using the IN20 spectrometer. The data was taken with a 

final neutron wavevector of 4.1 Å
-1

. 
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Fig 6.14 : Energy scans from single crystal mosaic samples of YbNi2B2
11

C and 

LuNi2B2
11

C at a q position of (0.4,0,5.7) and at a temperature of 5 K 

obtained using the IN20 spectrometer. The data was taken with a 

final neutron wavevector of 4.1 Å
-1

. 
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According to the calculated selection rules, the CP2 transition is seen when q is 

parallel to the c axis. Two thirds of the CP3 transitions is seen when q is in the ab 

scattering plane and the remaining third when q is parallel to the c axis. Transitions 

within the ground state doublet are visible when q is in the ab scattering plane. 

 

It is clear from figures 6.13 and 6.14 that the scattering at the two q positions is very 

different. Perhaps the most easily identifiable feature in figure 6.13 is the broad peak 

centred at ~48 meV. This feature is also visible in figure 6.14, although it is less 

intense. This corresponds to the P3 peak seen in the H.E.T. data. The q dependence of 

this peak corresponds well with the selection rules for the CP3 transition.  

 

The other feature present in figure 6.13 is the larger intensity scattering that starts 

from a maximum near the elastic line and falls off sharply with increasing energy 

transfer. It is also present, to a much lesser extent, in the (0.4,0,5.7) data. This 

scattering may be identified with the P1 peak seen in the H.E.T. data. The q 

dependence of this feature agrees well with that predicted by the selection rules for the 

CP1 transition.  

 

In addition to the two features already mentioned in figure 6.14, there is broad 

scattering between energies of 15 meV and 25 meV, which is not present in 

figure 6.13. This scattering corresponds to the P2 peak seen in the H.E.T. data. Again, 

its q dependence agrees with the theoretical prediction that it should only be seen with 

q parallel to c. 

 

Figure 6.15 shows the sum of two thirds the (1.9,0,0) scan and one third the (0.4,0,5.7) 

scan superimposed on the H.E.T. data and scaled to the correct intensity. 
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Fig 6.15 : Two thirds the YbNi2B2
11

C (1.9,0,0) energy scan added to one third 

of the (0.4,0,5.7) scan taken on IN20 superimposed on the H.E.T. 

data.   

 

There is good agreement for the P1 and P3 scattering in the above figure. The P2 peak 

is more pronounced in the H.E.T. data, although it is certainly present in the data 

taken on IN20. Overall, the agreement provides evidence that the observed features 

are real and not from phonon or spurious scattering.  

 

A description of the IN14 spectrometer and a list of the scans performed are given in 

§ 6.3. The measurements performed on IN14 explored the low energy magnetic 

scattering inYbNi2B2
11

C in more detail. Figures 6.16 to 6.19 show energy scans 

performed, at a temperature of 5 K, at different positions in q with a final neutron 

wavevector of 1.5 Å
-1

. 
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Fig 6.16 : q (0.55,0,0) Fig 6.17 : q (1.25,0,0) 
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Fig 6.18 : q (0.4,0.4,0) Fig 6.19 : q (0,0,3.7) 

 

Figs 6.16 to 6.19 : Energy scans of YbNi2B2
11

C and LuNi2B2
11

C taken on IN14 

at different positions in q. All data taken at a temperature of 

1.5 K. 

 

Figure 6.16 shows an energy scan performed at a q position of (0.55,0,0). The P1 peak 

seen in the H.E.T. and IN20 data is clearly visible in the subtracted data. This feature 

also appears in the others scans taken at q positions in the ab plane (figures 6.17 and 

6.18). The position of the centre of this peak, at ~3 meV, corresponds very well to the 
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position of P1 determined in the fit to the H.E.T. data. The height of the peak 

maximum at the three q positions in the ab plane scales very well with the square of 

the ytterbium form factor. This suggests that the P1 scattering is isotropic in the ab 

plane. The P1 scattering is also visible in the scan taken at a q position of (0,0,3.7). 

However, the magnitude of q at this position is similar to that at (1.25,0,0), but the 

peak maximum is less by a factor of ~2/ 3. 

 

Figures 6.20 and 6.21 show the IN14 data from figures 6.17 and 6.19 with two IN20 

energy scans taken at a similar q superimposed. The IN20 data was measured with a 

final neutron wavevector of 2.66 Å
-1

. 
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Fig 6.20 : Energy of YbNi2B2
11

C and LuNi2B2
11

C scans taken on IN14 and 

IN20 at a q position of (1.25,0,0). The IN14 (IN20) data was taken 

with a final neutron wavevector of 1.5 (2.66) Å
-1

.
 
All data taken at a 

temperature of 1.5 K. 
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Fig 6.21 : Energy scans of YbNi2B2
11

C and LuNi2B2
11

C taken on IN14 and 

IN20 at a q position of (0,0,3.7). The IN14 (IN20) data was taken 

with a final neutron wavevector of 1.5 (2.66) Å
-1

. All data taken at a 

temperature of 1.5 K. 

 

Figure 6.20 again shows evidence for the P1 scattering in both the IN14 and the IN20 

data. There is no evidence of the P2 peak in this figure. The magnitude of the P1 

scattering is reduced in figure 6.21. There is some evidence of the presence of the P2 

peak in this scan although it is not as clear as it is in the IN20 data taken with a final 

neutron wavevector of 4.1 meV or the H.E.T. data. Therefore, the data presented in 

the above two figures agrees broadly with the selection rules for the CP1 and the CP2 

peaks. 

 

In all the IN14 scans presented above, there is no evidence of the low energy peak, 

centred at ~0.34 meV, reported by C. Sierks et al. (see § 6.7). Figures 6.22 and 6.23 

show q scans along the [100] direction at an energy of 0.5 meV with a final neutron 

wavevector of 1.4 Å
-1

, and along the [110] direction at an energy of 0.6 meV with a 

final neutron wavevector of  1.5 Å
-1

 respectively. It could be that the low energy peak, 

should it exist, is localised in its position in q, and these scans were performed to 

explore this possibility. 
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Fig 6.22 : E = 0.5 meV. Fig 6.23 : E = 0.6 meV. 

 

Two q scans of YbNi2B2
11

C and LuNi2B2
11

C measured using IN14 at a 

temperature of 1.5 K. Figure 6.22 extends from (0.15,0,0) to (1.05,0,0) and is 

measured at E = 0.5 meV using a final neutron wavevector of 1.4 Å
-1

 . Figure 6.23 

extends from (0.1,0.1,0) to (1.05,1.05,0) and is measured at E = 0.6 meV using a 

final neutron wavevector of 1.5 Å
-1

. 

 

In both the above figures, the q dependent variation in the scattering from the 

YbNi2B2
11

C sample is qualitatively very similar to the variation of the scattering from 

the LuNi2B2
11

C non-magnetic blank sample. Therefore, there is no evidence of any q 

localised low energy magnetic scattering of the type seen by C. Sierks et al. in these 

scans. 

 

Two further experiments were performed on IN5 and IN6 to search for signs of the 

low energy scattering mentioned above. As highlighted in the relevant experimental 

descriptions (IN5, § 6.4 and IN6, § 6.5), there were problems in the conduct of both 

these experiments (Yb2O3 contamination in the IN5 experiment, and large cryostat 

spurions and inadequate time in the IN6 experiment). However, some useful data was 

obtained.  

 

Figure 6.24 demonstrates the problems caused by the Yb2O3 impurity phase in the IN5 

experiment. It shows a YbNi2B2
11

C energy scan, taken at a temperature of 1.5 K, 
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using an incident neutron wavelength of 5 Å, with the LuNi2B2
11

C data subtracted. 

Superimposed on this figure is a Yb2O3 energy scan taken at the same temperature. 

The YbNi2B2
11

C data with both the LuNi2B2
11

C data and the Yb2O3 data subtracted is 

also shown. 
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Fig 6.24 : Energy scan of YbNi2B2
11

C performed on IN5 at a temperature of 

1.5 K with the non-magnetic and Yb2O3 impurity scattering 

subtracted. Initial neutron wavelength of 5 Å. 

 

The antiferromagnetic ordering temperature of Yb2O3 is 2.7 K. Below this 

temperature, there will be low energy scattering due to magnon excitations. This 

scattering is clearly seen, centred at an energy of ~0.6meV, in both the Yb2O3 and the 

YbNi2B2
11

C magnetic scattering data of the above figure. Efforts to gain meaningful 

data by subtracting the Yb2O3 scan from the YbNi2B2
11

C scan proved very difficult 

due to the large relative size of this impurity scattering. The data shown in figure 6.24 

is not reliable above E ~ 1.5 meV as this is the limit of the energy loss scattering that 

IN5 is capable of measuring with an initial neutron wavelength of 5 Å. Although the 

fully subtracted data is of bad quality, there does seem to be two components to the 

low energy scattering. There is a rise in scattering from 0.5 meV towards the elastic 

line. A gradual rise in also seen from 0.5 meV with increasing energy which is 

consistent with the P1 peak seen in all the data discussed so far. The overall 
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magnitude of the magnetic scattering from YbNi2B2
11

C measured in this experiment 

agrees well with an extrapolation of the higher energy data measured in the H.E.T. 

experiment. 

 

A check on the above interpretations of the IN5 data was provided by the IN6 

experiment using a single crystal sample with no impurity contamination. Figure 6.25 

shows a subtraction of a YbNi2B2
11

C energy scan taken on IN6, at a temperature of 

2 K, using an initial neutron wavelength of 4.1 Å, from a YbNi2B2
11

C scan taken at 

10 K. The neutron energy gain data is shown as the energy loss side of the energy scan 

was contaminated by cryostat spurion scattering. This particular method of 

background subtraction was performed as there was no time in this experiment to 

measure the non-magnetic LuNi2B2
11

C sample. 
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Fig 6.25 : Energy scan of YbNi2B2
11

C taken on IN6 at a temperature of 10 K. A 

similar scan of taken at a temperature of 2 K has been subtracted. 

The vertical lines indicate the region of elastic line contamination. 

Initial neutron wavelength of 5 Å 

 

The bold line shows the theoretical subtraction assuming the presence of just the P1 

peak. There is some additional scattering close to the elastic line that is not described 

correctly with this theoretical curve. Perhaps this scattering is of the same origin as the 
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scattering below 0.5 meV in the IN5 data. The scattering in figure 6.25 extends to 

larger energy transfers than the IN5 data. This could be because the IN6 scan was 

performed at a higher temperature and the peak position and width have changed. As 

with the IN5 data, the data taken in this experiment is not conclusive. However, the 

same scattering has been seen in both experiments and this provides evidence that the 

very low energy signal is real.  

 

The low energy scattering seen in the IN5 and the IN6 data could have the same 

physical origin as the ~0.34 meV scattering reported by C. Sierks et al. However, our 

IN5 data has significant differences to their published IN5 data:  

 

In figure 6.7, the magnitude of the 0.34 meV scattering is substantially greater than the 

level of scattering at an energy transfer of 1.5 meV. The level of scattering at these 

two energies are closer in magnitude in the IN5 data obtained in this thesis. The data 

shown in figure 6.7 has a significant amount of scattering at an energy of 0.5 meV 

which is not present in the data in this thesis. It is obviously difficult to speculate as to 

the exact reasons for the differences mentioned above without access to the sample 

used by C. Sierks et al., but several possibilities exist. Very pure polycrystalline 

samples of ytterbium compounds are difficult to produce for the reasons outlined in 

§ 6.1.3.2. A 9 % Yb2O3 impurity was present in the polycrystalline sample of 

YbNi2B2
11

C used in this thesis. This amount on impurity had a huge effect of the 

observed scattering across the entire energy range studied. However, the impurity was 

difficult to detect for the reasons mentioned in § 6.1.3.2. Perhaps, the substantial 

scattering at 0.5 meV in figure 6.7 is because the sample used by C. Sierks et al. 

contained a small amount of Yb2O3. If their sample contained a percentage 

contamination much smaller than the one effecting the sample used in this thesis, then 

it would have been extremely difficult to detect by laboratory based X-ray diffraction, 

but unless it was very small indeed, it would still have had a large effect of the 

observed scattering over the IN5 energy range that they studied. Also, to our 

knowledge, C. Sierks et al. did not measure a non-magnetic blank sample to enable an 

approximate phonon subtraction. The scattering observed from the LuNi2B2
11

C 

sample on IN14 at several positions in q (e.g. figures 6.16 and 6.18) shows an 

increasing phonon contribution from ~2 meV moving towards the elastic line. This 
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behaviour was also seen in the IN5 LuNi2B2
11

C data. If this is not taken into account, 

one would be led to believe that the magnetic scattering from the YbNi2B2
11

C 

compound at low energies is much larger than it in fact is. This effect would be worse 

the lower the energy studied. This could be the reason C. Sierks et al. observed a very 

much larger amount of scattering close to the elastic line, at ~0.34 meV, than at an 

energy transfer of 1.5 meV. To test this hypothesis, the IN5 analysis was performed, 

but without removing the non-magnetic LuNi2B2
11

C scattering. 
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Fig 6.26 : Energy scan of YbNi2B2
11

C performed on IN5 at a temperature of 

1.5 K with the Yb2O3 impurity scattering subtracted. The non-

magnetic LuNi2B2
11

C scattering has not been subtracted. 

 

The data presented in the above figure clearly has a larger amount of scattering close 

to the elastic line than figure 6.24 which has had the LuNi2B2
11

C scattering subtracted. 

The overall magnitude of the very low energy scattering is now much more consistent 

with the data obtained by C. Sierks et al.  

 

In the following discussion and conclusion section, the low energy (< 0.5 meV) 

scattering seen in both the IN5 and IN6 experiments in this thesis will be referred to as 

P0. If the above reasoning concerning the C. Sierks et al. data is correct, it would 

explain why the P0 scattering was not seen in the IN14 experiment; at a temperature 
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of 1.5 K, the P0 peak does not extend above 0.5 meV, and the resolution of the energy 

scans performed on IN14 was to large to resolve scattering at this energy. Likewise, 

the q scans designed to search for the P0 scattering were performed at energies of 

0.5 meV and 0.6 meV. They perhaps should have been performed at lower energies. 

 

6.7 Discussion and conclusions. 

 

In many ytterbium heavy electron compounds, the energy scales of the Yb/ conduction 

electron correlations and the C.E.F. interaction are similar. Therefore, the 

interpretation of magnetic inelastic neutron scattering experiments performed on these 

compounds can be controversial [8]. If the compounds also exhibit short or long range 

order of the Yb moments, or superconductivity, the difficulty in interpretation may be 

even more extreme. 

 

The data presented in the previous section for YbNi2B2
11

C shows clear evidence of the 

C.E.F. transitions CP1, CP2 and CP3. In the data, these are denoted by P1, P2 and P3. 

The most conclusive evidence that these are C.E.F. transitions, or that they have a 

strong C.E.F. character, is that the q dependence of the IN20 (P1, P2 and P3) and IN14 

(P1) data agree well with that predicted by theory. The magnitude of the P1 transition 

shows zero or fairly weak dispersion within the ab plane when corrected for the Yb 

form factor. This is evidence that the P1 scattering arises from a single site transition. 

The C.E.F. model predicts that the CP1 transition should only be visible when q has a 

component in the ab plane. The IN20 (figures 6.14 and 6.21) and IN14 (figure 6.19) 

data show that this transition is visible at a position in q of (0,0,3.7) although its 

magnitude is substantially reduced. Due to the difficulty in mounting the YbNi2B2
11

C 

and LuNi2B2
11

C single crystals in both the mosaic samples, there were large overall 

mosaic spreads of ~ 4 and ~ 3.5 respectively This would mean that, although the 

spectrometer had been moved to collect neutrons scattered at a position in q with no 

ab component, some ab scattering may have been detected. Alternatively, perhaps the 

P1 peak could be observed at q positions with no ab component due to a ‘softening’ of 

the selection rules caused by heavy fermion correlations of the Yb +3 ion or some 

other coupling that would mean that the ground state is no longer described 

completely by the rare earth standard model.  
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The fact that reasonably strong C.E.F. transitions are observed in YbNi2B2
11

C implies 

that a good approximation of the state of the Yb +3 ion is provided by the rare earth 

standard model. This evidence is complimented by the fact that L||| edge X-ray 

absorption spectroscopy shows that the Yb ions are in a stable 3+ ionisation state [9]. 

However, the C.E.F. transitions are substantially broadened which indicates the 

presence of strong relaxation pathways (see § 2.2.5). The H.E.T. data indicates that the 

relative intensities of the P1, P2 and P3 peaks are broadly consistent with the C.E.F. 

model although they are all less by a factor of ~0.7 than predicted. This could be 

because of a reduction in the Yb moment due to spin compensation with the electrons 

of the surrounding ions. However, the problems associated with the Yb2O3 impurity 

subtraction in the H.E.T. experiment make an exact determination of the overall 

magnitude of the scattering from the YbNi2B2
11

C sample difficult. Perhaps the most 

striking difference between the data and the C.E.F. model is that the positions of P1, 

P2 and P3 are roughly a factor of two greater than the predicted values. This could be 

due to a movement in the positions of the ligands of the surrounding ions due to their 

hybridisation with the Yb 4f electrons. It could also be due to the coupling of the 

C.E.F. transitions to other excitations within the compound. At very low temperatures, 

the effects of detail balance make it extremely hard to distinguish between truly 

quasielastic and very low energy inelastic transitions. However, both the data obtained 

by C. Sierks et al. and the data collected in this thesis would suggest that P1 is a truly 

inelastic transition. This would imply that the doublet has been split or is now no 

longer the true ground state of the Yb ion. A splitting of the doublet can only be 

caused by a static exchange field at the Yb site [10]. However, no evidence of long 

range magnetic order has been observed in other types of experiment performed on 

YbNi2B2
11

C. Another reason for the rejection of a low energy scattering model where 

the P1 peak exists as a unique quasielastic components concerns its width. The width 

of the P1 peak, at a HWHM of 3 meV, suggest a value for TK  that is too large when 

compared with the value of ~8 K obtained from the magnetic specific heat of 

YbNi2B2
11

C (see fig 1.2). This fact, and the observation of the very low energy peak 

by C. Sierks et al. was the motivation for the IN5 experiment and the search for the P0 

peak in the IN14 experiment. The width of the peak mentioned by C. Sierks et al. is 

0.33 meV. The width of the P0 peak in the IN5 data presented here is ~0.29 meV, 

although the quality of the IN5 data means that this is only an approximate value. This 
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agrees much better with the value for TK  determined from specific heat 

measurements. 

 

As mentioned above, the inelastic nature of the P1 peak implies that the ground state 

degeneracy has been lifted, or that the doublet position has been moved to finite 

energies. As no signs of static magnetic order have been observed in YbNi2B2
11

C, 

perhaps another mechanism can explain this observation.  

 

In CeAl2, the C.E.F. transitions are substantially different from the rare earth standard 

model scheme [11]. Only one transition is predicted but two are observed in inelastic 

neutron scattering. The widths of the transitions are also substantially different to that 

proposed for the single transition by theory. In this compound, it is thought that there 

is a strong coupling between the lattice vibrations and the C.E.F. transitions. This 

‘magneto-phonon’ coupling leads to a large modification of the entire inelastic 

response of the compound. Interestingly, the two peaks observed in CeAl2 show 

negligible dispersion [12], as do the ‘C.E.F.’ peaks observed for YbNi2B2
11

C in this 

thesis. In CeAl2, the nuclear (high q) - phonon scattering was characterised and a low 

temperature softening was observed as the C.E.F./ lattice coupling was 

established [13]. The Yb monopnictides YbX (X = N, Sb, As and P) also have 

anomalous C.E.F. excitation schemes [14]. The magnitude of the C.E.F. splittings in 

these compounds is also larger than those predicted by a simple point charge model. 

These compounds all order magnetically but at temperatures much lower than the 

RKKY exchange interactions would suggest. In YbN and YbSb, the experimental 

observation of more transitions than expected has been interpreted in terms of 

magneto-phonon coupling. These compounds have large phonon scattering coinciding 

with the positions of the magnetic peaks.  

 

Perhaps a similar effect is responsible for the movement of the P1, P2 and P3 

transitions in YbNi2B2
11

C. If this was a correct interpretation, the P0 quasielastic 

peak, representing a local Yb/ conduction electron heavy fermion coupling, would 

constitute the ground state of the compound. The width of this peak would agree well 

with the position of the maximum in the magnetic specific heat. The three inelastic 

peaks P1, P2 and P3 would constitute excitations within the C.E.F. magneto-phonon 
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system. The position of P1, at ~3 meV, would explain why there is still a large 

contribution to the magnetic specific heat at temperatures (at ~30 K) above the Kondo 

peak position. The much larger widths of the P1, P2 and P3 transition, when 

compared to the P0 width, would also be less surprising due to the introduction of 

more complicated relaxation dynamics due to the coupling of the magnetic and lattice 

excitations. In support of this theory, strong phonon scattering was observed at similar 

energies to the P2 and P3 peaks in a high q IN20 energy scan performed in this thesis. 

 

If the P1 peak is quasielastic, the P1, P2 and P3 excitations could be consistent with 

the standard C.E.F. model with a broadening of the P1 peak due to single site 

hybridisation of the Yb 4f and conduction electrons with a energy scale of ~3 meV. 

The P0 peak might then signify lower energy excitations, perhaps due to short range 

intersite Yb correlations with the correct energy to be responsible for the peak at ~8 K 

in the specific heat. If this was the case, this peak might have significant dispersion. 

Unfortunately, as the P0 peak was not observed in the IN14 experiment, its q 

dependence was not studied in this thesis. It should be noted, however, that no broad 

features were observed in the D10 experiment performed in this thesis which could 

have been interpreted as evidence of short range Yb-Yb correlations. This two 

component quasielastic excitation scheme has been proposed before, to explain the 

low energy inelastic response of CeRu2Si2 and CeCu6 [15]. 

 

Further experimental and theoretical work is necessary to determine if either of the 

above excitation schemes is plausible for YbNi2B2
11

C. Suggestions for this work will 

be given in the following chapter. 
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CHAPTER 7 

 

CONCLUSIONS AND 

SUGGESTIONS FOR FURTHER 

WORK 

 

The magnetisation density experiment performed on YbNi2B2
11

C did not show any 

features that could be specifically identified with the formation of a heavy fermion 

state. Within the experimental resolution, there was no evidence of a magnetic 

moment on the Ni, B or C sites, above or below the Kondo temperature. No moment 

was observed on these sites in the ErNi2B2
11

C, HoNi2B2
11

C and LuNi2B2
11

C 

compounds. The anisotropic magnetisation density on the Yb site did not change 

significantly on moving to temperatures below TK . The anisotropy of the Yb density 

was qualitatively very similar to that on the Er site. As ErNi2B2
11

C is not a heavy 

fermion compound, this form of rare earth magnetisation density can not be linked 

with heavy fermion behaviour. Interestingly, the anisotropy of the Ho site was 

different to the Yb and Er sites. There are several possible explanations for these 

observations:  

 

The features associated with the heavy fermion behaviour could be below the 

resolution of the experiment. The problems of multiple scattering in the YbNi2B2
11

C 

crystal make the measurements of very small magnetic moments difficult. The most 

important factor in causing the large amount of multiple scattering in the YbNi2B2
11

C 

crystal was the tight mosaic spread. In a future experiment, an effort should be made 

to obtain crystals with wider mosaic spreads. Before the advent of accurate models for 

correcting for extinction became avaliable, single crystals were often subjected to 

thermal shock treatment in an attempt to increase their mosaic spreads and reduce 

their crystallite radii. Perhaps a similar process could be performed here, if the NiB
11

 

flux technique was found to be incapable of growing crystals with wider mosaic 

spreads. The model used for correcting for extinction (see § 5.1.4.2) is most accurate 

for cubic crystals. Therefore, it would be sensible to use crystals with a more regular 
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shape instead of the ‘flat plate’ ones used in this thesis even if this meant that the 

overall sizes of the crystals were smaller. In a future experiment, it would be a good 

idea to make a greater effort to determine the exact mutiple scattering correction to 

make in the D3 experiment. This could be done by measuring a set of Bragg 

intensities (instead of just the flipping ratios) as was done using the D9 diffractometer. 

This set of reflections could then by refined and plots such as that shown in 

fig. 5.5 could be produced. This would be prefereable to determining the D3 

correction from the D9 correction as was done in this thesis. It would also be a good 

idea to try using an applied magnetic field of ~10 T in the YbNi2B2
11

C D3 experiment 

as it has been shown that the heavy fermion state is not completely supressed by such 

a field (  is still two-thirds of its zero field vaue with a 10 T field) [1]. A field of this 

magnitude was not available on D3 when the first set of measurement in this thesis 

were performed. Alternatively, it could be that the effects of heavy electron behaviour 

are not visible in magnetisation density images. The modifications of the atomic 

electron shells could be too subtle or of an internal nature. In order to dtermine if this 

is the case, it would be useful to study the magnetisation density in other heavy 

fermion compounds; perhaps ones with higher   values. 

 

The inelastic experiments performed on YbNi2B2
11

C presented in this thesis were 

more successful than the magnetisation density experiments. All the data shown in 

chapter 6 would indicate the exisitence of a ‘C.E.F. like’ excitation scheme, consisting 

of three substantially broadened Lorenztians, situated at energies of 3, 17 and 43 meV. 

The selection rules for these transitions agree well with their theoretical predictions. 

However, the magnitudes of the 17 and 43 meV transitions are a factor of ~2 greater 

than predicted. Also, the simple C.E.F. model, assuming no Yb-Yb interactions or 

coupling of the C.E.F. transitions to other excitations, would imply that the 3 meV 

transition should be quasielastic and correspond to the ground state doublet of the Yb 

+3 ion. There is evidence in this thesis, and from other authors, that there is also a 

quasielastic component with a HWHM of ~0.33 meV which corresponds well to the 

published Kondo temperature for YbNi2B2
11

C. A mechanism has been suggested to 

account for the differenes between the calculated and measured excitation schemes 

based on a coupling of the C.E.F. and lattice exciations. A large amount of further 
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work is needed to verify the results presented in chapter 6 and explore the possibility 

of a C.E.F./ phonon coupling. One of the problems with the inelastic scattering 

experiments was the low sample masses that were used used. In future experiments, it 

would be useful to have larger samples of both YbNi2B2
11

C and LuNi2B2
11

C. 

 

Inelastic 

sum up results briefly 

polarised neutron time with bigger xtals better alignment and holder 

 

in14, tighter elastic line lower energy q scans. 

mag field to pull p0 out 

 

Explore temerature dependence of peaks. 

theory should be done 

measures phonons in material 

 

this thing about q depence at 0.5, Ni spins perhaps ??? 

A similar experiment on YbNi2B2
11

C would provide useful information concerning the 

nature of the excitation scheme 
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