
Magnetism and the Magnetic Excitations of
Charge Ordered La2−xSrxNiO4+δ

Paul Freeman

Condensed Matter Physics

Department of Physics

University of Oxford

Thesis submitted for the degree

of Doctor of Philosophy

University College

Trinity Term 2005



Magnetism and the Magnetic Excitations of
Charge Ordered La2−xSrxNiO4+δ

Paul Freeman

University College – University of Oxford

Trinity Term 2005

Abstract of thesis submitted for the degree of Doctor of Philosophy

Abstract

In this thesis I present an investigation into the magnetic order and magnetic excitations

of charge-ordered La2−xSrxNiO4+δ using magnetization and neutron scattering techniques.

I have studied the magnetic ordering over a wide range of doping levels, 0 ≤ x ≤ 0.5,

using magnetization measurements and neutron diffraction. I have compared my mag-

netization study with earlier work carried out over a wider range of doping levels and

with measurements at higher temperatures on similar doping levels. In the magnetization

measurements I discovered unusual ‘memory’ effects of the remnant magnetization. My

neutron diffraction measurements go to lower temperatures than previous studies and

extend the range of doping levels that have been studied.

Inelastic neutron scattering was employed to study the spin wave excitations of charge-

ordered La2−xSrxNiO4+δ, for charge-ordering with a period either commensurate or in-

commensurate with the crystal lattice. The effect of incommensurate ordering on the

exchange interactions was observed to be insignificant, with the excitations in the in-

commensurately ordered materials being found to be relatively short ranged. A dip in

the intensity of the spin wave excitations of charge-stripe ordered La2−xSrxNiO4+δ was

observed. One possibility is that this dip is due to a coupling of the excitations to a

collective excitation of the charge-stripes. In checkerboard charge-ordered La3/2Sr1/2NiO4

I observed new modes in the spin wave excitations, and I speculate the origin of these

excitations to be due to variations of the spin ordering period in this material. I compare

my findings with the spin wave excitations of the Néel antiferromagnetic La2NiO4.

At low energies, inelastic neutron scattering revealed another excitation mode of charge-

ordered La2−xSrxNiO4+δ. This mode was found to be consistent with antiferromagnetic

correlations among the stripe electrons.
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Chapter 1

Introduction

In 1986 J. G. Bednorz and K. A. Müller discovered superconductivity in La2−xBaxCuO4

with an anomalously high superconducting temperature TC ≈ 40K [1]. Unlike any pre-

viously discovered superconductor this material could not be explained by the standard

BCS theory of J. Bardeen, L. N. Cooper, and J. R. Schrieffer[2]. The discovery by J. G.

Bednorz and K. A. Müller lead to the the discovery of a whole series of other materials

that could not be explained by BCS theory. In this sense superconductors can be split

into two classes; conventional superconductors that can be explained by BCS theory and

unconventional superconductors that can not be explained by BCS theory.

Unconventional superconductors that possess high TC values are almost all copper based

materials, known as high-temperature (H-TC) superconductors or more loosely known as

cuprates. A common feature of all H-TC superconductors is a structure which consists

of layers of copper oxide (CuO2), that are separated by spacer layers containing elements

such as lanthanum, barium or yttrium. The discovery of cuprate superconductivity above

liquid nitrogen temperatures has revolutionized the use of superconductors.

The complex role of interactions in cuprate superconductors has not yet been determined.

1
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To fully understand high temperature superconductivity the roles played by the different

interactions in these materials must be understood. When this is achieved, we will be in

a better position understand high temperature superconductivity.
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1.1 Charge Order

The discovery of high temperature superconductors has lead to theoretical and experimen-

tal interest in understanding other doped layered antiferromagnets. Over the last decade

it has become increasingly apparent that doped antiferromagnets exhibit ordered phases

involving both spin and charge. Widespread interest in these ordered phases was caused

by the discovery of a striped spin-charge ordered phase in a non-superconducting layered

cuprate[3]. The role of such a striped spin-charge ordered phase in the superconducting

state of the cuprates is unclear, although certain theoretical scenarios suggest that a spin

gap along with pairing instabilities of stripe electrons could lead to superconductivity[4].

These findings underline the importance of understanding charge stripe order.

Figure 1.1 shows the basic crystal structure of La2−xSrxNiO4, which has a crystal structure

that is typical of doped layered antiferromagnets. La2−xSrxNiO4 does not superconduct[5]

but is isostructural with the cuprate superconductor La2−xSrxCuO4. The structure is

made of layers of Ni-O conduction layers that are separated by spacer layers of La/Sr-O

in a body centred tetragonal unit cell. Substitution of one atom of La by one atom of

Sr in the spacer layer, introduces one hole into the conduction layer. So the spacer layer

provides the charge carriers for the conduction layer which is responsible for the electrical

properties of the material, although in the case of La2−xSrxNiO4 the material is far from

a conductor for x ≤ 0.8[6].

Charge order occurs in a generic way for different types of doped layered antiferromagnetic

materials, with subtle variations between different materials. Figure 1.2 shows the general

trend of the temperature evolution of charge-ordering for a single conduction layer of

a doped antiferromagnet. At high temperatures the holes doped into the conduction
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Spacer Layer

Conduction Layer Ni O

La or Sr

b

a

c

a b=

Figure 1.1: The crystal structure of La2−xSrxNiO4.

layer are randomly distributed, Fig. 1.2(a). On cooling the charges then line up into

periodically spaced lines of charges, Fig. 1.2(b). These lines are known as charge-stripes,

and they are centred either on the ionic metal sites or oxygen sites of the conduction

layer depending on the material in question. On further reducing the temperature the

spins of the metallic sites (the Ni2+ spins in the case of La2−xSrxNiO4) of the conduction

layer order antiferromagnetically between the charge stripes, Fig. 1.2(c). The ordering

of the spins is drastically affected by the charge ordering. Consider the top row of spins

in Fig. 1.2(c), in the parent material the spins would be up-down-up-down-... but in the
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(b)

b

a

Hole

Lattice

site

Temperature

(c)

(a)

Magnetically

Ordered

Spin

Figure 1.2: The generic temperature evolution of the charge-ordering in
doped layered antiferromagnets. The figure shows the metallic
sites of an ab plane, represented by circle if a hole resides on the
site, a dot when no hole sits on the site, or an arrow representing
the ordered spin of the metallic site. On cooling we go from (a)
disorder, to (b) periodic lines of ordered holes (charge stripes)
and to (c) spin stripe-order between the charge-ordering.

charge-ordered state the spins go up-down-charge-up-..., the after the charge-stripe the

spins are flipped 180◦ compared to the parent material. The charge-stripes act as spin

antiphase domain walls.

This is the standard ordering pattern on cooling from disorder, to charge order, that

leads to spins ordering between charge order, with the exception of La2NiO4.125 where

the spins and holes order cooperatively[7]. Although this pattern is experimentally well

characterized, theoretical studies have not been able to reproduce the experimental obser-

vations, and to my knowledge there is only preliminary work by Kato that has been able

to produce the intermediate ordering of a charge ordered state without spin ordering[8].
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To produce this state Kato modelled the system by including fluctuating magnetic order

that was found to stabilize the charge ordering.

1.1.1 Theoretical predictions of Charge Order

Charge-ordering was theoretically predicted before it was experimentally confirmed. Dif-

ferent models of doped antiferromagnets proposed by several different researchers all pre-

dicted a charge-ordering. A typical starting hamiltonian for such models is a one band

Hubbard model;

H = t
∑

〈i,j〉,σ
(c†iσcjσ + ciσc

†
jσ) + U

∑
i

ni,↑ni,↓ (1.1)

where ciσ destroys a electron at site i with spin σ, the summation 〈i, j〉, σ indicates a

summation over all nearest neighbour pairs on a square lattice, ni,σ = c†iσciσ is the number

operator for particles on site i with spin σ. U and t are the on site Coulomb repulsion

and the hopping matrix element for nearest neighbours, respectively. The ground state

of such a hamiltonian can be shown to be antiferromagnetic at half filling, and every site

has one unpaired electron. Charge-ordered states in the cuprates could be described as

systems doped away from half filling, which is the case investigated by the theoretical

calculations.

In the Hartree-Fock approximation it was found that charge-stripes were predicted for

weak[9] and strong[10] short range Coulomb interactions. Short range Coulomb interac-

tions are when the effective range of the Coulomb interaction is significantly reduced by

the screening of the electron charge by the polarization of the ions in the material. Long

range Coulomb interactions (where there is little screening) were thought to prohibit such

ordering, but later theoretical calculations predicted charge-stripe ordering in the presence
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of long range Coulomb interactions[11]. Further theoretical models including hybridiza-

tion of the d-p bonding orbitals[12], or a p-orbital antibonding electron reservoir[13] again

predicted charge-stripe ordering.

Theoretical work modelling these systems has come from very different starting points

for describing the interactions of such systems. The fact that these different theoretical

descriptions all predict charge-stripe order points to the robustness of charge-ordered

phases.
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1.2 Incommensurate Magnetic Order in

La2−xSrxCuO4

The compound La2−xSrxCuO4 (LSCO) is isostructural to the first high temperature super-

conductor La2−xBaxCuO4 and has an optimum superconducting temperature TC ≈ 40K

[14]. Early inelastic neutron scattering experiments on superconducting LSCO revealed

the magnetic scattering to be incommensurate with the crystal structure [15]. The dis-

covery by Tranquada et al. of a striped spin-charge ordered phase in non-superconducting

La1.48Nd0.4Sr0.12CuO4[3] suggested that the incommensurate magnetic excitations in

LSCO were due to charge-stripe ordering. In figure 1.3 the temperature evolution of

charge ordering in La1.48Nd0.4Sr0.12CuO4 is shown. On cooling below 70 K a structural

transition enables the holes to order into vertical and horizontal charge stripes with a

period of four lattice spacings, as shown in Fig. 1.3 (b). The hole density of these charge

stripes is equivalent to one hole for every two Cu sites. On further cooling below ∼ 50K,

the spins of the Cu2+ sites order antiferromagnetically between the charge-stripes, as

shown in Fig. 1.3 (c). The ordering observed in La1.48Nd0.4Sr0.12CuO4 corresponds to a

stable ordering with a hole concentration of 1 hole per 8 Cu sites, i.e. 1/8 doping.

Figure 1.4 shows the generic phase diagram of a hole doped high temperature supercon-

ductor. Two regions that are not thought to be connected with charge-stripe ordering

in high temperature superconductors are the fermi liquid and non-fermi liquid phases.

These phases occur at relatively high doping levels, whereas charge-stripe ordering is be-

lieved to be important only at low doping levels. For low doping levels there exists an

antiferromagnetic phase (AFM) below the Néel temperature TN. In the case of LSCO

this antiferromagnetic state is lost for approximately x > 0.02. When the sample is suffi-
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Figure 1.3: The temperature evolution of the charge-ordering in
La1.48Nd0.4Sr0.12CuO4. The figure shows the Cu sites of
an ab plane, represented by circle if a hole resides on Cu site,
a dot when no hole is on the Cu site, or an arrow representing
the ordered spin of the Cu2+ site. On cooling we go from (a)
disorder, to (b) periodic lines of ordered holes (charge stripes)
with one hole per two Cu sites and finally to (c) spin stripe-order
between the charge-ordering.

ciently doped the ground state of the material is found to superconduct, for xc > 0.05 in

the case of LSCO. Increasing the doping level further leads to an increase in the critical

superconducting temperature TC until an optimum value of TC is reached, after which

further increasing the doping level slowly suppresses TC to 0K. High temperature super-

conductors are split into three categories by their doping level: optimally doped where

the TC is maximum, underdoped and overdoped.

For doping levels between the antiferromagnetic phase and the superconducting phase

there exist two phases: the ‘spin glass’ and pseudogap phases. The spin glass phase is
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Figure 1.4: The generic temperature versus doping level, x, phase diagram
for a hole doped high temperature superconductor. The solid
black line indicates the Néel temperature, TN, for antiferromag-
netic order and the red line indicates the critical temperature TC

of superconductivity. The dotted lines indicate the pseudogap
temperature TP and ‘spin glass’ temperature TSG.

identified in magnetization measurements such as those taken by Chou et al.[16]. Zero field

cooled (ZFC) and field cooled (FC) magnetization measurements (see chapter 5.1) differ

at temperatures below TSG, indicating magnetic irreversibility. The observed magnetic

irreversibility is qualitively similar to the magnetic irreversibility observed in spin glasses,

and hence this phase is known as the ‘spin glass’ phase with transition temperature

TSG. On cooling below the psuedogap temperature, TP, several properties of the material

undergo a change that is indicative of the opening of an energy gap or a phase transition,

although the exact value of TP depends on the property being examined. This part of the

phase diagram is therefore known as the pseudogap phase, a review of which can be found

in the article by Battlogg and Varma [17]. Angle-resolved photoemission spectroscopy

measurements of the pseudogap reveal that the gap goes to zero in four directions and

thus has the same symmetry as the ‘d-wave’ superconductivity of these materials.
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The role played by charge ordering in superconductivity is unclear. Most theorists believe

that charge order competes with superconductivity, but some argue that it plays a crucial

part in the formation of the superconducting state. A suppression of the superconduc-

tivity in 1/8 doped La1.875Ba0.125CuO4[18] could indicate charge-stripe ordering seen in

La1.48Nd0.4Sr0.12CuO4 hinders superconductivity. On the other hand, theoretical scenar-

ios of a spin gap and pairing instabilities of stripe electrons have been shown to lead to

superconductivity[4].

Inelastic neutron scattering work has revealed incommensurate magnetic excitations[19,

20, 21, 22] occurring for a wide range of doping levels in LSCO. Figure 1.5 shows the ob-

served positions of magnetic scattering for (a) superconducting and (b) spin glass phases

of LSCO. In the superconducting phase four magnetic satellites are observed in the low en-

ergy excitation spectrum. Approximating the orthorhombic structure of LSCO as tetrag-

onal, the four satellites are evenly displaced away from the antiferromagnetic wavevector

at positions (1/2±δ, 1/2, l) and ( 1/2, 1/2±δ, l). The doping dependence of these exci-

tations is δ = x, although δ saturates at a value of 1/8 for x > 1/8 [19]. If these magnetic

excitations have the same origin as the magnetic order in La1.48Nd0.4Sr0.12CuO4, then the

excitations indicate charge ordering correlations with a spacing of 1/2δ Cu sites. In the

spin glass phase we do not observe the same magnetic excitations as those of the supercon-

ducting phase, but instead the magnetic correlations shown in Fig. 1.5 (b) are observed.

The magnetic satellites are spaced around the antiferromagnetic wavevector at positions

((1±√2δ)/2,(1±√2δ)/2, l) and ((1±√2δ)/2,(1∓√2δ)/2, l)[20, 22]. As in the supercon-

ducting state δ = x. The correlations in the spin glass phase contain a static component.

If these correlations are due to charge-stripes, they indicate charge correlations at 45◦ to

the Cu-O bonds with one hole per Cu site, equivalent to a diagonal charge-ordering like
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that seen in La2−xSrxNiO4. Therefore the ordered state of the spin glass phase of the

cuprates would resemble the charge-ordered state of La2−xSrxNiO4 (shown in figure 1.6

(c)) but with the charge stripes separated by a larger number of Cu sites. The diagonal

correlations of Fig. 1.5 (b) are observed to persist into the superconducting state[22].

Further experimental results from infa-red [23] and Raman [24] measurements support

the interpretation of the neutron scattering measurements, indicating charge-stripe cor-

relations with the same orientation.

In the Néel state with x > 0, neutron scattering measurements indicate phase separation

occurs into an antiferromagnetic phase with nh ∼ 0 and a spin glass phase with nh ∼

0.02[21]. This phase separation is probably the first observation of phase separation in

lightly doped antiferromagnets, and shows how the incommensurate magnetic correlations

of the spin glass phase develop from low doping levels.
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(a)
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Superconducting Phase Spin Glass Phase

2*

E 0�E 0� E = 0
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Figure 1.5: (a) The positions of incommensurate magnetic excitations in su-
perconducting LSCO. (b) The positions of incommensurate mag-
netic Bragg reflections in the spin glass phase of LSCO.

More recently inelastic neutron scattering measurements have now been used to map

out the spin wave dispersion in La1.84Sr0.16CuO4 [25], La1.875Ba0.125CuO4 [26] and

YBa2Cu3O6.6 [27]. Theoretical modelling of the structure factor for the magnetic excita-

tions has been able to reproduce the features observed in the inelastic neutron scattering
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experiments[28, 29, 30, 31]. The one common feature of these models is that they are

based on charge stripes, thus helping to establish stripes as a theoretically well founded

phenomena in these materials.
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1.3 Charge-Ordering in La2−xSrxNiO4

The occurrence of charge-ordering in La2−xSrxNiO4 (LSNO) is a well established exper-

imental fact. Charge-stripe order has been studied in LSNO by neutron[32, 33, 34, 35,

36, 37, 38, 39] and x-ray[40, 41, 42, 43] diffraction for doping levels in the range 0.135

≤ x ≤ 0.5. Raman[44, 45], infa-red[45, 46] and optical[47] scattering experiments are all

consistent with this ordered picture. As well as being static on the time scale probed by

neutrons and photons, the charge stripes are found to be well correlated with correlation

lengths in excess of 100 Å for certain levels of doping[34, 45, 42]. These two proper-

ties, static and long-range order, make LSNO an excellent system for studying the basic

properties of spin-charge stripes.

Figure 1.6 shows the temperature evolution of charge-ordering in LSNO for x = 1/3

doping. In Fig. 1.6(a) I show the high temperatures disordered state, where the holes

are randomly distributed in the ab plane. On cooling below the charge order temper-

ature, TCO, the holes align themselves into charge-stripes at 45◦ to the Ni-O bonds, as

shown in Fig. 1.6(b). Then at a lower temperature the Ni2+ spins align themselves an-

tiferromagnetically between the charge-stripes in the manner shown in Fig. 1.6(c), with

the charge-stripes acting as spin anti-phase domain walls. The temperature evolution of

charge-ordering in other doping levels of LSNO occurs in the same fashion.

Compared to the phase diagram of high temperature superconductors, the phase diagram

of LSNO is relatively simple. In figure 1.7 I show the phase diagram of LSNO[34, 38].

For low doping levels there exists an antiferromagnetic (AFM) phase below the Néel

temperature TN. For slightly higher doping levels charge-ordering occurs in a manner

similar to Fig. 1.6, on cooling the material charge-orders at TCO and then the spins order
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Figure 1.6: The temperature evolution of the charge-ordering in
La5/3Sr1/3NiO4 (LSNO). The figure shows the Ni sites of
an ab plane, circles represent holes residing on Ni3+ sites, dots
represent the Ni2+ with unorder spins, while the solid arrows
represent the Ni2+ spins. In LSNO on cooling, we go from (a)
disorder, to (b) periodic lines of ordered holes at 45◦ to the Ni-O
bonds (charge stripes) and to (c) spin stripe-order between the
charge-ordering.

at a low temperature TSO. On increasing the doping TCO and TSO increase to maximum

for x = 1/3. Increasing the doping level above x = 1/3 causes both TCO and TSO to

decease. Although the spin ordering temperature continues to decrease for increasing x,

for x ≥ 0.5 a highly stable checkerboard charge-ordered state emerges, which undergoes

a change in character at lower temperatures[38]. A checkerboard charge ordered state is

where a hole would reside on every other Ni site in the ab plane, forming a pattern of holes

that resembles a checkerboard (see section 1.3.2 for further details on the charge-ordering

of x = 0.5).
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Figure 1.7: The temperature versus doping level, x, phase diagram of hole
doped La2−xSrxNiO4. The solid black line indicates the Néel
temperature, TN, for antiferromagnetic order, For higher doping
levels the solid blue line indicates the charge-ordering temper-
ature, TCO, the solid red line indicates the stripe spin-ordering
temperature, TSO, and the solid purple line indicates the checker-
board charge-order temperature, TCCO. The dashed lines indi-
cate areas of the phase diagram which have not yet had their
properties ascertained.

In Fig. 1.6(c) I showed the charge-ordered ground state of LSNO with x = 1/3, in this

material the charge-stripes are evenly spaced by the distance 3 = 1/x Ni sites. For other

doping levels the charge-stripes are found on average to be approximately 1/x Ni sites

apart. Figure 1.8 shows the incommensurate charge and spin Bragg reflections produced

by charge-ordering in LSNO. The charge-ordering produces small structural distortions in

the crystal structure which produce weak Bragg reflections at (h±ε, k±ε, l) positions in

reciprocal space, for l = odd integer. Whereas the magnetic structure of charge-stripe spin

order produces Bragg reflections at (h+1/2±ε/2, k+1/2±ε/2, l) positions in reciprocal

space, for l = integer. For both the charge order and spin order ε has the same value

with ε ≈ x and ε is known as the incommensurability. In the case of ε being a simple
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Figure 1.8: The positions of the first-order magnetic and charge order Bragg
peaks produced by charge-ordering in LSNO (ignoring l depen-
dence). The Bragg peaks along (110) represent charge-ordering
as shown in Fig. 1.6, and the peaks from the equivalent domain
in which the magnetic ordering is rotated by 90◦ relative to that
shown in Fig. 1.6 are superimposed.

fraction only l = odd peaks should occur, as the charge-order can stack in a body centred

tetragonal arrangement as the charge stripes are spaced a set number of Ni sites apart

[48]. This is only true, to a good approximation, for x = 1/3[33] and x = 1/2 (see

chapter 6) doped materials, and as the charge-ordering is spaced commensurately with

the crystal structure the charge-ordering is said to be commensurate. For other values

of ε the charge-ordering period varies and cannot stack in a body centred tetragonal

arrangement, so Bragg reflections for the spin order occur at all integer values of l, see

reference [35] for a good example. A similar trend for the charge order Bragg reflections

should be expected, but studies of the charge order Bragg reflections have concentrated

on the strong l = odd integer reflections[42]. As the charge-ordering period varies it is

said to be incommensurate charge-ordering. The system is tetragonal, so ordering also

occurs at 90◦ to this producing a twin that is equally populated[49].

Understanding the variation of the incommensurability away from the relationship ε = x
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is critical in understanding many of the properties of LSNO and also indicates why the

x = 1/3 doping level is ‘special’. Figure 1.9 shows the doping variation ε for the ground

state of LSNO. The only doping level for which ε = x is the x = 1/3 material, for x < 1/3

ε is slightly larger than x and for 1/3 < x < 1/2, ε is slightly smaller than x[36, 39]. For

x ≥ 1/2 a new charge ordered phase emerges which causes ε to saturate [38].

g=n
h

g

n
h

0.2 1/3   1/2

1/3
0.25

4/9

Figure 1.9: The doping variation of the incommensurability of LSNO for the
ground state.

Consider the materials with x < 1/2. If the hole density in the charge stripes is a constant

1 hole per Ni site, then there are more holes in the charge stripes for x < 1/3 than are

doped into the material. To increase the hole density to a level above that caused by

doping, electrons would have to be promoted to the conduction band so that additional

holes are produced, hence the free charge carriers would be electrons. Whereas for x > 1/3

from doping there is an excess of holes required for producing charge stripes with 1 hole

per Ni site, so the excess holes would be the free charge carriers. By studying the Hall

coefficient T. Katsufuji et al.[50] established that the free charge carriers are electrons for

x ≤ 1/3 and holes for x > 1/3. The reason for this variation away from ε = x appears to
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be that the charge-stripe order in LSNO prefers ε = 1/3 but the spin order prefers ε = x,

so ε is closer to 1/3 than ε = x for x 6= 1/3[36, 42]. As charge-ordering is warmed out of

its ground state ε is found to tend towards ε = 1/3 as the spin order melts[36, 39]. This

tendency of ε → 1/3 is more dominant for x < 1/3 materials than x > 1/3 materials,

so the x = 1/3 compound can be regarded as a Mott insulator with an electron-hole

antisymmetry around this doping level[39].

One common feature of LSNO[51] and LSCO[16] is that both compounds are known to ex-

hibit irreversible magnetic behaviour, with magnetization measurements revealing a ZFC-

FC splitting. The irreversible magnetic behaviour of LSNO is not the only glassy feature

associated with the stripe ordering. Recent dielectric measurements on La5/3Sr1/3NiO4

also shows electronic glassy behaviour[52]. It has been observed that the charge-ordering

transition is not well defined with charge ordering correlations persisting to temperatures

well above the ordering temperature[41, 44, 53, 54]. Similarly it has been noted that the

magnetic ordering transition is slow and not well defined[33, 37, 55]. Recently neutron

diffraction on x = 1/2 indicated a magnetic ordering temperature of 80 K[38], but µSR

measurements indicated spin ordering that persists upto 180K[56]. This difference is due

to the different length scales probed by these techniques.1 These results shows that the

spins order at ∼ 180K but long range order does not occur until ∼ 80K, showing the

magnetic ordering is very slow in establishing itself. It is also at TICO = 180 K that

the charge ordering in the x = 0.5 doped material is found to undergo a transition on

1Neutron diffraction and µSR probe magnetic ordering on different timescales, with neutron scattering

probing the order on the shorter timescale, therefore magnetic ordering temperatures are usual measured

to be higher from neutron diffraction. In this case we observe magnetic order from µSR measurements at

the higher temperature because the muon can probe local order on a length scale smaller than neutron

diffraction.
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cooling, from commensurate checkerboard ordering into a mixture of incommensurate

charge-stripe order and commensurate checkerboard order[38].

1.3.1 Commensurate effects for x = 1/3

As already stated, the doping dependence of ε shows a preference for charge-ordering to

have a doping level as near as possible to 1/3 [36, 39, 42], with charge-ordering being

stablest in the x = 1/3 material, for x < 1/2 materials. In terms of length scale and tem-

perature stability of the charge-ordering, the stablest charge-stripe ordering also occurs

in the x = 1/3 material[34, 42]. Add to the stability the fact that charge-ordering can

space commensurately with the crystal structure for x = 1/3, making the x = 1/3 doping

level an attractive doping level to study, extensive studies of this doping level have been

carried out.

Studies of certain properties of LSNO have revealed commensurate effects that only occur

for x = 1/3. The properties that have been observed to show commensurate effects for

x = 1/3 are:

1) Measurements of the specific heat by Ramirez et al.[57] in the x = 1/3 revealed an

increase in entropy on charge-ordering not seen for other doping levels[58].

2) Ramirez et al. also showed a sound velocity anomaly on charge-ordering that is specific

to the x = 1/3[57].

3) A neutron diffraction study between 11 and 300 K on x = 0.275 and 1/3 single crystals

observed only a spin reorientation in the x = 1/3 material on cooling below 50K[35].

The commensurately ordered x = 1/3 shows effects that are specific to that doping level

due to the commensurate pinning of the charges to the lattice.



Chapter 1: Introduction 21

Charge order in LSNO prefers the commensurate charge order of the x = 1/3, and this

commensurate ordering shows unique features. It is important when studying properties

of charge-ordering in LSNO to determine if effects are due to commensurate charge order,

or whether any effect is enhanced by commensurate charge order.

1.3.2 Checkerboard Charge-ordering for x = 1/2

At half doping, systems with dominant Coulomb repulsions are expected to exhibit a

stable Wigner crystal state, where the charge carriers minimize Coulomb repulsion by

maximizing their displacement. In the case of a two-dimensional square lattice at half

doping this takes the particularly simple form of a checkerboard pattern, where every

other site is part of the charge-ordered state. This type of charge order has been ob-

served in the isostructural layered perovskites La3/2Sr1/2NiO4[59], La1/2Sr3/2MnO4[60],

and La3/2Sr1/2CoO4[61]. In figure 8.1 (a) I show the ideal half doped charge-ordered state

of La3/2Sr1/2NiO4, where the Ni2+ carrying spins S = 1 order antiferromagnetically be-

tween the checkerboard charge-ordered Ni3+ sites. In this case it is assumed that the

S = 1/2 spins of the Ni3+ sites do not order, which is different to the observed ordering

of La1/2Sr3/2MnO4[60].

Interestingly, checkerboard charge order has also recently been observed at doping levels

well below 0.5 in Bi2Sr2CaCu2O8+δ[62], and Ca2−xNaxCuO2Cl2[63] with a periodicity of 4

Cu atoms. Theoretical modelling of this charge-ordered state has been carried out[64, 65],

based on connecting this checkerboard charge-ordered state with incommensurate field

induced magnetic order with a periodicity of 8 Cu atoms that has been observed in

La2−xSrxCuO4 for x = 0.163[66]. Further experimental studies of simple systems with
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checkerboard charge order could help explain the formation of electronically-ordered states

in more complex systems.
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Figure 1.10: (Color online)(a) Ideal checkerboard spin–charge ordering in a
NiO2 square lattice. Circles represent Ni3+ holes, and solid ar-
rows represent spins on Ni2+ sites. The broken lines are included
to highlight that the spin pattern breaks the 2D symmetry of
the checkerboard charge ordering. J ′ is the exchange coupling
parameter of the Ni2+ spins across the Ni3+ site. This commen-
surate ordering is not realized in practise in La3/2Sr1/2NiO4.
(b) Diagram of part of the (h, k) plane in 2D reciprocal space
showing the positions of the first-order magnetic and charge or-
der Bragg peaks for the ideal checkerboard ordering represented
in (a). The peaks from the equivalent domain in which the
magnetic ordering is rotated by 90 deg relative to that in (a)
are superimposed. (c) The same diagram as (b) except with
the magnetic and charge order Bragg peaks observed in the in-
commensurate ordered phase of La3/2Sr1/2NiO4. For simplicity
we neglect the variation in the peak positions in the direction
perpendicular to the NiO2 plane.

The checkerboard charge-ordered state of La3/2Sr1/2NiO4 was first discovered in electron
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diffraction measurements by Chen et al.[59]. Recently a neutron diffraction study of this

x = 0.5 LSNO material by Kajimoto et al. revealed a different ground state to that of

the ideal checkerboard state shown in Fig. 1.10(a)[38]. The positions in reciprocal space

of the corresponding Bragg peaks for the ideal checkerboard-ordered state are shown in

Fig. 1.10(b). Peaks from the charge order have two-dimensional wave vectors (in units of

2π/a) (h + 1
2
, k + 1

2
), where h and k are integers. The lack of l dependence of the charge-

ordered Bragg peaks indicates a highly 2-dimensional nature of the charge-ordering. The

magnetic order has double the periodicity of the charge order, so peaks from the magnetic

order appear at (h+ 1
2
, k+ 1

2
, l)±(1

4
, 1

4
) for l= odd integer. Rotation of the ordering pattern

by 90 deg generates an equivalent magnetic structure, this time with magnetic peaks at

(h + 1
2
, k + 1

2
, l) ± (1

4
,−1

4
) for l= even integer. In the absence of a symmetry-breaking

interaction we expect an equal population of these two domains, so the pattern of Bragg

peaks will be a superposition, as shown in Fig. 1.10(b).

The measurements of Kajimoto et al. revealed Bragg peaks at very different positions in

reciprocal space to those shown in Fig. 1.10(b). This means the actual spin–charge ordered

phase of La3/2Sr1/2NiO4 observed below TICO does not conform to the ideal structure

shown in Fig. 1.10(a)[38]. Instead, in the ground state the magnetic Bragg peaks are

found at the incommensurate positions (h + 1
2
, k + 1

2
, l) ± (ε/2, ε/2, 0) with l an odd

integer, and (h + 1
2
, k + 1

2
, l) ± (ε/2,−ε/2, 0) with l an even integer, where ε ≈ 0.44

[38, 34]. New charge-order satellite peaks appear at (h ± ε, k ± ε) in addition to the

checkerboard charge order peak at (h + 1
2
, k + 1

2
), with little or no l dependence[38].

The significance of observing spin and charge-order peaks with ε ≈ 0.44 is that this

incommensurate order retains a part 1-dimensional stripe-ordering, along with the 2-

dimensional commensurate checkerboard charge-ordering. The full set of 2D magnetic
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and charge order wavevectors for the incommensurate phase of La3/2Sr1/2NiO4, including

those for the 90◦ domain, are shown in Fig. 1.10(c). This charge-order picture has been

determined to be consistent with observed symmetries of Raman, infa-red and optical

measurements[67]. For La3/2Sr1/2CoO4[61] the charge-order picture was observed to the

same as La3/2Sr1/2NiO4 but with ε ≈ 0.49, which is closer to the perfect checkerboard

order of ε = 0.5.

Kajimoto et al.[38] suggested that two types of charge order coexist in the incommensu-

rate phase, one part of the system being charge-ordered in a checkerboard pattern and

the other part adopting an incommensurate, stripe-like, spin-charge order. These au-

thors developed models for the latter component based on the introduction of diagonal

discommensurations in the ideal checkerboard spin-charge structure of Fig. 1.10(a). As

pointed out by Kajimoto et al., the stability of the incommensurate structure is proba-

bly the result of a competition between magnetic and electrostatic energy. The strong

superexchange interaction favours having antiparallel spins on nearest neighbour Ni sites,

whereas the Coulomb interaction tries to have a uniform charge density.

A theoretical model of the ideal charge-ordered state at x = 0.5 with antiferromagnetic

ordering of the Ni3+ sites predicted the occurrence of orbital ordering in this material[68].

However, the absence of static magnetic order on the Ni3+ sites and the occurrence of an

incommensurate magnetic ground state of the Ni2+ sites could have implications for this

prediction.
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1.3.3 Centring of Charge order in LSNO

In LSNO compounds it has yet to be uniquely determined, whether the charge-order

is centred on the Ni site or on the oxygen site, respectively known as site and bond

centring. Transmission electron microscope measurements on the x = 0.275 material re-

vealed the charge-ordering to be preferentially residing on the Ni sites on the surface of

the material[69]. NMR measurements on ∼ 1/3 doped La2NiO4.17 reveal two different Ni

valencies, consistent with site centred charge order[70]. While Curie-Weiss fits of magneti-

zation measurements in the paramagnetic state for 0.2≤ x ≤0.55 are again consistent with

site centred charge order[71]. Studies of La2NiO4.13 in magnetic field supported bond cen-

tring above the spin temperature that ordering transforming into site centring below the

spin ordering temperature[72]. However, X-ray absorption spectroscopy measurements on

LSNO with 0 ≤ x ≤ 1.15 revealed the holes to be distributed equally over the in plane

and out of plane O 2p orbitals[73].
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Figure 1.11: Model of the stripe order found in a ab plane of La5/3Sr1/3NiO4.
Circles represent holes residing on Ni3+ sites and the solid ar-
rows represent the ordered Ni2+ spins. With the intrastripe and
interstripe exchange interactions J , J ′ of nearest neighbour Ni
spins are indicated.

Inelastic neutron scattering measurements of the spin wave dispersion have been carried

out on single crystals of x = 1/3[49] and 0.31[74]. From these measurements the strengths
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of magnetic interactions can be determined by modelling the structure factor of the system

and comparing it to the measured structure factor of the system. In the work on the

x = 1/3 the magnetic interactions were modelled on a spin-only model having site centred

charge order. The model included nearest neighbour exchange interactions of spins within

the AFM region, J , and spins across the charge stripe, J ′, plus an out-of-plane anisotropy.

Figure 1.11 shows the Ni sites of an ab plane of the x = 1/3 doped material indicating

the exchange interactions of nearest neighbour spins J and J ′. The results of fitting

this model to the observed magnon dispersion indicated values of J = 15± 1.5meV and

J ′ = 7.5 ± 1.5meV. Theoretical modelling of the spin wave dispersion in charge ordered

materials for a spin only model and a wider range of doping levels has also been carried

out[75, 76]. Carlson et al. modelled the spin wave dispersion using a spin only model for

several different commensurate charge ordered states, including x = 1/3, for both bond

and site centred stripes[76]. Their calculation showed for x = 1/3 there was one dispersion

mode for site centred charge ordering but two modes for bond centred charge ordering.

For J ′/J = 0.5 the second optic dispersion mode is close in energy to the acoustic mode

and should have been observed in the measured spin wave dispersion on LSNO for x ∼ 1/3

[49, 74]. No second mode was observed in the experiment, supporting a structure of site

centred charge-ordering.

As the experimental evidence supports site centred charge ordering where the charge

stripes reside on Ni sites, over bond centred charge-ordering where the charge stripes

reside on O sites, I have assumed site centred charge-ordering when interpreting the

results in this thesis.
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1.4 Scope of this Thesis

The purpose of the experimental work of this thesis was to contribute to the existing

knowledge of charge-ordering in doped antiferromagnets.

In this work the aim was to study the doping dependence of the magnetic order and

magnetic excitations in La2−xSrxNiO4 for 0 ≤ x ≤ 0.5, using magnetization and diffrac-

tion measurements to study the doping dependence of the ordering, while using inelastic

neutron scattering to study the doping dependence of the magnetic excitations.

The study of the magnetic order is undertaken to improve the existing knowledge of the

different orderings and the doping evolution of the charge-ordered state. It is hoped

that from this work the effects of commensurate ordering and charge stability can be

determined.

Measurements of the magnetic excitation spectrum are carried out to determine the

effects of commensurate/incommensurate charge-ordering and the effect of two dimen-

sional checkerboard charge-ordering. It is hoped from this work that both the interaction

strengths of magnetic ordering and the magnetic state of the spins of the charge stripes

can be determined.
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Magnetization measurements

Magnetization measurements provide information on the bulk magnetism of samples. By

measuring the bulk magnetization of a sample, temperatures at which transitions occur

can be identified. Combining magnetization measurements with a technique such as

neutron scattering provides a way to characterize the ordered state of materials.

2.1 SQUID magnetometer

Magnetization measurements were carried out by the D.C. method using a Superconduct-

ing QUantum Interference Device (SQUID). The SQUID magnetometer used in this work

was a Quantum Design model MPMSXL. The instrument has a sample environment of

a cryostat capable of reaching a base temperature just below 2K and a superconducting

magnet that can produce a vertical field of up to 7T in magnitude. Operation and data

acquisition are controlled by computer.

To measure the magnetization of a sample a field must be applied to the sample to induce

a net moment in the sample. The net moment induced in the sample induces a current

28
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in the detector coils which are made from superconducting wire, the detector coils are

connected to the SQUID and the output voltage of the SQUID is directly proportional to

the current induced by the magnetization of the sample. Hence the SQUID acts as current-

to-voltage convertor and magnetization is measured from the induced voltage. In figure

2.1 (a) the setup of the detection coils is shown. There are coils at the top and bottom

that are wound anti-clockwise and two central coils wound clockwise. This arrangement

of detection coils means that variations of the magnetic field induce opposing current

in the clockwise and anti-clockwise coils which cancel each other out, thus minimizing

noise in the detection circuit. The magnetization produced by the sample would not be

uniform across the sample space, with the detection coils measuring the local changes in

the magnetic flux density, in this way a current is induced in the detection coils by the

sample’s net magnetization.

Figure 2.1 (b) displays the standard way in which the samples were mounted for these

measurements. The sample is mounted inside a plastic capsule, held in the central position

by use of cotton wool1. Using plastic tape this capsule was then thickened so that the

sample could be securely mounted in a central position in a plastic drinking straw. It

is important for mounting purposes that the sample is mounted symmetrically in the

vertical direction, as unsymmetrical sample mounting can induce a diamagnetic signal in

the detection coils.

Two techniques were employed to measure the magnetization of the samples studied,

the D.C. technique and the Reciprocating Sample Option (RSO) technique. In the D.C.

1Cotton wool is known to produce a small diamagnetic signal when placed in a magnetic field. In this

work we measured the temperature variation of the standard mount and found there to be no temperature

variation in this diamagnetic signal over the temperature range studied here.
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Figure 2.1: (a) The detection coils of the SQUID. (b) Sample mount em-
ployed in magnetization measurements.

technique the sample is moved through the detection coils in a point by point manner,

with the magnetization induced in the detector coils being recorded for the position of

each point. In the RSO technique the sample is oscillated about the central detection

coils and the magnetization is recorded as a function of the sample position. In both

techniques the curve produced by measuring the voltage induced across the SQUID as a

function of sample position is fitted to a theoretical curve, and the amplitude of this curve

is taken to be the sample magnetization. Figure 2.2 shows a curve that would typically

be measured by the SQUID for both D.C. and RSO techniques.

For the majority of this work the RSO technique was used in preference to the D.C.

technique, this is because of the greater sensitivity of the RSO technique. The greater

sensitivity of the RSO technique is due to the frequency at which the sample is oscillated,

for RSO measurements only magnetization varying with the frequency of the sample

oscillation will be recorded, a measuring technique known as phase locking. This removes
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Figure 2.2: A typical output produced by moving the sample position
through the detector coils. The curve mapped out by the sample
passing through the detection coils is shown by the points, and
the line represents the theoretical response curve of the detection
coils. The amplitude of the central peak of this curve, A, is taken
to be the magnetization of the sample.

additional magnetization detected by the detection coils that does not come from the

sample and the sample mount, any additional magnetization would be detected by the

D.C. technique. Some work was carried out using the D.C. technique because of sample

mounting considerations. When using the SQUID’s rotating mount to align the sample

for magnetization measurements, instrumental design restricts the measuring technique

to the D.C. method.

The results of the magnetization measurements in this work will be expressed in

EMUmol−1. To obtain the magnetization in EMUmol−1 the measured magnetization

is divided by the sample mass and then multiplied by the molar mass.
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2.2 SQUID rotating mount

The physics of the materials studied in this work is highly two dimensional in the ab

plane of the crystals. Important information can be yielded by studying the variation of

magnetism parallel to and perpendicular to the ab plane of the crystals. When studying

the magnetization perpendicular to the ab plane, misalignment of the crystal can lead

to significant contribution to the magnetization from the ab plane. To minimize the

contribution of the magnetization from the ab plane when measuring perpendicular to

the ab plane a rotating plate sample mount can be utilized to align the sample.

Sample glued
in position

Rotating plate
and pulley

Spring

Non-magnetic
metal

Shuttle

40 gauge wire

Outer tube
Inner  tube

Screw
thread

To motor

Figure 2.3: A diagram of the rotating mount. The right hand diagram is an
enlargement of the encircled area of the diagram on the left hand
side.

Figure 2.3 shows the design that is used for a rotating mount for the SQUID. A sample

of known orientation is glued with non-magnetic varnish to the flat rotating plate. This

plate is attached to a pulley, a thread attached to this pulley is then moved by means of a

motor so that the pulley rotates and turns the plate and the sample. Using the anisotropy

of the sample’s magnetization the sample can be aligned in the desired orientation around

this axis of rotation.
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There is a significant background from the rotating plate mount, that is history dependent.

All data taken when using the rotating mount have had this background subtracted. The

size of this background amounts to ≥ 10% of the measured signal.
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Neutron Scattering

Neutron scattering is a powerful technique that is widely used for studying systems of

interest in condensed matter physics. From diffraction studies we can obtain the crystal-

lographic and magnetic structure of materials, while inelastic neutron scattering can be

used to study the excitations of materials. The ability to probe the order and dynamics

of materials plays a key part in understanding the underlying physics.

X-ray scattering is a complementary technique to neutron scattering. X-rays strongly

interact with materials and only penetrate millimetres of the surface of a sample, whereas

neutrons interact weakly with materials, penetrating centimetres into the material en-

abling the study of the bulk of a sample. A neutron has an intrinsic magnetic moment

that can interact with the magnetic moment of unpaired electrons in materials, in this

way the magnetic order and magnetic excitations can be probed by neutron scattering.

Polarized neutron scattering can be used to study both magnetic diffraction and exci-

tations to determine the orientation of the magnetic order and the dynamic magnetic

excitations in a material. In this way polarized neutron scattering provides valuable in-

formation on the system being studied. The use of neutron scattering to study the actual

charge-ordering relies on the neutron scattering off the distortions of the crystal lattice
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caused by the charge-ordering, which produces weak Bragg reflections. As x-rays scatter

off the electrons of a material, x-ray scattering is a far more powerful technique to use

when studying the charge-ordering. In fact P. Hatton et al. have carried an extensive

study of the charge order in La2−xSrxNiO4+δ using many of the same crystals as employed

here[41, 42, 43]. In this work we studied the magnetism of charge-ordered La2−xSrxNiO4,

therefore we chose to use neutron scattering instead of x-ray scattering.
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3.1 Neutron Sources

There are two methods employed for producing neutrons for scattering experiments; using

nuclear reactors or using spallation sources. Nuclear reactors can be designed to produce

an excess of neutrons not required to sustain the nuclear fission reaction, and these addi-

tional neutrons provide a constant flux of neutrons that can be used to perform neutron

scattering experiments. Spallation, on the other hand, uses a pulse of highly energetic

protons from a synchrotron and smashes these into a heavy metal target. The nuclei

of the heavy metal target are split into smaller lighter nuclei, and excess neutrons are

released. The excess neutrons are a result of the higher ratio of neutrons to protons in

heavy metal nuclei compared to the ratio in the smaller product nuclei.
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3.2 Neutron Scattering Theory

The formal theory of neutron scattering requires the application of quantum mechanics.

Here I will cover the key concepts and quote the main formulae relevant to analysis of

experimental results. A rigorous derivation of these formulae and the concepts of neutron

scattering can be found in the texts by Lovesey[77] and Squires[78].

3.2.1 Neutron Scattering Cross Section

An important concept in neutron scattering is the scattering cross section. The total

scattering cross section represents the probability that a neutron will be scattered. A

mathematical definition of the total cross section is given by

σtot =
(total number of neutrons scattered per unit time)

Φ
(3.1)

where Φ is the flux of the incident neutrons, the number of incident neutrons per unit

time and unit area. The differential cross section is the probability a neutron will be

scattered within a given solid angle, and can be defined as

dσ

dΩ
=

(total number of neutrons scattered per unit

time into the solid angle dΩ in the direction θ, φ)

Φ dΩ

(3.2)

where θ, φ are the polar angles, with the polar axis taken as the direction of the incident

neutron beam. The double differential cross section is the probability that a neutron will

be scattered within a given solid angle and have an energy within a certain range. This
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can be expressed as

dσ2

dΩdE
=

(total number of neutrons scattered per unit

time into the solid angle dΩ in the direction

θ, φ with energy between E and E + dE)

Φ dΩ dE

(3.3)

All three of these are loosely defined as the ‘scattering cross section’. The cross sections

for nuclear, magnetic, inelastic and polarized neutron scattering can be obtained from first

principles using quantum mechanics. This requires the knowledge of the initial and final

quantum states of the system and the knowledge of the transition probability between

these two states. In the following sections I will quote the results for these cross sections.

3.2.2 Nuclear Elastic Scattering Cross Section

The neutron scattering cross section for a nuclear Bragg reflection occurring with wavevec-

tor Q is

dσ

dΩ
= N

(2π)3

V0

|FN(Q)|2 (3.4)

where N is the number of unit cells of the crystal, V0 the volume of the unit cell and

FN(Q) is the nuclear unit cell structure factor, given by

FN(Q) =
∑

j

b̄j exp(iQ.rj) exp(−Wj(Q, T )) (3.5)

The summation over j runs over all the individual atoms in the unit cell, b̄j is the neutron

scattering length of the jth atom in the the unit cell summed over all the isotopes of atom

j, and rj is the location of the j th atom in the unit cell. The term exp(−Wj(Q, T )) is

the Debye-Waller factor of the the j th atom, this accounts for the displacement of the

atoms from their nominal positions due to thermal motion.
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For the jth atom in a cubic unit cell the Debye-Waller factor is e(−Wj(Q,T )) where

Wj(Q, T ) =
1

2

〈
(Q.uj(T))2

〉
(3.6)

where uj(T) is the thermal displacement of the jth atom from its lattice site due to the

motion of the atom.

3.2.3 Magnetic Elastic Scattering Cross Section

For unpolarized neutron scattering the magnetic scattering cross section for a magnetic

Bragg reflection occurring with wavevector Q is

dσ

dΩ
= Nm

(2π)3

V0m

(γr0

2

)2 ∑

αβ

〈(
δα,β − Q̂αQ̂β

)
Fα(Q)F β∗(Q)

〉
(3.7)

where Nm is the number of magnetic unit cells in the crystal, V0m is the volume of

the magnetic unit cell, γ = 1.91 is the gyromagnetic ratio, r0 = 2.8 × 10−15 m is the

classical electron radius. The summation over α, β is the summation over the cartesian

co-ordinates x, y, z, with δ being the Kronecker delta, * represents the complex conjugate

and Q̂α, F α(Q) are the alpha components of the scattering wavevector and the magnetic

unit cell structure factor respectively. The components of the magnetic unit cell structure

factor are given by

Fα(Q) =
∑

j

µα
j fα

j (Q)exp(iQ.rj) exp(−Wj(Q, T )) (3.8)

where the summation j runs over all the magnetic atoms in the unit cell, µα
j is the α

component of the magnetic moment of the jth atom, and fα
j (Q) is the α component of

the magnetic form factor of the jth atom.
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3.2.4 Magnetic Inelastic Scattering Cross Section

In the dipole approximation for unpolarized neutron scattering the inelastic magnetic

scattering cross section for a magnetic ion is

dσ2

dΩdE
=

(γr0

2

)2

f 2(Q) exp(−2W (Q, T ))
ki

kf

S(Q, ω) (3.9)

where kf and ki are the initial and final wavevectors of the scattered neutron and Q is the

scattering wavevector. In the case of localised excitations with a sharply defined energy

difference the response function is

S(Q, ω) =
∑
ij

ρi|〈j|µ̂⊥|i〉|2δ(Ei − Ej − ~ω) (3.10)

where |i〉, |j〉 are the initial and final eigenfunctions of the system with eigenvalues Ei, Ej,

µ̂⊥ is the magnetic moment operator perpendicular to the scattering wavevector Q, ~ω is

the energy lost by the neutron to the system, and ρi is the thermal population factor of

the initial state. The thermal population factor ρi is given by

ρi =
e(−Ei/kBT )

Z
=

e(−Ei/kBT )

∑
i gie(−Ei/kBT )

(3.11)

where gi is the degeneracy of the state with energy Ei, and Z is known as the partition

function.
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3.3 Polarized Neutron Scattering

In the case of polarized neutron scattering the spin state of the neutron must also be taken

into account. Here I will quote the most important results for polarized neutron scattering.

This is covered in far greater detail in the paper by Moon, Riste and Koehler[79], as well

as the texts by Lovesey[77] and Squires[78].

3.3.1 Polarized Neutron Scattering Cross Section

A neutron is a spin one-half fermion. In a magnetic field the neutron has its spin either

parallel (up) or antiparallel (down) to the field. Hence, when a field is applied on the

sample a neutron can be scattered by a sample into either an up or down spin state. This

gives four possible spin scattering processes

| ↑ 〉 → | ↑ 〉

| ↓ 〉 → | ↓ 〉

| ↑ 〉 → | ↓ 〉

| ↓ 〉 → | ↑ 〉

(3.12)

where | ↑ 〉, | ↓ 〉 represent the two spin eigenfunctions of the neutron. In the first two

scattering processes the neutron’s spin state remains unchanged, whereas in the last two

scattering processes the neutrons spin state is flipped, hence these two categories of spin

interactions are commonly known as non-spin flip (NSF) and spin flip (SF) scattering

processes. In longitudinal polarized neutron scattering the neutrons spin in maintained

in either the up or down spin state by an application of a field for the entire scattering

process. For longitudinal polarized neutron scattering the cross section is the sum of the

cross section for each of these four scattering processes.
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A general expression for the scattering cross section for polarized neutron scattering is

dσ

dΩdE
∝ |〈kfSf |V | kiSi〉|2 (3.13)

where V is the scattering potential, ki, kf are the initial and final wavevectors of the

neutron, and Si, Sf are the initial and final spin states of the neutron. The scattering

potential contains both the interaction potentials for nuclear and magnetic scattering.

Consider the case of non-magnetic coherent nuclear scattering. The matrix elements in

equation 3.13 can be written as

〈
Sf

∣∣V Coh
N (Q)

∣∣ Si

〉
= V Coh

N (Q) 〈Sf |Si〉 (3.14)

where V Coh
N (Q) is the coherent nuclear scattering potential and the scattering wavevector

Q is

Q = ki − kf (3.15)

the change in wavevector of the incident and scattered neutrons. In this case 〈Sf |Si〉 for

the four different spin interactions are

〈Sf |Si〉 =





1




| ↑ 〉 → | ↑ 〉

| ↓ 〉 → | ↓ 〉





Non− spin flip

0




| ↑ 〉 → | ↓ 〉

| ↓ 〉 → | ↑ 〉





Spin flip

(3.16)

All coherent non-magnetic scattering is non-spin flip.

For magnetic scattering the scattering potential is

Vm(Q) =

(−γr0

2

)
σ·M⊥(Q) =

(−γr0

2

) ∑
α

σα.Mα⊥(Q) (3.17)

where the summation over α is the summation over the cartesian co-ordinates x, y, z,

and

σ = 2Sn (3.18)
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where is Sn is the spin of the neutron, and Mα⊥(Q) are the α components of the magne-

tization of the neutron perpendicular to the scattering wavevector, Q , where

M⊥ = −2
[
M− (M.Q̂)Q̂

]
(3.19)

with z defined as the direction of quantization of the neutron spin. For the four spin

scattering processes we find (see chapter 9.3 of reference [78]):

〈Sf |Vm(Q)|Si〉 =

(−γr0

2

)





Mz⊥(Q) | ↑>→ | ↑>

−Mz⊥(Q) | ↓>→ | ↓>

Mx⊥(Q) + iMy⊥(Q) | ↑>→ | ↓>

Mx⊥(Q)− iMy⊥(Q) | ↓>→ | ↑>

(3.20)

Considering equations 3.19 and 3.20, if the neutron is polarized parallel to Q then the

component of it’s spin perpendicular to Q is zero because z is ‖ Q. Hence, if the neutron

polarization is parallel to the scattering wavevector all magnetic scattering is spin-flip, for

both elastic and inelastic neutron scattering.

3.3.2 Polarizing Neutrons

There are several different ways of producing a beam of polarized neutrons. In the work

undertaken here, polarization of the incident neutron beam was achieved by use of a

Heusler (Cu2MnAl) monochromator, therefore I restrict the discussion of producing a

polarized beam of neutrons to this technique.

The elastic scattering cross section of a centrosymmetric crystal1 for neutrons can be

expressed in terms of two scattering components, the nuclear scattering and the magnetic

1A centrosymmetric crystal has real values of FN (Q) and FM (Q).
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scattering

dσ

dΩ
= [AFN(Q) + BFM(Q)]2 (3.21)

where FN(Q) is the nuclear scattering structure factor, FM(Q) is the magnetic structure

factor and A, B are constants of proportionality (see sections 3.2.1 and 3.2.3). As the

scattering lengths are either positive or negative the two contributions to the scattering

cross section can constructively or destructively combine.

B

Monochromator
crystal plane

Q

ç̂

I8>

I9>

Figure 3.1: A diagram of the configuration for polarizing a neutron beam by
use of a magnetic crystal monochromator.

Figure 3.1 shows a configuration that can be used to obtain a polarized neutron beam.

The monochromator is magnetic with the field lying positively in the up direction. The

cross section for this configuration is described by

dσ

dΩ
= (AFN(Q))2 + 2ABFN(Q)FM(Q)(P.− η̂) + (BFM (Q))2 (3.22)
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where P is the polarization direction of the incident neutron and η̂ is a unit vector in

the direction of the spins of the monochromator. Note that in this case η̂ refers to the

spins of the crystal monochromator not the incident neutrons. For neutrons incident on

the monochromator with spins up or down we have for P.−η̂ = 1 :

dσ

dΩ
= [AFN(Q) + BFM(Q)]2 (3.23)

Or for P.−η̂ = −1 :

dσ

dΩ
= [AFN(Q)−BFM(Q)]2 (3.24)

Clearly if AFN(Q) = −BFM(Q) the reflected beam will be fully polarized.

In practise 100% polarization of the incident neutron beam is not possible, and the data

needs to be corrected for this imperfect polarization. To correct for the imperfect polar-

ization of the incident neutrons a quantity known as the flipping ratio (f) is used. The

flipping ratio can be defined in the following way, with the neutron polarization parallel

to the scattering wavevector2 and for scattering from a purely magnetic Bragg reflection:

f =
SFobs

NSFobs

(3.25)

where SFobs and NSFobs are the observed count rates for the spin flip (SF) and non-spin

flip (NSF) scattering. So the corrected counts for SF and NSF scattering are

SF =

(
f

f − 1

)
SFobs +

(
1

f − 1

)
NSFobs (3.26)

and

NSF =

(
1

f − 1

)
SFobs +

(
f

f − 1

)
NSFobs (3.27)

Although here I have defined f from scattering that is purely magnetic in origin, f can

similarly be defined from scattering that is purely non-magnetic in origin.

2In this configuration all magnetic scattering is spin flip and all coherent non-magnetic scattering is

non-spin flip.
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3.4 Instrumentation

The large variation in neutron scattering experimentation carried out today requires an

equally complex variation of instrumentation. There are different classifications of in-

struments, with significant variations for instruments within each class. With all these

different type of instruments being computer controlled in operation and data acquisi-

tion. In this work we used two types of instruments, the triple-axis spectrometer and

the time-of-flight chopper spectrometer, both of which can be used to study excitations in

materials, such as phonons, or in this work magnons. I will now outline the basic concepts

of these instruments and their components, without commenting on the many complex

differences of individual instruments used in this work.

3.4.1 Triple-Axis Spectrometers

The triple axis spectrometer is the most commonly used type of instrument for studying

excitations in materials, although they can also be used to study elastic scattering to

characterize the static order.

Figure 3.2 shows a diagram of a triple axis spectrometer (TAS), with the three main com-

ponents being the monochromator, the sample position and the analyser. The monochro-

mator creates a monochromatic beam which is scattered off the oriented sample at the

sample position and the analyzer is used to examine the neutrons which have been scat-

tered off the sample in the desired manner for the scan selected. The following are brief

outlines of the main components of a triple axis spectrometer

1)Monochromator − To make the incident beam of neutrons monochromatic a crystal
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Figure 3.2: A triple axis spectrometer.

monochromator can be used. By scattering off an intense structural Bragg reflection

only neutrons with the energy that corresponds to the desired Bragg condition for

the monochromator will be diffracted through the angle 2θM , giving a monochromatic

beam. The Bragg reflection off the monochromator selected for creating a monochro-

matic neutron beam must also be broad enough to ensure a high enough neutron

flux. Monochromators are made from crystals of a range of different materials, in this

work the instruments on which the data was taken used monochromators made from

either pyrolytic graphite (PG) off the (002) reflection, silicon off the (111) reflection

or for polarized neutrons a Heusler alloy crystal off the (111) reflection. The opera-

tion of a triple axis spectrometer with polarized neutrons will be discussed in section 3.4.2.

2)Diaphragms − The size of the incident neutron beam is typically larger than

the size of the sample being studied, which means that not all of the incident neutrons

scatter off the sample. These additional neutrons can scatter of other materials in the

beams path, such as the cryostat that the sample is being cooled in. These additional
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scattering processes can lead to spurious counts in the detector. To reduce the number

of these additional neutrons diaphragms made from highly neutron absorbing materials

are placed before and after the sample, these diaphragms are closed to define the beam

size for the experiment.

3)Monitors − When performing a point by point scan we want the total number

of incident neutrons for each point to be the same, and to achieve this we use a monitor.

A monitor is a very inefficient detector, it detects a small fraction of the incident neutrons

and allows the vast majority of neutrons to pass through. This allows us to determine the

number of neutrons incident on the sample by counting to a desired number of neutrons

detected by the monitor. A monitor placed after the sample can also be used to detect

spurious scattering, which is often recorded as intense scattering in this monitor’s counts.

4)Sample − The sample can be mounted in a number of different environments

which depend on the conditions required for the experiment. Sample environments that

are desired for experiments include high or low temperatures, high magnetic fields and

high pressure. In our work on TAS instruments, cryostats were used to achieve low

temperatures for our samples. The cryostat was mounted on a goniometer, which allows

the sample to be orientated in the plane of the instrument enabling scans to be performed

in this scattering plane.

5)Filters − The monochromator uses a Bragg reflection to create a monochro-

matic beam, however neutrons with wavelengths that are a whole fraction of the selected

wavelength also satisfy this Bragg condition, and are called higher order harmonics.
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These additional harmonics result in scattering that occur at wavevectors a half, a third,

etc. of the positions expected from the selected wavelength. To suppress this higher

harmonic scattering filters are used. One type of filter is a PG filter, which works by

having a high transmission for the first harmonic at 2.662 Å−1 and a low transmission

for higher order harmonics. For scattering carried out at lower energies a different type

of filter made from beryllium or beryllium oxide can be employed. The filter is made of

polycrystalline beryllium randomly aligned, so any neutrons with a wavelength shorter

than the maximum spacing of the planes in beryllium will be scattered. The higher

order harmonic scattering off the monochromator has a shorter wavelength than the

first harmonic, so the higher harmonics are scattered out of the neutron beam by the

beryllium filter but the first harmonic has too long a wavelength to scatter from any of

the planes in the beryllium, and passes through the filter.

6)Analyser − In the same way that the monochromator uses a Bragg reflection

to select the wavevector and energy of the incident neutrons the analyser also uses

a Bragg reflection to select the scattered neutrons. By changing the Bragg reflection

conditions at the analyser we have the ability to select the energy as well as the

wavevector of the scattered neutrons we desire to study. Analysers are made from the

same materials as the monochromators.

7)Detector − Most TAS use a single detector to record the scattered neutrons.

Instead of a single detector a position sensitive detector (PSD) can be used. The

advantage of using a PSD is that this allows you to define the area of the detector that

is used for obtaining the counts of the scattered neutrons. This allows you the ability
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to remove areas of the detector which receive no scattering from the sample but count

additional background counts.

These are the main features common to the majority of triple axis spectrometers.

Additional equipment needs to be added to this basic design for carrying out some

specialised experiments, e.g. polarized neutron scattering.

Sample

Analyser

Detector

22M

22A

Monochromator

22S

Ki Kf

Figure 3.3: A diagram showing the incident and scattered wavevectors and
the scattering angles the neutron is scattered through for a scat-
tering event the scatters a neutron onto the detector of a triple
axis spectrometer.

In operation a triple axis spectrometer uses a continuous source of neutrons working at

either a fixed incident wavevector ki or, a fixed final wavevector kf . Figure 3.3 labels these

quantities and the angles a neutron has to be scattered through to reach the detector. If

the instrument is working with a fixed incident wavevector the sample position will remain

at a fixed position with respect to the monochromator and the analyzer and detector needs

to rotate about the sample to collect the scattered neutrons. Working with a fixed final
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wavevector requires the whole of the spectrometer to move around the monochromator

to select the necessary incident wavevector of the neutrons.

Out of these two configurations the one with fixed final energy is most commonly used

for the following reasons. The most general form of the neutron scattering inelastic cross

section can be expressed as

d2σ

dΩdE
∝ kf

ki

S(Q, ω) (3.28)

Where ki and kf are the incident and scattered neutron wavevectors respectively and

S(Q, ω) is known as the response function. The measured cross section for inelastic

neutron scattering is the number of neutrons scattered as counted by the detector, divided

by the number of incident neutrons detected by the monitor of incident beam. The

efficiency of this monitor is ∝ 1/ki, so the actual measured cross section for inelastic

neutron scattering is

d2σ

dΩdE
∝ detector counts

ki × monitor counts
∝ kf

ki

S(Q, ω) (3.29)

The factors of ki between the expressions for the theoretical and measured cross sections

cancel out. Hence, for constant kf the ratio of detector counts to monitor counts is

directly proportional to the response function S(Q, ω). To obtain from the measured

inelastic cross section the response function in absolute units is difficult, as the measured

cross section is dependent on quantities such as the reflectivity of the analyser. It is usual

therefore to express the intensities obtained from the inelastic neutron cross section in

relative intensities. In this thesis all measurements from experiments on TAS were taken

with a fixed final energy, so that the measured inelastic cross sections are proportional to

the response function.
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3.4.2 Triple Axis Spectrometer with Polarized neutron analysis

Sample

Heusler

Analyser

Heusler

Monochromator

Detector

Neutron

Source

Electromagnetic

Guide Field

Flippers

Figure 3.4: A diagram of the main components of a triple axis spectrometer
with polarized neutron analysis

When used for polarized neutron scattering the design of a TAS instrument is slightly

altered from that of a TAS used for unpolarized neutron scattering. Figure 3.4 shows

the main components of a TAS instrument with polarization anaylsis, where the incident

neutron beam has been polarized by use of a Heusler monochromator (see section 3.3.2).

The main change of components of the TAS instrument when working with polarized

neutrons are the addition of two flippers, an electromagnetic guide field at the sample

position and a Heusler analyser. The electromagnetic guide field is used to maintain the

direction of the neutrons polarization with respect to the scattering wavevector. As with

the Heusler monochromator the Heusler analyser only diffracts neutrons with one of the

possible two spin configurations, in this way the Heusler analyser provides polarization

analysis. Without the use of flippers before and after the sample only one of the four

spin scattering cross sections could be examined, the flippers are added to change the

polarization state of the incident and scattered neutrons. If both flippers are off then the
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| ↑ 〉 → | ↑ 〉 scattering cross section is observed, whereas if the first flipper is off but the

second flipper is on then the | ↑ 〉 → | ↓ 〉 scattering cross section is observed. In this way

all four of the scattering cross sections can be studied.

3.4.3 Time of flight chopper spectrometer

Time of flight chopper spectrometers can be found at continuous neutron sources or pulsed

neutron sources. The work we carried out on time of flight chopper spectrometers was all

performed on the instrument MAPS at the pulsed neutron spallation source ISIS, therefore

I will restrict my description of these instruments to the design for pulsed neutron sources.

Unlike triple axis spectrometers (TAS) scans are not collected in a point by point manner

by a single detector, but the scattered neutrons are detected in large detector arrays. By

knowing the time at which the scattered neutrons hit the detectors and the initial energy

of the neutron it is possible to determine by time of flight analysis the energy transferred

to the system. MAPS also employs position sensitive detectors that as well as detecting

when the neutron hits the detector also detect where it hits the detector, thus enabling

detailed mapping of reciprocal space in 3 dimensions, a 2-D spatial surface and energy

transferred to the system. In this way one scan lasting ∼2 days on an instrument such as

MAPS is the equivalent to performing a very large number of scans on a TAS instrument.

This has the advantage of mapping out large areas of reciprocal space and more readily

revealing additional excitation modes, whereas TAS instruments allow you to perform

scans with larger neutron flux at positions of interest in reciprocal space.

In figure 3.5 a schematic diagram of a time of flight chopper spectrometer is shown. A

pulse of neutrons is created by spallation and these neutrons are reduced in energy by a
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Figure 3.5: A time of flight chopper spectrometer for a pulsed neutron source.

moderator to energies useful for examining magnetic excitations. The energy bandwidth

of the incident neutrons is then selected by use of a Fermi chopper. A Fermi chopper is a

rotating drum that is synchronized to the neutron pulses, made from alternating curved

strips of a material that is transparent to neutrons (e.g. aluminium) and strips which are

strong neutron absorbers (e.g. boron) that lie in the plane of the neutron beam. The

phase of the chopper relative to the neutron pulse is chosen so that neutrons with the

desired energy pass through the chopper but slower or faster neutrons hit the absorbing

strips. The energy width of the neutrons selected by the Fermi chopper is determined

by the frequency of rotation of the chopper, the higher the frequency the narrower the

energy width. This monochromatic neutron beam is then scattered off the sample into

large detector arrays designed to collect scattering over a wide angle. An advantage of a

chopper spectrometer at spallation source is that certain background processes, e.g. due

to fast neutrons, only affect a small fraction of the time channels, so the background is

generally lower.
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3.5 Time of Flight Analysis

Time of flight analysis uses the knowledge of when a neutron was produced and the

path length the neutron travels to determine how the neutron was scattered. From this

analysis the energy and wavevector of the excitation caused by the scattered neutron can

be determined. With pulsed sources the time of the production of the neutrons is well

defined, so time of flight analysis is ideally suited for this type of source. Although nuclear

reactors produce a continuous source of neutrons, choppers can be used to provide pulses

of neutrons.

In any scattering process a neutron undergoes, energy is conserved

E = ~ωq = Ei − Ef (3.30)

where ω is the angular frequency of the excitation of wavevector q created by the neutron,

Ei is the neutron’s initial energy, Ef is the neutron’s final energy and ~ is the planck

constant divided by 2π. The final energy of the neutron can be expressed as

Ef =
1

2
mv2 (3.31)

where m is the mass of the neutron and v is the velocity of the neutron. By knowing

how far from the sample the neutron was detected, d, and when it was detected, t, the

neutron velocity can be determined as

v =
d

t
(3.32)

Which leads to the energy transferred to the system being

E = ~wq = Ei − md2

2t2
(3.33)
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From v = d/t we know the speed of the neutron, which can be converted into the de

Broglie wavelength;

λ =
h

mv
=

ht

md
(3.34)

From this wavelength the magnitude of the wavevector of the excitation can be deter-

mined. As ki and Q are determined from the sample orientation, and kf can be deter-

mined by the position and time the scattered neutron was detected, the direction of the

excitation’s wavevector can be determined by conservation of momentum

ki − kf = q + τ (3.35)

where ki and kf are the incident and scattered wavevectors of the neutron, q is the

wavevector of the excitation and τ a reciprocal lattice wavevector that maps q back into

the first Brillioun zone. This allows us to map out the intensities of the scattered neutrons

in terms of the wavevector and energy transferred to the system.

In practise, for the measurements I performed on the time of flight chopper spectrometer

MAPS the scattered neutron intensities are measured in detector-position-time binning

which is converted into (Q, ω) space. The data is then converted into absolute units by

normalizing the data to white beam scattering from a standard vanadium sample, which

corrects variations in detector sensitivity. This is achieved on MAPS using the programme

HOMER. The normalized data set corresponds to;

S(Q, ω) =
ki

kf

d2σ

dΩfdEf

(3.36)

with units of mbarn/(sterdian meV formula-unit). In this way from the measured double

differential cross section the response function is gained in absolute units.
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3.6 Measuring Dispersion Relationships

Inelastic neutron scattering can be used to measure the the dispersion of excitations such

as phonons and spin waves. Data obtained from using triple axis spectrometers and time

of flight chopper spectrometers with position sensitive detectors can be used to map out

dispersion curves.

The most common technique for measuring dispersion curves is to measure a series of scans

of the energy at a constant Q through the dispersion across the entire Brillioun zone, this

is known as a constant Q scan. In this work however, we chose to measure the dispersion

by carrying out a series scans of Q across the entire Brillioun zone for constant energies,

known as a constant energy scan. One reason for our choice in mapping out the spin wave

dispersion is that the incommensurate nature of the spin order leads to excitations that

are sharp in constant energy scans but broad in constant Q scans, hence the spin wave

excitations are more readily mapped out by performing constant constant energy scans

(or cuts in the case the time of flight data). A second reason is that in constant energy

scans phonon excitations tend to have relatively flat dispersions[80], making it possible

to separate out the spin wave excitations from the phonon excitations in constant energy

scans. Figure 3.6 gives examples of the these two types of scans, the constant Q scans

scan where kf and Q are kept constant while ki is varied and a constant energy scan

where kf and E are kept constant while Q is varied.

In either type of scan peaks are observed in the scattered neutron intensity when the

scan crosses the dispersion curves. By mapping out the centres of these peaks the disper-

sion relation for the material can be determined. The scattering must obey energy and
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Figure 3.6: A diagram showing the two ways to map out a dispersion curve,
a constant energy scan or a constant Q scan. The two solid
vertical lines represent the zone boundaries of Brillioun zone for
this dispersion relation.

momentum conversation. The condition for momentum conservation can be expressed as

ki − kf = q + τ (3.37)

where ki and kf are the incident and scattered wavevectors of the neutron, q is the

wavevector of the excitation and τ a reciprocal lattice wavevector that maps q back into

the first Brillouin zone.

Important information can be obtained from the scattering intensity variation with E. As

the neutron flux varies with incident energy it is important to ensure that the number of

incident neutrons is the same for different energies, this is achieved by use of a monitor in

the incident beam (see section 3.4.1). It should be noted that the efficiency of monitors

on different instruments varies, so direct comparisons between intensities on different

instruments can not easily be achieved.
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Sample Growth

The samples used in this work are single crystals of La2−xSrxNiO4+δ that were grown by

the floating zone technique. The majority of the crystals used in this work were grown by

D. Prabhakaran via the following technique (description taken from the reference [81] by

D. Prabhakaran et al. on growth of large single crystals of La2−xSrxNiO4). Stoichmetric

proportions of La2−xSrxNiO4 were prepared by mixing the starting materials of La2O3,

SrCO3 and NiO. This mixture was fired at 1200 − 1300◦C for 72h. After intermittent

regrinding this process was repeated until the material was a single phase. This material

was then hydraulically pressed into feed rods of typically 12mm diameter and 100mm

in length. To make the feed rods dense and straight they were sintered in a vertical

furnace at 1500◦C for 6−12h. Crystal growth was achieved by using a a floating zone

mirror furnace (Crystal Systems Inc.) with a 5−7 atmosphere of Ar mixed with a small

concentration of oxygen.

The oxygen content of the crystals produced by D. Prabhakaran was determined destruc-

tively by thermogravimetric analysis (TGA). For a TGA measurement a single crystal

sample is ground into a polycrystalline sample. The polycrystalline sample is then bro-

ken down by the application of heat into the constituent metal oxides and elements that

59
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Figure 4.1: A TGA measurement on a x = 0.5 sample. The graph records the
variation of the weight of the sample with temperature relative
to the initial sample weight.

make up the sample, with the weight of the sample being recorded during this process.

From the difference in weight of the end material to starting material the oxygen content

of the sample can be deduced. In the TGA measurements carried out in this work the

sample was heated at a rate of 10 K/min in an atmosphere of 98% Ar and 2% H2. The

La2−xSrxNiO4+δ sample decomposes in the following way

La2−xSrxNiO4+δ + H2 →
(

2− x

x

)
La2O3 + x.SrO + Ni + (1 + δ + 0.5x).H2O (4.1)

With initial and final weights of the sample in this reaction being

Wi = n.MW (La2−xSrxNiO4+δ) (4.2)

and

Wf = n.

[(
2− x

x

)
MW(La2O) + x.MW(SrO) + MW(Ni)

]
(4.3)



Chapter 4: Sample Growth 61

where MW is the molar weight and n is the number of mols. Hence, by recording the

initial and final mass of the sample the molecular weight of the starting sample can be

determined, and from this the oxygen content can be deduced.

Figure 4.1 shows TGA results for a x = 1/2 sample. On heating the sample’s weight is

constant below 400◦C above this temperature the weight slowly drops by 1% between 400-

600◦C, followed by significant weight loss between 800-950◦C and above this temperature

the sample’s weight remains constant. The weight loss between 400-600◦C is due to

partial loss of oxygen from La2−xSrxNiO4+δ, i.e. the value δ changes. The weight loss

seen between 800-950◦C corresponds to the sample decomposing into its constituent parts.

So the reaction shown in equation 4.1 corresponds to the total weight loss seen between

400-950◦C. Table 4.1 shows the δ content of the different doping levels studied in this

thesis.

Sr 0 0.1 0.2 0.225 0.25 0.275 0.3 1/3 0.4 1/2

δ 0.11 0.075 0.01 0.07 0.06 0.02 0.01 0.015 0.005 0.02

nh 0.22 0..25 0.22 0.365 0.37 0.315 0.32 0.36 0.41 0.54

Table 4.1: Oxygen content, δ, and hole content, nh, for our samples, deter-
mined by TGA measurements. The standard error in δ is 0.01.

No TGA measurements have been carried on a crystal of the x = 0.37 composition, but

the ordering temperatures of this sample are in good agreement with previous work on

samples of similar doping[34, 38].

The x = 0.275 sample used for the MAPS experiment was an array of four crystals

coaligned by x-ray diffraction (see chapter 7.2), which were grown at Kyoto University. A
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crystal similar to these samples was studied by neutron diffraction in reference [35], with

the crystal being found to be stoichmetrically doped.



Chapter 5

Magnetization Measurements of

La2−xSrxNiO4

In this chapter I present magnetization measurements on single crystals of

La2−xSrxNiO4+δ[82]. This study was undertaken to characterize the nature of the ground

state of LSNO over a wide range of doping levels. The investigation highlights differences

between the commensurately ordered compositions (x = 1/3 and 1/2), compared to the

incommensurately ordered compositions. The work complements the recent high temper-

ature magnetization work carried out by Winkleret al.[71]. Winkleret al. concentrated

on the paramagnetic magnetization, whereas this work concentrates on the magnetism

below charge-ordering.

Figure 5.1 shows a set of typical results for the magnetization of a LSNO compound,

obtained from a sample with x = 0.275 with a measuring field of 500 Oe applied parallel

to the ab plane. For the field-cooled (FC) data, on cooling we observe the charges to order

at TCO ≈ 170K and then the spins order at TSO ≈ 110K. The zero-field-cooled (ZFC)

data shows splitting from the FC data that is characteristic of a freezing of spins, like a

spin glass. During field cooling randomly aligned spins or spin domains are ordered by

63
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Figure 5.1: A typical set of ZFC and FC data for a LSNO material, show-
ing the convergence of the FC and ZFC magnetization between
TSO and TCO. The charge ordering, TCO, (as confirmed by x-
ray scattering[42]) spin ordering TSO, (as confirmed from neu-
tron diffraction) and spin glass temperatures, TF1 and TF2, are
indicated.

the application of a magnetic field, which causes an increase in the bulk magnetization

of the sample, whereas in zero field cooled measurements the spins or spin domains have

not been aligned by the field so the bulk magnetization is less than that of the FC. The

ZFC-FC splitting is large below TF1 ≈ 40K in the case of x = 0.275, with a smaller

ZFC-FC splitting that persists to a much higher temperature TF2 (where there is no ZFC-

FC splitting). I define TF1 as the temperature at which the ZFC-FC splitting becomes

constant with temperature. Below TF1 the ZFC-FC splitting widens, although in many

cases it only becomes large at the temperature of the ZFC peak. The ZFC peak is not

used as the definition of the spin freezing temperature as ‘memory’ effects observed in

these materials are found to be more closely correlated with TF1. I define TF2 as simply

the temperature above which the ZFC magnetization matches the FC magnetization.
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The measurements indicate that the ground state for all doping levels shows highly 2-

dimensional irreversible magnetic behaviour in the ab plane. The irreversible magnetic

behaviour has two components, a large low temperature component typically below TF1 ∼

50 K and a much smaller component that survives to approximately the charge ordering

temperature. In the x = 1/3 sample the low temperature component of the irreversible

magnetization is found to be greatly enhanced compared to that in other doping levels.

For fields applied parallel to the ab plane the magnetization shows a ‘memory’ effect in

the magnetic field – temperature history. This effect is found across the entire doping

range of LSNO studied, but it was found to be suppressed in the low temperature spin

orientation of x = 1/3, 0.275 and 0.37 (see chapter 6). The existence of this ‘memory’

effect was found to be correlated with the magnetic irreversibility.
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5.1 Experimental detail

Single crystals of La2−xSrxNiO4+δ used in this work were grown in Oxford by the floating-

zone technique[81]. Details of the sample preparation can be found in chapter 4. Typical

dimensions of these crystals are ∼5×5×2mm3, with masses typically in excess of 50 mg.

The oxygen excess (δ) as determined by thermogravimetric analysis (TGA), see chapter

4, and are displayed in table 4.1. Although no TGA measurements have been carried on

the x = 0.37 composition, we have fully characterized a larger as-grown x = 0.37 sample,

by neutron diffraction, see chapter 6.2. The temperature dependence of the magnetic and

charge order of as grown crystals have been characterized for most x concentrations by

neutron diffraction ( see chapter 6.2) and x-ray diffraction[42].

The magnetization measurements were made by using a SQUID magnetometer (Quantum

Design). Measurements were taken by the d.c. method. Scans were performed with either

the magnetic field parallel to the ab plane (H ‖ ab) or parallel to the crystal c axis (H ‖ c).

For measurements parallel to the c axis it was necessary to use a rotating plate sample

mount to align the sample’s orientation, using the anisotropy of the magnetization to align

the crystal, see chapter 2.2. For measurements taken when using the rotating mount a

significant background from the mount device has been subtracted from the data, and

hence any measurements where the rotating mount was used will be indicated.

We performed the majority of scans via two techniques, (i) by cooling in an applied field

whilst measuring (FC) ,and (ii) by cooling in zero field and measuring while warming in

a field (ZFC), typically using a measuring field of 500 Oe. Remnant magnetic fields were

measured by applying a field for 5 minutes at a fixed temperature, then setting the field

to zero and measuring the time dependence of any signal seen, taking t = 0 to be when
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the field reaches zero. Other scans we employed will be explained alongside the results

off the scans.
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5.2 Magnetization measurements 0 ≤ x ≤ 0.5
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Figure 5.2: Zero field cooled (ZFC) and field cooled (FC) magnetization data
for different compositions of La2−xSrxNiO4+δ for 0 ≤ x ≤ 0.275.

We carried out magnetization measurements on eleven samples of La2−xSrxNiO4+δ for 0

≤ x ≤ 0.5. Magnetization readings determine the temperatures at which transitions

occur, but do not determine the nature of the transition. The nature of the transition
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Figure 5.3: Zero field cooled (ZFC) and field cooled (FC) magnetization data
for different compositions of La2−xSrxNiO4+δ for 0.3 ≤ x ≤ 0.5.
The rotating mount was employed for measurements ‖ c in the
x = 1/3 material.

needs to be determined from other techniques, such as neutron and x-ray diffraction.

The work in chapter 6 is a neutron diffraction study of several different doping levels of

LSNO. Hence, by comparing the magnetization data to our neutron diffraction study, we
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can determine the nature of the transitions we observe in the magnetization work of this

chapter.

Examples of several FC and ZFC measurements with H ‖ ab can be seen in figure 5.2

and figure 5.3. We observe from these results that for all doping levels studied a ZFC-FC

splitting exists with H ‖ ab, a ZFC-FC splitting is characteristic of irreversible magnetic

behaviour. This splitting has two regimes, on warming there is a large ZFC-FC splitting

at low temperatures below TF1 ∼ 50 K 1, followed by a second smaller gap that widens

around the spin ordering temperature and persists to approximately the charge ordering

temperature, TF2 ∼ TCO. For x = 0.37 and 0.4 we observe the transition temperature of

TF2 to be higher than TCO. For x = 1/2 the spin ordering temperature (TSO) is much

lower than the charge ordering temperature, see figure 5.3(e). In the x = 1/2 sample

no opening of ZFC-FC splitting occurs around the spin ordering temperature. For the

x = 0.2, 0.3, 1/3 and 1/2 samples data has also been taken with H ‖ c. This data is

also shown in Fig.5.2 and Fig.5.3, and clearly showing the 2−D nature of the magnetic

irreversibility with no significant ZFC-FC splitting with H parallel to the crystal c-axis. In

the x = 1/3 material TF1 is observed to extend to ∼ 195K∼ TSO, a further example of how

the commensurate charge-stripe order in the x = 1/3 material leads to an enhancement

of the material’s properties (see Fig.5.3(c)).

In figure 5.4 the charge ordering temperatures are displayed versus x. For comparison we

include in the figure the ordering parameters available on LSNO in literature. Previous

phase diagrams display hole concentration nh = x + 2δ, not x, but as can be seen in the

inset of figure 5.4 a plot against nh from our samples show no coherent pattern. This

result is in agreement with the µSR study by Jestädt et al.[83]. No data on La2NiO4+δ

1I define TF1 as the temperature at which the ZFC-FC splitting becomes constant with temperature.
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(LNO) compounds is included, as the excess oxygen in LNO forms an ordered supercell

structure that the charge-ordering locks into[48], unlike any ordering we are aware of for

LSNO.

No charge or spin ordering was observed by us in the magnetization data for x = 0

or 0.1, and neither of the crystals have been examined by diffraction techniques. However,

literature reports suggest the excess oxygen level in the x = 0 sample may cause the

material to charge order[84, 85, 86, 87], and given the total hole doping for x = 0.1,

charge ordering could also be expected to occur in the x = 0.1.

In figure 5.5 we record the temperature of the magnetization peak in ZFC measurements

shown in Fig.5.2 and Fig.5.3. This peak temperature is seen to occur at ∼ 10K for most

doping levels apart from the x = 0.1, 0.2 and 1/2 compounds.
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netization in H = 500Oe, with H ‖ ab.

Attempts to fit our magnetization data in the paramagnetic state with the Curie-Weiss

law are in good agreement with the high temperature work of Winkleret al.[71]. Curie

temperatures thus obtained were of the order of −600K, indicating antiferromagnetic

ordering, which is far larger than the typical measured value of TSO ∼ 150K.

Remnant magnetic signals were induced by application of a field of 500 Oe at a fixed

temperature for 5 minutes, then switching the applied field off and measuring the time

variation of the induced signal. We chose the temperature at which the field was applied

to be below TF1, as this is the temperature range where the largest magnetic irreversibility

exists. Figure 5.6 shows the time variation of the remnant signal induced in the x = 1/3

compound at 2K: the signal is observed to initially decay relatively quickly before slowing

down to a much slower decay rate. In Fig. 5.6 we have indicated with two straight lines

these two different regimes. A decaying magnetic signal is observed when the field was

applied ‖ ab plane, but no significant induced signal is observed when the field was applied
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‖ c (not shown). We carried out fits of the remnant signals with a standard stretched

exponential M(t) = Mexp(−αt(1−n)). These data fits are found to be unsatisfactory, and

could not accurately be used to determine n for comparison with the theoretical value

of 2/3 expected for a spin glass[88]. A good fit of the data could be achieved with two

stretched exponentials, but no information could be obtained from this fit due to the large

errors in the fitted variables.
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Figure 5.6: The time dependence of the signal in x = 1/3 induced by appli-
cation of H = 500Oe ‖ ab for 5 minutes at T = 2 K. With the
relative time being the time after setting H = 0. The red curve is
a fit of a stretched exponential to the data and the two black lines
indicate the two different decay regimes of the induced signal.
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5.3 ‘Memory’ Effects

In our initial work several interesting features were observed in measurements performed

with H ‖ ab plane, namely the slow relaxation in the magnetization, and the significantly

higher value of TF1 for x = 1/3. In this section I show how the relaxation in the remnant

magnetization leads to a novel ‘memory’ effect when the temperature is varied. I carried

out this study by performing the following method:

Inducing a signal by FCing: Cool the sample from 300K to T0 in a field of 500Oe

‖ ab, remove the field, cool to 2K, and then measure in zero field while warming.

Figure 5.7 shows the variation with T0 of the signal induced by this method in the x = 1/3

material. These measurements indicate that a magnetic signal can be induced for T <

TF1, (TF1 ≈ TSO ≈ 190K).

At TSR ≈ 50K a known spin reorientation occurs[35], and this spin reorientation is ob-

served to dramatically affect the the signal induced by the FCing method. For T0 > 50K

the trend on heating from 2 K is for the induced magnetization to be a relatively weak

constant magnitude at low temperatures, rising sharply in magnitude just below TSR.

Then above TSR the induced magnetization decreases with increasing temperature, with

a decrease of the temperature gradient at T0, which is illustrated prominently in the

T0 = 140K data. The induced magnetization then levels off to a near constant value at

∼ 190K∼ TSO ≈ TF1. The lower T0 is, the larger the induced magnetization is. This is

true across the entire temperature range of the measurements.

For the case of the x = 1/3 when T0 < 50K, the induced magnetization is approximately

constant on warming from 2K to T0. Above T0 it then falls, before gaining strength

when heated through the spin reorientation. Further increasing the temperature causes
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Figure 5.7: The variation of the signal induced by field-cooling H = 500Oe
‖ ab to T0 (indicated in the key). Then cooling to 2K in zero field,
and measuring while warming in zero field. The measurement are
for the x = 1/3 material.

the signal to decay in strength until TF1, where it finally levels off to a constant value.

Overall the lower the value of T0 the larger the induced magnetization is.

We investigated the dependence of the induced magnetization on the size of the inducing

field for T0 = 70K, and found that the induced magnetization increased in size with the

inducing field, with little indication of the induced signal saturating for inducing fields up

to 5 T in magnitude (not shown). The signal was also found to be highly time stable up

to 2 hours. We also determined that the magnitude of the induced signal was the same

for field cooling at a rate of 10K/min or 3K/min (not shown).

Figure 5.8 shows the results for different doping levels of the magnetization induced by field

cooling in H = 500 Oe ‖ ab to T0 = 10 K, and measuring in zero field while warming, we
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include data for x = 1/3 with T0 = 70 K for comparison purposes. In the low temperature

spin orientation for x = 0.275 and 0.4 (see chapter 6) no suppression of the induced

magnetization is seen, unlike the behaviour of the x = 1/3. In the low temperature spin

phase of x = 0.37 the induced magnetization is suppressed in a fashion similar to, but less

dramatic than, the x = 1/3. For the low temperature spin phase of x = 1/2 there is no

‘suppression’ of the induced magnetization, however at the spin reorientation temperature

TSR = 57 K (' TF1), there is a sharp change in gradient of the induced magnetization. The

trend for doping levels other than x = 0.37, 1/3 or 1/2, is a constant magnitude induced

signal observed up to T0, above which the induced magnetization decays in strength and

levels off to a near constant value at around TF1. In the O doped material and the x = 0.2

this induced magnetization was seen to be significantly larger than for the other doping

levels, with the induced signal in the O doped material decaying rapidly with increasing

temperature.

With the stripe-ordering in x = 0.275 being incommensurate with the crystal lattice and

there being no coincident ordering temperatures, we chose to investigate the memory

effects in this material further. In figure 5.9 we can see the results of inducing a signal

by the standard field cooling method, which involves cooling in H = 500 Oe applied ‖ ab

to T0 followed by, cooling to 2 K in zero field and measuring the remnant magnetization

while warming in zero field, for different values of T0. On warming, the induced signal

shows signs of a small increase below ∼ 10K. Above ∼ 10K the signal slightly decreases,

before decaying away in an exponential fashion on heating through T0. Again, the lower

T0 is, the larger the induced signal is. For T0 > TF1 we still observe a decaying signal

above T0, which changes into an almost linear decay at ∼ TCO, at this temperature there

is still a significant non-background signal. The size of the induced magnetization for
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x = 0.275 and T0 = 10K also increases with strength of the inducing field (not shown).

Several compositions (x = 0.2, 0.3, 1/3, 1/2) were examined to see if a signal could be

induced by FCing ‖ c. In Figure 5.10 the results of inducing a signal by FCing ‖ ab or ‖ c

for x = 0.2 and 1/3 are shown. In all compositions tested any induced signal ‖ c could

be explained by a small sample misalignment of the order ∼ 2◦. I also show the result of

inducing a signal by FCing ‖ ab and ‖ c in the other commensurately doped composition,

x = 1/2, in figure 5.11. As with the other compositions a signal is induced ‖ ab but not

‖ c.
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5.4 Discussion

A common feature of all the La2−xSrxNiO4+δ compounds we have studied here is the 2-D

magnetic irreversibility, with a large irreversibility at low temperatures, < TF1, and a

small irreversibility that persists until TF2 ∼ TCO (see Fig.5.2 and Fig.5.3). The data

show slight, but possibly important variations from this simple trend. First of all for

the x = 1/3 compound TF1(1/3) ∼ TSO, which is significantly larger than in any other

compound, an enhancement perhaps due to the pinning effect of commensurate charge-

ordering to the crystal lattice[34, 36, 39, 50, 57]. Above TF1 the magnetic irreversibility

in the x = 0.37 sample is notably larger than in any other compound. This does not

appear to be due to this composition being close to the commensurate x = 1/3 doping

level, as the x = 0.3 does not have as large a magnetic irreversibility above TF1. For

materials with long range charge order 0.2 < x ≤ 0.4[34, 45, 42], we observe a trend in

TF2 relative to TCO. For the two compounds x = 0.4, 0.37 we observe TF2 > TCO, but in the

other materials TF2 < TCO. This could be linked to the crossover behaviour observed in

La2−xSrxNiO4 when the material is doped x ≤ 1/3 or when doped x > 1/3[34, 36, 39, 50].

I also note that in the ZFC-FC measurements of Fig. 5.3 (e) for the x = 1/2 the large

magnetic irreversibility temperature phase coincides with the spin reorientation transition

(see chapter 6). The second high temperature stage of the magnetic irreversibility in

x = 1/2 shows no variation on warming through TSO, but does reduce in size on warming

through TICO. This at first glance suggests magnetic ordering of Ni2+ spins has no effect

on the magnetic irreversibility we have observed. However the recent µSR measurements

by S. Blundell et al.[56] indicate that short range magnetic ordering of Ni2+ sites occurs

below TICO, therefore magnetic ordering may significantly effect the observed magnetic

irreversibility.
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In figure 5.5 we recorded the peak temperatures of the ZFC magnetization to be ∼ 10K

for δ = 0.11 and 0.225 ≤ x ≤ 0.4 samples, but the peak temperature is higher for the

x = 0.1, 0.2 and 1/2 samples. For the x = 0.2[42] and 1/2[38, 89] the ordering differs

from other compositions by being relatively short ranged. These differences could be

connected. Lack of knowledge on the ordering of the x = 0.1 prevents any discussion on

this material.

Our work does raise an important question: what causes the 2-D magnetic irreversibility

in La2−xSrxNiO4+δ? Anomalously the charge ordering correlation lengths are known to

be shorter than the spin ordering correlation lengths in LSNO, see for example reference

[34]. In theoretical work by Schmalian and Wolynes[90] it was shown that stripe systems

with competing interactions on different length scales inevitably lead to a transition to

a stripe glass phase. This stripe glass state would have metastable states which would

lead to slow relaxation rates, just like the remanent magnetization signal we observe

in Fig. 5.6. To visualize one possibility as to why different length scales could cause

a glassy state, consider the finite length of the charge stripes[42]: the spins order over

a longer range than the charges, so the spin order extends beyond the ending of the

charge stripe. Remembering that the charge stripes are spin antiphase domain walls, we

have beyond the end of the charge stripe two antiphase spin domains meeting, and the

competition between the two domains will lead to spin frustration, i.e. glassy behaviour.

This offers an explanation as to why the second part of the magnetic irreversibility persists

to approximately the charge-ordering temperature.

There are other possibilities for the cause of the magnetic irreversibility. The spins of

the Ni2+ are ordered at low temperatures and as such seem unlikely to cause the mag-

netic irreversibility observed, but the spin domains are finite in size. So the magnetic
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irreversibility could be due to reorientation of differently aligned spin domains. Alter-

natively, the spins of the holes in the charge stripes have not been observed to order,

so the magnetic irreversibility could be a ‘spin glass’ freezing of the Ni3+ spins in the

charge stripes. Theoretical modelling of these spins as a ‘spin glass’ would need to take

account of i) the strong interaction strength between ordered Ni2+ sites that occurs across

the charge stripes [49], and ii) the spins of the charge stripes showing one dimensional

antiferromagnetic correlations with the spin direction pointing preferentially out of the ab

plane, see chapter 7.

I have stated the magnetic irreversibility to be spin glass like, but paramagnetic materials

and ferromagnetic materials with small domain sizes also display magnetic irreversibility.

However, LSNO is well known not to show remnant magnetization in magnetic hysteresis

loops, indicating a lack of ferromagnetism. If these materials were spin glasses, a.c.

susceptibility measurements would show a frequency dependence of the imaginary part

of the susceptibility, but in these materials a.c. susceptibility measurements show no

frequency dependence (not shown). Clearly the magnetic irreversibility in LSNO has

certain properties that do not behave in the same manner as spin glasses.

In discussing the ‘memory’ effects I choose first of all to deal with the general trends,

then to discuss the unusual trends of the δ = 0.11, x = 1/2 and then the very unusual

x = 1/3. To aid the description of the data I will refer to the induced signals being

caused by the alignment of ‘spins’. As I make no assumption on the origins of these

‘spins’ my interpretation of the induced signals is not in any way biased. This qualitative

description of the general trends I base on a very recent theoretical paper by P. Sibani

and H. J. Jensen on how a spin glass remembers[91].
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In Fig. 5.6 I have shown the remnant signal induced by application of a field at a fixed

temperature in the x = 1/3, this remnant signal is typical of all the LSNO materials

studied here. After the field is switched off the induced signal decays as thermal fluctua-

tions perturb the system. The thermal fluctuations ‘quake’ the spins out of their induced

metastable states into metastable states of lower energy and magnetization. In the lower

metastable state the population of spins grows and the energy barrier for the state is

larger as the state has a lower energy. To quake the system out of the new state a more

energetic thermal fluctuation has to overcome the larger energy barrier for more spins,

such a fluctuation occurs far less than the fluctuations which decayed the spins into this

state. In this way each new stable state needs a larger quake to be excited out of its

present metastable state into another metastable state with lower energy. The likelihood

of thermal fluctuations causing such a quake exponentially decreases with increasing en-

ergy required for that quake, so the induced magnetization decays exponentially with

time. This explains the relatively fast decaying signal at early times. At later times the

thermal fluctuations are not large enough to quake the system out of the induced old age

metastable state, so the signal practically stops decaying.

More thermal energy is required to ‘quake’ the system out of the old age metastable state

back into the true ground state; more energy can be provide by heating the sample. The

behaviour of the memory effects in Fig. 5.8 for the general doping level can be explained

in this way. After the field is switched off at T0 = 10K the induced signal rapidly

decays into the old age metastable state by quakes from the thermal fluctuations, in the

manner shown in Fig. 5.6. Cooling the sample to 2K reduces the thermal energy of the

system, freezing the induced magnetization. On heating up to 10K the sample still has

less thermal energy, so no quakes are large enough to reduce the induced magnetization.
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However, on heating above 10K the thermal energy increases and the systems rapidly

receives quakes that reduce the induced magnetization to the old age metastable state

for the new temperature. In this way the small increases in temperature act to cause an

exponential decrease of the induced magnetization. This type of induced signal is called

Thermo Remnant Magnetization (TRM). In Fig. 5.9 for the x = 0.275, apart from the

small increase in strength below 10 K the TRM signal is observed to be near constant

until T0, where it decays away in the same manner as T0 = 10 K for the general doping

level. The fact that the lower T0 is the larger the TRM is, is not surprising, as when T0

is lower the thermal energy and hence fluctuations at T0 are smaller, so the TRM can

stabilize in an energetically higher metastable state as the thermal fluctuations cannot

quake the system to a lower energy ground state. The fact that the larger the field used

to induce a signal by field cooling the larger the induced signal is, suggests that a larger

field produces metastable states with larger energy barriers. To a rough approximation

we observe a large TRM for T0 < TF1 and a small TRM for T0 > TF1, until ∼ T0 > TF2.

This is a good indication that the cause of the TRM is the same as that of the irreversible

magnetization.

The behaviour of the δ = 0.11 compound in Fig. 5.8 is unusual in that the TRM decays

rapidly over a small temperature range of no more than 5K. This could be an indication

of an as yet unknown transition occurring at ∼ 15K and should be investigated by other

techniques. For the x = 1/2 the behaviour is typical of the other doping levels apart from

at the spin reorientation TSR = TF1 ≈ 57K. At the temperature of the spin reorientation

the decay of the TRM shows an abrupt change: in some way this transition causes a

striking change to the memory of this material. Although the δ = 0.11 and x = 1/2 show

variations from the normal trend, in both materials an increase in energy leads to a loss
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of the TRM of the material.

In the x = 1/3 we observe a very different behaviour to the other materials (see Fig. 5.7).

On warming through the spin reorientation at 50K the TRM is observed to dramatically

increase by an order of magnitude in the case of T0 = 60−90K. For TRM effects, increases

in temperature should cause loss of magnitude in the induced magnetization. Complex

magnetization effects have been observed in interacting magnetic nanoparticles[92], but

the observation of complex memory behaviour in those systems have been shown to be

relatively simple in origin and can come from a paramagnetic ground state[93]. Hence,

when dealing with unusual memory effects in magnetic materials it is best to be cautious

about their origin. In the x = 1/3 sample studied here the TRM seems to be suppressed

in the low temperature spin orientation (LTSO): the material appears to freeze a memory

of the temperature – field history in the high temperature spin orientation (HTSO). How

this is achieved is unclear, the memory of the TRM in the HTSO must be stored elsewhere

in the LTSO.

The suppression of the induced signal in the LTSO is not restricted to the x = 1/3.

In Fig. 5.8 the x = 0.37 shows a small increase in the TRM on warming to 10 K, as

does the x = 0.275 (Fig. 5.9). Again this suppression seems to be linked to the spin

reorientations in these materials (see chapter 6). The increases of the TRM signal with

temperature in the x = 0.275 and 0.37 are far smaller than in the x = 1/3, possibly

indicating commensurate enhancement in the x = 1/3. This makes the behaviour of the

TRM in the LTSO of the x = 1/2 unusual; in the x = 1/2 there is no suppression of the

TRM in the LTSO.

To summarize, magnetization measurements of La2−xSrxNiO4+δ for 0 ≤ x ≤ 1/2
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exhibit charge and spin ordering features, with the exception of the δ = 0.11 and x = 0.1

samples. All doping levels studied show a two component ZFC-FC splitting when the

field is in the ab plane, with a large splitting at low temperatures and a small splitting

that persists to approximately the charge-ordering temperature. This ZFC-FC splitting is

characteristic of magnetic irreversibility. The large low temperature ZFC-FC splitting was

observed to persist up to the spin ordering temperature in the x = 1/3. Thermo Remnant

Magnetization (TRM) signals were observed for all the doping levels when H ‖ ab, and the

onset temperature of the TRM is observed to correlate with the magnetic irreversibility.

Anomalously, this TRM signal is observed to be heavily suppressed in the low temperature

spin orientation of the x = 1/3 crystal and to a lesser extent in the x = 0.275, 0.37 samples.



Chapter 6

Spin reorientation transition in

La2−xSrxNiO4+δ

In this chapter I present neutron diffraction experiments on La2−xSrxNiO4+δ[89, 94]. I will

first highlight results from our magnetization study of single crystals of La2−xSrxNiO4,

which showed a previously unidentified transition in the x = 1/2 and 0.37 doping lev-

els. The discovery of this unidentified transition instigated a full characterization of the

magnetic order of single crystals of x = 1/2 and 0.37 by neutron diffraction.

The temperature dependence of the magnetic order Bragg peaks suggested that the

unidentified magnetic transition was a spin reorientation in the ab pane of the crystals,

where on cooling the spins rotate away from the charge-stripe direction. We confirmed this

interpretation by employing polarized-neutron diffraction to determine the temperature

variation of the spin orientation in the x = 1/2 and 0.37.

Having determined the existence of a spin orientation in the x = 1/2, 0.37 and with

knowledge of the existence of a previously observed spin reorientation in a x = 1/3 doped

sample[35], we investigated the possible existence of a spin reorientation in other doping

87
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levels. We achieved this by studying the magnetic order of single crystals of x = 0.275

and 0.4 by unpolarized-neutron diffraction. From the temperature dependence of the

magnetic order peaks we inferred that a spin reorientation does occur in the x = 0.275

and 0.4 in the same manner as in the x = 0.5, 0.37. This investigation leads us to the

conclusion that all doping levels for 0.275 ≤ x ≤ 0.5 undergo on a spin reorientation at

∼ 15K or at ∼ 50 K for the commensurately doped x = 1/3 and x = 1/2, with the spin

reorientation being significantly larger in the x = 1/2.
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6.1 Magnetization Measurements

Magnetization data were collected with a superconducting quantum interference device

(SQUID) magnetometer (Quantum Design), with the field applied parallel to the ab plane

of the crystal. The crystals used for the magnetization measurements had typical dimen-

sions ∼5 × 5 × 2mm3. The oxygen content of the x = 0.275, 0.37 and 1/2 crystals was

determined by thermogravimetric analysis to be close to stoichiometric, i.e. δ ≈ 0 (see

chapter 4). We carried out d.c. measurements either by cooling the sample in an applied

field of 500 Oe (FC), or by cooling in zero field then measuring while warming in a field

of 500 Oe (ZFC).
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Figure 6.1: FC and ZFC magnetization data for (a) La3/2Sr1/2NiO4 and
(b) La1.63Sr0.37NiO4. Arrows indicate the charge-ordering tem-
perature, TCO, spin-ordering temperature, TSO, and the spin-
reorientation temperature, TSR, determined separately by neu-
tron diffraction. The inset of (b) shows the field dependence of
the onset temperature of the anomaly in the magnetization data
for x = 0.37.

Figure 6.1(a) shows the temperature variation of the FC and ZFC magnetization ‖ ab

and FC ‖ c for a x = 1/2 sample. A small change in slope at 90 ± 5K marks the spin
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ordering temperature, in agreement with previous observations[34]. A clearer anomaly is

seen at TSR = 57 K, where the FC and ZFC curves sharply separate. Below 5 K both the

FC and ZFC curves begin to rise for reasons that are not yet understood, but could be

due to a small amount of paramagnetic impurity in the crystal. We measured the FC

magnetization parallel to the crystal c direction and found no anomaly around TSR, thus

indicating that the transition involves the in-plane components of the spins. In figure

6.1(b) we show the variation of the FC and ZFC magnetization for x = 0.37. A subtle

change of slope at TCO = 230±10K, marks the charge-ordering temperature, with a more

pronounced gradient change at TSO = 170± 10K marking the spin-ordering temperature

(defined later from neutron diffraction). In the x = 0.37 material there is a large FC–ZFC

difference below ∼ 50K and a much smaller difference that persists to TCO with a slight

widening around TSO (see chapter 5.2 ). We observe a small but sharp drop in the FC

magnetization below ∼ 12K, indicating an unidentified transition. The inset of figure

6.1(b) shows the field dependence of this feature, which can be seen to decrease when

increasing the applied field. As I will show, this feature along with the anomaly at TSR =

57K in the x = 1/2 material correspond to a spin reorientation transition.

Figure 6.2 shows the variation of FC and ZFC magnetization for the x = 0.275 and

x = 0.4. Like x = 0.37 and 1/2, both these materials are observed to have irreversible

magnetic behaviour. The ZFC magnetization of the x = 0.275 crystal has a rounded

maximum at ∼ 10K. For x = 0.4 there is no maximum, but the increase in magnetization

with decreasing temperature first slows down and then begins to rise sharply below 5K.

The increase below 5K could be due to a small amount of paramagnetic impurity in the

crystal.
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6.2 Neutron Diffraction Measurements

The polarized neutron experiments were performed on the triple-axis spectrometer IN20 at

the Institut Laue-Langevin. The energies of the incident and elastically scattered neutrons

were selected by Bragg reflection from an array of Heusler alloy crystals. The data were

obtained with initial and final neutron wavevectors of 2.66 Å−1. A PG filter was present

between the sample and the analyzer to suppress scattering of higher-order harmonics.

Some additional measurements on the x = 1/2 crystal were carried out with the initial and

final neutron wavevectors of 3.54 Å−1. For a kf = 2.66 Å−1 the wavevector resolution in

the scattering plane was 0.03 Å−1 and the out of plane resolution was 0.13 Å−1, whereas for

a kf = 3.54 Å−1 the resolution in the scattering plane was 0.04 Å−1 and the out of plane

resolution was 0.11 Å−1. The unpolarized neutron experiments were performed on the

triple-axis spectrometer RITA-II at SINQ at the Paul Scherrer Institut. The energies of

the incident and elastically scattered neutrons were selected by Bragg reflection from a PG

crystal. The data were obtained with initial and final neutron wavevectors of 1.55 Å−1,

and a Be filter operating at 77K was present between the sample and the analyzer to

suppress scattering of higher-order harmonics. For the measurements on RITA II the in

plane wavevector resolution was 0.02 Å−1.

For x = 0.275, 0.37, 1/2 single crystal rods of 7–8mm diameter and ∼40mm in length

were used, and for x = 0.4 the crystal was a slab of dimensions ∼15× 10× 4mm3. In this

work we describe the structural properties of LSNO with reference to a tetragonal unit

cell, with unit cell parameters a ≈ 3.8 Å, c ≈ 12.7 Å. The samples were mounted with the

[001] and [110] crystal directions in the horizontal scattering plane. Scans were performed

in reciprocal space either parallel to the (h, h, 0) direction at constant l, or parallel to
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the (0, 0, l) direction at constant h.

Our elastic neutron scattering study began by examining the x = 0.37, 1/2 doping levels

by polarized-neutron diffraction. Initially, the neutron polarization P was arranged to

be parallel to the scattering vector Q, maintained by an adjustable guide field of a few

mT at the sample position. In this configuration a neutron’s spin is flipped during an

interaction with electronic magnetic moments, but remains unchanged when scattered by

a non-magnetic process, e.g. a lattice distortion. Thus by measuring the spin-flip (SF)

and non-spin-flip (NSF) channels one can identify whether observed scattering is magnetic

or not in origin.

In the x = 0.37 material magnetic order Bragg peaks were observed at (h + 1/2 ± ε/2,

h + 1/2± ε/2, l) positions for all integer l. This can be seen in figure 6.3(a), which shows

the SF scattering for a scan parallel to (h, h, 0) for l = 5 at T = 2K. The peak position

corresponds to ε = 0.3554± 0.0002, consistent with previous measurements [34].

Figure 6.3(b) shows the NSF scattering from x = 0.37 for the same scan as Fig. 6.3(a).

The scan contains 2 weak peaks, one at h = 0.646 ± 0.001 corresponding to charge or-

dering with an incommensurability of ε = 0.354 ± 0.001, and the other at h = 0.678

corresponding to magnetic ordering. The latter appears in the NSF channel due to im-

perfect polarization of the neutron beam. We searched for the charge order peak at other

equivalent (0.646, 0.646, l) positions, but only at l = 3 and 5 was there a measurable

peak. From the temperature dependence of the charge peak in Fig. 6.3(b) we found

TCO ≈ 230K. By performing scans parallel to (h, h, 0) we were able to obtain the in-

plane charge-order correlation length perpendicular to the stripe direction of 70 ± 6 Å.

This compares with a correlation length of 49 ± 5 Å along the c axis. These results show



Chapter 6: Spin reorientation transition in La2−xSrxNiO4+δ 94

0

2000

4000

6000

8000

1 10
4

0.55 0.6 0.65 0.7 0.75

C
o
u
n

ts
p
e
r

1
8

s

h (r.l.u.)

(h,h,5)
T = 2 K

SF
P Qll

(h,h,5)
T = 2 K
P Qll
NSF

(a) (b)

0

100

200

300

400

500

0.55 0.6 0.65 0.7 0.75

C
o
u
n
ts

p
e

r
1
8

s

h (r.l.u.)

Charge
Order

Magnetic
Order

Figure 6.3: (a) The spin flip (SF) diffraction channel for a scan parallel to
(h, h, 0) for l = 5 for La1.63Sr0.37NiO4 at T = 2 K. This peak
corresponds to the magnetic order peak, and is centred at h =
0.678. (b) The non-spin flip diffraction for the same scan. The
arrow indicates the charge-order Bragg peak. The second peak
is diffraction from the magnetic order peak observed in the NSF
channel due to the imperfect spin polarization of the neutron
beam.

that the charge order is relatively three-dimensional.

For the x = 1/2 sample we observed spin-order diffraction peaks at (h+1/2±ε/2,

h+1/2±ε/2, l) positions with l odd and ε = 0.445 ± 0.005. Figure 6.4 shows a scan

parallel to (0, 0, l) for both SF and NSF scattering. The widths of the magnetic peaks in

the SF scan convert to a correlation length along the c axis of 16.4 ± 0.3 Å. For compari-

son, the in-plane correlation length in the direction perpendicular to the stripes is 78.3 ±

1.3 Å. There were no peaks at l = even positions, as can be seen in figure 6.4. There were

also no spin-order peaks at (h±1/4, h±1/4, l) positions, confirming the lack of any com-

mensurate Fourier component in the spin ordering, in agreement with the observations of

Kajimoto et al.[38].

We observed charge-order diffraction in the vicinity of the (1.5, 1.5, l) line in reciprocal

space for the x = 1/2 compound. At T = 10 K the peak shape observed in (h, h, 0) scans
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was consistent with that observed by Kajimoto et al., with a central peak at h = 1.5 and

two satellites at h ≈ 1.45 and 1.55. We observed no variation of this scattering with l

over a single Brillouin zone, showing that both the commensurate and incommensurate

components of charge ordering are completely two-dimensional.

Figure 6.5 shows a scan performed on the x = 0.37 parallel to (0, 0, l) through the

magnetic order peaks, this is similar to the scan on the x = 1/2 that is shown in Fig. 6.4.

As with the x = 1/2 sample the widths of the peaks in this scan relate to the correlation

length along the c-axis, however we observed that the correlation lengths for even and

odd l differ by a factor ≈ 2. That is, for even l we obtain a correlation length of 53.2

± 1.4 Å and for odd l we obtain a correlation length 108 ± 2 Å . We performed scans

parallel to (h, h, 0) on odd l peaks, for which we obtained an in-plane correlation length
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No correction has been made for the imperfect polarization of the
neutron beam. The additional peaks in the NSF channel at l ≈
4.4 and 5.4 are due to diffraction from the Al sample mount.

perpendicular to charge stripe direction of 112.6 ± 1.1 Å .

The intensities of the even and odd l magnetic peaks were discussed in work on La2NiO4+δ,

by P. Wochner et al.[48]. For a commensurate stripe spin-ordering, such as ε = 1/3, the

stripes stack in a body centred arrangement and only the odd l magnetic peaks are ob-

served, with the systematic absence of the l = even peaks. However, for incommensurate

spin-ordering with the stripes either pinned to the Ni or O sites[69], perfect body-centred

stacking cannot be achieved. The disorder thus created, along with the additional dis-

order introduced due to differing Coulomb interactions between the ab layers, result in

the presence of l = even peaks. Hence, l = odd peaks have a long correlation length as

they come from the ideal long range body-centred stacking, whereas l = even peaks are a

result of the disorder created on the smaller length scale of the non-ideal stacking.

In figure 6.6(a) I show the ideal checkerboard charge-ordered arrangement for the x = 1/2,
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Figure 6.6: (a) Ideal checkerboard 2-D charge ordering in the ab plane. Cir-
cles represent holes residing on Ni sites, while the solid arrows
represent the spins of the Ni2+ sites. Dashed lines indicate the
charge domain walls common to both checkerboard and stripe
ordering. The commensurate spin ordering shown here is not re-
alized in practise in La3/2Sr1/2NiO4+δ. The observed spin order
in La3/2Sr1/2NiO4+δ is similar to that shown, but is actually in-
commensurate in the direction perpendicular to the stripes. The
components of the ordered moment parallel (µ‖) and perpendic-
ular (µ⊥) to the stripe direction are shown, and φ denotes the
angle between the spin axis and the stripe direction. (b) Dia-
gram of the (h, h, l) plane in reciprocal space. Q1 and Q2 are
the scattering vectors of the two magnetic peaks investigated in
this work.

showing the spin components parallel to (µ‖) and perpendicular to the stripe direction

(µ⊥), along with the angle φ between the spins and the charge stripes. In practise this

arrangement is not achieved. The charges order in the ideal checkerboard arrangement at

∼480K but below TICO∼ 180K an incommensurate charge-stripe ordering phase coexists

with the checkerboard ordering[38]. Figure 6.7(a) shows the temperature dependence of

the integrated intensity of two magnetic reflections for x = 1/2, Q1 = (0.275,0.275,5) and

Q2 = (0725,0.725,1), measured in scans parallel to (h, h, 0). The spin ordering transition

is seen to be rather sluggish, but a sharpening of the peaks below TSO ' 80K (not shown)

suggests that this is where long-range ordering extending over many unit cells sets in.
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However short-range correlations persist above 100K. On cooling below TSO, the peak

at Q1 increases monotonically, while that at Q2 first increases, then reaches a maximum

at ∼60K, then decreases again. This anomalous behaviour correlates with the transition

observed in the magnetization, Fig. 6.1(a). To understand this behaviour we must recall

that magnetic neutron diffraction is sensitive to spin components perpendicular to Q. As

shown in figure 6.6(b), Q1 is approximately parallel to (0, 0, l) while Q2 is approximately

parallel to (h, h, 0). Therefore, to a good approximation, the scattering at Q1 is from the

total in-plane spin moment, irrespective of its direction, while that at Q2 comes mainly

from the spin components parallel to the stripes and along the c axis. The data in fig.

6.7(a) therefore imply that below ∼57K the spins rotate away from the stripe direction.

To fully analyze the direction of the spins over this temperature range in the x = 0.5,

we varied the direction of the neutron polarization P relative to the scattering vector Q.

Three configuration were used: 1) P ‖ Q, 2) P ⊥ Q but in the scattering plane, and

3) P ⊥ Q but out of the scattering plane. (Recall that [110] and [001] are the crystal

directions in the scattering plane.) As mentioned before, neutrons scatter via magnetic

interactions from spin components perpendicular to Q, and SF scattering is due to spin

components perpendicular to P. Therefore, analysis of configurations 1), 2) and 3) leads

to the direction of the ordered moment1. Table 6.1 summarizes the relations between

the observed intensities at Q1 and Q2 and the ordered spin components parallel (µ‖) and

perpendicular (µ⊥) to the stripe direction (see figure 6.6(a)), and parallel to the c axis

(µc) .

We corrected the data to take into account the different background count rates in the SF

and the NSF channels, and to correct for the imperfect spin polarization of neutron beam.

1Actually, 2 out of the 3 configurations are sufficient.
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Figure 6.7: (a) The peak intensities for x = 1/2 of the spin peaks Q1 =
(0.275, 0.275, 5) and Q2 = (0.725, 0.725, 1) — see figure 1(b). Cir-
cle symbols represent data taken with a neutron wavevector of
3.54 Å−1 and triangles represent 2.66 Å−1. Filled symbols are
data taken at Q2 and unfilled symbols at Q1, with the arrows
indicating the relevant scales for each Q. (b) The temperature
dependence of the angle φ between the spin axis and the stripe
direction obtained from polarized-neutron analysis.

The latter was calculated from the flipping ratio 18.5 ± 1.8 measured on a magnetic Bragg

peak (see chapter 3.3.2).

A full analysis of the intensities at the Q1 and Q2 points determined the spin orientations

at T = 10K and T = 65K. These analysis showed that the non-magnetic (NM) and µc

count rates were zero, to within error for both temperatures. Thus, it is reasonable to

assume that the spins lie within the ab plane over the whole temperature range, consistent

with the lack of any anomaly observed at TSR in the magnetization data measured with

H ‖ c. At the other temperatures we deduced the spin orientation within the ab plane
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P configuration Q1 Q2

1) P ‖ Q SF µ2
⊥ cos2θ1+µ2

‖+µ2
C sin2θ1 µ2

⊥ sin2θ2+µ2
‖+µ2

C cos2θ2

NSF NM NM

2) P ⊥ Q SF µ2
‖ µ2

‖

(P in horiz plane) NSF µ2
⊥ cos2θ1+µ2

C sin2θ1+NM µ2
⊥ sin2θ2+µ2

C cos2θ2+NM

3) P ⊥ Q SF µ2
⊥ cos2θ1+µ2

C sin2θ1 µ2
⊥ sin2θ2+µ2

C cos2θ1

(P vertical) NSF µ2
‖+NM µ2

‖+NM

Table 6.1: Expressions for the intensity of SF and NSF scattering for dif-
ferent orientations of the neutron polarization P relative to the
scattering vector Q (NM is the non-magnetic scattering).

from one Q position (T= 55K from Q1, T = 50 and 75K from Q2.) From these data

we find that the spins reorientate from an angle of 52 ± 4◦ to the stripe direction at T

= 75K, to 78 ± 3◦ at T = 10K, as shown in figure 4(b). The transition is seen to occur

quite rapidly between 50 and 65 K, although the reorientation is not complete at 50K.

This spin reorientation is similar to the spin reorientation seen below 50K for x = 1/3[35].

For the x = 0.37 we considered the two magnetic Bragg reflections Q1 = (0.3225,0.3225,3)

and Q2 = (0.6775,0.6775,1). As in the x = 1/2 sample the scattering at Q1 arises

mainly from the total in-plane spin moment, while that at Q2 comes mainly from the spin

components parallel to the stripe direction and along the c axis. Hence, we performed

scans in the x = 0.37 parallel to (h, h, 0) that pass through Q2 at different temperatures

to give a first indication as to whether there exists an in-plane spin reorientation like that

observed for x = 1/3 and 1/2. Figure 6.8(a) shows the temperature dependence of the

magnetic reflection Q2. The magnetic ordering transition can be seen to occur at TSO '

170K. On cooling below TSO the intensity of Q2 can be seen to increase monotonically
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neutron analysis.

until it reaches a maximum at ' 20K, then it is seen to decrease in intensity continuously

to our base temperature. This anomalous behaviour correlates well with the transition

observed in the magnetization data, Fig. 6.1, and indicates a spin reorientation below '

20K.

We carried out polarization analysis to determine the temperature dependence of the

orientation of the spins in the same way as carried out for the x = 1/2 sample. The

equations shown in table 6.1 are still valid for x = 0.37 and the data was corrected for

the slightly non-ideal performance of the polarization elements of the instrument from a

flipping ratio of 18 ± 1 measured on the magnetic Bragg peaks.

Polarization analysis of both the Q1 and the Q2 Bragg peaks revealed that the moment
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lies in the ab plane to within 1◦ in the temperature range 2−71K. Having established this,

we subsequently assumed the c-axis component to be zero and analyzed the polarization

at Q1 to determine the in-plane moment. From this analysis we determined that the spins

rotated from an angle of 37.7 ± 0.3◦ to the stripe direction at T = 71 K to 52.3 ± 0.2◦

at T = 2 K, as shown in Fig. 8.7(b). The transition occurs mainly between 10 and 20K,

but slowly develops from below ∼ 50K.

We performed unpolarized neutron diffraction at equivalent Q1 and Q2 positions on the

single crystals with x = 0.275 and x = 0.4, using the instrument RITA-II at SINQ.

Figure 6.9 shows the temperature dependence of the Q2 positions for the x = 0.275 and

x = 0.4 crystals. We found a similar behaviour to the x = 0.37 results just described.

In particular, the temperature dependence of the Q2 = (0.645,0.645,0) magnetic Bragg

peak for x = 0.275, and of the Q2 = (0.685,0.685,1) magnetic Bragg peak for x = 0.4,

both have a maximum similar to that shown in Fig. 6.8(a) for x = 0.37. By contrast,

the intensities of the Q1 Bragg peaks are almost constant below 20K. The temperature

dependence of the Q2 intensity is shown on Fig. 6.9 for both x = 0.275 and x = 0.4.

The drop in Q2 intensity at low temperature implies a spin reorientation in x = 0.4 and

x = 0.275 similar in nature to that in x = 0.37.

Unpolarized neutron diffraction cannot accurately determine φ without a detailed analysis

of the intensities of many diffraction peaks, but we can estimate ∆φ from the drop in

intensity of the Q2 peak below TSR ∼ 15 K and the value of φ for T > TSR, assuming

the ordered moment remains in the ab plane and fixed in magnitude in this temperature

range. Taking φ = 27◦ above TSR for x = 0.275[35], and using φ = 38◦ for x = 0.4 (based

on the observations for x = 0.37 at 71 K). We find ∆φ ≈ 10− 15◦ for both x = 0.275 and

x = 0.4, similar to x = 0.37.
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Figure 6.9: The temperature dependence of the intensity of the magnetic
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6.3 Discussion

To aid the discussion of our results we refer to table 6.2, which summarizes the ordering

values for each doping level. There are differences and similarities between the spin

reorientations that occur for x = 0.275, 0.37 and 0.4 and those that occur for x =

1/3,[35] and x = 1/2. In each case the spins rotate in the same sense, away from the

stripe direction on cooling. The size of the reorientation in x = 0.37 (∆φ ' 14.6◦), and

more approximately in x = 0.275 and 0.4, is similar to that in x = 1/3 (∆φ ' 13◦),

but smaller than in x= 1/2 (∆φ ' 26◦). However, in x = 0.37, 0.275 and 0.4 the spin

reorientation occurs at a much lower temperature, TSR' 15K, compared with TSR ' 50K

for x = 1/3 and TSR ' 57K for x = 1/2. Figure 6.10 summarizes the variation of TSR

with x that has so far been established for the doping range 0.275 ≤ x ≤ 0.5. The

results indicate that for general doping levels the spin reorientation occurs around 15 K,

but the particular compositions x = 1/3 and x = 1/2 are exceptional in having TSR ' 50K.

There is also evidence of a trend in the direction of the ordered moment. The base

temperature spin orientations are 53◦ for x= 1/3, 52◦ for x = 0.37, and 78◦ for x= 1/2,

with charge ordering temperatures of ∼ 240 K, ∼ 230K, ∼ 480K respectively. We can add

to this list an estimate of 41 ± 8◦ for x = 0.275, (charge ordering temperature ∼ 160 K)

based on the angle of 27 ± 7◦ at 11 K found by Lee et al. [35], with an additional

10 − 15◦ due to the spin reorientation on cooling to 2K. Hence, there seems to be a

correlation between the spin orientation angle φ and the charge-ordering temperature.

Further measurements on samples with doping levels between x = 0.4 and 0.5 would be

useful to confirm this trend.
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x TCO TSO ε TSR φ(2K) ∆φ

(K) (K) (K) (deg.) (deg.)

0.275 160±10 130±10 0.296±0.001 12.5±2.5 41± 8 10−15

1/3 240±5 200±5 0.333±0.001 50±5 53±2.5 13±4

0.37 230±10 170±5 0.354±0.001 19±1.5 52.3±0.2 14.6±0.4

0.4 180±20 150±10 0.371±0.001 15±2.5 − 10−15

1/2 480±30 80±10 0.443±0.001 57±2 78±3 26±5

Table 6.2: A summary of the characteristic ordering parameters of
La2−xSrxNiO4. The charge-ordering temperature for the x =
0.275 was taken from reference [42], while the charge ordering
temperatures for the x = 0.4 and 1/2 were taken from reference
[38], and the data on x = 1/3 was taken from reference [35].
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Chapter 6: Spin reorientation transition in La2−xSrxNiO4+δ 106

The work by Lee et al. [35] showed that in the commensurately ordered x = 1/3 material

the spins reorientate. Our neutron diffraction study of the x = 1/2 material establishes

the existence of a spin reorientation in this material, and shows that a commensurate

spin-stripe order is not required for a spin reorientation to occur in LSNO[89]. Results on

x = 0.275, 0.37 and 0.4 further show that not even commensurate doping is required for

a spin reorientation in LSNO[94]. It is likely that LSNO at all doping levels in the range

0.275 ≤ x ≤ 0.5 undergo a spin reorientation, but that TSR is larger at the commensurate

doping compositions.

We are unaware of any model that explains the spin reorientation in La2−xSrxNiO4. Such

a model needs to predict the three important properties we have identified in this work,

i) the spin reorientation occurs for all doping levels in the range 0.275 ≤ x ≤ 0.5, ii) TSR

is particular high in the x = 1/3 and x = 1/2 compounds and iii) the spin reorientation

temperature can be reduced by application of a magnetic field.



Chapter 7

Spin Dynamics of Charge-stripe

Ordered La2−xSrxNiO4

In this chapter I present unpolarized- and polarized-neutron inelastic scattering measure-

ments taken on single crystals of La2−xSrxNiO4. The measured spin wave dispersion of

the x = 0.275 and 1/3 doped materials are very similar, indicating that the interaction

strengths in the x = 0.275 are similar to those previously determined for the x = 1/3[49].

For energies above 30meV the excitations of the x = 0.275 are found to have a larger

intrinsic width than the excitations in the x = 1/3[95].

Polarized neutron inelastic scattering measurements were performed on single crystals of

x = 0.275, 1/3 and 0.37. In all these materials a suppression of the magnetic excitations

was seen to occur between 10 and 25meV, more prominently in the x = 1/3 doped

material. Polarized neutron analysis revealed that this dip structure is not due to a

spin anisotropy gap, suggesting instead that this feature is due to a coupling of the spin

excitations to a collective motion of the stripe domain walls [49, 96].

At low energies we observed a diffuse component of the magnetic excitation spectrum in

107
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the x = 0.275 and 1/3[97]. This scattering forms a square pattern parallel and perpen-

dicular to the stripe directions, and is found to be dispersive, with a maximum energy

of ∼ 10meV. Polarization analysis at 2.5meV in the x = 1/3 revealed that the dynamic

susceptibility is a factor of 2 larger out of the ab plane than in the ab plane. We interpret

this scattering as dynamic quasi-one-dimensional antiferromagnetic correlations among

the spins of the stripe electrons.
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7.1 Experimental detail

In this chapter I describe measurements on single crystals of La2−xSrxNiO4 grown by

the floating-zone method[81] (see chapter 4), using the techniques of polarized-neutron

diffraction (x = 0.275, 1/3, 0.37) and unpolarized-neutron diffraction (x = 0.275, 1/3).

The x = 0.275 sample used for the MAPS experiment was an array of four crystals

coaligned by x-ray diffraction, these crystals were grown at Kyoto University. A crystal

similar to the x = 0.275 samples studied in the MAPS experiment was studied by neutron

diffraction in reference [35], with that crystal being found to be stoichmetrically doped.

The spin wave excitations of the x = 0.275 and 1/3 were mapped out by unpolarized-

neutron scattering measurements performed on the time-of-flight chopper spectrometer

MAPS at the ISIS Facility. The crystals were mounted in a closed-cycle refrigerator and

aligned with the c axis parallel to the incident beam direction. A Fermi chopper was

used to select the incident neutron energy. Incident energies of 60 and 160 meV were

used. The intensity was normalized and converted to units of scattering cross-section

(mb sr−1 meV−1 [f.u.]−1) by comparison with measurements from a standard vanadium

sample. Scattered neutrons were recorded in large banks of position-sensitive detectors.

The spin dispersion was found to be highly two dimensional. Hence, we analyzed the

data by making a series of constant energy slices and projecting the intensities onto the

(h, k) two-dimensional reciprocal lattice plane. For an incident energy of 60meV the

resolution was typically 2.5meV in energy and 0.05 Å−1 in wavevector, whereas for an

incident energy of 160meV the resolution was typically 6.9meV in energy and 0.09 Å−1

in wavevector.

Further unpolarized- and polarized-neutron measurements were performed on the triple-
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axis spectrometers (TAS) IN8, IN20 and IN22 at the Institut Laue-Langevin. The energies

of the incident and scattered neutrons were selected by Bragg reflections from a double-

focusing bent Si crystal monochromator and pyrolytic graphite (PG) crystal analyzer

on IN8, PG crystals on IN22 and arrays of Heusler alloy crystals on IN20. On all three

instruments the data were obtained with a final neutron wavevector of 2.66 Å−1, and a PG

(pyrolytic graphite) filter was placed between the sample and analyzer to suppress higher-

order harmonic scattering. For polarized-neutron scattering on IN20 the spin polarization,

P, was maintained in a specified orientation with respect to the neutron wavevector, Q,

by an adjustable guide field of a few mT at the sample position. For the experiment on

IN8 the crystal was orientated with the [100] and [010] crystal directions in the horizontal

scattering plane, so that (h, k, 0) positions in reciprocal space could be accessed. On

IN22 and IN20, we mounted the crystal with the [001] and [110] crystal directions in the

horizontal scattering plane, so that (h, h, l) positions in reciprocal space could be accessed.

The resolution of IN22 was typically 0.6meV in energy, 0.04 Å−1 in wavevector in the

scattering plane and 0.13 Å−1 in wavevector out of the scattering plane. For the constant

Q scans performed on IN20 the typical resolution was 2.0meV in energy, 0.06 Å−1 in

wavevector in the scattering plane and 0.15 Å−1 in wavevector out of the scattering plane.

For constant energy scans on IN20 the typical resolution was 1.0meV in energy, 0.04 Å−1

in wavevector in the scattering plane and 0.13 Å−1 in wavevector out of the scattering

plane.

The low energy excitation spectrum was additionally studied by unpolarized-neutron scat-

tering measurements on the x = 0.275 and 1/3 performed on the cold neutron triple axis

spectrometer RITA-II at SINQ, at the Paul Scherrer Institut. The energies of the incident

and scattered neutrons were selected by Bragg reflections from PG crystals. The data
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were obtained with a final neutron wavevectors of 1.55 Å−1, and a Be filter operating at

77K was present between the sample and the analyzer to suppress scattering of higher-

order harmonics. The x = 0.275 crystal was mounted with the [001] and [110] directions

in the scattering plane, so that (h, h, l) positions in reciprocal space could be accessed.

The energy resolution of these measurements was 0.3meV and the wavevector resolution

was 0.02 Å−1.
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7.2 Spin Wave Dispersion of the Ordered Moments

in La2−xSrxNiO4

In figure 7.1 I again show the Ni sites of an ab plane of La5/3Sr1/3NiO4. By measuring

the spin wave dispersion via inelastic neutron scattering and comparing the measured

dispersion to a theoretical model, it is possible to determine the intrastripe (J) and

interstripe (J ′) exchange interactions of nearest neighbour Ni2+ spins. Previous work had

measured the spin wave dispersion in the x = 1/3 along high symmetry directions and

found the dispersion to be consistent with a linear spin wave model with J = 15±1.5meV

and J ′ = 7.5± 1.5meV[49]. By performing inelastic neutron scattering on the time flight

direct geometry chopper spectrometer MAPS we were able to record the two dimensional

spin wave dispersion, not just the spin wave dispersion along high symmetry directions.

As previous studies have shown little or no spin wave dispersion variation with Qz [49, 98],

I will label the data with the two dimensional wavevector Q = (Qx, Qy). This notation

ignores the variation of Qz across the detectors, which needs to be accounted for when

studying the intensity variation1.

Figure 7.2(a) shows the spin wave dispersion along the (h,h) direction for the x = 1/3 at

T = 10 K. In this data magnetic excitations can be seen to disperse out of the magnetic

1On a time-of-flight spectrometer with the incident neutron beam parallel to the c axis the out-of-plane

wavevector component l varies with the excitation energy and the incident neutron energy. Although the

magnetic excitation spectrum of La2−xSrxNiO4 is highly two-dimensional, the scattering intensity does

vary with l. The variation is smooth, and depends partly on the magnetic form factor and partly on the

direction of Q, since neutrons scatter from spin fluctuations perpendicular to Q. The ordered moment

in La2−xSrxNiO4 lies in the ab plane, so the scattering becomes less sensitive to magnetic fluctuations

parallel to the c axis as l increases.
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Figure 7.1: A model of the stripe order found in a ab plane of La5/3Sr1/3NiO4.
Circles represent holes residing on Ni3+ sites and the solid arrows
represent the ordered Ni2+ spins. Where the nearest neighbour
intrastripe (J) and interstripe (J ′) exchange interactions of the
Ni spins are indicated.

zone centres (1/3, 1/3), (2/3, 2/3) and (1, 1) up to energies of ∼ 80 − 85meV. To aid

the visualization of the data shown in Fig. 7.2(a) I have re-plotted the same data in Fig.

7.2(b) with a solid line guide to the eye over the spin wave excitations. Below 60meV

comparison of the spin wave dispersion parallel to the stripes along the (−h, h) direction

and perpendicular to the stripes along the (h, h) direction showed little anisotropy within

the experimental accuracy. Above 60meV the spin wave dispersion off the [1, 1] and [−1, 1]

domains combine to hinder the study of the anisotropy of the spin wave dispersion, but

the measurements appear to show a small spin wave anisotropy consistent with the work

on x = 0.31[74]. The spin wave dispersion recorded in Fig. 7.2(a) was observed to be
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highly consistent with the previous work on x = 1/3[49].
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Figure 7.2: (a) Inelastic neutron scattering measurements taken on MAPS
showing a data slice of Energy versus Q along the (h, h) direction
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Figure 7.3: A data slice showing Energy versus Q along the (h, h) direction
in reciprocal space for the x = 0.275 at 10 K, taken on MAPS.

The spin wave dispersion of the array of x = 0.275 crystals was studied under the same

conditions as the x = 1/3 material. In Fig. 7.3 I plot a data slice of the spin wave
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dispersion in x = 0.275, equivalent to the data slice of Fig. 7.2(a) for the x = 1/3. In

this data magnetic excitations can be seen to disperse out of the magnetic zone centres

(0.35, 0.35), (0.65, 0.65) and (1, 1) up to energies of ∼ 80− 85meV, the same energy as

that of the x = 1/3. Although the spin wave excitations disperse up to the same energy

the excitations appear to be more diffuse in the x = 0.275 than in the x = 1/3. As the

excitations in the x = 0.275 appear to be broad in Q, I plot in figure 7.4 constant energy

slices of the equivalent x = 0.275 and x = 1/3 data, where the data has been integrated

over an energy range of 5 meV. In Fig. 7.4(a) data taken at 35−40meV for x = 0.275 shows

four dispersion rings emerging out of the magnetic zone centres symmetrically spaced

around (0.5, 0.5). Figure 7.4(b) shows the equivalent slice for x = 1/3 again showing

dispersion coming out of the four magnetic zone centres and the scattering appears to be

sharper than in the x = 0.275 data of Fig. 7.4(a). By 50−55meV the spin wave excitations

have dispersed to produce the larger dispersion rings of Fig. 7.4(c) for x = 0.275 and the

narrower dispersion rings of Fig. 7.4(d) for x = 1/3. At higher energies the spin wave

dispersion from the two domains one with stripes running parallel to [1, 1] and the other

with stripes running parallel to [−1, 1], begin to merge. Figure 7.4(e) shows this occurring

at 75 − 80meV in the x = 0.275. The dispersion rings of the two domains have merged

creating intense scattering at (0.5, 0.5) and diffuse scattering around (0.5, 0.5) forming

a ” + ” shape of excitations. In Figure 7.4(f) I show the excitations in the x = 1/3 for

75 − 80meV. For this energy in the x = 1/3 the excitations appear sharper and show

more detail of the dispersion surface than the excitations of the x = 0.275, the excitations

resemble an excitation peak at (0.5, 0.5) with four satellite peaks in a cross orientation.

In the x = 0.275 the excitations at 75 − 80meV are too broad to observe this detail of

the dispersion surface.
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Figure 7.4: Neutron scattering measurements from x = 0.275 and x = 1/3
measured on MAPS at T = 10K. (a) − (f) are constant-energy
slices showing the variation of the intensity in the (h, k) plane at
different energies, the slices (a),(c),(e) are of the x = 0.275 and
the slices (b),(d),(f) are of the x = 1/3. The energies of the slices
are (a)&(b) 35 ≤ E ≤ 40meV, (c)&(d) 50 ≤ E ≤ 55meV and
(e)&(f) 75 ≤ E ≤ 80meV. Data from four equivalent Brillouin
zones have been averaged.
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To confirm the observation that the magnetic excitations in the x = 0.275 are broader

than in the x = 1/3 cuts were made through the data slices along the (1, 1) direction

in reciprocal space for both materials. Figure 7.5 shows the spin wave excitations for

35 ≤ E ≤ 40meV in (a) x = 0.275 and (b) x = 1/3. The cuts in Fig. 7.5 show broadening

of the spin wave excitations in the x = 0.275 that is typically observed in the measured

spin wave dispersion on MAPS for E > 10meV.
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Figure 7.5: Cuts of the MAPS data at T = 10 K taken along the the (1, 1)
direction in reciprocal space for 35 ≤ E ≤ 40meV on (a) x =
0.275 and (b) x = 1/3. The solid curves in (a) and (b) are
the result of fitting the data with two gaussians on a sloping
background.

Figure 7.6 shows the dispersion of the spin excitations for both x = 0.275 and 1/3 parallel

to the (ξ, ξ) direction in reciprocal space. The data points were obtained from Gaussian

fits to the peaks observed in cuts such as those displayed in Fig. 7.5. The points in

Fig. 7.6 are the fitted peak centres corrected for the effect of the non-zero width of the

cut perpendicular to the cut direction. The measured spin wave dispersion of Fig. 7.6

for the x = 1/3 is consistent with the spin wave dispersion of the x = 1/3 previously

measured on a triple axis spectrometer[49]. Where the exchange energies were calculated

from linear spin wave theory to be J = 15 ± 1.5meV and J ′ = 7.5 ± 1.5meV. Apart
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from incommensurate centring of the spin wave dispersion, the spin wave dispersion of

the x = 0.275 shows little variation form that of the x = 1/3, therefore the exchange

interactions of the x = 0.275 will be close to the values obtained for the x = 1/3. The

only significant difference between the excitations of the x = 0.275 and x = 1/3 is the

excitations in the x = 0.275 are borader than in the x = 1/3.
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Figure 7.6: Dispersion of the magnetic excitations in x = 0.275 and x = 1/3
parallel to the (ξ, ξ) direction. The points are the results of fits
to cuts such as those shown in Fig. 7.5.

Below 30 meV there is strong scattering from phonons in these materials. In this energy

range to separate the magnetic and non-magnetic scattering it is necessary to use polarized

neutron scattering. We performed polarized neutron scattering on single crystals of x =

0.275, 0.33 and 0.37 on the triple axis spectrometer IN20 at the ILL. We mounted each

crystal with the [001] and [110] directions in the horizontal scattering plane, so that (h,

h, l) positions in reciprocal space could be accessed. Initial measurements were carried

out with the neutron polarization P aligned parallel to the scattering vector Q so that

the spin-flip (SF) channel would contain purely magnetic scattering.
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Figure 7.7: Polarized neutron scattering measurements on (a) x = 0.275, (b)
1/3, and (c) 0.37. The plots show energy scans performed at
the magnetic ordering wavevector appropriate to each material.
These spin flip measurements were performed with P ‖ Q and
the SF background is estimated from scans centred away from
the magnetic excitation peak. The data was taken at T = 2 K on
the x = 0.275, 0.37 and at T = 13 K on the x = 1/3.
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Figure 7.7 shows energy scans of the magnetic ordering wavevector appropriate to each

material studied (Qm). Below 7 meV in all three compositions we observed a reduction

of the scattering intensity, but this reduction was not present in scans made with the

equivalent Qm wavevectors with a large component along the c axis. As neutrons scatter

from spin fluctuations perpendicular to Q these measurements suggest the origin of the

reduction of intensity below 7meV is due to the freezing out of the c component of the

spin fluctuations. We therefore deduce that the origin of the reduction is an out-of-plane

single ion anisotropy gap. The more interesting feature is the dip in intensity of the spin

wave excitations centred around 15−20meV. This is most clearly defined in the results of

the x = 1/3 in Fig. 7.7(b), for increasing energy the intensity increases to a maximum at

7meV before decreasing to a minimum between 15− 20meV, then the intensity increases

up to a second maximum at ∼ 25meV and finally the intensity begins to decrease for

higher energies. In Fig. 7.7(a) on the x = 0.275 the data only weakly shows this structure,

possibly due to the broadening of the spin wave excitations observed in this material (see

figure 7.5). Further analysis of the MAPS data on the x = 0.275 indicated that the

integrated intensity of the spin wave excitations behave in the same manner for both the

x = 0.275 and 1/3 [99].

Polarization analysis can be used to identify spin anistropy gaps in a way that is similar

to the determination of the orientation of the ordered spin direction, see chapter 6.2.

We performed the polarization analysis on the x = 1/3 at Qm = (1.33, 1.33, l) for

E = 3meV at l = 1 and for E = 10, 15, 26meV at l = 0. By varying the orientation of

the spin polarization P with respect to the scattering wavevector Qm we can determine

the ratio of the dynamic spin fluctuations out of the ab plane, Sc(ω), to the dynamic spin

fluctuations parallel to the stripe direction, S‖(ω) . The three measuring configurations
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Figure 7.8: The variation with energy of the ratio of the magnetic response
along the crystal c axis (Sc) and parallel to the stripe direc-
tion (S‖), for the x = 1/3. These polarization analysis mea-
surements were performed at the 2-D magnetic zone centre
Qm = (1.33, 1.33). For isotropic spin wave oscillations about
an ordered moment 53◦ away from the stripe direction[35], the
calculated ratio of Sc/S‖ is that indicated by the broken line. At
low energies the ratio of Sc/S‖ is reduced due to the freezing of
the out-of-plane spin fluctuations below the 7meV gap, which is
shown in figure 7.7. The solid line is a guide to the eye.

that are used for these measurements are (1) P ‖ Q, (2) P ⊥ Q in the scattering plane,

and (3) P ⊥ Q with P vertically out of the scattering plane, with the measured scattering

intensities respectively being I1, I2, I3. The scattering intensities for these configurations

are shown in table 7.1. For l = 0 we obtain;

I1 − I2

I1 − I3

=
Sc

S‖
(7.1)

The spin wave excitations at 3meV show a slight modulation of intensity with l due

to weak interlayer correlations that produce stronger excitations at l = odd[49]. So

measurements at 3 meV were carried out at l = 1, the small angular difference of 9◦ of

l = 1 and 0 means that equation 7.1 is still a good approximation to the correct result.
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P configuration Components of spin fluctuations

I1 P ‖ Q Sc(ω) + S‖(ω) + Bgd

I2 P ⊥ Q(P in horiz plane) S‖(ω) + Bgd

I3 P ⊥ Q(P vertical) Sc(ω) + Bgd

Table 7.1: Expressions for the intensity of SF inelastic scattering for different
orientations of the neutron polarization P relative to the scattering
vector Q. Where Sc(ω) are the spin fluctuations parallel crystal c
axis, S‖(ω) are the spin fluctuations parallel to the stripe direction
and Bgd is the background scattering.

Figure 7.8 shows the results of the polarization analysis on the spin fluctuations in the

x = 1/3 crystal. The ratio of Sc/S‖ is observed to be near constant for E = 10, 15, and

26meV but much smaller for E = 3 meV. At the base temperature the spins of the ordered

moments are orientated at 53◦ to the stripe direction[35]. For isotropic spin fluctuations

around the ordered moment the spin fluctuations are in the plane that the ordered spin is

normal to. If the spin fluctuations are isotropic around the ordered moment we therefore

would expect to measure Sc/S‖ = 1/ sin2(53) = 1.57, as the spins are orientated 53◦

away from stripe direction. This is approximately the value obtained for the polarization

analysis at E = 10, 15 and 26meV. The ratio of Sc/S‖ for E = 3meV is observed to be

significantly lower than this value, confirming that at low energies the out-of-plane spin

fluctuations are frozen out and the spins only fluctuate in the ab plane.

7.2.1 Discussion

Despite the differences in the ordering parameters of the x = 0.275 and 1/3 [35], we

observed the spin wave dispersion in Fig. 7.6 of these two materials to be remarkably

similar. This implies that the interaction strengths in the x = 0.275 are approximately
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equal to those obtained on the x = 1/3, an intrastripe interaction of strength J = 15 ±

1.5meV and interstripe interaction of strength J ′ = 7.5±1.5meV[49]. The one significant

difference, despite the long range static order exhibited by both materials, is the large

intrinsic widths of the excitations in x = 0.275 compared to the x = 1/3 (shown in Fig.

7.5). The main difference between the ordering of the two materials is that the order in

the x = 0.275 is incommensurate with the crystal structure, suggesting that the variation

of the charge-order periodicity in the x = 0.275 acts to dampen the spin wave excitations.

In linear spin wave theory the spin wave dispersion of commensurately charge-stripe or-

dered materials has been calculated[75, 76]. For site centred charge-stripes (stripes resid-

ing on the Ni site) with charge-stripes spaced three Ni sites apart there is one excitation

mode, but when the charge stripes are four Ni sites apart each antiferromagnetic domain

has a net ferromagnetic moment and there is an additional optic dispersion mode. The

x = 0.275 material studied here has an incommensurate charge-stripe structure with a

periodicity in real space that lies between charge-stripes separated by three or four Ni

sites. One proposed model of the charge-stripe ordering in an incommensurately ordered

material is that the ordering varies between commensurately spaced charge stripes spaced

either 2,3 or 4 Ni sites apart, and the average period of different commensurate spacings

leads to an incommensurate charge-stripe ordering period. In this model the x = 0.275

has charge stripes that vary between 3 or 4 Ni sites apart, therefore in the spin exci-

tations of the x = 0.275 we may expect to observe the optic mode of a commensurate

charge-stripe ordering with charge-stripes four Ni sites apart. We measured the spin wave

excitations up to 145meV in the x = 0.275 but did not observe an acoustic mode. This

implies one of two things, 1) the optic mode is at higher energies or 2) there is no optic

mode. The gap between the expected optic mode and the main spin wave dispersion is
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governed by the value of J ′/J , this was calculated to be 1/2 in the x = 1/3[49]. For LSNO

with charge-stripes spaced four Ni sites apart and J ′/J = 1/2 the optic mode should be

observable in the spin excitation spectrum below 145meV. There could be an optic spin

mode at higher energies but such a mode would be at far higher energies than predicted

by linear spin wave theory. If there is not an optic mode in x = 0.275 that would suggest

that the simple description of the incommensurate period of charge-ordering in x = 0.275

is a result of the charge-stripe period varying between different commensurate spacings

is an inadequate description of incommensurate charge-ordering. These results are not

evidence of charge-stripes residing on the O sites (bond centred) in x = 0.275, as lin-

ear spin wave theory predicts bond centred charge-ordering to have additional excitation

modes[76].

At E < 30meV we had to study the excitations using polarized neutron scattering due

to the strong phonon interactions in this energy range. In the polarized neutron scans of

Fig. 7.7 we observed that below 7 meV a reduction of the intensity occurs in the spin wave

fluctuations for x = 0.275, 1/3 and 0.37 materials. The l dependence of this reduction

and the polarization analysis on x = 1/3 at 3meV (see Fig. 7.8) confirm this reduction

to be due to an out-of-plane single ion anisotropy gap. In undoped La2NiO4 the out-

of-plane anisotropy gap is 16meV[98]. From these measurements the out-of-plane single

ion anistropy energy (Kc) has been determined to be Kc = 0.52meV in La2NiO4[98] and

Kc = 0.07meV in the x = 1/3[49], hence we expect Kc ≈ 0.07meV in the x = 0.275, 0.37.

The cause of this reduction of Kc in the doped compounds is unknown.

The second feature revealed by polarized neutron scattering was a dip in the scattering

intensity of the spin wave fluctuations centred on ∼ 15− 20meV. From the polarization

analysis on x = 1/3 (Fig. 7.8), we determined that the spin fluctuations at E = 10, 15, and
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26 meV are consistent with isotropic fluctuations about the ordered moment, and hence

the dip structure cannot be an anisotropy gap. As the dip feature is most prominent in

the x = 1/3 material a purely magnetic origin for this feature that involves the ordered

Ni2+ spins is unlikely, as the x = 1/3 is a two-sublattice antiferromagnet whose spin wave

spectrum should only contain spin anisotropy gaps. This feature is absent in La2NiO4[98],

therefore the dip structure is unlikely to be due to a coupling to a phonon excitation of the

host lattice. Having ruled out these possibilities one remaining origin for the dip feature

is a coupling of the spin excitations to an excitation associated with the stripes. Possible

excitations of the stripes could be i) a collective sliding motion of the charge-stripe domain

walls, that is enhanced for charge-stripes spaced three lattice spacings apart, i.e. in the

x = 1/3, ii) a phonon associated with the local distortion of the structure around the

charge stripes, or iii) a coupling between the spin degrees of freedom of the charge stripes

and the spin excitations form the antiferromagnetic regions between the charge stripes.

The results of this work have identified features of the spin wave excitations of charge-

ordered La2−xSrxNiO4 with x ∼ 1/3: (i) a robustness of the magnetic interaction strengths

to doping variation, (ii) a reduction of the out-of-plane single ion anistropy energy and

(iii) a suppression of the spin fluctuations around 15− 20meV. These findings which are

not consistent with spin wave theory emphasize the importance of understanding the spin

and charge degrees of freedom in charge-ordered La2−xSrxNiO4.
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7.3 Spin Correlations among the charge carriers of

La2−xSrxNiO4

x = 1/3, E = 2.5 meV, T = 2 K

h (r.l.u.)

k
 (

r.
l.
u
.)

Figure 7.9: Inelastic neutron scattering from IN8 of x = 1/3 at 2.5meV, dis-
played on a contour plot of the intensity in the (h, k, 0) plane of
reciprocal space at 2.5meV. The plot is constructed from 25×35
data points from 25 parallel scans of the (h, k, 0) plane. Circles
have been added to indicate the location in reciprocal space of
the four magnetic zone centres about the position (−1/2, 1/2, 0).

To compliment the studies of the higher energy spin wave spectrum we carried out in-

elastic neutron scattering measurements on the low energy excitation spectrum. In figure

7.9 I show a contour plot of the low energy excitation spectrum from the (h, k, 0) plane

of reciprocal space of x = 1/3 material. This plot was created from a series of parallel

scans performed at E = 2.5meV at T = 2K on IN8. This figure clearly shows sharp

excitations centred on the magnetic zone centres (−2/3, 1/3, 0), (−2/3, 2/3, 0) and

(−4/3, 1/3, 0) that are consistent with the ordered structure and high energy spin wave

excitation spectrum of this material. A second feature that this data shows is a series
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of diffuse diagonal ‘ridges’ of scattering. In figure 7.10(a) I show a simplified diagram

of the scattering we observed in the data of Fig. 7.9, displaying the two modes of scat-

tering observed: excitations coming out of the magnetic zone centres and the ‘ridges’ of

scattering.
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Figure 7.10: (a) A diagram of the low energy excitations for x = 1/3. The
diagonal lines indicate where ridges of scattering would be ob-
served if the spins of the charge stripes acted as 1-D antifer-
romagnets. Circles represent the zone centres of the magnetic
stripe domains. Open circles and dashed diagonal lines repre-
sent scattering from the [1, 1, 0] domain; filled circles and solid
lines represent scattering from the [−1, 1, 0] domain. The shaded
area represents the area of reciprocal space scanned in Fig.7.9.
(b) A diagram of a [1, 1, 0] stripe domain with local 1D AF cor-
relations on the charge stripes.
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Figure 7.11 shows a scan performed along a line equivalent to path A of Fig. 7.10(a), on

the x = 1/3 for the elastic scattering and 2 meV at T = 14K performed on IN22. In

the excitation spectrum at 2meV we observed two distinct scattering modes, one mode

centred on (1/3, 1/3) that is as expected from the stripe superlattice structure and a

second mode centred on approximately (0.27, 0.27). The elastic scattering performed along

the same path only contains a magnetic Bragg peak for the ordered stripe superlattice

structure. This shows that the ‘ridge’ scattering has no static component. Measurements

of the l dependence of the ridge scattering showed a monotonic decrease in intensity with

increasing l but no modulation.
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Figure 7.11: Scans of x = 1/3 along path A of figure 7.10(a) for 2 meV and
the elastic scattering.

To fully determine the origin of the ridge scattering to be magnetic we performed polarized

neutron scattering using the triple-axis spectrometer IN20. We began by performing

polarized-neutron diffraction measurements with the neutron polarization P parallel to

the scattering vector Q. In this configuration a neutron’s spin is flipped during a magnetic
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scattering process, but remains unchanged when scattered by a non-magnetic process, e.g.

from a distortion of the lattice. Thus, by measuring the spin- flip (SF) and non-spin-flip

(NSF) channels one can identify whether the origin of the scattering is magnetic or not.

Figure 7.12 shows SF and NSF polarized neutron scans of the x = 1/3 for E = 2meV at

T = 2K along path B of Fig. 7.10(a). The ridge scattering observed in scans along both

path B and path A (not shown) only occurs in the SF channel, indicating a magnetic

origin of these fluctuations. This scan also shows how the ridge scattering does not follow

a straight path, figures 7.9 and 7.11 both show how the scattering flexes away from a

centring of (0.25, 0.25) along lines equivalent to path A of Fig. 7.10(a).
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Figure 7.12: Spin-flip (SF) and non-spin-flip (NSF) scattering at E =
2.5meV for x = 1/3 at T = 2 K. The scan follows path B as
indicated in figure 7.10(b). The scattering was measured with
P ‖ Q.

Having determined the origin of the ridge scattering to be magnetic we performed neutron

polarization analysis on the scattering in the same manner as performed on the spin wave

excitations in section 7.2. We scanned the SF scattering of two wave vectors of the
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ridge scattering Q1 = (0.25, 0.25, 3.5) and Q2 = (0.75, 0.75, 0) in three configurations

(1) P ‖ Q, (2) P ⊥ Q in the scattering plane, and (3) P ⊥ Q with P vertically out

of the scattering plane. As neutrons scatter from spin fluctuations perpendicular to the

scattering wavevector, Q1 probes mainly the in-plane fluctuations and Q2 probes the in-

plane and out-of-plane fluctuations equally. From the measurements at Q1 we determined

the spin fluctuations to be isotropic in the ab plane within the experimental error of 20%.

Measurements of Q2 however revealed the component of the spin fluctuations out-of-

plane are a factor of 2.3±0.4 stronger than in-plane. Therefore we conclude that the spin

fluctuations of the ridge are a factor of two stronger along the c axis than in the ab plane.
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Figure 7.13: (a) Constant energy scans along path B of figure 7.10(b) on
the x = 1/3, where the successive scans have been offset by
the addition of 2000 counts. (b) The dispersion of the ridge
scattering, produced from fits of constant energy scans such as
those shown in (a). The blue line is the main excitation mode
of a spin-1/2 Heisenberg AF chain with J = 3.2 meV, and the
vertical black lines indicate the zone boundaries of this fit.

We performed scans along lines equivalent to path B of Fig. 7.10(a) for different energies.

Figure 7.13 shows several of these scans at different energies. At 2.5meV the ridge scatter-

ing is one unresolved peak, and with increasing energy this peak is observed to broaden.

By 6meV the ridge scattering can clearly be resolved as two modes dispersing in opposite
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directions parallel to the scan direction. In figure 7.13(b) I plot the fitted peak centres

of scans such as those shown in Fig. 7.10(a). The ridge scattering shows dispersion up to

∼ 10meV with zone boundaries occurring at approximately ξ = 1/4± 1/8.
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Figure 7.14: (a) The temperature variation the excitations at 2 meV along
path B of figure 7.10(b) on the x = 1/3, where the successive
scans have been offset by the addition of 400 counts.

Figure 7.14 shows the temperature dependence of the ridge scattering along the same

path (B) at 2 meV on the x = 1/3. We observed the peak from the ridge scattering to

decrease in intensity and widen with increasing temperature. By 100 K the peak almost

completely loses its intensity.

I now compare the low energy excitations of the x = 1/3 to the low energy excitations

of the x = 0.275 taken on MAPS. Figure 7.15(a) shows a data slice of the (h, k) plane

of reciprocal space for the x = 0.275 for 3 ≤ E ≤ 5meV at T = 10K. The data shows

the four strong scattering centres evenly spaced around (0.5, 0.5) associated with spin

excitations from the ordered Ni2+ sites and ‘ridges’ of diffuse scattering similar to those

observed from the x = 1/3 in Fig. 7.9. Figures 7.15(b) and 7.15(c) show cuts of this data
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Figure 7.15: (a) A data slice taken from measurements of the x = 0.275 for
3 ≤ E ≤ 5meV at T = 10 K on MAPS. (b) and (c) are cuts
obtained from the data slice in (a) along paths A and B respec-
tively. The lines in (b) and (c) are fits to the data of respectively
2 and 1 gaussian peak shapes on a sloping background.

along paths A and B of Fig. 7.15(a) respectively. These paths are equivalent to paths A

and B shown in Fig. 7.10(a). The cut in Fig. 7.15(b) shows two scattering modes along

the path (ξ, ξ), with the ridge scattering centred on ξ ≈ 0.27. The cut shown in Fig.

7.15(c) shows how the scattering along path B in the x = 0.275 is centred on ξ ≈ 0.25.

The trend for the centring of the ridge in the x = 0.275 is the same as that observed in

figures 7.11 and 7.12 for the x = 1/3.
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Figure 7.16: Polarized SF and NSF scattering along the (1, 1, 0) direction
of the x = 0.275 for elastic scattering and an energy transfer of
3meV.

We then performed polarized-neutron scattering measurements with the neutron polar-

ization P parallel to the scattering vector Q on the x = 0.275, using the triple-axis

spectrometer IN20. Figure 7.16 shows SF and NSF scattering from the x = 0.275 along

a line equivalent to path A, for both elastic scattering and E = 3meV. The elastic scat-

tering shows the magnetic Bragg stripe superlattice peak in the SF channel centred on

ξ ∼ 0.65. For E = 3meV no peak was observed in the NSF scattering but a broad

peak centred on ξ ∼ 0.7 is observed in the SF scattering. Excitations from the stripe

superlattice can only be responsible for SF excitations on the left-hand-side of the peak

at E = 3meV, but the right-hand-side of the SF peak can be accounted for as originating

from the ridge scattering. So the SF data in Fig. 7.16 on the x = 0.275 for E = 3meV

shows an unresolved peak due to two magnetic modes: excitations from the ordered Ni2+

spins and excitations from the ridge scattering. This result matches our observation of a

magnetic origin for the ridge scattering in the x = 1/3.
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Figure 7.17: (a) A scan at constant Q of the energy variation of the ridge
scattering amplitude intensity in the x = 0.275 at T = 1.5K.
The background scattering is estimated from an average of scans
centred away from the magnetic excitations at equidistant larger
and smaller wavevectors. (b) Constant energy scans along the
(1, 1, 0) direction of reciprocal space for the x = 0.275 at
T = 1.5K for 0.5 and 0.8 meV. The 0.8 meV scan has been
offset by the addition of 50 counts for clarity.

We carried out a preliminary investigation of the ridge scattering in both the x = 0.275

and 1/3 for E < 2meV on the cold triple-axis spectrometer RITA II. In figure 7.17 I show

the main results of this work for the x = 0.275, with the data taken on the x = 1/3 showing

similar trends to those observed in the x = 0.275. Figure 7.17(a) shows a scan performed

at a constant Q of the energy variation of the amplitude intensity of the ridge scattering

and the background for the x = 0.275. For decreasing energy the amplitude of the ridge

scattering remains roughly constant from 1.2 down to 0.8 meV, then the intensity of the

ridge scattering decreases to zero within experimental error by 0.6meV. To try to confirm

the lack of the ridge scattering for E < 0.6 meV we performed constant energy scans at

0.8 and 0.5 meV along a line equivalent to path A. Figure 7.17(b) shows the data from

these scans on the x = 0.275. For E = 0.8meV the ridge scattering is clearly observed

and centred on ξ = 0.73, but at E = 0.5meV we still observe a small excess of scattering

above the background at ξ = 0.73, which may or may not be statistical in origin. Further
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work on the low energy excitations of the ridge scattering with greater neutron flux and

longer counting times are required to determine if the ridge excitations are gapped with

a gap energy of ∼ 0.8meV. From the width of the ridge peak at E = 0.8meV on the

x = 0.275 and 1/3 we obtain a correlation length of ∼ 35 Å(the inverse of the half width

at half maximum).

7.3.1 Discussion

We have observed that the low energy excitation spectrum of La2−xSrxNiO4 for x = 1/3

and 0.275 contains two separate magnetic modes: excitations from the ordered Ni2+ spins

and diffuse diagonal ‘ridges’ of excitations. The ‘ridge’ scattering has little modulation

along it’s length in the (h, k) plane, and no modulation along the l direction. There is

only a sizeable correlation length in the direction perpendicular to the ridges. This means

the scattering is quasi-one-dimensional running parallel to the diagonals of the square

lattice of the ab plane, i.e. the correlations are parallel to the stripe directions.

One model system which is known to exhibit one dimensional spin fluctuations is

non-interacting 1-D spin chains. To understand the ridge scattering we observe in

La2−xSrxNiO4 we considered a system of non-interacting antiferromagnetic (AFM) spin

chains running parallel to the direction d = [1, 1, 0] of a square lattice, with spins at-

tached to vertices of the lattice, as in Fig. 7.10(b). For the case of spin-1/2 Heisenberg

chains the main mode of the excitation spectrum would be given by[100]

E(Q) = πJ |sin(2πQ.d)| (7.2)

where J is the exchange energy per spin. If we consider the excitations for energies

approaching zero, the scattering cross section will be largest when Q.d is an odd half



Chapter 7: Spin Dynamics of Charge-stripe Ordered La2−xSrxNiO4 136

integer and zero when Q.d is an integer. This ordering would produce scattering that lies

along the dashed diagonal lines of Fig. 7.10(a), which would be centred in scans equivalent

to path A at Q = (0.25, 0.25), whereas a twin domain with ordering along d = [−1, 1, 0]

would produce scattering that lies along the solid diagonal lines of Fig. 7.10(a).

The ridge scattering we observe in Fig. 7.9 on x = 1/3 and Fig. 7.15(a) on x = 0.275

closely resembles that expected for non-interacting 1-D spin chains. The scattering in

these figures shows no modulation with l and only a small modulation along the ridge,

the ridge only shows significant modulation in the direction parallel to the stripe direction,

therefore the ridge scattering is quasi-one dimensional. There is one discrepancy between

the model and the observed ridge scattering: the flexing in wavevector of the ridges. The

ridge scattering is observed to be centred at ξ = 0.27 for scans along path A, whereas non-

interacting 1-D antiferromagnetic spin chains would have scattering centred at ξ = 0.25

for scans performed along path A.

Polarized neutron analysis of the spin fluctuations at 2 meV revealed the ridge scattering

to be anisotropic, with fluctuations primarily out-of-plane. Our work on the spin wave

excitations of the ordered Ni2+ spins revealed that below ∼ 7meV the fluctuations lie

in-plane. In figure 7.14 I showed the temperature dependence of the ridge scattering,

we observed the intensity of the ridge scattering to decrease with temperature persisting

only up to ∼ 100 K. Previous work on the low energy spin wave excitations of the ordered

Ni2+ spins revealed that the correlations persist up to ∼ 200K[33]. Adding to these two

differences the fact that the excitations of the ordered Ni2+ spins are localized in Q while

the ridge scattering is spread out in Q, our results imply that the ridge scattering does

not originate from the ordered Ni2+ spins.
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As the ridge scattering is not from the AFM ordered Ni2+ spins, we propose that the

origin of the ridge scattering is from AFM spin correlations of charge stripes. Assuming

the charge stripes are centred on the Ni sites (see chapter 1.3.3), the charge stripes are

diagonal lines of Ni3+ ions, which in the strong crystal field limit would have S = 1/2.

Using this interpretation, we have observed 1-D AFM excitations from quasi-1-D spin-

1/2 chains that are dynamic on the timescale probed by neutrons and correlated over a

length scale of ∼ 35 Å. Hence, we can estimate the strength of the exchange interaction

for these correlations using equation 7.2 to be J ≈ 3.2meV. This fit produces the solid

line dispersion I plot in Fig. 7.13(b).

As we have observed the ridge scattering in the incommensurately ordered x = 0.275,

the quasi-1-D AFM excitations appear to be a property intrinsic to the charge stripes of

La2−xSrxNiO4, not a commensurate ordering effect. These results are to our knowledge

the first evidence of spin correlations from the charge carriers in a charge-ordered ma-

terial. To theoretically model charge-order accurately it is important to understand the

correlations of both the ordered spins and the charge carriers. Hence these results provide

the first indication of how the spins of the charge carriers correlate, which could help in

the understanding of the role of charge stripes in high temperature superconductors.

There are however limits to what can be inferred about charge stripes in the cuprate

high temperature superconductors from the nickelates. This is due to the differences of

the stripes in these materials. As outlined in chapter 1, the orientation of the stripes

in the superconducting cuprates is horizontal and vertical[19, 20, 22], as opposed to the

diagonally orientated stripes of the nickelates. In the nickelates the stripes are half filled

and thus insulating, but in the superconducting cuprates the stripes are quarter filled and

metallic. Despite these differences useful information about charge-ordered states can be
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obtained from studying the nickelates that will help our understanding of the role of charge

stripes in the cuprates. If we can understand the ordering phenomena in a model charge-

ordered system such as La2−xSrxNiO4 then we will be in a better position to understand

their role in the cuprate superconductors. Our observation of AFM correlations in the

nickelate stripes when ferromagnetic stripes have been predicted[101], is significant in

understanding the coupling of the charge stripes to the AFM background. From the

insights of our work we should also be in a position to better understand the mechanism

for the intrastripe exchange interaction in charge-ordering.



Chapter 8

Spin Dynamics of Half-Doped

La3/2Sr1/2NiO4

In this chapter I present inelastic neutron scattering experiments on La3/2Sr1/2NiO4[102].

The aim of this work was to determine the effect that near 2-D checkerboard charge-

ordering has on the magnetic excitations in La2−xSrxNiO4+δ, compared to the magnetic

excitations of charge-stripe ordered La2−xSrxNiO4 (see chapter 7).

In this work I present polarized- and unpolarized- inelastic neutron scattering mea-

surements of the magnetic excitation spectrum in the spin-charge ordered phase of

La3/2Sr1/2NiO4. Up to energies of ∼30meV we observe broad magnetic modes character-

istic of a near checkerboard ordering. A linear spin-wave model for an ideal checkerboard

ordering with a single antiferromagnetic exchange interaction J ′ = 5.8 ± 0.5meV be-

tween next-nearest-neighbour spins on Ni2+ sites, together with a small XY-like single-ion

anisotropy, provides a reasonable description of the measured dispersion. Above 30meV

the excitations are not fully consistent with the linear spin-wave model, with modes near

the two-dimensional reciprocal space wavevector (0.5, 0.5) having an anomalously large

intensity. Furthermore, two additional dispersive modes not predicted by the simple linear

139
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spin wave theory are observed, both of which are probably magnetic. One disperses away

from (0.5, 0.5) in the energy range between 50–56meV, and the other appears around (h,

k) type positions (h, k = integer) in the energy range 31–39meV. We propose a model in

which these anomalous features are explained by the existence of discommensurations in

the checkerboard ordering. At low energies there is additional diffuse scattering centred

on the magnetic ordering wavevector. We associate this diffuse scattering with dynamic

antiferromagnetic correlations between spins of the charge carriers.
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8.1 Static order of x=0.5

To aid the description of excitations in the x = 0.5 material I will again outline the known

static order of the x = 0.5. Figure 8.1 illustrates how the different ordered phases in

La3/2Sr1/2NiO4 can be identified in diffraction measurements. Figure 8.1(a) is a simplified

model of the ground state spin–charge order within the NiO2 layers of La3/2Sr1/2NiO4

neglecting the small incommensurate modulation. I assume the doped holes are site-

centred, so that the checkerboard pattern is derived from alternating Ni2+ and Ni3+ ions

carrying spins S = 1 and S = 1
2
, respectively. The S = 1 spins are assumed to be ordered

antiferromagnetically, but no assumption is made at this stage about magnetic order of

the S = 1
2

spins (this issue will be addressed later in the chapter). The positions in

reciprocal space of the corresponding Bragg peaks are shown in Fig. 8.1(b). Peaks from

the charge order have two-dimensional wave vectors (in units of 2π/a) (h + 1
2
, k + 1

2
),

where h and k are integers1. The magnetic order has double the periodicity of the charge

order, so peaks from the magnetic order appear at (h + 1
2
, k + 1

2
) ± (1

4
, 1

4
). Rotation of

the ordering pattern by 90◦ generates an equivalent magnetic structure, this time with

magnetic peaks at (h + 1
2
, k + 1

2
) ± (1

4
,−1

4
). In the absence of a symmetry-breaking

interaction we expect an equal population of these two domains, so the pattern of Bragg

peaks will be a superposition, as shown in Fig. 8.1(b).

The actual spin–charge ordered phase of La3/2Sr1/2NiO4 observed below TICO does not

conform to the ideal structure shown in Fig. 8.1(a). Instead, the magnetic Bragg peaks are

found at the incommensurate positions (h+ 1
2
, k+ 1

2
, l)±(ε/2, ε/2, 0) with l an odd integer,

and (h+ 1
2
, k+ 1

2
, l)±(ε/2,−ε/2, 0) with l an even integer, where ε ≈ 0.44 [34, 38, 89]. New

1In this work we describe the structural properties of La2−xSrxNiO4+δ with reference to a tetragonal

unit cell with cell parameters a ≈ 3.8 Å and c ≈ 12.7 Å.
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Figure 8.1: (a) Ideal checkerboard spin–charge ordering in a NiO2 square
lattice. Circles represent Ni3+ holes, and solid arrows represent
spins on Ni2+ sites. The broken lines are included to highlight
that the spin pattern breaks the 2D symmetry of the checker-
board charge ordering. J ′ is the exchange coupling parameter of
the Ni2+ spins across the Ni3+ site. This commensurate ordering
is not realized in practise in La3/2Sr1/2NiO4. (b) Diagram of part
of the (h, k) plane in 2D reciprocal space showing the positions
of the first-order magnetic and charge order Bragg peaks for the
ideal checkerboard ordering represented in (a). The peaks from
the equivalent domain in which the magnetic ordering is rotated
by 90 degrees relative to that in (a) are superimposed. (c) The
same diagram as (b) except with the magnetic and charge order
Bragg peaks observed in the incommensurate ordered phase of
La3/2Sr1/2NiO4. For simplicity we neglect the variation in the
peak positions in the direction perpendicular to the NiO2 plane.

charge-order satellite peaks appear at (h± ε, k± ε) in addition to the checkerboard charge

order peak at (h + 1
2
, k + 1

2
), with little or no l dependence[38, 89]. The full set of 2D

magnetic and charge order wavevectors for the incommensurate phase of La3/2Sr1/2NiO4,

including those for the 90 deg domain, is shown in Fig. 8.1(c).



Chapter 8: Spin Dynamics of Half-Doped La3/2Sr1/2NiO4 143

Kajimoto et al.[38] suggested that two types of charge order coexist in the incommensu-

rate phase, one part of the system being charge-ordered in a checkerboard pattern and

the other part adopting an incommensurate, stripe-like, spin-charge order. These authors

developed models for the latter component based on the introduction of diagonal discom-

mensurations in the ideal checkerboard spin-charge structure of Fig. 8.1(a). As pointed

out by Kajimoto et al., the stability of the incommensurate structure is probably the result

of a competition between magnetic and electrostatic energy. The strong superexchange

interaction favours having antiparallel spins on nearest neighbour Ni sites, whereas the

Coulomb interaction tries to have a uniform charge density.
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8.2 Experimental details

The neutron scattering measurements in this chapter were performed on a single crystal

of La3/2Sr1/2NiO4 grown by the floating-zone method[81] (see chapter 4). The crystal was

a cylinder 35mm in length and 7mm in diameter. The oxygen content of the crystal was

determined by thermogravimetric analysis (TGA) to be 4.02 ± 0.01. This is the same

crystal that was used in our earlier neutron diffraction and magnetization study of the

magnetic order (see chapter 6).

The majority of the unpolarized-neutron scattering measurements were performed on

the time-of-flight chopper spectrometer MAPS at the ISIS Facility. The crystal was

mounted on MAPS in a closed-cycle refrigerator and aligned with the c axis parallel to

the incident beam direction. A Fermi chopper was used to select the incident neutron

energy. Incident energies of 60 and 100meV were used. The intensity was normalized

and converted to units of scattering cross-section (mb sr−1 meV−1 [f.u.]−1) by comparison

with measurements from a standard vanadium sample. Scattered neutrons were recorded

in large banks of position-sensitive detectors. The spin dispersion was found to be highly

two dimensional. Hence, we analyzed the data by making a series of constant energy slices

and projecting the intensities onto the (h, k) two-dimensional reciprocal lattice plane. For

an incident energy of 60meV the resolution was typically 2.2 meV in energy and 0.05 Å−1

in wavevector, whereas for an incident energy of 100meV the resolution was typically

3.8meV and 0.07 Å−1.

Further unpolarized- and polarized-neutron measurements were performed on the triple-

axis spectrometers IN8 and IN20 at the Institut Laue-Langevin. The energies of the

incident and scattered neutrons were selected by Bragg reflection from a double-focusing
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bent Si crystal monochromator on IN8, and an array of Heusler alloy crystals on IN20.

On both instruments the data were obtained with a final neutron wavevector of 2.66 Å−1,

and a pyrolytic graphite (PG) filter was placed between the sample and analyzer to

suppress higher-order harmonic scattering. For polarized-neutron scattering on IN20 the

spin polarization, P, was maintained in a specified orientation with respect to the neutron

wavevector, Q, by an adjustable guide field of a few mT at the sample position. For the

experiment on IN8 the crystal was orientated with the [100] and [010] crystal directions

in the horizontal scattering plane, so that (h, k, 0) positions in reciprocal space could

be accessed. On IN20, we mounted the crystal with the [001] and [110] directions in the

horizontal scattering plane, so that (h, h, l) positions in reciprocal space could be accessed.

At any energy transfer of 30 meV the resolution of the IN8 instrument was 4meV in energy,

0.13 Å−1 in wavevector parallel to the scan direction, 0.2 Å−1 in wavevector perpendicular

to the scan in the scattering plane and 0.2 Å−1 in wavevector out of the scattering plane.

For an energy transfer of 3 meV the resolution was 1.4 meV, 0.08 Å−1 in the scattering

plane and 0.8 Å−1 out of the scattering plane. On IN20 the typical resolution of the

instrument was 2.0 meV in energy, 0.06 Å−1 in wavevector in the scattering plane and

0.15 Å−1 out of the scattering plane.
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8.3 Results

Figures 8.2(a)−(c) show constant-energy slices from runs performed at T = 10K on

MAPS2. The slices have been averaged over a range of energies, as indicated in the fig-

ures. In (a), the range is 4–6meV, and the intensity is seen to be enhanced at the four

equivalent magnetic order wavevectors (0.5, 0.5)± (ε/2, ε/2) and (0.5, 0.5)± (ε/2,−ε/2),

where ε ≈ 0.44. This signal, therefore, corresponds to low energy spin excitations from

the magnetically ordered ground state. As the energy increases, the intensity spreads

out but initially remains centred on the magnetic wavevectors. This can be seen in Fig.

8.2(b), which shows data averaged over 25–30meV. At still higher energies the four blobs

of intensity tend to merge towards (0.5, 0.5). This is illustrated in (c), which corresponds

to an energy range 40–45meV.

In Figs. 8.2(d)–(f) I plot cuts through the data in the (ξ, ξ) direction for the same energy

ranges as used in Figs. 8.2(a)–(c). At low energies, E = 4− 6 meV, the scattering takes

the form of a single peak centred on the magnetic wavevector. The fitted Gaussian width

of this peak converts to a correlation length of 35±1 Å(the inverse of the half width at half

maximum). At energies of 25–30 meV (Fig. 8.2(e)) the lineshape is also centred on the

magnetic wavevector, but it now contains two peaks which can just be resolved (another

2On a time-of-flight spectrometer with the incident neutron beam parallel to the c axis the out-of-

plane wavevector component l varies with the excitation energy, and depends also on the incident neutron

energy. The l values for the data shown in Fig. 8.2 are given in the figure caption. Although the magnetic

excitation spectrum of La2−xSrxNiO4 is highly two-dimensional, the scattering intensity does vary with l.

The variation is smooth, and depends partly on the magnetic form factor and partly on the direction of Q,

since neutrons scatter from spin fluctuations perpendicular to Q. The ordered moment in La3/2Sr1/2NiO4

lies in the ab plane, so the scattering becomes less sensitive to magnetic fluctuations parallel to the c axis

as l increases.
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Figure 8.2: Neutron scattering measurements from La3/2Sr1/2NiO4 measured
on MAPS at T = 10 K. (a)− (c) are constant-energy slices show-
ing the variation of the intensity in the (h, k) plane at differ-
ent energies. The data are averaged over the range of energies
indicated above the figures. The incident neutron energy was
60meV for (a), and 100 meV for (b) and (c). Data from four
equivalent Brillouin zones have been averaged. (d) − (f) show
cuts along the (ξ, ξ) direction for the same energies as shown in
(a)− (c). The solid lines are the results of fits with one Gaussian
[(d) and (f)] or two Gaussians [(e)] on a linear background. In (d)
we also display the (0.275, 0.275, 5) magnetic order Bragg peak
measured on IN20. The out-of-plane wavevectors for the posi-
tion (0.275, 0.275) are as follows: (a)&(d) l = 0.55, (b) l = 2.3,
(e) l = 3.0, (c) l = 3.45 and (f) l = 5.2.

example can be seen in Fig. 8.6(c)). The fitted width of these peaks corresponds to a

correlation length of 24 ± 2 Å. As the energy increases, the right-hand of the two peaks

grows while the left-hand peak diminishes. This asymmetry is not instrumental in origin,
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e.g. a resolution or background effect, because we observe it in scans measured under very

different conditions on different spectrometers. Above E ≈ 40meV the left-hand peak

has virtually no intensity, as can be seen in Fig. 8.2(f).
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Figure 8.3: Dispersion of the magnetic excitations in La3/2Sr1/2NiO4 par-
allel to the (ξ, ξ) direction. The points are the results of fits
to cuts such as those shown in Fig. 8.2. The broken lines are
calculated from Eq. (8.2), the spin wave dispersion for a checker-
board ordered system with exchange parameter J ′ = 5.8meV
and out-of-plane anisotropy Kc = 0.05 meV. The two branches
of the dispersion curve are separated at low energies by a small
anisotropy gap which can clearly be seen in Fig. 8.7(b). Triangles
above the calculated dispersion curve indicate the positions of an
additional observed scattering mode. The shaded area represents
the region in which additional scattering hampers the study of
the spin-wave excitations, see Fig. 8.5.

Figure 8.3 shows the dispersion of the spin excitations obtained from Gaussian fits to

the peaks observed in cuts such as those displayed in Fig. 8.2(d)–(f). The points in Fig.

8.3 are the fitted peak centres corrected for the effect of the non-zero width of the cut

perpendicular to the cut direction. For this purpose the scattering was taken to be a

circle centred on the magnetic wavevector. Within the experimental limits of our data



Chapter 8: Spin Dynamics of Half-Doped La3/2Sr1/2NiO4 149

(a) (b)

(h, 0)

(0
, 
k
)

51<E<54 meV, E = 100 meVi

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1

In
e

te
n

s
it
y

(m
b

s
r-1

m
e

V
-1

[f
.u

.]
-1

)

> (r.l.u.)

E = 51-54 meV

E
i
= 100 meV

(>, 1 - >, 0)

Figure 8.4: Neutron scattering measurements from La3/2Sr1/2NiO4 measured
on MAPS at T = 10 K. (a) Constant-energy slice through the
data showing the intensity distribution in the (h, k) plane in the
energy range 51–54 meV. The slice reveals weak diffuse scatter-
ing symmetrically distributed around (0.5, 0.5). Data from four
equivalent Brillouin zones have been averaged to improve the
statistics. (b) Cut through the 51–54meV slice along the path
indicated by the arrow in (a).

the dispersion was found to be the same in orthogonal cut directions.

In constructing the dispersion curve we had to take care to avoid confusing the scattering

from magnetic excitations and phonons, especially in the energy range 10–40meV where

the phonon scattering is particularly strong. One check we made was to compare data

obtained at 300 K with that obtained at 10 K. Phonon scattering increases in strength

with temperature, whereas magnetic scattering decreases in strength above the magnetic

ordering temperature.

At energies above 50meV we observed a broad ring of scattering centred on (0.5, 0.5).

This is illustrated in Fig. 8.4, which shows (a) a constant-energy slice averaged over the

energy range 51–54 meV, and (b) a cut through this data along the line (ξ, 1 − ξ). This

mode disperses away from (0.5, 0.5) with increasing energy, but was too weak to measure
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Figure 8.5: Excitations from La3/2Sr1/2NiO4. (a) Distribution of scattering
intensity in the (h, k) plane measured on MAPS at T = 10 K.
The scattering has been averaged over the energy range E = 33−
37meV. (b)–(d) Slices through the scattering intensity measured
at T = 10 K in the (h , k) plane averaged over the energy ranges
(b) 31− 33meV, (c) 33− 35meV, (d) 35− 37 meV. The data in
the MAPS detector have been folded to take advantage of the
symmetry of the scattering.

above 56 meV. This scattering was found to be slightly weaker at 300K than at 10K,

which suggests a magnetic origin for it. I have added the peak positions of this scattering

to the dispersion curve in Fig. 8.3.

In the energy range 31 − 39meV we observed an interesting scattering feature separate

from the main spin wave scattering. Figure 8.5(a) shows the distribution of intensity

measured on MAPS for energies averaged over the range 33–37meV covering a large area
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of reciprocal space. This intensity map displays strong diffuse scattering rings centred

on the reciprocal lattice zone centres (h, k), where h and k are integers. Figures 8.5(b)–

(d) present constant-energy slices through this scattering centred on energies of 32meV,

34meV and 36meV. In these slices the symmetry-equivalent data have been folded into

one quadrant to improve the statistics. The intensity is seen to disperse away from the

(1, 0) point. In these measurements the out-of-plane component of the scattering vector

varies from l = 2.5 to 4. A search was made with the IN8 spectrometer of other Brillouin

zones in the (h, k, 0) reciprocal lattice plane. This survey confirmed the results found

on MAPS, showing that the scattering was not restricted to a particular out-of-plane

component of the scattering vector.

To assess whether or not this scattering is magnetic in origin we performed measure-

ments as a function of temperature. Cuts through the MAPS data at 10 K and 300K are

shown in Fig. 8.6(a). These data show the scattering to decrease slightly with temper-

ature, being approximately 45 ± 12% stronger at 10 K than at 300 K. We also observed

similar scattering in the range 25–30meV. Fig.8.6(b) shows Q scans through the point

(2, 0, 0) at an energy of 25meV for temperatures of 1.5K and 300K, measured on IN8.

The scattering here appears to be temperature independent. To understand these tem-

perature effects we need to take into account that this diffuse scattering ring overlaps

the magnetic ordering wavevectors, so will contain some spin-wave scattering. The spin

wave scattering itself will, of course, be temperature dependent. To illustrate this we

show in Fig. 8.6(c) scans through the spin-wave scattering associated with the magnetic

wavevector (1.5, 1.5) − (ε/2, ε/2) measured at a slightly higher energy (E = 30 meV) on

IN8 at T = 1.5 K and 300K. The amplitude of the spin wave scattering clearly decreases

with temperature. From this loss of intensity we can infer the temperature dependence of
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Figure 8.6: (a) Cuts through the data shown in 8.5(c) along a line parallel
to the (h, h) direction passing through (1, 0). The data at
T = 10 K and 300K, have been offset by 5 units. The lines in (b)
are the result of fitting the points with two gaussian functions
on a sloping background. (c) Scans of the scattering observed
at E = 25 meV for T = 1.5K and 300 K measured on IN8. (g)
A scan through the spin wave dispersion at E = 30 meV for
T = 1.5K and 300 K measured on IN8. The 300 K data in (b)
and (c) have been offset by the addition of 1000 counts.

the remaining component of the scattering in Figs. 8.5(a)–(d) and Figs. 8.6(a)–(b). Our

analysis indicates that at E ∼ 35meV the non-spin-wave component of the diffuse scat-

tering ring presented in Figs. 8.5(a)–(d) decreases in intensity with temperature, whereas

at E = 25meV (Fig. 8.5(b)) it increases with temperature. This leads us to conclude that

the diffuse scattering around the Brillouin zone centres shown in Figs. 8.5(a)–(d) is most

likely magnetic in origin.
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Further support for this conclusion was provided by examining data we have collected

on crystals of La2−xSrxNiO4 with x = 1/3 and 0.275 under similar condition during a

separate experiment on MAPS[99] (see chapter 7.2). Constant-energy slices for x = 1/3

and 0.275 in the energy range 31 − 39meV do not show any diffuse scattering rings like

those shown in Figs. 8.5(a)–(d), so this feature seems to be specific to x = 1/2. This

makes it highly unlikely that this scattering comes from phonons intrinsic to the host

lattice of La2−xSrxNiO4.

For energies below 30meV we performed additional measurements with polarized neu-

trons. In this energy range there is strong scattering from phonons, and polarized neu-

trons were necessary to provide an unambiguous separation of the magnetic and non-

magnetic scattering. We were particularly interested in studying the magnetic scattering

as a function of energy because earlier measurements on La2−xSrxNiO4 compositions with

x = 0.275, 0.33 and 0.37 had revealed unexpected structure in the energy spectrum (see

chapter 7.2). For these measurements the neutron polarization P was aligned parallel to

the scattering vector Q so that the spin-flip (SF) channel would contain purely magnetic

scattering.

The most interesting finding is reproduced in Fig. 8.7, which shows energy scans measured

in the SF channel on samples with compositions x = 1/3 and x = 1/2 at their respective

magnetic ordering wavevectors. The x = 1/3 data contains two peaks, one centred on

7meV and the other on 26meV. The x = 1/2 data contains a single peak at 5meV.

The lower energy peaks were shown to be gaps due to spin anisotropy (see chapter 7.2).

Below these gaps the out-of-plane spin fluctuations are quenched. The origin of the higher

energy peak in the x = 1/3 data, which was also found in similar data from crystals with

x = 0.275 and x = 0.37, remains a mystery (see chapter 7.2 for a discussion of this
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and the SF background was estimated from scans centred away
from the magnetic ordering wavevector. The measurements were
made at 10 K for x = 1/2 and 13.5 K for x = 1/3.

feature). Of all the compositions studied, the one with x = 1/3 exhibits this feature most

strongly. The absence of a corresponding peak in the x = 1/2 data seems to suggest

that this peak is a property of compounds with static stripe order with a periodicity of

∼3 lattice spacings. The monotonic decrease in intensity above 5 meV in the x = 1/2
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Figure 8.8: Low energy scattering from La3/2Sr1/2NiO4 measured on IN8 at
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data is qualitatively consistent with the expected 1/E dependence of the cross section for

scattering from antiferromagnetic spin waves.
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Finally, we describe a feature observed in the scattering from La3/2Sr1/2NiO4 at low ener-

gies. Figure 8.8(a) is a map of the intensity measured on IN8 covering part of the (h, k, 0)

plane in reciprocal space. The map was constructed from a series of scans performed

parallel to (h, h, 0) at an energy of 3meV and a temperature of 2 K. Strong scattering

can be seen centred on the magnetic ordering wavevectors, but additional weak diffuse

scattering can also be seen centred on these same positions. This diffuse scattering is

slightly elongated in the diagonal directions, parallel to the discommensuration lines in

the distorted checkerboard structure. There was no observable elastic diffuse scattering,

so this feature represents a short-range dynamic magnetic correlation. We were able to

follow the diffuse inelastic scattering up in energy to ∼10meV.

In Fig. 8.8(b) and (c) are shown scans through the spin wave scattering and the diffuse

scattering made along the lines marked A and B, respectively, in Fig. 8.8(a). Figure 8.8(d)

displays the temperature dependence of the integrated intensity of the peaks in these two

scans. The intensity for scan A is seen to increase with increasing temperature. This is

due partly to thermal population of the spin waves, and partly to the reorientation of the

ordered moment of the Ni2+ spins that takes place at 57K[89] (see chapter 5). Scan B, on

the other hand, shows an initial increase in intensity on warming which peaks at around

20K before decreasing at higher temperatures. This decrease suggests that the diffuse

scattering is magnetic in origin, and the striking difference in temperature dependence

between the spin wave scattering and the diffuse scattering strongly indicates that they

arise from two different magnetic components in the system.
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8.4 Discussion

Let me first summarize the key observations, and then provide some quantitative anal-

ysis. From the various neutron scattering measurements we have performed on spin-

and charge-ordered La3/2Sr1/2NiO4 we have been able to identify four distinct features:

(1) dispersive spin excitation associated with the magnetic ordering wavevector; (2) low

energy diffuse spin dynamics also associated with the magnetic ordering wavevector but

with a distinct temperature dependence; (3) a probable magnetic mode dispersing from

(0.5, 0.5) at energies in the range 50–56meV; (4) a probable magnetic mode dispersing

from (h, k) type positions in the energy range 31–39meV. All these features are relatively

broad in wavevector, and therefore arise from dynamic correlations that are short-range

in nature.

An obvious starting point for any analysis of the magnetic excitations in La3/2Sr1/2NiO4

is the ideal checkerboard spin–charge ordering pattern shown in Fig. 8.1(a). As far as the

spins are concerned, this is a simple two-sublattice antiferromagnet built from S = 1 spins

on the Ni2+ sites. Spins attached to the Ni3+ sites are ignored for the time being. Following

our previous work on stripe-ordered La5/3Sr1/3NiO4[49], we adopt a spin Hamiltonian of

the form

H = J ′
∑

〈i,j〉
Si · Sj + Kc

∑
i

(Sz
i )

2, (8.1)

where the first summation describes the exchange interactions between pairs of Ni2+ spins

in linear Ni2+–O–Ni3+–O–Ni2+ bonds, and the second summation describes the small,

XY -like, single-ion anisotropy. Here, as in Ref. [49], J ′ is defined as the exchange energy

per spin (multiply by 2 to obtain the exchange energy per bond, i.e. the exchange energy

per pair of spins). We neglect the diagonal exchange couplings between Ni2+ sites which
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are needed to stabilize the spin arrangement but are assumed to be small relative to J ′.

In effect, therefore, the system is treated as 2 uncoupled square-lattice antiferromagnets

with lattice parameter 2a.

The magnon dispersion derived from Eq. (8.1) by standard linear spin wave theory (see

Appendix A) is given by

E(Q) = 8J ′S{(1 + Kc/8J
′)2 − [γ(Q)±Kc/8J

′]2}1/2, (8.2)

where

γ(Q) =
1

2
[cos(2Qxa) + cos(2Qya)]. (8.3)

The splitting of the two branches of the dispersion curve is such that at the magnetic

zone centre one mode is gapped and the other isn’t. The size of the gap is 4S(2J ′Kc)
1/2.

When Kc ¿ J ′ the maximum energy of the dispersion curve is approximately 8J ′S.

In Fig. 8.3 I have plotted the spin wave dispersion along the (ξ, ξ) direction calculated

from Eq. (8.2) with S = 1, J ′ = 5.8meV and Kc = 0.05meV. These parameters were

chosen to match the observed maximum spin wave energy (∼ 45meV) and anisotropy gap

(∼ 3meV). The spin-wave dispersion curve is seen to provide a reasonable description of

the experimental data, apart from the obvious shift from the observed incommensurate

wavevector (0.275, 0.275) to the ideal checkerboard wavevector of (0.25, 0.25). There is

no detectable scattering from spin wave modes on the dispersion curve near ξ = 0 and

ξ = 0.5 because the antiferromagnetic structure factor is small in the magnetic Brillouin

zones centred on (0, 0) and (0.5, 0.5).

From this analysis we can give a rough estimate of the exchange and anisotropy parameters

for La3/2Sr1/2NiO4. After consideration of the experimental errors, these are J ′ = 5.8 ±

0.5meV and Kc = 0.05 ± 0.02meV. It is interesting to compare these values with those
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derived from similar spin-wave analyses performed on other La2−xSrxNiO4 compositions.

For x = 1/3 the exchange parameters were found to be J = 15 ± 1.5meV, J ′ = 7.5 ±

1.5meV and Kc = 0.07 ± 0.01meV[49], where J is the exchange interaction between

Ni2+ spins on nearest-neighbour lattice sites. For undoped La2NiO4 the results were

J = 15.5meV and Kc = 0.52meV[98]. This comparison shows that J ′ and Kc are similar

for x = 1/3 and x = 1/2, but that Kc is very much larger in undoped La2NiO4. An

explanation for why the single-ion anisotropy reduces so dramatically with doping is so

far lacking.

I now discuss some of the obvious shortcomings of the model. I have already men-

tioned that the magnetic ordering wavevector in La3/2Sr1/2NiO4 is qm = (0.275, 0.275) not

(0.25, 0.25). Other problems are: (1) the spin-wave scattering intensity above ∼ 25meV

becomes progressively more asymmetric about qm with increasing energy, i.e. stronger on

the side nearest to (0.5, 0.5) — see Figs. 8.2(e) and (f), and Fig. 8.6(c). This asymme-

try disagrees with the spin wave theory for the model described above, which predicts a

symmetric scattering intensity about the magnetic zone centre. (2) The extra scattering

intensity observed around (0.5, 0.5) above 50meV, and around (1,0) and equivalent po-

sitions in the energy range 31 − 39 meV suggest extra magnetic modes not present for

a checkerboard ordering. (3) The spin wave scattering is very broad, implying that the

spin waves propagate only a few lattice spacings before being scattered or decaying into

another excitation channel. (4) The source of the low energy diffuse scattering needs to

be identified.

To explain these features unequivocally we need a complete description of the static

ordering, which we don’t have. However, the idea that the static incommensurate order

in La3/2Sr1/2NiO4 can be understood in terms of an ideal checkerboard pattern broken up
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periodically by discommensurations is physically appealing[38], and might provide some

clues as to the origin of the various features in the spin excitation spectrum.

The two simplest types of discommensuration in the checkerboard pattern are illustrated

in Fig. 8.9. The first (Fig. 8.9(a)) has a line of nearest-neighbour antiparallel spin pairs

coupled by a superexchange interaction J expected to be close to 15meV as found in the

x = 0 and x = 1/3 compounds. Around the discommensuration the local hole density is

below average. The second (Fig. 8.9(b)) has a line of holes on oxygen sites, which increases

the local hole density and forces parallel alignment on neighbouring Ni spins through

the double exchange mechanism. I will refer to these as antiferromagnetic (AFM) and

ferromagnetic (FM) discommensurations. More complex discommensurations involving a

greater degree of perturbation of the ideal checkerboard pattern are also possible.

Discommensurations provide a mechanism for producing an incommensurate spin density

wave modulation of the checkerboard pattern, as discussed earlier. At low energies, the

magnon dispersion is expected to be similar to that of the ideal checkerboard antiferro-

magnetic ordering, except that the magnon dispersion is shifted away from (0.25, 0.25) to

the incommensurate wavevector, as observed.

Let us focus, however, on the specific structure of the discommensurations themselves,

which is expected to influence the spin excitation spectrum at higher energies. The AFM

discommensuration can be regarded as a zig-zag chain with AFM intra-chain exchange

J coupled to the checkerboard AFM background. The latter has exchange J ′, and J ≈

2J ′. Above the maximum energy of the spin wave dispersion (∼ 45meV) we might

expect to observe spin excitations characteristic of an AFM zig-zag chain. Because there

will be discommensurations running along both diagonals the scattering will take the
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form of a square of scattering dispersing away from (0.5, 0.5) type positions, where the

structure factor of the AFM zig-zag chain is largest. This could explain the observed ‘ring’

of scattering apparently dispersing from (0.5, 0.5) at energies above 50meV. At lower

energies the spin excitations will have mixed checkerboard and zig-zag chain character,

and this could explain why the spin wave scattering becomes stronger on the side nearest

to (0.5, 0.5).

Similarly, FM discommensurations resemble FM zig-zag chains. Spin excitations with
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FM zig-zag chain character are expected to be observable near to the structural zone

centres. The strength of the intra-chain double exchange is not known, but this effect

could account for the mode dispersing from (h, k) type positions observed in the energy

range 31–39meV.

Discommensurations could also be responsible for the substantial widths of the spin wave

modes. In a region of commensurate checkerboard order a spin wave can propagate freely,

but when it encounters a discommensuration the uniformity of the magnetic order is in-

terrupted sharply, which could scatter the spin wave. In this case, the correlation length

of the spin wave peaks should correspond roughly to the average spacing between discom-

mensurations. Earlier we found the correlation length to be 24 ± 2 Å for energies in the

range 25–30meV, which corresponds to approximately 9a/
√

2, i.e. 9 Ni positions when

projected along the diagonal of the square lattice, which is the distance between discom-

mensurations according to the model proposed by Kajimoto et al.[38]. Further support

for the broadening mechanism proposed here can be found from a comparison of the

widths of spin wave peaks observed in neutron scattering measurements of La2−xSrxNiO4

with x = 0.275 and x = 1/3 (see chapter 7). The x = 1/3 spin wave peaks show no

measurable broadening, whereas the x = 0.275 peaks are broadened. This is consistent

with our broadening mechanism since the stripe order of x = 1/3 is commensurate and

without discommensurations, whereas that of x = 0.275 is incommensurate and does have

discommensurations.

I would like to compare the spin excitations of La3/2Sr1/2NiO4 with the spin wave exci-

tations observed in the high temperature superconductors[25, 26, 27]. (Ignoring the fact

that the zone centres of the magnetic excitations are displaced vertically and horizontally

around the (1/2, 1/2) position in reciprocal space in the cuprate superconductors, com-
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pared with diagonally displaced around the (1/2, 1/2) position in La3/2Sr1/2NiO4.) In

the cuprate superconductors the incommensurate spin fluctuations are observed to dis-

perse towards the (1/2, 1/2) antiferromagnetic (AFM) position in reciprocal space with

increasing energy. The incommensurate spin excitations in the cuprates merge before a

higher energy mode disperses away from (1/2, 1/2) to far higher energies. The observance

of only one mode dispersing out of incommensurate magnetic zone centres in the cuprates

could be due to a highly anisotropic structure factor where the second mode has a very

small weighting. The origin of the relatively small anisotropy of the spin excitations in

La3/2Sr1/2NiO4 could be due to the same process that cause there to be only one excita-

tion mode at low energies in the cuprates. Above the energy where the incommensurate

excitations merge the cuprates apparently have a second spin excitation mode that dis-

perses to much higher energies. It is tempting to compare the second cuprate mode with

the excitation mode above 50meV in La3/2Sr1/2NiO4, although I note that the excitation

mode in La3/2Sr1/2NiO4 occurs over a relatively narrow energy range.

This leaves us one remaining feature of the spin excitation spectrum to consider, namely

the low energy diffuse scattering distributed around the magnetic ordering wavevectors,

shown in Fig. 8.8. As mentioned earlier, this scattering has a different temperature

dependence to the spin wave scattering, and from this we can conclude that it arises from

a different magnetic component to the ordered spins. Low energy diffuse scattering was

also observed in the spin excitation spectrum of La2−xSrxNiO4 with x = 0.275 and x = 1/3

(see chapter 7.3). In those cases the diffuse scattering was almost one-dimensional and,

like the present case, there was no static component.

We attributed the quasi-1D diffuse scattering from La5/3Sr1/3NiO4 to dynamic AFM cor-

relations among the S = 1
2

spins attached to lines of Ni3+ holes in the charge stripes, and
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the origin of the diffuse scattering from La3/2Sr1/2NiO4 is probably the same. Because the

Ni3+ holes are arranged on a near-checkerboard pattern in La3/2Sr1/2NiO4 the spin cor-

relations among the Ni3+ sites are expected to be quasi-2D, consistent with the observed

diffuse scattering. The slight elongation of the scattering distribution is consistent with

the introduction of a stripe-like texture into the checkerboard pattern by discommensura-

tions. The width of the peak shown in Fig. 8.8(c) is roughly twice that of an equivalent cut

through the diffuse scattering from La5/3Sr1/3NiO4. This indicates that the correlations

between the Ni3+ spins are weaker in La3/2Sr1/2NiO4. The interpretation of the diffuse

scattering in La3/2Sr1/2NiO4 presented here implies that there exists an AFM coupling

between the Ni3+ spins that generates short-range fluctuations towards a checkerboard

ordering. The absence of static magnetic order on the Ni3+ sites could have implications

for recent predictions of orbital ordering in La3/2Sr1/2NiO4[68].

Finally, it is worth comparing our results with those obtained on other checkerboard

charge-ordered compounds. To our knowledge, the only other such compound whose spin

excitation spectrum has been measured in detail is La3/2Sr1/2CoO4[103]. The spin-charge

order is much closer to a perfect checkerboard pattern in the half-doped cobaltate than

in the half-doped nickelate. The incommensurability observed at low temperatures for

La3/2Sr1/2CoO4 is ε = 0.49[61], compared with ε = 0.44 for La3/2Sr1/2NiO4. Recall that

for a perfect checkerboard order ε = 0.5. The measured spin excitation spectrum of

La3/2Sr1/2CoO4 exhibits a simple spin wave dispersion extending up 16 meV, and a second

mode at energies around 30 meV which is relatively flat[103]. The spin wave dispersion

does not exhibit any of the unusual features found in the case of La3/2Sr1/2NiO4. This

can be understood if, as argued above, the deviations from a simple spin wave picture are

due to discommensurations: the very small incommensurability of the cobaltate implies
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very few discommensurations are present. The absence of low energy diffuse scattering

from the cobaltate also makes sense if the Co3+ ions are in a non-magnetic singlet ground

state, as is believed to be the case[61].

The spin excitation spectrum of La3/2Sr1/2NiO4 has been found to contain a number of

interesting features. I have argued that the low energy diffuse scattering, which resembles

a similar signal previously observed in measurements on La5/3Sr1/3NiO4, originates from

antiferromagnetic correlations among spins attached to the Ni3+ ions. I have also argued

that other strange features in the excitation spectrum of La3/2Sr1/2NiO4, such as the

probable magnetic modes of scattering dispersing from (0.5, 0.5) and (1, 0) type positions

and the large intrinsic widths of the spin excitations, can be understood (at least at the

level of hand waving) in terms of a discommensuration model. The main obstacle in the

way of a more quantitative account of the spin excitation spectrum of La3/2Sr1/2NiO4 is

the lack of a detailed model for the ground state order.



Chapter 9

Conclusions and Future work

In this thesis I have presented magnetization and neutron diffraction measurements on

the ordering, and inelastic neutron scattering measurements on the spin wave excitations,

of charge-ordered La2−xSrxNiO4+δ.

I have found that the magnetization measurements for 0 ≤ x ≤ 0.5 show a two-component

magnetic irreversibility, observed through a ZFC-FC splitting. At low temperatures

(T < 50K) there is a large ZFC-FC splitting, and above this temperature there is a

smaller ZFC-FC splitting that persists to approximately the charge-ordering tempera-

ture. In the x = 1/3 material the large splitting persists approximately to the spin

ordering temperature. Measurements of the remnant induced magnetization reveal two

components: a fast decaying component and a slow decaying component. The remnant

magnetization can mainly be described by a simple description of a two component spin

glass like state that is possibly a stripe glass. The origin of a stripe glass could be due

to different interaction lengths scales creating disorder, such as spin disorder at the ends

of the charge stripes. A suppression of the remnant magnetization observed in the low

temperature spin orientation of x = 0.275, 1/3, 0.37, but more prominently at x = 1/3,

cannot be simply explained by this model.

166
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A new unidentified transition was observed in the magnetization measurements. By use

of unpolarized and polarized-neutron diffraction I found that this transition is due to a

spin reorientation, where on cooling the spins rotate away from the stripe direction. The

transition was found to occur in all five samples studied for 0.275 ≤ x ≤ 0.5, occurring

at ∼ 15K for a general doping level but at ∼ 50K for the x = 1/3 and 1/2. The spin

reorientation was observed to be approximately twice as large in the x = 1/2 as that for

other doping levels. I also found for the ground state the spins orientated themselves at

an increasingly larger angle away from the stripe direction the higher the charge-ordering

temperature is. In magnetization measurements this spin reorientation was also observed

to be suppressed by application of a field.

Measurements of the spin wave dispersion from the ordered Ni2+ spins for the x = 0.275

and 1/3 indicated little variation in the interaction strengths with doping. The main dif-

ference between the observed spin wave dispersions was a relatively larger intrinsic width

of the excitations at x = 0.275, which may be attributed to the incommensurate charge-

ordering. The spin wave excitations of charge-stripe ordered La2−xSrxNiO4+δ showed a

dip in intensity centred on E = 15− 20meV. The evidence of this work suggests the dip

structure is due to a coupling of the Ni2+ spin wave excitations to a collective motion of

the stripes.

The measurements of the spin wave dispersion of the x = 1/2 indicated an interstripe

interaction of strength J ′ = 5.8 ± 0.5meV. This value is only slightly lower than J ′ =

7.5±1.5meV for the x = 1/3[49], despite the occurrence of two-dimensional checkerboard

charge-order in the x = 1/2. In the x = 1/2 we observe two additional modes that

appear to be magnetic in origin. A qualitative explanation of these new modes can

be made by considering two types of variation in the spin order period, AFM and FM



Chapter 9: Conclusions and Future work 168

discommensurations.

We observed the out-of-plane single ion anistropy energy for x = 0.275, 1/3, 0.37 and 1/2

to be greatly reduced compared to La2NiO4. The cause of this reduction of Kc in the

doped compounds is unknown.

At low energies measurements of the spin wave excitation spectrum for x = 0.275, 1/3

and 1/2 all showed an additional quasi-one-dimensional mode. In the x = 1/3 compound

the mode was observed to be dispersive with a maximum energy of ∼ 10meV. The

excitation mode was observed by polarized neutron scattering in the x = 1/3 to be

predominately out-of-plane. The results indicate that this excitation mode is due to

dynamic antiferromagnetic correlations of the stripe electrons.

The spin excitations in this work are compared with a spin only model of decoupled

localized Ni2+ and Ni3+ spins, but this description does not describe all the features of

the spin wave excitations. In the spin wave dispersion from the Ni2+ spins no dip structure

in the excitation intensity is predicted, and in the spin excitations from the Ni3+ spins

no flexing of the scattering is predicted. A main conclusion of this work is that spin

excitations cannot be described by decoupled localized Ni2+ and Ni3+ spins, indicating

that there must be additional couplings to the spin system.

It is worth comparing the spin wave excitations observed in this work on La2−xSrxNiO4

with the spin wave excitations observed in the high temperature superconductors[25, 26,

27]. Ignoring the difference in orientation of the excitations in these two classes of mate-

rials. In the cuprate superconductors the incommensurate spin fluctuations are observed

to disperse towards the (1/2, 1/2) antiferromagnetic (AFM) position in reciprocal space

with increasing energy. The incommensurate spin excitations in the cuprates merge be-
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fore a higher energy mode disperses away from (1/2, 1/2) to far higher energies. The

dip structure observed in the intensity of the spin excitations of LSNO bears a passing

resemblance to the spin excitations in the cuprates when the scattering intensity increases

as the spin excitations merge at the AFM position[26, 27]. The dip structure of LSNO

could also be thought of as a shift of scattering intensity from lower to high energies as the

material undergoes the phase transition from a state without charge-stripe ordering for

undoped La2NiO4, into a state with charge-stripe ordering for hole doped LSNO. In this

way the dip structure resembles the shift in spin excitation intensity observed in x = 0.16

LSCO when the material is cooled into the superconducting phase[25]. In spin excitations

of LSNO with x = 0.275, 1/3 and 1/2 we observe two excitation modes from the ordered

magnetic zone centres in scans parallel to (h, h, 0), one that disperses towards the AFM

positions and one that disperses away from the AFM positions. At x = 1/2, the spin exci-

tation mode that disperses away from the AFM positions has a very weak structure factor

at higher energies, whereas in the x = 0.275, 1/3 no strong asymmetry in the structure

factor of the two excitation modes is observed. For the cuprates, it is possible that only

one mode of spin excitations is observed at low energies due to the other mode having

a very weak structure factor. The cause of such a strong asymmetry in the spin excita-

tions of the cuprates clearly has little effect in charge-ordered LSNO. At higher energies

in LSNO with x = 0.275 and 1/3 there are no other observed spin excitations, but in

the x = 1/2 there is an additional spin excitation mode at higher energies that disperses

away from AFM positions, and at lower energies a spin excitation mode disperses away

from ferromagnetic (FM) positions in reciprocal space. The two additional modes in the

x = 1/2 are relatively flat (occurring over a narrow energy range) and can be qualitatively

explained as originating from discommensurations in the charge ordering. So in LSNO at
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high energies there is no observed additional mode dispersing away from AFM positions

that extends over a large range of energies, unlike the cuprates. Finally, at low energies

in LSNO with x = 0.275, 1/3 and 1/2 diffuse 1-D scattering is observed from the spins

of the charge carriers in the charge stripes, whereas there has so far been no observation

of such an excitation mode in the cuprates.

In this work we have studied the spin excitations of LSNO for x ≥ 0.275. These doping

levels are significantly higher than the doping levels that have been studied in the high

temperature superconductors[25, 26, 27]. As the cuprates have been studied at lower

doping levels the incommensurability of the magnetic excitations is smaller than in lSNO

with x ≥ 0.275. This means a comparison of the spin excitations of a cuprate and a

LSNO material with a similar value of the incommensurability has not been carried out.

At such low doping levels (x < 0.2) the charge order in LSNO becomes very short range,

so the LSNO system does not appear to provide a model charge-ordered system in which

to study a material with an incommensurability as small as the cuprates. Another model

charge-ordered system must be found to carry out such a comparison.

There are similarities between the incommensurate spin excitations in the cuprates to

the spin excitations from the ordered Ni2+ spins in charge-ordered LSNO but the work

carried out in this thesis shows there are significant differences. Identifying the causes of

the differences in the spin excitations of cuprates and charge-ordered LSNO could play an

important part in understanding charge-ordering and what its role is in high temperature

superconducting materials.

After this work there are still details that are unknown about the ordered state of

La2−xSrxNiO4+δ. First of all there is no complete ground state model of La3/2Sr1/2NiO4+δ
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: phase separation into part commensurate state without spin order and part incommen-

surate state with spin order has not been ruled out yet by experiment[38]. A µSR study

of two closely doped materials with x = 1/2 and x < 1/2 should be able to determine

the fraction of the x = 1/2 that is magnetically ordered compared with the x < 1/2, so

determining whether the Ni2+ spins in the x = 1/2 are fully ordered or partially ordered.

Below x ∼ 0.2 stoichiometric single crystals of La2−xSrxNiO4+δ are hard to grow, but

stoichiometric polycrystalline samples can be made. Powder neutron diffraction could be

used to study the magnetic ground state between 0 < x < 0.2. In this doping region

one could study the transition from the Néel state, and could search for phase separation

which has been reported to occur in the Néel state of La2−xSrxCuO4[21].

The measurements from inelastic neutron scattering presented in this thesis have revealed

features that cannot be explained by a simple model of two non-interacting spin systems,

i.e. (i) the ordered Ni2+ spins and (ii) the spins on the Ni3+ ions created by hole doping.

Further inelastic neutron scattering measurements can be carried out to investigate the

coupling between these two spin systems. For example, the temperature dependence of

the dip structure in the spin excitation spectrum could be investigated and compared to

the temperature dependencies of the low energy excitations from the ordered Ni2+ spins

and the correlations of the charge stripe electrons. A correlation between the temperature

dependence of the dip structure and that of the low energy excitations of the Ni3+ spins

would indicate that a coupling between the two spin systems causes the dip structure.

My co-researchers in the work of this thesis have proposed an experiment to measure the

temperature dependence of the dip structure. An investigation of the effect of decoupling

the spin systems by application of a magnetic field could also be insightful. The application

of a magnetic field could drive the antiferromagnetic correlations of the Ni3+ spins into
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a static ordering, so that there would be ordered 1-D spin-1/2 antiferromagnetic chains

embedded in the relatively 3 dimensionally ordered Ni2+ spins. A magnetic field could

also be employed to determine if the magnetic ordering can be enhanced so that there is

no variation away from ε = x ordering, this would establish the relative strengths of the

charge and spin ordering in driving the periodicity of the charge-stripe structure.



Appendix A

Linear Spin Wave Calculation of a

Checkerboard Charge-ordering.

The strengths of the magnetic interactions in La3/2Sr1/2NiO4+δ were estimated from com-

parison of the data to the linear spin wave model of an deal checkerboard charge ordered

state on a square lattice. Figure A.1 shows the model of an ideal checkerboard charge-

ordered state for site centred charge ordering on a square lattice, where the charges reside

on the metallic sites. In the ideal ordering there two sublattices of spins, sublattice 1

where the spin point downwards and sublattice 2 where the spins point upwards. The

two sublattices interact through a next nearest neighbour interaction across the charge

ordering J ′. We considered a spin only Heisenberg model with the Hamiltonain;

H = J ′
∑

〈i,j〉
Si · Sj + Kc

∑

i

(Sz
i )

2, (A.1)

where the first summation describes the exchange interactions between pairs of ordered

spins in along Ni−O−Ni linear bonds along x or y, and the second summation describes

the small, XY -like, single-ion anisotropy. Here, as in Ref. [49], J ′ is defined as the

exchange energy per spin (multiply by 2 to obtain the exchange energy per bond). We

neglect the diagonal exchange couplings between Ni2+ sites which are needed to stabilize
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the spin arrangement but are assumed to be small relative to J ′. We also neglect any

in-plane-anisotropy gap, as experiments place an upper limit of 0.4meV on this gap. In

effect the system is treated as two uncoupled square-lattice antiferromagnets with lattice

parameter 2a.

y

x

Ni
2+

Ni
3+

J’

a

b

z

Figure A.1: Ideal checkerboard spin–charge ordering in a NiO2 square lattice.
Circles represent Ni3+ holes, and solid arrows represent spins on
Ni2+ sites. The broken lines indicate the magnetic unit cell of
the ideal checkerboard spin–charge ordering. J ′ is the exchange
coupling parameter of the Ni2+ spins across the Ni3+ site. With
the base vectors a and b of the crystal latice indicated.

By using the linear approximation of the Holstein-Primakoff transformation this Hamilto-

nian is transformed into Bose operators. For the sublattice with the spins pointing down

the transformations are;

Sy
m = S − a+

mam (A.2)

S+
m = Sz

m + iSx
m = (2S)1/2am (A.3)

S−m = Sz
m − iSx

m = (2S)1/2a+
m (A.4)

Sz
m =

(
S

2

)1/2

(am + a+
m) (A.5)

Sx
m =

(
S

2

)1/2
1

i
(am − a+

m) (A.6)
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where Sy
m is the spin component in the y direction of the spin at position m, S is the

magnitude of the spin, a+
m creates a magnon at position m and am destroys a a magnon

at position m.

After performing the Holstein-Primakoff transformation, we Fourier transform the Hamil-

tonian into reciprocal space, where

aq =
1√
N

∑
m

e−iq.mam (A.7)

a+
q =

1√
N

∑
m

eiq.ma+
m (A.8)

where N is total number of spins of the sublattice. Then diagonalize the Hamiltonian

using the Bogoliubov transformation.

To determine magnon dispersion this Hamiltonain H is then solved by calculating the

eigenvalues of:

|gH − λiI| = 0 (A.9)

where I is the identity matrix, λi are the eigenvalues and from the commutation relations

of the Bogoliubov spin operators g is

g =




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1




(A.10)

Leading to the magnon dispersion:

E(Q) = 8J ′S{(1 + Kc/8J
′)2 − [γ(Q)±Kc/8J

′]2}1/2, (A.11)

where

γ(Q) =
1

2
[cos(2Qxa) + cos(2Qya)]. (A.12)
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There are two dispersion branches, where the splitting of the two branches of the dispersion

curve is such that at the magnetic zone centre one mode is gapped and the other isn’t. The

size of the gap is 4S(2J ′Kc)
1/2. When Kc ¿ J ′ the maximum energy of the dispersion

curve is approximately 8J ′S. In figure A.2 I show the dispersion from this linear spin

wave calculation for S = 1, the exchange parameter J ′ = 5.8meV and out-of-plane

anisotropy Kc = 0.05meV (the values estimated in our work for the exchange interactions

of La3/2Sr1/2NiO4).
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Figure A.2: The calculated dispersion of the magnetic excitations in an S = 1
ideal checkerboard charge-ordered material. Solid and broken
lines are the two branches of the spin waves for a checkerboard
ordered system with the exchange parameter J ′ = 5.8 meV and
out-of-plane anisotropy Kc = 0.05 meV. At the magnetic zone
centre the two branches of the dispersion curve are separated at
low energies by a small anisotropy gap of 4S(2J ′Kc)1/2.
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