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Abstract

In his programmatic article More Is Different (1972), Nobel laureate P. W. Anderson captured the
fundamental interest in quantum matter in a nutshell [1, 2]. The central motive in this field
is emergence. In the inaugural volume of the homonymous journal, J. Goldstein defined this
as “the arising of novel and coherent structures, patterns and properties during the process of
self-organization in complex systems” [3, 4]. Famously, the idea that the “the whole is greater
than the sum of its parts” goes back to Aristotle’s metaphysics, and it has served as a stimulating
concept in 19th century biology [5], economics [6] and philosophy [7].

The study of emergence in condensed matter physics is unique in that the underlying complex
systems are sufficiently “simple” to be modelled from first principles [2, 8]. Notably, the emergent
phenomena discovered in this field, such as high-temperature superconductivity [9], giant mag-
netoresistance [10], and strong permanent magnetism [11] have had an enormous impact on
technology, and thus, society. Historically, there has been a distinction between materials with lo-
calized, strongly interacting (or correlated) electrons — and non-interacting, itinerant electronic
states. In the last decade, several new states of matter have been discovered, which emerge not
from correlations, but from peculiar symmetries (or topology) of itinerant electronic states [12].
The term quantum materials has therefore become popular to subsume these two strands of con-
densed matter physics [13]: Electronic correlations and topology.

In this thesis, I report investigations of four quantum materials which each illustrate present key
interests in the field: The mechanism of high temperature superconductivity (1.1), the search
for materials that combine both electronic correlations and non-trivial topology (1.2) and novel
emergent phenomena that arise from the synergy of electronic correlations and a strong coupling
of spin- and orbital degrees of freedom (1.3). The common factor and potential key to under-
standing these materials is magnetism. My experimental work is focused on neutron and x-ray
scattering techniques, which are able to determine both order and dynamics of magnetic states at
the atomic scale.

I illustrate the full scope of these methods with experimental studies at neutron and synchrotron
radiation facilities. This includes both diffraction and spectroscopy, of either single- or polycrys-
talline samples. My in-depth analysis of each dataset is aided by structural, magnetic and charge
transport experiments. Thus, I provide a quantitative characterization of magnetic fluctuations
in an iron-based superconductor (3) and in two Dirac materials (4), and determine the magnetic
order in a Dirac semimetal candidate (5) and a complex oxide (6). As a whole, these results
demonstrate the elegant complementarity of modern scattering techniques. Although such meth-
ods have a venerable history, they are presently developing at a rapid pace. Several results of this
thesis have only been enabled by very recent instrumental advances.
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Chapter 1

Scientific context

The materials investigated in this thesis represent three key topics of condensed mat-
ter physics: (1) high temperature superconductivity, (2) unusual topology of electronic
bands and (3) effects of strong spin-orbit coupling in complex oxides. To provide the
necessary context for the more in-depth discussions in Chapters 3–6, I point out the
historical development of each field and give an overview of the existing literature and
current state of research.

Even though the compounds discussed in the subsequent chapters are chemically unre-
lated, the underlying emergent phenomena discussed in this section feature a number
of recurrent themes. I hope to convey these common threads of interest, such as the
consequences of a coupling of spin and orbital degrees of freedom of electronic states
and the dichotomy between local and itinerant electronic behaviour.
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1.1 Iron-based high temperature superconductivity

1.1.1 Overview

A consistent understanding of the mechanisms underlying unconventional (i.e. not pho-
non-mediated) superconductivity is arguably the most sought-after advance in mod-
ern condensed matter physics. In spite of three decades of intense research on heavy
fermion [16] and cuprate [17] superconductors, as well over 15000 publications [18]
on iron-based superconducting phases alone, the complexity of the issue appears to be
still increasing. In this section, I attempt to provide a broad overview of the most impor-
tant issues in this field. I draw from a large number of review articles [18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30] and the references cited therein.

The systematic survey of transition metal pnictides by the group of Hideo Hosono [18]
was awarded with the discovery of superconductivity at Tc ≈ 4K in LaFePO (2006) [31],
followed in 2008 by the discovery of a new form of high-temperature superconductivity
in LaFeAsO1−xFx (Tc = 26K) [32]. Within the same year, the superconducting transition
temperature of this compound was raised to 43 K by application of pressure [33] and to
the present record of 55–56 K by ionic substitution [34, 35]. Roughly one decade later,
several dozen of related iron-based superconductors (IBSCs) are known [18], which
fall into ten structural families. Apart from “1111” materials such as LaFeAsO (using
the common stoichiometry shorthand), the best-known structural families are of 122
(BaFe2As2 [36]), 111 (NaFeAs [37]) and 11 (FeSe [38]) composition. Figure 1.1(a) il-
lustrates the tetragonal structures of these materials. The common structural motif is the
square FeX antifluorite layers, where X is a pnictogen (group 15) or chalcogen (group
16) cation, as highlighted in Fig. 1.1. In all these materials, iron is divalent and in
a tetrahedral coordination, and the adjacent cations form an alternating (“staggered”)
arrangement above and below the Fe layer. The various structural classes differ by the
intercalation of additional cations in blocking layers, which act as insulating charge reser-
voirs and add to the two-dimensionality of the electronic state.

For the two decades preceding the discovery of these iron-based materials, high-tempera-
ture superconductivity appeared to be a peculiar phenomenon exclusive to cuprates. The
discovery of IBSCs has had an enormous impact, because it contradicts this long-standing
paradigm and points to the fact that the underlying physics may be more generic than
previously appreciated [15]. In some respects, cuprates and IBSCs show some striking
similarities: In both families, the Cooper pairs carrying the superconducting current form
a spin singlet (|↑↓〉) and originate from square layers of 3d transition metal ions. Besides,
both copper- and iron-based superconducting states occur in the vicinity of magnetically
ordered phases. This had indicated early on that the associated high-energy antiferro-
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Figure 1.1: (adapted from [14]). The best known structural classes of iron-based super-
conductors. The superconducting state arises in the common antifluorite layers, which
consist of distorted edge-sharing FeAs4 (FeSe4) tetrahedra.

Figure 1.2: (adapted from [15]). Schematic simplified phase diagrams of (a) cuprate
and (b) iron-based superconductors. In both cases, the superconducting state forms a
dome around the quantum critical points where the magnetic order is fully suppressed
(in this case by electron- or hole doping).
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magnetic spin fluctuations could be the common fundamental ingredient of high temper-
ature superconductivity. Indeed, a comparison of the low temperature phase diagrams of
cuprates and IBSCs (see Fig. 1.2), as well as heavy fermion and organic superconductors
suggests that, in essence, unconventional superconductivity is a generic quantum critical
phenomenon which arises when a magnetically ordered parent phase is suppressed [39].

1.1.2 Electronic structure

A closer look at materials properties reveals that the electronic ground states in cuprates
and IBSCs are far from identical, and even appear antithetic in important aspects.

The parent compounds of cuprate superconductors are archetypal Mott-Hubbard insula-
tors [40]. This implies that the underlying electronic states lie in the localized limit. For
instance, the magnetism of cuprates is very well described in the local Heisenberg ex-
change picture. Copper is divalent (Cu2+) in these materials, and the resulting 3d9 state
can be treated as a single spin-1

2 hole in the 3d-manifold [41]. The strong Coulomb inter-
action of electrons sharing this single (dx2−y2) orbital lies at the heart of the complexity
that can give rise to superconductivity. However, in the case of cuprates, these correla-
tions can be reduced to a single parameter — the Hubbard repulsion U . Phase-sensitive
corner-junction tunnelling and scanning SQUID microscopy experiments [42] have es-
tablished that the pairing symmetry in these materials is of S = 0, L = 2, i.e. d-wave
character [40].

The Fe2+ (3d6) states of iron pnictides and chalcogenides contrast strongly with the
cuprate scenario described above. The most obvious difference is that IBSCs are consid-
erably metallic. The local environment of Fe2+ ions in the antifluorite layers combines
both tetragonal and tetrahedral symmetries. Consequently, the sense of the crystal elec-
tric field (CEF) splitting of eg and t2g manifolds is not clear. In general, all five d orbitals
(dyz, dxz, dxy, dx2−y2 and d3z2−r2) have to be taken into account [44, 41]. Furthermore, the
“staggering” of cation position mentioned above effectively doubles the one-Fe unit cell
in two directions, so that two distinct iron sites have to be considered.

From this local (orbital-based) point of view, a description of IBSCs must therefore in-
clude not one, but ten orbitals [45, 46, 47]. Moreover, even though electronic corre-
lations are considerably screened, first principles calculations suggest that their role is
potentially as important as in the cuprates [48, 49, 50, 51, 52]. But instead of a single
Hubbard U , it becomes necessary to include four terms, to model both intra- and inter-,
Hund- and Hubbard interactions [41, 53, 54, 55].

Angle-resolved photoemission spectroscopy (ARPES) [56, 57] and quantum oscillation [58,
59] measurements of the Fermi surfaces in IBSCs reveal a folded Brillouin zone with two
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Figure 1.3: (adapted from [20, 43]). (a) Definitions of the tetragonal (blue solid line)
and one-Fe (green dashed line) unit cell in the FeAs antifluorite layer. (b) Schematic (un-
folded) view of Fermi surface pockets, with Brillouin zones indicated in correspondence
to panel (a). The black arrow indicates the common nesting vector between the cylin-
drical hole pockets at the zone centre and electron pockets at (π,0) (in reference to the
one-Fe Brillouin zone). (c) Computational Fermi-surface of hole-doped Ba1.6K0.4Fe2As2.

near-cylindrical Fermi surface hole pockets at (0,0)1, another hole pocket at (π,π)2 and
two electron-pockets at the (π,0) position. In many compounds, there is evidence for a
significant out-of-plane dispersion or “warping” of the electronic states along the c axis,
which indicates that these systems are more three-dimensional than cuprates. In a Fermi
surface nesting picture of magnetism (see below), this has the potential of modifying
the spin fluctuations and thus it may be decisive for the stability of the superconducting
state. Several theoretical studies confirm that the adjacent higher-energy cation (As/Se)
states cannot be neglected in a realistic model of the band structure and electronic inter-
actions [41].

Contrary to the orbital-based view of the electronic states in IBSCs, the application of
ARPES and quantum oscillation techniques in itself implies that itinerant electrons are
being probed. This metallic picture was also corroborated by x-ray absorption spec-
troscopy (XAS) and resonant inelastic x-ray scattering (RIXS), which has revealed char-
acteristics that are largely reminiscent of elemental (metallic) iron [50, 60].

The local-itinerant ambiguity is also observed in inelastic neutron scattering (INS): The
momentum dependence of the dynamic magnetic susceptibility measured in these ex-
periments is generally interpreted in terms of the nesting phenomenon (see below, and
Chapter 3). Indeed, the magnetic propagation vectors are mostly consistent with the

1There are several conventions for labelling the reciprocal space of IBSCs, depending on the referenced
unit cell (which may be tetragonal, orthorhombic or monoclinic in some cases). Throughout this thesis,
I refer to the simple “one-iron” unit cell of the two-dimensional square iron layer and state propagation-
and nesting vectors by two in-plane indices (H,K). In this way, the notation is consistent across all IBSCs
— at the cost of omitting information about the stacking of magnetic moments along the c axis.

2In the context of iron-based superconductors, propagation- and nesting-vectors are commonly denoted
in units of the inverse lattice constant (1/a), i.e. π ≡ 0.5r.l.u. (reciprocal lattice units).
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separation of Fermi surface pockets observed in ARPES [61, 62, 63, 64, 65, 66, 67]. In
principle, this view would point to itinerant Stoner magnetism, which implies the decay
of magnons into a broad continuum of itinerant spin excitations above a characteristic
energy [68]. However, in order to model INS data and extract information about ex-
change parameters, local-moment Heisenberg spin-exchange models have been applied
with success in many cases [69]. A complete description of iron-based superconductors
must therefore capture both itinerant electron (band structure) and localized electron
(electronic correlation) aspects, which continues to be a formidable challenge [41].

In the parent compounds of cuprate superconductors, the magnetic ordering transitions
are associated with a structural distortion (from tetragonal to orthorhombic or mono-
clinic symmetry). For the parent compounds of 1111 IBSCs, an analogous structural
transition has been evidenced ≈ 10 K above the magnetic ordering [70, 71]. On the other
hand, in the 122 family, structural and magnetic transitions only become separated by
doping. The width of the intermediate phase appears to be sensitive to disorder in the
system [72], and its relevance to the mechanism of superconductivity is debated.

More recently, it has been discovered that in certain compounds, such as the isovalently
doped BaFe2(As1−xPx)2 [73] and FeSe [74], the fourfold symmetry of the electronic state
may already break (from point group C4 to C2) before the structural distortion sets in.
The intermediate, electronic nematic phase manifests as a distortion of the Fermi surface
pockets [57], and is expected to be associated with strong orbital fluctuations. This has
raised the question whether the nematic instability is unrelated, a consequence, or even
directly or indirectly involved in the superconducting pairing mechanism.

1.1.3 Pairing mechanism and symmetry

In all known superconductors, the flux-quantization measurements imply charge trans-
port in multiples of two electron charges. It is therefore widely accepted that un-
conventional superconductivity can also be described in a BCS-like picture of Cooper
pairs, which form due to a minimal interaction of fermionic quasiparticles. The two key
questions in the characterization of an unconventional superconductor concern the pair-
ing mechanism (or nature of the exchange-boson) and the resulting pairing symmetry
(i.e. the symmetry of the superconducting gap function).

NMR experiments have evidenced a spin-singlet (S = 0) state of Cooper pairs in all IBSC
structural families [75, 76, 77, 78]. The commutation of the Cooper pair wave func-
tion therefore requires that the orbital part of the wave function must carry an even
angular momentum quantum number, i.e. L = 0 (s-wave) or L = 2 (d-wave). Unfor-
tunately, Josephson corner-junction tunnelling experiments in IBSCs have proven to be
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Figure 1.4: (adapted from [20]). Schematics of proposed gap symmetries at the (0,0)
and (π,0) Fermi surface pockets in high-temperature superconductors. For cuprates, d
wave (L = 2) symmetry has been evidenced by tunnelling experiments. In iron-based
superconductors, the order parameter likely has s wave (L = 0) symmetry, but there
exists no consensus as to whether this also involves a sign change (here indicated by
colours) or nodes.

much more difficult [79, 80, 81, 82] than in cuprates [42]. Even though the available ev-
idence is only circumstantial and certain ambiguities remain, most results point towards
a sign-changing s-wave (s±) pairing symmetry (see Fig. 1.4).

The question of pairing symmetry is intimately related to the nature of the Cooper-
pairing mechanism. Isotope-effect experiments confirmed early on that high-temper-
ature superconductivity of iron-based materials cannot be mediated by lattice vibra-
tions (as expected when the transition temperatures are much larger than characteristic
phonon energies). On the other hand, some studies have implied at least a weak isotope-
effect. In the face of the structural transitions noted above, it cannot be excluded that a
magneto-elastic coupling could play an indirect role in the pairing mechanism.

Due to the proximity to magnetically ordered phases of all high-temperature supercon-
ducting phases, magnetic fluctuations had been a candidate pairing interaction from the
beginning of the field [83, 43]. Indeed, the possibility of a magnetic pairing mechanism
had already been postulated in the context of heavy fermion superconductors — long
before the discovery of IBSCs [84, 43, 85, 86]. Notably, Scalapino [87] had pointed out
that magnetic fluctuations could only mediate the pairing interaction if they would span
parts of the Fermi surface with gap functions of opposite sign. This condition is satisfied
in cuprates, where d-wave pairing is widely accepted.

1.1.4 Magnetism

In all IBSC parent compounds, the presence of strong magnetic fluctuations can be rec-
ognized by the reduction of the ordered magnetic moment from 3.32 µB in FeO (2.2 µB

in Fe metal) to ≈ 2 µB, ≈ 1 µB and ≈ 0.4 µB in the 11, 112 and 1111 families, respec-
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tively [88, 89, 90, 91, 92, 70]. Inelastic neutron studies of the spin-wave dispersion have
been reported for all these materials (1111 [93], 11 [94] and 122 [95, 96, 97, 98, 99,
100, 101, 102]). The spectra obtained by INS generally show a steep magnon disper-
sion, up to energies of ≈ 200–300 meV. The in-plane spin waves are strongly anisotropic
(e.g. with a ratio of spin-wave velocities parallel and perpendicular to the propagation
vector of v‖/v⊥ ≈ 4 in BaFe2As2 [95, 96]). The magnetic spectra also differ from the
quasi-2D situation in cuprates [103] in that there is a sizeable out-of-plane dispersion.
Several studies of strongly over-doped compounds have found that the spin waves are
completely suppressed as the superconducting state disappears [104]. This lends further
support to the view that magnetic fluctuations mediate the superconducting pairing.

For most IBSCs, the magnetic instability occurs at the propagation vector qqqm = (π,0).
Even though the out-of-plane stacking or propagation of the magnetic order or fluctua-
tions c axis may vary, first principles electronic structure calculations had generally pre-
dicted this “stripe-like” magnetism within the iron layers [43], before first experimental
evidence was reported [83, 105]. As in these early predictions, the (π,0) magnetic in-
stability is commonly attributed to nesting between parallel Fermi surface pockets at the
(0,0) and (π,0) positions in the Brillouin zone [106] (see Fig. 1.3(b)). However, there
is still an ongoing debate whether the magnetic ground state of IBSCs should not rather
be interpreted as a result of frustrated superexchange interactions [69, 107, 108], long-
range itinerant interactions between local moments [109], or even as a consequence of
orbital order and nematicity of the electronic state.

Notably, (π,0)-type magnetic fluctuations are not universal for all IBSCs. For exam-
ple, in iron-deficient AxF2−ySe2, superconductivity coexists with a block-antiferromagnetic
state [110]. The itinerant magnetism (nesting) argument seems to be particularly con-
tradicted in FeTe, which shows yet another propagation vector, qqqm = (π/2,π/2) [89].
Upon isovalent doping [111, 112], the magnetic correlations in Fe(Te,Se) become in-
commensurate, moving from (π/2,π/2) towards (π,0) [113, 94, 114, 71]. Such incom-
mensurate distortions are reminiscent of the situation in (La,Sr)2CuO4 cuprate supercon-
ductors [115] (in this case, the fluctuations are close to Néel-type, qqqm = (π,π)). This
behaviour of the Fe(Se,Te) system is at odds with band structure calculations [116] and
ARPES data [117] which indicate a particularly good nesting condition. In Chapter 3 of
this thesis, I show that the compound FeSe shows strong (π,0) fluctuations, and there-
fore resembles the 111, 1111 and 112 families, rather than the strongly Te-doped 11
chalcogenide.

Within the superconducting phase, the INS spectra of many IBSCs develop a neutron
magnetic resonant feature at a characteristic energy ER at the magnetic propagation vec-
tor [120]. This effect had been previously observed in cuprates [121, 122, 123, 124], as
well as in heavy-fermion superconductors [125, 126]. In IBSCs, it was first observed in
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Figure 1.5: (adapted from [118, 115, 119, 71, 110]). Magnetic propagation vectors in
high-temperature superconductors. Illustrations of the periodicity of the magnetic or-
der or fluctuations in real space (left-hand panels), loci of magnetic Bragg scattering in
reciprocal space (centre panels) and corresponding time-of-flight constant-energy neu-
tron data (right-hand panels). The one-Fe unit cell and Brillouin zones (indicated by red
squares) are used throughout.
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(Ba,K)Fe2As2 [127], but has since also been found in the other 122 [128, 129, 130] and
11 [113, 131, 132, 133, 114, 134] materials. Given this universality, the neutron mag-
netic resonance is presently one of the strongest leads to a unified understanding of non-
phonon-mediated superconducting pairing. However, its actual origin is still strongly
debated [135, 136, 137, 40, 138, 139, 140]. For example, it can be interpreted as a
redistribution of magnetic spectral weight, in the regime where the opening of a super-
conducting gap prevents the magnon-decay into a continuum of itinerant particle-hole
pairs. On the other hand, alternative interpretations, for example as singlet-triplet exci-
tation of the Cooper-pairs, have also been proposed [141, 142].

One widely accepted view is that the neutron magnetic resonance is an amplified nesting
effect between parts of the Fermi surface with opposite sign of the superconducting gap
function. The observation of this characteristic peak at ER in the neutron data is therefore
often accepted as circumstantial evidence for unconventional d-wave or s±-wave pairing
symmetries. However, such reasoning has also been called into question [143]. A conclu-
sive explanation of the effect is therefore still absent. At present, the magnetic neutron
resonance phenomenon is mostly interpreted phenomenologically, e.g. by scaling laws
which relate the resonance energy to the critical temperature ER ≈ 5kBTc (this appears
to hold for both IBSCs and cuprates [144]), or the superconducting gap ER ≈ 0.64×2∆

(which also holds for heavy fermion compounds [126, 145]).

1.2 Dirac materials

1.2.1 Overview

Arguably the most fruitful concept in 21st century condensed matter physics has been the
topological classification of electronic states [12]. Sparked by the discovery of graphene
in 2004 [146, 147], various novel electronic phases have been discovered in which the
dispersion of low-energy charge carriers is mathematically distinct from that common
(Schrödinger) electrons. All such “topologically non-trivial” systems have a constellation
of symmetries (crystalline or magnetic) that protects a subspace of states at the Fermi
surface from opening a gap. No perturbation can then continuously distort these band-
crossings into a topologically trivial band metal or insulator.

The hallmark of such states is the reduction in dimensionality, e.g. the reduction of a
two- or three-dimensional Fermi surface to arcs or point nodes. Many physical (transport,
thermal and optical) properties implied by this reduced dimensionality do not depend on
specific material properties, but only on the topological classification. This universality
has proven a powerful tool, as it allows the prediction of diverse unusual phases, purely
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by symmetry arguments.

The key characteristic of topologically non-trivial states in condensed matter is that their
low-energy dynamics resemble those of freely propagating high-energy fermions. They
are therefore governed by variations of P. A. M. Dirac’s 1928 relativistic quantum theory
of the electron [148]. The electronic dispersion in two-dimensional Dirac materials such
as graphene is described by the Hamiltonian operator

HD = vF σσσ · ppp+mv2
F σz , (1.1)

where vF is the Fermi velocity, and σσσ = (σx,σy) and σz are the Pauli spin matrices.
ppp = (p̂x, p̂y) is the 2D-momentum operator and m is the mass of the Dirac fermions.
The eigenstates of this term are 2-spinor wave functions that correspond to particle-hole
pairs. They disperse linearly in reciprocal space, with a gap of ∆ = 2mv2

F at the Fermi
surface. In the limit of a vanishing σz term, this leads to a continuous Dirac cone, and
the Fermi surface is reduced to a point node. Notably, the charge-conjugation symmetry
inherited from quantum electrodynamics [149] implies that the quasiparticle-hole–pairs
are entangled. Consequently, all transport-related properties will be heavily renormal-
ized, regardless whether the system is massless or massive (gapped).

In the present section I discuss the origin of such phenomena in a diverse range of Dirac
materials, as recently reviewed by Wehling [12]. The motif of topologically non-trivial
phases is present across most classes of materials that I have investigated in the context
of this dissertation: This includes two-dimensional Dirac systems (AMnBi2, Chapter 4),
the derivative of a recently discovered bulk Dirac semimetal (EuCd2As2, Chapter 5), as
well as Weyl-semimetal candidates (R2Ir2O7 [150], experiments not described in this
thesis). Lastly, also the quasiparticle excitations in nodal superconductors share Dirac
characteristics, which relates back to the issue of Cooper pairing symmetry discussed in
the preceding section.

1.2.2 Graphene

The unusual properties of carbon honeycomb layers and the potential relevance of topol-
ogy in graphite had been recognized early on and there had been several efforts to
model its electronic structure by simplified tight-binding models [154, 155, 156, 157].
However, the experimental verification of the associated quantum phenomena was not
achieved until 2004, when Novoselov and Geim realized that graphene can be prepared
by a simple exfoliation technique [146, 147]. This discovery has been seminal to an in-
tense search for experimental realizations of Dirac physics. Throughout the last decade,
this has been rewarded with the discovery of several unprecedented states of matter.
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Figure 1.6: (adapted from [151, 152]). (a) Atomic structure of graphene, with the two
sublattices drawn in distinct colours. (b) Corresponding view of reciprocal space with
one Dirac cone at every corner (K point) of the Brillouin zone. (c) In graphene, the Dirac
fermions are almost massless [153]. The Fermi surface lies exactly at this node, which
separates the electron (positive chirality) and hole (negative chirality) bands.

As indicated by Eq. 1.1, Dirac physics implies a coupling of momentum to Pauli spin ma-
trices. In condensed matter systems, such 2-spinor “pseudo-spin-1/2” degrees of freedom
can be of varied origin. In graphene, they arise from peculiar structural properties (the
actual electron spin is largely neglected in this material). Graphene consists of a simple
carbon honeycomb monolayer. The honeycomb structure is itself not a Bravais lattice,
but corresponds to a hexagonal lattice with a basis of two atoms (i.e. two atoms per
unit cell) [151, 158]. Since there is only one active (pz) orbital per carbon atom, simple
nearest-neighbour tight-binding models [154] are a good approximation of this system.

The bipartite (two-sublattice) character of the structure results in two distinct bands,
separated by the Fermi surface (see Fig. 1.6). However, at each corner of the hexag-
onal Brillouin zone, the hopping amplitudes (of three adjoining 120º bonds) interfere
destructively [159]. In effect, this exactly cancels the σz term of Eq. 1.1 and produces an
almost massless Dirac node (or cone) at each Brillouin zone corner (corrections due to
weak spin-orbit interactions open a gap on the order of ≈ 1 µeV [153]). The existence of
these Dirac cones, with a Fermi-velocity of h̄vF ' 5.8eVÅ, is evident in low-temperature
transport experiments (e.g. the observation of a quantized Hall effect [160, 149]) and
has also been directly observed by angle-resolved photoemission spectroscopy [161].

Notably, the term σσσ · ppp in Eq. 1.1 implies that Dirac fermions can be assigned a chiral-
ity. In the case of graphene, the sublattice degree of freedom (σσσ) corresponds to the
splitting into electron- and hole bands. The chirality quantum number of Dirac fermions
in graphene is therefore fixed at (+1) for electrons and (−1) for holes, which can be
exploited in tunnelling phenomena [162].

Recently, the interest in graphene research has largely shifted towards technological
application (e.g. engineering modifications of the Dirac cone [163]) and attempts of
industrial-scale preparation [164]. Carbon copies of graphene have been experimen-
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tally realized in the form of silicene [165] and germanene [166, 167]. A number
of artificial honeycomb structures with Dirac properties has also been realized at the
nanoscale [168, 169] and in optical lattices [170].

1.2.3 Nodal superconductors

The ubiquity of Dirac physics across unrelated condensed matter systems illustrates the
universality of this concept. As discussed in Section 1.1, there exists convincing evidence
that the gap function in high-Tc cuprates [17, 42, 171] as well as heavy fermion [16, 172]
and organic superconductors [173, 174] is of L = 2, d-wave symmetry (see Fig. 1.4).
This implies that the low-temperature transport in these systems is dominated by the
Bogoliubov excitons that can occur at vanishing cost at the nodes along the (±π,±π)

directions on the Fermi surface [175, 12]. It has been demonstrated that the unusual
low-temperature magnetothermal response of these systems can be explained by a model
of these excitations as linearly dispersing Dirac fermions at the four d-nodes [176, 177].
Notably, such Bogoliubons originate from symmetries of the superconducting state, carry
no charge and do not interact — both origin and appearance of this Dirac phenomenon
is fundamentally distinct from the situation in graphene.

Recently, Ran et al. have pointed out that Dirac dispersions may also be relevant in iron-
based superconductors [178, 179]. In this case, it is the hybridization of iron 3d orbitals
with 4p states on the adjacent pnictogens which leads to Dirac points at the Fermi surface
pockets. It has been proposed that the nesting between these nodes may lead to an un-
usual magnetic spin density wave instability, which would be of relevance to the pairing
mechanism [180]. Indeed, ARPES [181] and quantum oscillation [182] measurements
have evidenced such Dirac cones in parent compounds of the 122 family. Nevertheless,
a potential relevance of Dirac physics to the pairing mechanism and symmetry of the
superconducting state in these materials is still unclear.

1.2.4 Topological insulators

1980s condensed matter physics had seen the first application of topology to electronic
states, in the form of the integer quantum Hall effect (QHE) [187, 157]. The discovery
of graphene moved this body of work back into the focus of scientific attention. This also
inspired the work by Kane and Melé, who predicted new electronic states, which would
feature protected surface currents reminiscent of the QHE, but without the need to apply
a magnetic field [188, 189]. Instead, the breaking of time-reversal symmetry would be
provided by a strong coupling of the spin and orbital degrees of freedom [190]. Conse-
quently, such a quantum spin Hall effect (QSHE) would feature protected edge states in
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Figure 1.7: (adapted from [183, 184, 185, 186]). Illustrations of charge- and spin
transport in the surface states of topological insulators, (a) in real space and (b) in
momentum space. Spin-polarized ARPES studies confirm that the relative direction of
spin and momentum is fixed. (c) ARPES spectrum of the topological insulator Bi2Se3
observed by Xia et al. [185]. The ≈ 0.3eV gap between bulk states is superposed by a
Dirac cone surface contribution.

zero field. In the model of Kane and Melé, this distinction from a trivial band material
is expressed by a Z2 topological invariant (an integer that is non-zero if topologically
protected states exist in the material) [191, 192, 193].

Due to the weakness of spin-orbit coupling in carbon (≈ 4meV [153]), the proposed
QSHE effect was never observed in graphene. Instead, its bulk analogy, the topological
insulator (TI) was proposed [194] and then realized [195] in a heterostructure (quantum
well) of HgTe and (Hg,Cd)Te in 2007. As in the QSHE, this state is insulating in the
bulk, but characterized by a non-zero Z2 number (see [196, 197, 198, 183] for reviews
and [184, 199, 200] for viewpoints). This integer classification implies that there can be
no continuous transition from a TI to a trivial insulator, such as the vacuum. Instead, the
electronic bands are forced to unravel via a protected metallic state on any surface.

In effect, the charge carriers in this surface state behave just as the Dirac fermions in
graphene, except that there is only one node per Brillouin zone (not two) and due to
strong spin-orbit interaction, the orientations of spin and momentum are strictly coupled.
This results in a separation of opposite surface spin currents, as they are locked to the
forward/backward direction of charge transport. Notably, this complete lifting of node-
and spin-degeneracy provides full topological protection, i.e. massless Dirac transport in
these surface spin channels [184] (distinct from graphene, which is slightly gapped by
spin-orbit coupling). One experimental complication is that the chemical potential in
TIs does not necessarily coincide with the Dirac node (as in graphene), but has to be
fine-tuned by chemical doping [201].
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A three-dimensional TI [192] was reported a little later in doped bismuth [202, 201, 200]
and finally in “second generation” TI materials such as Bi2Se3 and Bi2Te3 [203, 185, 204].
The significance of this second generation lies in their relatively large bulk gap of ≈
0.3eV (=̂3600K), which promises the application of Dirac transport phenomena in room-
temperature spintronics devices [184, 205]. Beyond spintronics, a quantized electromag-
netic effect (“axion electrodynamics”) [206] adds to the technological potential of TIs.
Furthermore, large efforts are presently being made in pursuit of Majorana fermions at
TI–superconductor interfaces [207, 208]. The potential room temperature quantum co-
herence of such Majorana qubits could enable a new generation of quantum computing
devices [209].

1.2.5 Weyl semimetals

The discovery of topological insulators stimulated an extensive search for new phases
with topologically protected conduction states. Notably, the Dirac fermions in all sys-
tems described above (in graphene, d-wave superconductors and and the surfaces of
topological insulators) are purely two-dimensional [12]. The idea that quantum spin
Hall states could be stabilized in the bulk of a 3D insulator had already been present in
an early proposal by Murakami [210] and was fist postulated for a real system by Wan
et al. in 2011 [211] (in the context of rare earth iridates R2Ir2O7, see Section 1.3).

Behind this stands the basic idea that a crossing of two bands in the bulk of a material can
be protected from gapping if both are non-degenerate. Curiously, this scenario had been
considered as early as 1937 [212]. The new realization was that, since the dispersion at
such a node would be to first order linear, and by definition continuous, it is described
by a Dirac equation in three dimensions, but necessarily without a mass term (mσz):

HW = h̄vF (qxσx +qyσy +qzσz) , qqq = kkk± kkk0 , (1.2)

where the low-energy excitations in the vicinity of two nodes at kkk = ±kkk0 are being con-
sidered. This massless limit of Dirac’s theory [148] had been discussed by Hermann
Weyl in 1929 [213]. Consequently, this new bulk topological state was christened Weyl
semimetal (WSM).

The equal use of all three Pauli matrices has two important consequences: (1) it cannot
be gapped by perturbations and (2) eigenfunctions of this equation are two-spinors.
Furthermore, according to the Fermion doubling or “no-go” theorem [214, 215], solutions
to the Weyl equations exits in pairs of opposite chirality — corresponding to two nodes
at opposite momenta ±kkk0.
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Notably, the coupling of momentum and pseudospin can be rewritten in the form of a
vector potential [12]:

AAA(kkk) =−i ∑
n
〈un|∇∇∇kkk |un〉 , (1.3)

where the sum runs over all occupied Bloch states |u〉. This implies an emergent topo-
logical field or Berry curvature in momentum space:

BBB(kkk) = ∇∇∇kkk × AAA(kkk) (1.4)

In this picture, Weyl nodes are monopoles of opposite topological charge, or, equivalently,
point-sources and -drains of Berry flux (or curvature) [216]. As for electric charges, the
Gaussian theorem applies, and so the conservation of Berry flux corresponds directly to
the Fermion doubling theorem mentioned above. The topological stability of this state
is equivalent the conservation of topological charge. The only means to destroy Weyl
nodes, i.e. the only means of a topological phase transition, is the annihilation of two
nodes of opposite chirality.

A striking consequence of such topological phase transitions is observed at the interface
between a Weyl semimetal and the vacuum. This is best understood by considering
the winding number (a line integral of Berry flux, corresponding to the Z2 number of
TIs) of closed trajectories in momentum space [217]. Closed trajectories that include
(in projection along the surface-normal) no Weyl nodes, or Weyl nodes of cancelling
charge, are topologically trivial. Consequently, such states are equivalent to the vacuum
and there will be no topological phase transition at the surface. The inverse applies
for trajectories with a finite winding number. In analogy to topological insulators (as
discussed above), such states have to unwind via a metallic surface state. Taken together,
this argument implies that Weyl semimetals have metallic surface states that form open
lines in momentum space, connecting the projections of Weyl-node–pairs. By virtue of
recent advances in angular resolved photoemission spectroscopy (ARPES), these Fermi
arcs are the most accessible experimental evidence of Weyl physics.

The key condition to safeguard the stability of Weyl nodes in condensed matter is the
non-degeneracy of the crossing bands [212]. This last splitting of Kramers bands can be
achieved by breaking either inversion symmetry (IS) or time-reversal symmetry (TRS) 3.
Both of these possibilities have been pursued in experiment.

Following the originial proposal by Wan [211], the search for an experimental realization
was initially focused on pyrochlore iridates, i.e. inversion-symmetric phases with broken

3The case that both inversion- and time-reversal–symmetry are broken or conserved, would imply the
coincidence of several Weyl nodes (see Fig. 1.9). An appropriate model would then require 4-spinors.
The Weyl nodes would therefore merge into (generally massive) Dirac nodes, i.e. perturbations would be
expected to open a gap.
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Figure 1.8: (adapted from [221]). (a) Brillouin zone of monopnictide Weyl semimetals,
including 12 pairs of Weyl nodes with opposite topological charge (blue/red). In projec-
tion onto the surface plane, these Weyl points form the ends of open Fermi arc surface
states. (b) ARPES spectra of Fermi arcs evidenced in various compounds of this family.
Due to the multitude of Weyl nodes in the Brillouin zone, the ends of several Fermi arcs
coincide and form a crescent-shaped surface state.

time-reversal symmetry [218]. This case would be of special interest as it would mean
a first interplay between Dirac bands and electronic correlations4. I have contributed
to this search with the determination of magnetic order and dynamics in the candidate
material Sm2Ir2O7 [150]. I also discuss these materials in the context of 5d transition
metal oxides in Section 1.3 (the results of [150] are not reported in this thesis). There
have also been other proposals to engineer TRS-breaking Weyl phases in layered het-
erostructures [219, 220], or by doping Dirac semimetals [217]. So far, these efforts
have have been thwarted by problems with sample preparation, disorder and domain
formation [217].

By contrast, the search for non-centrosymmetric, non-magnetic WSMs is more straight-
forward, both experimentally and computationally [217]: Lists of non-centrosymmetric
semimetals featuring heavy, (i.e. strongly spin-orbit coupled) elements are available from
crystallographic databases and density-functional calculations of their electronic struc-
ture are much simplified in the absence of electronic interactions. Earlier proposals of
structurally more complex candidate materials (hetero-structures [222, 223] or doped
compounds [224]) were followed in 2015 by the identification of a much simpler class
of binary transition metal monophosphides [225, 226].

The recent advances of the ARPES technique (driven by the discovery of topological
insulators [227], see above), allowed a rapid discovery of Fermi arc surface states. The
effect was first identified in TaAs [228, 229] and then in NbAs [230], TaP [231] and

4Apart from the more exotic from of Dirac excitations in d-wave superconductors, electronic correla-
tions are not relevant in any of the known Dirac materials (graphene, topological insulators, bulk Dirac
semimetals and non-inversionsymmetric Weyl semimetals). The class of ternary bismuthides that I present
in Chapter 4, and possibly also the compound EuCd2As2 presented in Chapter 5, are an interesting excep-
tion as they feature Dirac physics and electronic correlations in separate layers of the same material.
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NbP [221]. I contributed to these discoveries by characterizing TaAs single crystals that
were used in the study by Yang et al. [232].

The experimental verification of a Weyl semimetal in TaAs is illustrated in Fig. 1.8. In
agreement with computational predictions [225, 226], two non-degenerate bands cross
at 24 points in the Brillouin zone, corresponding to 12 Weyl node pairs of opposite
chirality. In these tetragonal compounds, ARPES experiments are generally restricted to
probe the (001) cleavage plane. Consequently, the 24 Weyl nodes appear projected onto
16 points, half of which correspond to a topological charge of ±1 and the other half to
±2. Due to this multiplicity, two Fermi arcs appear, which form a characteristic crescent
shape (see Fig. 1.8(c)) [233].

Following the observation of Fermi arcs in TaAs, there has been a rapid sequence of new
proposals [234, 235, 236, 237, 238, 239] for non-centrosymmetric WSM candidates.
One interesting development has been the discovery of “type-2” Weyl states in MoTe2

and TaIrTe4 [240, 241, 242]. In these materials, an additional kinetic term in the Dirac
dispersion tilts the Weyl cone, so that the chemical potential is cutting a section of the
Weyl cone. This involves a violation of Lorentz-invariance and thus goes beyond what
would be possible within the standard model of particle physics.

Apart from the ongoing search for time-reversal symmetry breaking (“interacting”) WSMs,
the key experimental challenge at present is an unequivocal confirmation of Weyl physics
in transport measurements. The low-energy excitations in WSMs are expected to in-
herit the chiral anomaly [240] or Adler-Bell-Jackiw anomaly from particle physics [243,
244, 245, 243]. In the context of condensed matter, this can give rise to a negative
magnetoresistance, semi-quantized anomalous Hall effect and a chiral charge pumping
effect [246, 247]. The latter corresponds to an offset in quasiparticle population at oppo-
site Weyl nodes, which may occur when parallel magnetic and electric fields are applied
(EEE ·BBB 6= 0). However, the interpretation of such data is not straightforward if many pairs
of Weyl nodes contribute to to the transport. The necessary fine-tuning of the chemical
potential, contributions from charge carriers from secondary, topologically trivial bands
and various scattering processes are adding to the experimental challenge [245, 217].

1.2.6 3D Dirac semimetals

The stability of the Weyl phases described in the previous section is only “accidental”,
i.e. there is no symmetry condition that prevents the Weyl nodes from coinciding and
thus annihilating. As illustrated in Fig. 1.9, this coincidence occurs necessarily if both
time-reversal and inversion symmetry are conserved or broken. Fu et al. suggested early
on that such a multiple bulk band crossing could be stable in condensed matter if each
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Figure 1.9: Dirac Fermions in three-dimensional materials. The colour of the cones
indicates Dirac/Weyl nodes of opposite chirality (note that these cones are actually 4D-
surfaces). Time-reversal symmetry implies nodes of the same chirality at the momenta
±kkk, whereas inversion symmetry implies nodes of opposite chirality at ±kkk. (a) In non-
magnetic Weyl semimetals, these conditions demand a multiple of four nodes. (b) In
centrosymmetric Weyl semimetals with electronic correlations (magnetic order), a single
pair of opposite nodes satisfies these requirements. (c) If time-reversal and inversion
symmetry are both violated or both conserved, opposite topological charges would in
general coincide and annihilate. However, special non-symmorphic crystal symmetries
can protect such double (or multiple) Dirac nodes.
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involved band would transform according to distinct crystal symmetries [203]. The strat-
egy to identify materials which host bulk Dirac fermions is to decompose the crystal’s
space group into the little group of high-symmetry points (or lines) in the Brillouin zone
and search for irreducible representations (IRs) whose degeneracy corresponds to the
number of bands that meet at this point [248]. As such “double Dirac” crossings of mul-
tiple bands are only protected by crystal symmetry (in particular, by non-symmorphic
symmetry elements), they break the Lorentz symmetry required of free particles. Hence,
the low-energy quasiparticle excitations in these 3D Dirac materials have no equivalent
in the standard model of particle physics.

In 2012, Mañes reported a complete survey of the 230 (non-magnetic) space groups
with regards to single-valued IRs, listing 19 space groups that may host bulk Dirac
nodes [248]. A search for single-valued IRs implies that only the orbital (not spin) degree
of freedom is considered, and thus, this result applies to non-magnetic, weakly spin orbit
coupled materials. Young et al. suggested that this search could be extended to double-
valued IRs (i.e. for non-magnetic strongly spin-orbit coupled materials) [249]. Indeed,
a very recent exhaustive search identified 16 space groups which either may or must host
protected (3-, 4-, 6- or 8-fold) linear band crossings in the bulk [250, 251].

A 3D Dirac semimetallic state had also been observed in transport measurements of
elemental Bi, where it is however masked by additional topologically trivial bands at the
Fermi level [252]. “Pure” bulk Dirac systems were verified by ARPES as well as transport
signatures in Na3Bi [253, 254, 255] and Cd3As2 [256, 257, 258, 259, 260]. For the
first time, these systems show a true 3D-dispersion, i.e. the surface of such Dirac “meta-
cones” are actually four-dimensional objects. Transport experiments on micro-machined
samples indeed confirm the expected consequences of Fermi arc transport [260], and
first technological applications are now being engineered [261].

Notably, a 3D “double Dirac” node could potentially also be protected in TRS-broken
phases. This case would promise added tunability by external fields and the possibility
to switch between Dirac- and Weyl- or Schrödinger-transport at a magnetic phase transi-
tion. A guided search for such materials would require a full survey of the 1651 magnetic
space groups [248, 251], which has not been reported at present. In Chapter 5 of this
thesis I report my investigation of EuCd2As2, which is a magnetic derivative of Cd3As2

with an unusual negative magnetoresistance in the ordered phase.
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1.3 Heavy transition metal oxides

1.3.1 Strong correlations and spin-orbit coupling

Magnetic oxides of 3d transition metal ions feature strongly correlated electronic states
that have led to the most important (and technologically relevant) insights of 20th cen-
tury condensed matter physics. This includes metal–insulator transitions in vanadates,
spin-ice and related effects of magnetic frustration in titanates, multiferroic properties
of manganates, and high-temperature superconductivity in cuprates. A common feature
of these electronic states is that, even though the 3d states are well-localized, the ex-
tent of the d wave allows a sizeable orbital overlap of valence states with the ligands.
This leads to strong exchange interaction via networks of transition-metal–oxygen bonds.
Such strong electronic correlations provide the complexity that lies at the heart of these
emergent phenomena.

Starting with theoretical predictions at the beginning of this decade [262], recently there
has been an intense interest in oxides of heavy transition metals. Primarily, this con-
cerns compounds with 4d and 5d electron valence states such as rhodates, osmates and
iridates. Due to the larger spatial extent of 5d orbitals, the valence states in these ma-
terials are considerably more itinerant than in 3d transition metal oxides (TMOs). Con-
sequently, the importance of electronic correlations in these materials is reduced. On
the other hand, the coupling of spin and orbital degree of freedom, which is negligible
for 3d oxides, is strongly enhanced in their heavy counterparts. The relevant electronic
interactions in these materials can be summarized by the following Hamiltonian:

H = ∑
i, j; α,β

ti j,αβ c†
iαc jβ + h.c. + λ ∑

i
Li ·Si + U ∑

i,α
niα(niα −1) (1.5)

The first term and its hermite conjugate (h.c.) represents the itinerancy of electronic
states, with the transfer integrals t as a scale of the probability for an electron to be
annihilated (c) in an orbital β at site j and created (c†) in an orbital α at site i. In the
second term, a constant λ is used to measure the strength of the coupling of spin (S)
and orbital (L) angular momentum at a site i. Finally, the third term assigns a cost in
Mott-Hubbard repulsion U to two electrons occupying the same orbital at the same site
(niα = c†

iαciα).

Electronic correlations, which may be as strong as U ≈ 10 eV in 3d compounds, are typi-
cally limited to 0.5–1 in 5d TMOs. On the other hand, spin-orbit-coupling increases with
the fourth power of the atomic number, and so from 0.5 meV (3d) to 0.5 eV (5d) [218].
Consequently, electronic correlations and spin-orbit coupling lie on the same energy scale
in 5d TMOs. Due to the competition of these strong effects, small variations in the local
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Figure 1.10: (adapted from [218]). Conceptual phase diagram of electronic states, as a
function of correlations U and spin-orbit-coupling λ (on the scale of electronic itinerancy
t). Until recently, most of quantum materials research has been focused on materials that
represent one of the limiting cases: Strong correlation or strong spin-orbit coupling. The
study of heavy transition metal oxides opens up a new regime, in which both interactions
are relevant. The figure also indicates some of the predicted emergent phases, such as
the correlated Weyl semi-metal, which may be realized in pyrochlore iridates.

Figure 1.11: (adapted from [263, 264]). Origin of the “Jeff =
1
2” state of Ir4+ (5d5)

iridates. The cubic crystal electric field ∆Oh of a IrO6 octahedron (inset) splits the 5d
manifold into a t2g triplet and a eg doublet. The strong spin-orbit coupling λ further
splits the t2g state into a completely filled quadruplet and a half-filled Jeff =

1
2 doublet.

Since correlations are also strong, this remaining Kramers doublet acts as an effective
Hubbard band. This scenario leads to a spin-orbit assisted Mott-Hubbard insulator, in
which the electron spin is replaced by a composite Jeff =

1
2 pseudospin with entangled

spin- and orbital degrees of freedom.
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environment or magnetic interactions and frustration may have an unexpected impact
on macroscopic properties.

The current state of this young field of research has been summarized in a recent re-
view by Witczak-Krempa et al. [218]. Figure 1.10 shows a conceptual phase diagram of
the relative strengths of electronic correlations U/t vs. spin-orbit coupling λ/t. In the
current regime of interest, where both interactions are relevant, theoretical studies have
predicted a great potential for unusual emergent phenomena, such as metal–insulator
transitions or topologically non-trivial electronic states. Conceptually, this situation is
particularly interesting because it promises links between the previous work on strongly
correlated materials and the more recent interest in electronic topology. In view of tech-
nological applications, electronic correlations are promising a handle to tune the charge
transport in topologically non-trivial bands (e.g., via coupling to magnetic order). It has
been envisioned such effects may be exploited in future Dirac-electronic devices.

1.3.2 The d5, Jeff = 1/2 state

The materials that have received the most attention in this recent line of research are
iridates with the valence state Ir4+, i.e. a state with five electrons occupying the 5d shell.
This interest had been sparked in 2009 by the seminal proposal by Jackeli and Khaliullin
of the Jeff =

1
2 spin-orbit assisted Mott insulator [262]. When located in the cubic envi-

ronment of an octahedral cage of anions, the strong (≈ 2 eV) crystal electric field (CEF)
will split off the higher-energy eg doublet. This effectively reduces the system to a single
hole in the lower t2g triplet. In the case of strong spin-orbit coupling, the t2g level further
splits, which leaves a fully occupied quadruplet with an effective total angular momen-
tum Jeff =

3
2 well separated from a Jeff =

1
2 Kramers doublet. In this effective “pseudospin

1
2” state, the spin and orbital degrees of freedom are fully entangled, with contributions
from dyz, dxz and dxy orbitals:∣∣∣∣12 ,±1

2

〉
=

√
1
3
(|yz,∓〉± i |xz,∓〉±|xy,±〉) (1.6)

Notably, this remaining Jeff =
1
2 band is narrow enough so it can be split by even moderate

electronic correlations U , in full analogy to the one band Hubbard model. By projecting
the relevant superexchange interactions onto this effective Kramers doublet, Jackeli and
Khaliullin realized that the unusual coupling between Jeff =

1
2 pseudospins can produce

varied novel phenomena, depending on the connectivity of IrO6 octahedra [262]. Fortu-
itously, three different scenarios are realized in three iridate structural families, and each
has led to intense experimental and theoretical efforts since 2009. In particular, this con-
cerns (1) the Ruddlesden-Popper series of Srn+1IrnO3n+1 perovskite-related structures,
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(2) structural variations of honeycomb layers, as found in Li2IrO3 and Na2IrO3 and (3)
the rare earth pyrochlore iridates R2Ir2O7 (R: rare earth).

1.3.3 Perovskite iridates

The layered iridates Sr2IrO4 and Sr3Ir2O7 share the structural symmetries of the cuprate
superconductors (as e.g. La2CuO4). The fundamental motif are corner-sharing IrO6 oc-
tahedra that form square planes, in this case carrying Jeff =

1
2 pseudospins. There has

been a long-standing interest in realizing superconductivity in other (non-cuprate) per-
ovskites, but so far only one instance, Sr2RuO4, has been found [265], albeit with a
different superconducting pairing mechanism and with a relatively low Tc < 1 K. Around
the same time, investigations of Sr2IrO4 had revealed an insulating, weakly ferromag-
netic state, which seemed to contradict the odd number of valence electrons [266].

The present interest in these materials is due to the photoemission, optical spectroscopy
and resonant x-ray scattering experiments by Kim et al., which demonstrated that these
materials can be considered spin-orbit assisted Mott insulators [267, 268]. Many efforts
have been made in pursuit of the tempting idea of stabilizing a heavily spin-orbit cou-
pled analogue of cuprate high-temperature superconductivity by hole or electron-doping
these compounds [269]. While similar characteristics as in the cuprates have been found
in some cases [270, 264], no superconducting state has been achieved to date.

1.3.4 Honeycomb iridates

The interaction of Jeff =
1
2 pseudospins is radically different in systems with edge-sharing

IrO6 octahedra. This had been also been realized by Jackeli and Khaliullin, who found
that in this case isotropic Heisenberg correlations cancel and the interactions are domi-
nated by a second-order exchange paths involving the lower-lying Jeff =

1
2 manifold [262].

Unexpectedly, the ground state of this system corresponds to a “compass model” [271]
which had been applied to a magnetic honeycomb layer and explored in great depth by
Kitaev only a few years earlier [272].

In this scenario, the three pseudospin components couple to each other separately, each
along one of the three bonds that are separated by 120º in the honeycomb structure (see
Fig. 1.12(c)). Theoretical studies had been indicated that the elusive quantum spin liquid
would be the natural ground state of such systems [272]. However, this state would not
be protected by symmetry and therefore unstable to higher order interactions, which
could for example be induced by weak structural distortions [264].
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The relevant honeycomb-iridates Na2IrO3 and α−Li2IrO3 (as well as its β - and γ- hyper-
honeycomb and stripy honeycomb phases) have all been found to exhibit magnetic order
at low temperatures [273, 274, 275]. Converging experimental evidence shows that the
Jeff =

1
2 state in these materials is indeed well within the spin-orbit assisted Mott regime

and structural distortions are comparatively small [275, 276]. Consequently, there is at
the moment a great interest in understanding how these systems can be tuned towards
pure Kitaev physics, e.g. by ionic substitution or external tuning parameters.

1.3.5 Pyrochlore iridates

In the rare earth iridates R2Ir2O7 (R: rare earth) iridates, each Ir4+ site is fully con-
nected to six neighbouring IrO6 octahedra. The resulting three-dimensional pyrochlore
network of corner-sharing transition metal tetrahedra had already been investigated in
great depth, mainly due to the inherent effects of magnetic frustration [277, 278]. Com-
pared to the compounds discussed above, the electronic states in this family of iridates
are more itinerant. They represent the weakly correlated limit of the Jeff =

1
2 scenario,

where electronic states are further extended, and the effects of strong spin orbit cou-
pling are best analysed in terms of band topology.

The interest in the R2Ir2O7 series was sparked by early findings of a continuous metal–
insulator transition that can be continuously suppressed by ionic substitution [279, 280,
281]. Placement of a larger rare earth R3+ ion relieves trigonal distortions of the struc-
ture, which in turn increases the overlap between the 5d states and their ligands and
thus facilitates electron hopping [282]. Trigonal distortions of the local environment
play another important role in pyrochlore iridates by tuning the electronic state away
from the Jeff =

1
2 scenario towards a simple S = 1

2 state. Such factors may have a decisive
impact on the mechanism of the charge gap opening, but a consistent understanding of
this phase transition has not been achieved.

A number of theoretical studies have suggested that the R2Ir2O7 ground state may be in
the vicinity of unprecedented topological electronic phases such as the Axion insulator
or a Weyl-semimetallic phase with broken time-reversal-symmetry [211, 283, 284]. At
present, this scenario has not been conclusively confirmed, and overall only few in-depth
experimental studies of these materials are available. I have contributed to this search
with several resonant x-ray studies of the magnetic order in these systems (not reported
in this thesis). Together with my collaborators, I was able to demonstrate that Sm2Ir2O7

is indeed host to the elusive all-in–all-out order, which had been predicted by theory
and represents a prerequisite for the stabilization of the correlated WSM phase in these
systems [150].
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Figure 1.12: (adapted from [283, 218, 264]). Three structural classes of Ir4+ (5d5)
iridates, with corresponding theoretical phase diagrams, as discussed in the main text.
(a,b) Perovskite iridates, e.g. Sr2IrO4, (c,d) honeycomb iridate, e.g. Na2IrO3, (e,f) py-
rochlore iridates, e.g. Nd2Ir2O7
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1.3.6 Hexagonal iridates

Another realization of the 4d5/5d5 valence state is found in the hexagonal family of
A4BO6 iridates [285]. In this case, the BO6 octahedra form face-sharing chains along
the c axis. In the iridate families noted above, octahedral environment is to some extent
distorted. The extend to which the Jeff =

1
2 picture actually applies, has therefore been de-

bated. By contrast, the A4BO6 structure provides an almost ideal BO6 octahedron [286].
Consequently, the effects of spin–orbit coupling are enhanced and the spin–orbit assisted
Mott state can be observed also in the 4d (Rh, Z=45) compound. Using the neutron
powder diffractometers D2B and D20 (ILL), I have determined the magnetic order in
two of these materials, Sr4IrO6 and Ca4RhO6 (results not reported in this dissertation).

1.3.7 Osmates: d1, d2 and d3 states

The interest in 5d TMOs is not restricted to the Ir4+ 5d5 valence state. Unusual effects
of strong spin orbit coupling are also observed in several osmates. For example, there is
a large family of double perovskite osmates A2BOsO6 with the oxidation states Os6+ or
Os7+, corresponding to 5d1, Jeff =

3
2 and 5d2, Jeff = 2 states [218, 287]. Consequently, the

orbital degeneracy is not only partially lifted, and spin- and orbital degrees of freedom
are entangled. This manifests in an anomalous reduction of magnetic moments [288],
unusual charge gaps [289], orbital ordering phenomena [290] and multipolar exchange
interactions [291, 287, 218].

I have investigated unusual structural and magnetic phenomena in two such double-
perovskite osmates, Pb2CoOsO6 and Pb2CoOsO6 using resonant and non-resonant x-ray
diffraction techniques (not reported in this dissertation). Furthermore, I also used neu-
tron diffraction and muon spin-rotation to investigate the case of a 5d4 magnetic ground
state in a new pyrochlore osmate Y2Os2O7. As the t2g manifold is fully occupied, such
compounds should be nominally non-magnetic, but may host an unusual condensation
of Jeff = 1 triplon excitations [292] (not reported in this dissertation).

Unusual insulating phases reminiscent of the Ir4+ compounds have also been reported in
several Os5+ (5d3, nominally S = 1, L = 0) compounds. This includes the post perovskite
NaOsO3 [293, 294], as well as the pyrochlore Cd2Os2O7 [295, 296]. In Chapter 6 of this
thesis, I present my investigation of two polymorphs of the related Ca2Os2O7 5d3 system.
The character of the metal-insulator transitions observed in these materials is not well
understood: Several limiting scenarios (the Lifshitz [297], Slater [298] and spin-orbit-
assisted Mott [267] mechanisms) have been proposed, but in most cases the available
experimental data does not allow a clear distinction. One important motivation in the
field of heavy TMOs is to establish a unified explanation of these phenomena.
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1.3.8 Experiment: Limitations and opportunities

Even though the scientific interest in heavy transition metal oxides has been growing at
a fast pace since the beginning of the decade, experimental progress has been slow. This
can be attributed to several reasons. Firstly, the sample preparation for many of the above
materials is not well established; samples may commonly suffer from off-stoichiometry
(R2Ir2O7), require specialized high-pressure techniques (e.g. Pb2CoOsO6, Ca2OsO7) or
are chemically unstable in ambient conditions (Na2IrO3, Li2IrO3). The extreme toxicity
of Os byproducts is an additional impediment to systematic crystal growth studies. As a
consequence, there are few cases in which single crystals with dimensions sufficient for
neutron inelastic studies can be grown. Even if this was possible, the strong neutron-
absorption cross section of Ir would be another limiting factor. The situation is also
made more difficult by the fact that the modulus of the ordered magnetic moment of
many of these heavily spin-orbit coupled compounds is reduced to < 1 µB. Due to such
limitations, neutron studies of the magnetic ground states of iridates have so far been
limited to powder diffraction [299, 300].

This situation has accelerated the development of complementary scattering techniques.
Fortuitously, the rise of interest in 5d TMOs coincided with significant instrumental ad-
vances at 3rd generation synchrotron radiation sources [301]. The brilliance of photon
beams produced by undulator devices, together with the strong enhancement of mag-
netic scattering at the 5d L2,3 edges have made resonant elastic and inelastic x-ray scat-
tering (REXS/RIXS) powerful experimental alternatives (see Section 2.4). In this way,
the requirements of 5d TMOs have inspired the first bulk-sensitive determinations of
magnetic order and dynamics in single crystals with dimensions on the order of tenths of
micrometers [273, 276, 275]. However, rather than being just a substitute for the case of
small samples, the complexity of the resonant–x-ray scattering cross section offers new
experimental possibilities that have yet to be fully exploited [302, 303].
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Chapter 2

Experimental methods

In this chapter I present the methods that I used in my research and summarize the
basic formalism needed to describe the experimental results. This is intended as a back-
ground for the more detailed discussion of specific experiments and data analysis in
Sections 3–6.

First, I describe the sample alignment and characterization techniques that I performed
with standard laboratory equipment. The main focus of my work lies on the use of
state-of-the-art scattering experiments that are performed at synchrotron and neutron
radiation facilities. The common goal of these experiments is either (1) to determine
the magnetic order of novel quantum materials, or (2) to characterize the corresponding
magnetic dynamics. This is achieved by diffraction and spectroscopy, respectively. In
each project, a number of factors determines whether it is most favourable to use neu-
tron or synchrotron radiation, and whether to investigate polycrystalline or single crystal
samples.

The theory of coherent scattering from condensed matter is independent of the type of
radiation. Therefore, I present the most fundamental relations in parallel for both types
of radiation, before relating the specific properties of either in detail. The complemen-
tarity of the nuclear and electromagnetic interactions adds to a versatile toolbox for the
investigation of condensed matter. Radiation sources and instrumentation are presently
improving at a rapid pace and the scientific possibilities of scattering techniques appear
far from exploited.

Finally, I outline basic aspects of the muon spin rotation and relaxation. This technique
proved a useful tool in resolving ambiguities in the neutron powder diffraction data
presented in Chapter 6.
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2.1 Sample characterization

2.1.1 Magnetic properties

The first, straightforward approach to probe the magnetic response of a material is to
measure its magnetization as a function of temperature and applied magnetic field. For
all samples that I investigated, both poly- and single-crystalline, I performed such mea-
surements using a commercial superconducting quantum interference device (SQUID)
magnetometer (MPMS, Quantum Design [304]). This instrument features a cylindrical
sample space surrounded by liquid helium and liquid nitrogen jackets. This allows a con-
tinuous variation of the temperature in the range of 2–350 K. A pair of superconducting
Helmholtz coils provides a magnetic field up to 7 T. The sample is mounted in a plastic
straw, attached to a sample rod, and lowered into the dewar .

The measurement (direct current mode) is then performed by translating the straw through
a set of pick-up coils at the sample position. By Faraday’s law, a magnetic moment of the
sample induces a current in the pick up coils, which in turn are coupled to the SQUID.
The system achieves a resolution on the order of 10−8 emu. When operating in the DC-
mode, a finite excitation field must be applied to observe a response from a sample in
its paramagnetic state. In order to minimise the effect of the field on the ground state
properties, I generally chose this extrinsic field as low as possible (ca. 50–1000 Oe),
depending on sample mass and magnitude of magnetic moment.

I used this setup to characterize single crystals as well as polycrystalline samples (packed
into a plastic capsule). For a direction-dependent measurement of the anisotropic prop-
erties of single crystals, I first mounted the samples on a quartz capillary and aligned it
on a four-cycle x-ray diffractometer (see below). Once oriented in the desired direction,
I transferred the capillary carrying the sample into to the SQUID straw and fixed it using
cryogenic varnish.

2.1.2 Resistivity and Hall effect

To characterize the transport of charge as a function of temperature and field, I per-
formed alternating current resistivity and Hall effect measurements using a commercial
Physical Properties Measurement System (ACT option, PPMS, Quantum Design [304]).
In analogy to the MPMS system, this instrument features a dewar with concentric liquid
helium and liquid nitrogen vessels and a superconducting 14 T cryomagnet surrounding
the sample position. I mounted the samples (either in single- or polycrystalline/pellet
form) on a standard ACT sample holder (see Fig. 2.1(c)). This puck features two sets of
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Figure 2.1: AC transport using the Quantum Design PPMS system [304]. (a) Single
crystal contacted for a six-point measurement (EuCd2As2), and (b) for a four-point mea-
surement (Nd2Ir2O7). (c) Wiring scheme of the PPMS puck for six-point measurements
using both lock-in amplifiers of the system to measure both longitudinal and transversal
voltages.

voltage and current terminals, intended for the simultaneous measurement of two sam-
ples. When inserted in the dewar, these terminals connect to two lock-in amplifiers and
a high precision current source.

I performed transport measurements using either a four-point contacting (resistivity) or
a six-point contacting pattern to measure resistivity and Hall effect simultaneously (see
Fig. 2.1(a,b)). Contacts to the sample surfaces were made using 10–25 µm gold wire
and Epotek silver epoxy [305].

The six-point wiring scheme used to simultaneously measure resistivity and Hall effect
on the same sample is drawn in Fig. 2.1(c). The current leads of the two terminal sets
are shorted and the voltage terminals of set (1) and (2) are contacted to the sample in
a longitudinal (voltage Uxx) and transversal geometry (voltage Uxy), respectively. Due to
the imperfect contact positions in any real measurement, the Uxy signal will necessarily
be contaminated (and generally dominated) by a Uxx component. In order to correct for
this, for each field (H) sweep at constant temperature (T ), I therefore measured up and
down H-ramps. For each T -sweep (at constant H), I repeated the measurement at with
positive and negative applied field (w.r.t. the magnet axis).
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The true transversal and longitudinal voltages are then obtained by (anti-)symmetriza-
tion of the signal, according to

Uxx(H) =
1
2

(
Uup

xx +Udown
xx

)
Uxy(H) =

1
2

(
Uup

xy −Udown
xy

)
Uxx(T ) =

1
2

(
U (+H)

xx +U (−H)
xx

)
Uxy(T ) =

1
2

(
U (+H)

xy −U (−H)
xy

)
The measured voltages can be converted to resistivity ρxx and Hall resistivity ρxy by ap-
plication of the appropriate sample geometry factors:

ρxx = Fxx ·Uxx

(
Fxx =

Axx

lxx I

)
ρxy = Fxy ·Uxy

(
Fxy =

Axy

lxy I

)
Here, I is the applied current and Axx (Axy) and lxx (lxy) are the cross sections and lengths
of the longitudinal (transversal) current path.

2.1.3 Laboratory x-ray diffraction

As noted above, knowledge of the orientation of the crystallographic axes with respect
to the faces of a single crystal is necessary in order to be able quantify the anisotropy
of a magnetic state in direction-dependent magnetization measurements. Laboratory
x-ray diffraction is also an indispensable tool to prepare single crystals for scattering
experiments at neutron and synchrotron radiation facilities. The incident flux is generally
a limiting factor in such experiments, and much information (or counting statistics /
experimental time) can be lost from samples with poor mosaicity. Moreover, twinned
crystals or samples containing multiple grains will complicate an experiment and waste
valuable measurement time. Given a batch of crystallites grown by the flux or vapour
deposition method, I therefore dedicated some effort to select highest quality specimen.

Constraints of the scattering geometry at synchrotron and neutron beamlines also call
for a precise in-house sample alignment. The sample environment (cryostats, magnets
and pressure cells) at these instruments often limits the accessible range of scattering
angles. Therefore, a strategic orientation and mounting of single crystals becomes an
important part of such experiments. This applies particularly for large high-resolution
diffractometers at synchrotron sources, as illustrated in Section 5.3. At such beamlines,
the in-situ alignment of an unknown or poor quality crystal can be time-consuming or
not feasible. Most single crystal samples that I studied had dimensions on the order of
50 µm–1 mm. I generally prepared such samples in three steps:

First, I screened several samples for crystal quality using the four-cycle x-ray diffrac-
tometer shown in Fig. 2.2(a) (Agilent Technologies [306]). This instrument features a

35



Figure 2.2: Laboratory Mo Kα x-ray diffraction. (a) Commercial x-ray diffractometer
used for single crystal alignment and structure determination [306]. The axes of the
miniature four-circle kappa diffractometer are labelled and the directions of incident and
scattered wave vectors are indicated. (b) Corresponding view of reciprocal space, which
illustrates the projection of a CCD detector image (grayscale) onto the Ewald sphere.

focusing Mo K-α x-ray tube with a beam diameter of 200 µm, a kappa-diffractometer and
an CCD area detector (Agilent Technologies Atlas 135 mm). In Figure 2.2, this scatter-
ing geometry is illustrated in real and reciprocal space (see Section 2.2). In momentum
space, the rectangular detector chip is mapped onto a section of the Ewald sphere (the
diameter of the sphere is fixed by the Mo Kα incident energy). By performing a series
of ω-scans at various φ orientations, the spherical section is rotated in reciprocal space.
Thus, scattered intensity can be collected for a large continuous volume of reciprocal
space. A unit cell can then be assigned and Bragg peaks indexed for a crystal that was
initially mounted in an arbitrary orientation (commercial algorithm, [306]). Having as-
signed a unit cell and orientation (UB) matrix to a given dataset, the system also allows
to visually display the orientation of the assigned cell with respect to the mounted crystal
(see Fig. 2.3(b)). Thus, the desired crystallographic plane, which may correspond to a
facet of the crystal, can be identified.

In x-ray scattering experiments it is often advantageous to use a plate-like sample with
the relevant reflection specular. Such sample can easily be mounted flat on a standard
sample holder (typically a threaded copper or brass cylinder). Once the orientation of
a crystal is known, it can be shaped by grinding or polishing. To this end, I mounted
the crystallites in clear hard wax on top of a heated steel die, shown in Fig. 2.3(a).
Generally, I first shaped the samples by grinding with 2400 grit abrasive paper and, if
required, polished the resulting facet down to 0.5 µm using diamond paste on a planar
polishing machine.
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Figure 2.3: (a) Setup for grinding sample surfaces parallel to desired crystallographic
planes. (b) Octahedral crystallite mounted (on a quartz capillary) on the four circle
Mo Kα diffractometer of Fig. 2.2(a). A UB matrix has been assigned to the crystal and
corresponding orientations of high symmetry directions are indicated by white dashed
lines. (c) Similar crystallites shaped into flat platelets intended for REXS studies of (H00)
and (HHH)-type Bragg reflections in a specular geometry.

When mounted in clear wax on the polishing die, samples that do not already have a
parallel facet are easily offset from the desired orientation by several degrees. I used a
Cu Kα high-resolution diffractometer (Rigaku Smartlab [307], not shown) to determine
the azimuthal direction and extent of this tilt to within 0.01º. I mounted the polished
plate-like sample flat, in Bragg-Brentano geometry. Then I recorded the experimental θ

angle of a specular reflection for a series of azimuthal angles. This produces a sinusoidal
curve around the baseline of the true scattering angle (2θ)/2. The extrema of this curve
indicate the azimuthal angle of the tilt direction. At the synchrotron beamline, the sam-
ple can then be mounted with this tilt direction in the scattering plane, which reduces a
lengthy alignment procedure to a scan of one axis.

2.2 Scattering from condensed matter

Bulk probes measure macroscopic properties of materials, such as magnetic, electric, ther-
mal and elastic constants. This provides basic information about the magnetic and elec-
tronic state of a material. When measured as a function of external parameters, it may
also indicate the presence and character of symmetry-breaking phase transitions. How-
ever, information about microscopic order and dynamics can at most be be inferred with
ambiguity from such data.
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By contrast, x-ray and neutron radiation penetrate into and probe materials with wave-
lengths and energies on the atomic scale. Through positive interference of scattered
neutron and x-ray waves, this microscopic information becomes accessible on the macro-
scopic scale. The century following the 1912 observation of “secondary rays” from
CuSO4.(H2O)5 by Laue [308] and the correct interpretation by Bragg and Bragg [309]
has seen an impressive evolution of experimental capabilities [310, 311]. These devel-
opments have enabled fundamental discoveries ranging from magnetic order [312, 313]
to the structure of DNA [314]. The scientific merit and technological impact of these
techniques cannot be overstated.

All scattering techniques probe the response of a sample (poly- or single-crystalline),
referred to as scattering system below, at a certain momentum-transfer QQQ and energy-
transfer h̄ω. The measured quantity is the differential scattering cross section,

d2σ

dΩdω
=

ISC

Φ0 ∆Ω∆ω
=

ρ(E f )

Φ0 ∆Ω
W . (2.1)

For an incoming flux of Φ0 (photons or neutrons per area per second), this describes the
number of particles ISC (in an energy-transfer range ∆ω) that is scattered each second
into a detector area subtending the solid angle ∆Ω with respect to the sample position.
By Fermi’s golden rule, the scattering cross section is proportional to the product of the
transition probability W from the initial state |i〉 to the final state | f 〉 of the scattering
system (including the scattered particle) and the probability of the final state ρ(E f ).
Depending on the context, the scattering cross section may be expressed with or without
explicit reference to an energy transfer dω of the scattered particles. Accordingly, it is
referred to as the elastic (single-differential) or inelastic (double-differential) scattering
cross section.

The key difference between neutron- and x-ray scattering is the dispersion of massive, as
opposed to massless particles:

ω =
h̄k2

2m
(neutron) ω = ck (photon) , (2.2)

where ω is the angular frequency of the radiation and k = 2π/λ is the modulus of the
wavevector for radiation of a wavelength λ . h̄ = h/(2π) is the Planck constant, m is the
neutron mass and c is the speed of light. This corresponds to a picture of particles of
energy E = h̄ω moving with a velocity v = dω

dk :

v =
h̄k
m

(neutron) v = c (photon) (2.3)
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In order to find expressions for the incoming flux Φ0 and the (energy-) density of scatter-
ing states ρ(E f ) in Eq. 2.1, one considers a beam of particles with a density of 1/V in real
space, thus occupying a quantization volume of V∗ = (2π)3/V in momentum space. The
incoming flux is then given by the product of real space density and velocity, Φ0 = v/V:

Φ0 =
1
V

h̄ki

m
(neutron) Φ0 =

c
V

(photon) (2.4)

Furthermore, the number of particles scattered into an energy range dE f must be identi-
cal to the number of particles in the corresponding volume k2

f dk f dΩ of reciprocal space:

ρ(E f ) ·dE f =
1
V∗ · k

2
f dk f ∆Ω

ρ(E f ) =
V

(2π)3 k2
f

dk f

dE f
∆Ω =


V

(2π)3 k f
m
h̄2 ∆Ω (neutron)

V
(2π)3

k2
f

h̄c ∆Ω (photon)

(2.5)

so that

d2σ

dΩdω
=

V2

(2π)3
m2

h̄3
k f

ki
W (neutron)

d2σ

dΩdω
=

V2

(2π)3

k2
f

h̄c2 W (photon) (2.6)

In the following sections, I will show how equation 2.6 can be evaluated to describe vari-
ous scattering phenomena. The microscropic character of the scattering process demands
a quantum mechanical evaluation of W. Regardless of the type of radiation or subject
of study (electrons or nuclei) the interaction with the incident beam can be treated as
a weak perturbation of a quantum mechanical system. The transition probability thus
corresponds to the squares of the matrix elements of the appropriate perturbation Hamil-
tonian or interaction operator Hint. To include resonant processes, W can be considered
up to second order. This adds a sum over intermediate states |n〉:

W=
2π

h̄

∣∣∣∣〈 f |Hint|i〉 + ∑
n

〈 f |Hint|n〉〈n|Hint|i〉
h̄ω − (Ei −En)

∣∣∣∣2 δ (h̄ω − (Ei −E f )) (2.7)

Here, |i/n/ f 〉= |ψi/n/ f ,ζi/n/ f 〉 represent compound wave functions that contain both the
state |ζ 〉 of the sample and the state |ψ〉 of the scattering particle (which, in turn, may
be separated into spatial and spin degree of freedoms).

The availability of neutron and x-ray radiation gives access to three interactions that can
be substituted for Hint: (1) The nuclear interaction of the neutron with the nucleus,
(2) the dipolar interaction of the magnetic moment of the neutron with the magnetic
moment of an ion and (3) the multipolar interaction of electromagnetic radiation with a
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distribution of electric and magnetic fields at an atom. This versatility explains the great
number of applications of scattering techniques in condensed matter physics.

Both neutrons and x-rays have three physical properties that can be controlled and mea-
sured before and after the scattering event: Energy, momentum and polarization. The
different cases for which I evalute W below demonstrate how these quantities link to
physical properties of the scattering system. Each result for W naturally implies a partic-
ular scattering geometry and an experimental setup which is optimized for control and
measurement of the relevant neutron and x-ray properties. The expressions derived in
this section have fuelled the development of a large family of specialized instruments
or beamlines which is now available at user facilites. None of these applications are re-
dundant, and this thesis illustrates how this “toolbox” of scattering techniques inherits a
(somewhat coincidental) elegance from the complementary properties of the x-ray and
the neutron.

Irrespectively of the scattering potential and resulting form of W, the intensities mea-
sured in experiment are due to the coherent interference of radiation that is scattered
from a periodic arrangement of atoms (i.e. a crystal). Although valuable information
may also be gleaned from incoherent (diffuse) scattering, such effects lie beyond the
scope of this dissertation. The correct interpretation of coherent x-ray scattering was
first provided by William Henry and William Lawrence Bragg in 1913 [309]. Since this
kinematic theory applies for any form of radiation, I first summarize these concepts, be-
fore evaluating the scattering cross sections for neutrons and x-rays.

Crystalline structure is defined in terms of a lattice RRR, spanned by primitive lattice vec-
tors aaai:

RRR = uaaa1 + vaaa2 +waaa3, u,v,w ∈ Z (2.8)

Notably, the concept of a lattice is purely mathematical, as it is defined by the symmetries
of a crystal. The full description of a crystal structure further requires the definition of a
basis of atoms, which is repeated in space with the periodicity of the lattice. The Fourier
transform of RRR yields a corresponding lattice GGG in momentum or reciprocal space:

GGGHKL = H bbb1 +K bbb2 +Lbbb3 , H,K,L ∈ Z

bbb1 = 2π
aaa2 ×aaa3

aaa1 · (aaa2 ×aaa3)
(and permutations)

(2.9)

In real space, the vector GGGHKL is normal to a set of crystal planes, which is then referred
to by the indices [H,K,L]. Furthermore, from eqs. 2.8/2.9 it follows that its modulus is
inversely proportional to the spacing d of these planes: |GGGHKL|= 2π/dHKL.
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Figure 2.4: An elastic scattering (diffraction) event, illustrated on a square lattice in re-
ciprocal space (a) and real space (b). The direction and momentum of the incoming (ki)
and outgoing (k f ) beam define the momentum transfer Q. If Q = GHKL, the radiation
scattered from the [HKL] set of planes interferes positively. This Laue condition indicated
in panel (a) is equivalent to the construction of Bragg’s law shown in panel (b).

In a scattering experiment, the four-dimensional space spanned by vectors bbbi and the
energy E = h̄ω is mapped by varying the direction and magnitudes of the wavevectors kkki

and kkk f of the incoming and scattered radiation. As indicated in Fig. 2.4(a), the wavevec-
tors kkki and kkk f of the incoming and scattered beam define a scattering triangle in recipro-
cal space, which subtends the momentum transfer vector QQQ = kkki − kkk f . Waves scattered
from the crystal will interfere positively if the Laue condition QQQ = GGGHKL is satisfied, i.e. if
the momentum transfer corresponds to a reciprocal lattice vector. The construction in
Fig. 2.4(a) shows that this implies |QQQ|= 2k sin(θ). The corresponding real space picture,
Fig. 2.4(b), illustrates that the Laue condition is equivalent to Bragg’s law,

nλ = 2d sin(θ) , n ∈ N, (2.10)

since k = 2π/λ and, here, Q = |GGGHKL| = 2π/d. Scattered radiation detected under this
condition is referred to as a Bragg reflection or peak and is indexed by the integer triple
(H,K,L).

Magnetic structures inherit the translation symmetry of the crystal structure and are
therefore also best described by a Fourier series. The coordinates RRRlα of magnetic ions in
a crystal can be separated, RRRlα = RRRl +dddα into the lattice coordinate RRRl of a primitive unit
cell and the relative positions dddα of magnetic scattering sites therein. The arrangement

41



of magnetic moments mmmlα in any magnetic structure can then be defined as [315]

mmmlα = ∑
qm

m∗
qmα e−2πi qqqm·RRRl . (2.11)

This sum includes ±qqqm for each magnetic propagation vector qqqm of the Fourier compo-
nents m∗

qmα . Notably, Eq. 2.11 may describe a ferromagnet (qqqm = 0), simple commensu-
rate antiferromagnetic order, multiaxial and “multi-qqqm” antiferromagnetic order, as well
as long-range modulated magnetic structures (in the case of complex Fourier compo-
nents).

2.3 Neutron scattering

In neutron scattering, it is generally sufficient to evaluate Eq. 2.7 to within first order.
Under the assumption that the neutron radiation at a point rrr is described, both before
and after the scattering, by a plane wave (the Born approximation), the states of the
scattering system (including the scattering particle) can be written as

|i〉 ≡ |ψiζi〉=
1√
V

eikkki·rrr |ζi〉 ≡
1√
V
|kkkiζi〉 , (2.12)

where 1/
√
V is a normalization factor. Equation 2.7 thus reduces to

W=
2π

h̄
1
V2 |〈kkk f ζ f |Hint|kkkiζi〉|2 δ (h̄ω − (Ei −E f )) . (2.13)

Substituting this into Eq. 2.6 yields the double differential scattering cross section for
neutron scattering [316, 317]:

(
d2σ

dΩdh̄ω

)
ζi→ζ f

=
k f

ki

(
m

2π h̄2

)2 ∣∣〈kkk f ζ f |Hint |kkki ζi
〉∣∣2 δ (h̄ω − (Ei −E f )) (2.14)

2.3.1 Nuclear neutron scattering

Equation 2.14 is best evaluated in Fourier (QQQ) space. Assuming an array of nuclear
potentials U(xxx j) at the relative coordinates xxx j = rrr − RRR j of the jth nuclei (at RRR j, with
respect to the scattering neutron at rrr), the nuclear interaction can be stated as a Fourier
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sum:

Hnuc = ∑
j

U j(QQQ) = ∑
j

∫
U j(xxx j)ei QQQ·xxx jdxxx j (2.15)

so that the matrix element becomes〈
kkk f ζ f |Hnuc |kkki ζi

〉
= ∑

j
U j(QQQ)

∫
ζ
∗
f ei QQQ·RRR j ζi dRRR j = ∑

j
U j(QQQ)〈ζ f |ei QQQ·RRR j |ζi〉 , (2.16)

where dRRR j actually represents many integrals over all nuclear sites. Due to the negligible
spatial extent of the atomic core, the interaction of the neutron with the jth nucleus
in the sample is well approximated by the point-like Fermi pseudopotential (or its corre-
sponding Fourier transform):

U j(xxx j) =
2π h̄2

m
b j δ (xxx j) , U j(QQQ) =

2π h̄2

m
b j (2.17)

The weak nuclear interaction is thus independent of momentum transfer and parametrized
by a single parameter b, the neutron bound scattering length. b may be both positive
(repulsive) or negative (attractive) and may vary, both between different isotopes of the
same element and between different nuclear spin states of the same isotope.

In analogy to the transformation of the scattering potential, the energy delta function in
Eq. 2.14 can be transformed to its conjugate variable, time t:

δ (h̄ω − (Ei −E f )) =
1

2π h̄

∫
∞

−∞

ei
Ei−E f

h̄ t e−iωt dt (2.18)

For a full evaluation of the scattering cross section, the square of the matrix element
(Eq. 2.16) must then be summed over final states |ζ f 〉 of the scattering system and av-
eraged over initial states |ζi〉. The final result can be separated into a coherent and an
incoherent scattering contribution [316]:(

d2σ

dΩdω

)
coh.

=
σcoh.

4π

k f

ki

1
2π h̄ ∑

j, j′

∫
∞

−∞

〈 j′, j〉e−iωtdt(
d2σ

dΩdω

)
inc.

=
σinc.

4π

k f

ki

1
2π h̄ ∑

j

∫
∞

−∞

〈 j, j〉e−iωtdt ,

(2.19)

where

〈 j′, j〉= ∑
ζ

(
e−Eζ /(kBT )

∑ζ e−Eζ /(kBT )

)〈
ζ

∣∣∣e−iQQQ·RRR j′(0) eiQQQ·RRR j(t)
∣∣∣ζ〉 (2.20)

is the thermal average of the correlation function of the time-dependent (Heisenberg)

43



operators RRR j(t) (for a thorough derivation, see [316, 317]):

RRR j(t) = eiHt/h̄ RRR j e−iHt/h̄ , (2.21)

where H is the Hamiltonian describing the scattering system. The total coherent and
incoherent neutron scattering cross sections σcoh. and σinc. in Eq. 2.19 are given by the
squared average and variance of bound scattering lengths b, respectively:

σcoh. = 4π(b̄)2 , σinc. = 4π[b̄2 − (b̄)2] (2.22)

Empirical values of b, σcoh. and σinc. for each element (and isotope) have been tabulated
by Sears [318]. Equations 2.19 describe the full nuclear neutron response of a sample,
including both elastic and inelastic neutron scattering.

In this thesis, the excitation of lattice vibrations (phonons) only plays a peripheral role.
For example, I observed phonon scattering in FeSe (see Chapter 3), where it obscures
the weaker low-energy intensity contributions from magnetic excitations (magnons). As
there is no interest in the structural dynamics in this context, I focus on the nuclear elastic
response. This implies ki = k f and the time dependence of the Heisenberg operators RRR j

in Eq. 2.20 can be neglected (they are then simple space coordinates). The time integral
in 2.19 thus simplifies to [317]:

1
2π h̄

∫
∞

−∞

e−iωt dt = δ (h̄ω) (2.23)

By integrating Eq. 2.19 over the energy transfer h̄ω, the single-differential neutron cross
sections can then be obtained:(

dσ

dω

)
coh.

=
σcoh.

4π
∑
j, j′

e−i QQQ·(RRR j′−RRR j) (2.24)(
dσ

dω

)
inc.

=
σinc.

4π
(2.25)

This shows that the nuclear incoherent elastic part of the neutron response contributes
an isotropic background signal, proportional to the variance of scattering lengths in the
sample. The coherent term (Eq. 2.24) is further simplified by the translational symmetry
of the crystal. In particular, the sum over phase factors relative to rrr := RRR j′ − RRR j can
be substituted by a sum over reciprocal lattice sites GGG (equivalent to the definition of
reciprocal space in Section 2.2, but omitting the subscript (HKL) for brevity),

∑
r

eiQQQ·rrr =
(2π)3

v0
N ∑

G
δ (QQQ−GGG) (v0: unit cell volume). (2.26)
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Where N is the number of lattice sites in real space. The nuclear coherent elastic single-
differential neutron scattering cross section becomes

dσ

dω
=

(2π)3

v0

σcoh.

4π
N ∑

G
δ (QQQ−GGG) (2.27)

Below, the subscript coh. is omitted for brevity. Since the materials discussed in this thesis
contain more than one atom per unit cell, an additional summation over the atomic basis
has to be introduced. The lattice sum in Eq. 2.24 is thus partitioned, RRR j := RRRlα = RRRl +dddα ,
into two sums, over the positions of unit cells and the nuclei (of scattering length bα)
therein, respectively:

dσ

dΩ
= ∑

l,l′
eiQQQ·(RRRl−RRRl′) ∑

α,α ′
bαbα ′ eiQQQ·(dddα−ddd

α ′) (2.28)

= ∑
l,l′

eiQQQ·(RRRl−RRRl′) |∑
ddd

bddd eiQQQ·ddd|2 (2.29)

=
(2π)3

v0
N ∑

GGG
|SGGG|2 δ (QQQ−GGG) (2.30)

Here, a basis relative nuclear coordinate ddd = dddα −dddα ′ was introduced and the expression
was simplified in analogy to Eq. 2.24. Depending on their relative phases, the waves
scattered from nuclei with scattering lengths bddd (at positions ddd in the unit cell) interfere
positively or negatively. The observed intensity of a Bragg reflection at GGG is therefore
governed by the neutron nuclear structure factor,

SGGG = ∑
ddd

bddd eiGGG·ddd . (2.31)

An additional coefficient e−2W (the Debye-Waller factor) arises if a finite thermal displace-
ment of the nuclei is taken into account. The thermal variable W grows quadratically
with momentum transfer and is proportional to the mean-squared displacements 〈u2〉
(W = Q2〈u2〉/3, for an explicit derivation see [316]). This leads to the final result for the
elastic nuclear neutron scattering cross section [316, 317]:

dσ

dΩ
=

(2π)3

v0
e−2W N ∑

GGG
|SGGG|2 δ (QQQ−GGG) (2.32)
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2.3.2 Magnetic neutron scattering

Independently of the nuclear interaction discussed above, there exists another scattering
channel for the neutron due to its magnetic moment [313],

µµµn =−γµN σσσ , µN =
eh̄

2mp
. (2.33)

Here, γ = 1.913 is a constant, σσσ are the Pauli spin matrices and µN is the nuclear mag-
neton, which is inversely proportional to the proton mass mp. Although the interaction
of this magnetic moment with nuclei is negligible, its potential in the magnetic field BBB of
an unpaired electron is of similar strength as the nuclear interaction:

Hmag =−µµµn ·BBB =− µ0

4π
γµN 2µBσσσ · (VS +VL) (2.34)

The magnetic field at an ionic site has separate contributions from spin and orbital an-
gular momenta of unbound electrons:

VS = ∇× (
sss× R̂RR

R2 ) and VL =
1
h̄

p× R̂
R2 (2.35)

As derived in [316], the evaluation of the momentum eigenstates of this potential in
Eq. 2.14 leads to(

d2σ

dΩdω

)
σiζi→σ f ζ f

=

(
γ r0

2µB

)2 k f

ki
|
〈
σ f ζ f |σσσ ·M⊥|σiζi

〉
|2 δ (h̄ω − (E f −Ei)) , (2.36)

where r0 =
µ0
4π

e2

me
is the classical electron radius. The total magnetization (vector) operator

M(QQQ) =MS(QQQ)+ML(QQQ) derives from VS and VL and corresponds to the Fourier trans-
form of magnetization density due to the free spin and orbital angular momenta at an
ion. The subscript ⊥ indicates that only the components of this magnetization vector
that are perpendicular to the momentum transfer QQQ contribute to the scattering. By use
of the Kronecker delta function, this orthogonality condition can also be expressed as a
sum ∑α,β [δαβ − (QαQβ )/Q2] over the cartesian components α,β = x,y,z.

In analogy to the matrix elements of the nuclear interactions (Eq. 2.16), equation 2.36
must be summed over final states (σ f ζ f ) and averaged over initial states (σiζi) of the
neutron. The evaluation of this transition probablility finally leads to the master formula
for magnetic neutron scattering [316, 317]:
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Figure 2.5: Magnetic form factors F2(Q) for magnetic ions that I probed by neutron
techniques (see chapters 3, 4 and 6). These approximate expansions in spherical Bessel
functions are obtained from the empirical coefficients tabulated in [320, 321], assuming
LS coupling.

dσ

dΩdω
=
(

γ r0 g
2

)2 k f

ki
F2(QQQ)e−2W (QQQ)

∑
α,β

(
δα,β −

QαQβ

Q2

)
Sα,β (QQQ,ω) , (2.37)

Here, it has been assumed that the spin directions of the incoming neutrons are random
(unpolarized), that all magnetic scattering centres are identical and that the magnetism
is well described in a local-ion (non-itinerant) picture. g is the Landè splitting factor
(g = 2 for vanishing orbital angular momenta) and F(QQQ) is the magnetic form factor,
which is given by the normalized Fourier transform of the density of unpaired electrons
in real space. An analytical evaluation of this function is cumbersome [319]. Expansion
of F(QQQ) in terms of spherical Bessel functions have therefore been tabulated for most
magnetic ions [320, 321].

As illustrated in Fig. 2.5 for the magnetic ions that I investigated by neutron techniques,
the key characteristic of the magnetic form factor is the fast decrease of magnetic neutron
scattering intensity with increasing momentum transfer. By contrast, the Fermi pseu-
dopotential of the core is point-shaped and therefore nuclear scattering is not affected
by this kind of suppression. The shape of F(QQQ) also provides a weak ion-specificity to
the technique.

The magnetic scattering function (Sα,β in Eq. 2.37) contains the phase differences be-
tween the scattering sites j, j′ and correlates the total angular momentum operators ŜSS
between the initial and final neutron states ζi,ζ f . In the case of localized moments, in
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which a spin can be assigned to each site, it can be stated as

Sα,β (QQQ,ω) = ∑
j, j′

eiQQQ·(RRR j−RRR j′) ∑
ζi,ζ f

pζ

〈
ζi

∣∣∣ŜSSα

j′

∣∣∣ζ f

〉〈
ζ f

∣∣∣ŜSSβ

j

∣∣∣ζi

〉
δ (h̄ω − (E f −Ei)) . (2.38)

In analogy to the discussion of the nuclear scattering cross section in the preceding sec-
tion, the energy transfer condition can be stated in Fourier (time-integral) form (Eq. 2.18),
and thus the magnetic scattering function can be expressed in terms of a thermal average
(Eq. 2.20):

Sα,β (QQQ,ω) =
1

2π h̄ ∑
j, j′

∫
∞

−∞

eiQQQ·(RRR j−RRR j′)
〈

ŜSS
α

j (0) ŜSS
β

j′(t)
〉

e−iωt dt (2.39)

Put into words, the magnetic response measured in neutron scattering is the Fourier
transform in space and time of the pair correlation function between any two magnetic
moments in the system [317]. According to the fluctuation-dissipation theorem, this
quantity can also be expressed as

Sα,β (QQQ,ω) =
1
π

1
1− exp(−βE)

χ
′′
αβ

(QQQ,ω) (β = 1/(kBT ) (2.40)

i.e. it measures the imaginary (dissipative) part of the dynamical magnetic susceptibility
tensor χα,β (QQQ,ω), which descibes the magnetization (MMM) response of the sample to an
applied field (HHH), as a function of both momentum and frequency:

Mα(QQQ,ω) = χαβ (QQQ,ω)Hβ (QQQ,ω) (α,β : x,y,z) (2.41)

For the case of elastic magnetic neutron scattering, the matrix elements in Eq. 2.37 are
evaluated in the time limit t → ∞ and integrated with respect to E f . This leads to the
single-differential magnetic cross section [322, 323, 316, 317]

dσ

dΩ
= N

(
γ r0

2 µB

)2 (2π)3

v0
e−2W (QQQ) |MMM⊥(QQQ)|2 (2.42)

M(QQQ) is the Fourier transform of the magnetization operator and may be considered a
magnetic structure factor vector. Using the convention of describing magnetic structures
defined in Eq. 2.11,

MMM(QQQ) = ∑
qqqm

∑
α

g
2

Fα(QQQ)mmm∗
qqqmα e2πi QQQ·dddα δ (QQQ− (GGG+qqqm)) (2.43)
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Where the sums run over the magnetic propagation vectors ±qqqm and the sites dddα of
magnetic ions in the unit cell (with magnetic form factors g

2Fα). As in Eq. 2.36, the
subscript ⊥ in Eq. 2.42 denotes the component which is perpendicular to the momentum
transfer. This condition can also be expressed in form of vector products:

MMM⊥ = Q̂QQ×MMM× Q̂QQ ≡ MMM− Q̂QQ(Q̂QQ ·MMM) , with Q̂QQ = QQQ/Q . (2.44)

2.3.3 Neutron sources and instruments

Neutron beams are obtained from nuclear decay processes, either by controlled fission
of enriched uranium (in a nuclear reactor), or by bombardment of heavy metals with
high energy protons — a process known as spallation. Today, high flux neutron reactor-
and spallation sources are available for user experiments at several international facili-
ties. The two methods of neutron creation imply distinct beam properties, which in turn
determine the design of experimental setups and modes of data collection.

Reactor sources such as at the Institut Laue-Langevin (ILL) supply a constant flux of high
energy neutrons. By contrast, at a spallation source such as the ISIS facility, neutrons are
created in intense bursts, at the frequency of the proton pulse onto the heavy metal target
(50 and 10 Hz at the two target stations of ISIS). In either case, high energy neutrons are
obtained which must be thermalised in appropriate moderating media. For applications
in condensed matter, a cold (0.5–5 meV) or thermal (5–100 meV) neutron beam may be
desirable, depending on the range of energy- and momentum transfer of interest. This
is be achieved by room temperature (liquid D2O) or cold (e.g., solid methane, CH4, at
40 K) moderators.

At a neutron scattering beamline, a specific neutron wavelength (or a band of wave-
lengths) is selected from the moderator spectrum, either by diffraction from a monochro-
mator crystal, or by rotating chopper devices (see Fig. 2.6). Similarly, the energy of the
scattered beam is determined either by diffraction from an analyzer crystal (triple axis
method) or by relating the time stamps of chopper and detector events to the length of
the beam path. (time-of-flight method). For best efficiency, the former method is usually
employed in reactor sources and the latter at spallation sources.

The purpose of any such experiment is to probe the scattering cross sections derived in
the preceding section (Eqs. 2.32 and 2.42). In effect, this can be seen as a survey of
a four-dimensional momentum- and energy transfer (QQQ, h̄ω) space. In real space, this
4-space is navigated by varying the scattering angles, the orientation of the sample, and
the incident and detected neutron energies.
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Figure 2.6: Selection of neutron energies from continuous and pulsed beams.
(a) Schematic of a triple axis spectrometer at a reactor neutron source. By diffraction
from appropriate monochromator and analyzer crystals, the desired neutron energies
can be selected from the incoming and scattered beams (from Brockhouse, 1958 [324]).
(b) Plane view of a simple rotating chopper device (top). The energy (velocity) of neu-
trons that pass the curved path without being absorbed is determined by the chopper
angular frequency. In general, a sequence of choppers is needed to select the desired
world-line of neutron pulses (bottom). This method of monochromation is commonly
employed at spallation neutron sources (from Lowde, 1960 [325]).
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The key distinction between different neutron scattering setups is whether they discrimi-
nate between zero and finite energy transfer. As elastic Bragg intensities generally eclipse
phonon and magnon scattering by several orders of magnitude, this corresponds to the
distinction between diffraction and spectroscopy. Depending on the application, the
beam may be monochromated (analyzed) before or after, or both before and after scat-
tering from the sample.

In this thesis, I report use of the following neutron scattering techniques:

• Time-of-flight powder inelastic neutron scattering
in Chapter 3 to probe magnetic excitations in FeSe

• Time-of-flight neutron powder diffraction
in Chapter 3, for a high-resolution structural study of FeSe and
in Chapter 6, to probe for magnetic order in Ca2Os2O7

• Triple axis inelastic neutron scattering
in Chapter 4, to probe magnetic excitations in single crystals of AMnBi2

• Constant wavelength neutron powder diffraction
in Chapter 6, to probe the magnetic order in Ca2Os2O7

2.4 X-ray scattering

2.4.1 Thomson scattering

The electric field E of an electromagnetic wave is characterized by a polarization unit
vector ε̂εε and an amplitude E:

E(rrr, t) = ε̂εε Eei(kkk·rrr−ωt) (2.45)

Instead of using Fermi’s golden rule, for massless particles, Eq. 2.1 can be simply evalu-
ated by recognizing that the energy density of the beam is proportional to |E|2. Assuming
elastic scattering, the single-differential scattering cross-section can be rewritten in terms
of electric fields [311]:

dσ

dΩ
= R2 E

2
f

E2
i

, since Isc ∝
E2

f

h̄ω
(R2

∆Ω) and Φ0 ∝
E2

i
h̄ω

c . (2.46)
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Therefore, in the context of x-ray scattering Eq. 2.1 is generally expressed in terms of the
scattering amplitude (or scattering length) F:

dσ

dΩ
= |F|2 (2.47)

When scattering from a single unbound electron, the incoming wave will cause a har-
monic oscillation along ε̂εε (perpendicular to Ei). From dimensional analysis, it can be ar-
gued that the resulting response must be proportional to the free electron radius, which
is therefore also referred to as the Thomson scattering length:

F = r0 P , P = |ε̂εε f · ε̂εε i|
(

r0 =
e2

mc2

)
(2.48)

For bound electronic states at an atomic site, details of the charge distibution ρ(rrr) are
taken into account as an electronic form factor:

f (QQQ, h̄ω) =
∫

ρ(rrr)eiQQQ·rrr d3rrr+ f ′(h̄ω)+ f ′′(h̄ω) (2.49)

Where f ′+ i f ′′ are dispersion corrections that become important for x-ray energies in the
vicinity of electronic binding energies. To describe the scattering from a crystal, ampli-
tude contributions of (−r0P) from the electrons at the sites RRRlα = RRRl + dddα are summed
with the appropriate phase shifts:

F(QQQ) =−r0P ∑
l

eiQQQ·RRRl ∑
α

fα(QQQ)eiQQQ·dddα (2.50)

and thus

dσ

dΩ
= r2

0 P2 N
(2π)3

v0
∑
GGG

δ (QQQ−GGG) |F(GGG)|2 (2.51)

Here, the lattice sum has been transformed to the Laue condition (as in the case of
neutron scattering) and F(GGG) has been introduced to denote the unit cell structure factor.

2.4.2 Full x-ray scattering cross section

The minimal derivation of Thomson scattering shown above is appropriate for tradi-
tional laboratory-based experiments (see 2.1). In this section I show how a rigourous
evaluation of W to second order perturbation theory gives access to a spectrum of subtle
scattering phenomena that are sensitive to both magnetic and orbital degrees of freedom.
This full derivation was originally put forward by Blume [326] and has been discussed
more recently by Altarelli [327].
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The electric and magnetic fields E(rrr) and BBB(rrr) of the x-ray are described by a vector
potential AAA(rrr) (for clarity, the explicit reference to the space coordinate rrr is frequently
omitted below). Inside a material, charged particles create a Coulomb potential V , which
contributes an additional static component to E:

BBB = ∇×AAA , E =−∇V − 1
c

∂

∂ t
AAA , ∇ ·AAA ≡ 0 (2.52)

In the non-relativistic limit, the (self-consistent) Hamiltonian of a system of N electrons
with momenta pppi at positions rrri is given by

Hel =
N

∑
i=1

(
pppi − e

cAAA
)2

2m︸ ︷︷ ︸
kinetic

+ V (rrri)︸ ︷︷ ︸
Coulomb

− eh̄
mc

sssi ·BBB︸ ︷︷ ︸
Zeeman

− eh̄
2m2c2 sssi ·

[
EEE ×

(
pppi −

e
c

AAA
)]

︸ ︷︷ ︸
spin-orbit

(2.53)

The interaction Hamiltonian of this system with the electromagnetic radiation is obtained
by omitting all terms that do not couple to AAA:

Hint =
N

∑
i=1

e2

2mc2 AAA2︸ ︷︷ ︸
H1

− e
mc

pppi ·AAA︸ ︷︷ ︸
H2

− eh̄
mc

sssi · (∇×AAA)︸ ︷︷ ︸
H3

+
eh̄

2m2c3 sssi ·
[(

∂

∂ t
AAA
)
×
(

pppi −
e
c

AAA
)]

︸ ︷︷ ︸
H4

(2.54)

Terms that are quadratic in the vector potential (H1 and H4) will contribute in first order
perturbation theory, while the terms that are linear in AAA (H2 and H3) will contribute only
to second order. Thus, the substitution into Eq. 2.7 yields

W=
2π

h̄

∣∣∣∣〈 f |H1 +H4|i〉 + ∑
n

〈 f |H2 +H3|n〉〈n|H2 +H3|i〉
h̄ω − (Ei −En)

∣∣∣∣2 δ (h̄ω − (Ei −E f )) (2.55)

To evaluate these terms, it is most convenient to express the vector potential in second
quantization, i.e. as an expansion in terms of plane waves, created and annihilated by
operators â† and â, respectively:

AAA(rrr, t) = ∑
kkk,η

√
2π h̄c2

Vωkkk

[
ε̂εε

η(kkk)ei(k·r−ωkt) â(k,η) + ε̂εε
η∗(k)e−i(k·r−ωkt) â†(k,η)

]
(2.56)

The index η labels the two possible orthogonal modes of the polarization unit vectors.
The evaluation of the square of this operator in H1 leads to [327]:

〈 f |H1|i〉=
2π h̄e2

Vckm
(ε̂εε f · ε̂εε i)

N

∑
i=1

eiQQQ·ri (2.57)

53



Thus (assuming elastic scattering),

W1 =
(2π)3h̄e4

(Vckm)2 (ε̂εε f · ε̂εε i)
2

∣∣∣∣∣ N

∑
i=1

eiQQQ·ri

∣∣∣∣∣
2

(2.58)

And therefore, by Eqs. 2.6 and 2.7,

(
dσ

dΩ

)
1
=

(
e2

mc2

)2

(ε̂εε f · ε̂εε i)
2

∣∣∣∣∣ N

∑
i=1

eiQQQ·ri

∣∣∣∣∣
2

(2.59)

which corresponds to the Thomson scattering previously derived in Eq. 2.51.

2.4.3 Nonresonant magnetic x-ray scattering

The evaluation of the nonresonant magnetic contributions in Eq. 2.55 is rather involved
and has been presented in detail by Altarelli [327]. A key finding is that these terms
are reduced by the energy ratio R = (h̄ω/mc2) compared to Thomson scattering. For
the x-ray studies reported in this thesis, this reduction factor varies between R ≈ 0.001
(Fe L3) and R ≈ 0.01 (Eu L3). Although this implies a reduction of the cross section
of R2 ∝ 10−4–10−6 compared to charge scattering, the observed non-resonant magnetic
intensities are even weaker, since only a fraction of the electrons (those in unpaired
orbitals) contributes.

As seen in Eq. 2.54, the first order contribution 〈 f |H4|i〉 actually contains two terms,
ȦAA× ppp and ȦAA×AAA. It turns out that the first term is reduced by an additional factor R

(i.e., R2 compared to Thomson scattering) and can therefore be neglected. On the other
hand, one finds a residual non-resonant magnetic contribution form the second order
(∝ 〈 f |H2 +H3|n〉〈H2 +H3|i〉) term (by considering the limit h̄ω � (En −Ei)). The final
result for the non-resonant x-ray scattering cross section can be stated in terms of the
Fourier transforms of the spin and orbital magnetization MMMS and MMML [326, 327]:

(
dσ

dΩ

)
non-res.

= r2
0

∣∣∣∣∣∑j
eiQQQ·rrr j P− i

mc
eh̄

R
(
MMML,⊥ ·PPPL +MMMS ·PPPS

)∣∣∣∣∣
2

,

with the polarization factors

P = (ε̂εε f · ε̂εε i)

PPPL = 4sin(θ)(ε̂εε f × ε̂εε i)

PPPS = (kkk f × ε̂εε f )(kkk f · ε̂εε i)− (kkki × ε̂εε i)(kkki · ε̂εε f )− (kkk f × ε̂εε f )× (kkki × ε̂εε i) ,

(2.60)

where, reminiscent of neutron scattering, ML,⊥(Q) is the component of MMML that is per-
pendicular to the momentum transfer QQQ. In this form it is also evident that, apart from
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pure charge and pure magnetic scattering, interference terms may also arise.

The possibility of observing magnetic x-ray diffraction intensities was originally sug-
gested by Platzman and Tsoar in 1970 [328]. It was experimentally realized in 1972 by
Bergevin and Brunel [329]. Using a background-optimized laboratory Cu Kα source and
counting 25 minutes per point (3 days per θ–2θ scan), the authors were able to distin-
guish magnetic superstructure peaks in in NiO (a room temperature antiferromagnet).
The (1

2
1
2

1
2) and (3

2
3
2

3
2) peaks that were observed were ≈ 4× 10−8 times weaker than the

adjacent (111) charge peak.

2.4.4 Resonant exchange x-ray scattering

It remains to consider the resonant (h̄ω ≈ (En −Ei)) second order contribution of the
H2 +H3 term in Eq. 2.55. This interaction gives rise to the resonant inelastic and elastic
x-ray scattering (RIXS/REXS) effects that I observed in the context of chapters 3 and 5.
Notably, these effects are distinct from the “genuinely magnetic” nonresonant effects
outlined in the preceding section in that they do not couple directly to spin or orbital
magnetic moments in the sample. Instead, the sensitivity to magnetism has its subtle
origin in the Pauli exclusion principle (selecting which intermediate state can be excited)
and the spin-orbit interaction with unfilled d- and f -shell states. To emphasize this, RIXS
and REXS phenomena are also referred to as x-ray resonant exchange scattering (XRES).

Due to the requirement of tunable x-ray energies, the exploitation of the strong reso-
nant enhancement had to await the advent of modern synchrotron radiation sources in
the 1980s. The fact that the resulting resonant magnetic Bragg intensities may be com-
parable to those observed in neutron scattering was first emphasized by Blume [326].
Initial experiments were performed by switching the magnetization direction in (ferro-
magnetic) nickel [330], before Gibbs (1988) reported his seminal REXS study of the
L3 edge in elemental holmium [331]. This data revealed a 50-fold enhancement of the
scattering from the incommensurate (helical) magnetic structure. Both resonance energy
and magnetic intensity showed an intricate polarization dependence, and were observed
not only at the magnetic propagation vector, but also at scattering vectors corresponding
second, third and fourth harmonics of the magnetic helix.

A first explanation of the XRES process was provided by Hannon [332] and its polariza-
tion dependence was then explicitly formulated by Blume [333]. By expanding the wave
functions eikkk·rrr (since kkk · rrr � 1), it can be shown that the contribution due to H3 is neg-
ligible in the vicinity of the resonances (h̄ω ≈ (En −Ei)) [327]. The remaining resonant
contribution is thus due entirely to H2 ∝ ppp ·AAA. For vanishing energy transfer, i.e. resonant
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elastic x-ray scattering (REXS),

Wres =
2π

h̄

∣∣∣∣∑
n

〈 f |H2|n〉〈n|H2|i〉
Ei −En + h̄ωki + iΓn/2

∣∣∣∣2 δ (h̄ω) (2.61)

Where h̄ωkkki is the incident photon energy, not to be confused with the vanishing energy
transfer h̄ω ≡ h̄ωQQQ. A finite lifetime / width Γn of the intermediate state |n〉 has been
introduced to limit the divergence of this term.

In order to address the coupling to the virtual intermediate states, this term is treated
in multipole expansion, a formalism inherited from γ-ray scattering [334, 335]. As the
coupling via magnetic multipoles is reduced by factors R, these considerations are usu-
ally restricted to electric multipole transitions on the order of L, commonly labelled
“EL” [332]. In particular, it is generally sufficient to consider electric dipole (E1) and
electric quadrupole (E2) processes.

The coupling terms are thus expanded into a sum of vector spherical harmonics YYY LM

(M =−L...L) [332, 336]:

ε̂εε ·YYY LM(k̂kk) =

√
4π(2L+1)

3(L+1)

1

∑
µ=−1

C(1,L−1,L; µ,M−µ,M)YL−1,M−µ(k̂kk)Y1,µ(ε̂εε),

YLM(θ ,φ) = (−1)M

√
(2L+1)

4π

(L−M)!
(L+M)!

PLM(cos(θ))eiMφ

(2.62)

Where PLM are the Legendre polynomials and C(l,s, j;ml,ms,m) are the Clebsch-Gordan
coefficients that describe the coupling of an orbital angular momentum with quantum
numbers (l,ml) and a spin angular momentum with quantum numbers (s,ms) to a total
angular momentum with quantum numbers ( j,m). Assuming that excitation and relax-
ation occur via the same multipolar transition (L ≡ L′, M ≡ M′), the resonant scattering
amplitude becomes

Fres
LM =

√
(Vk f )2

(2π)3 h̄c2 Wres →
4π

ki

L

∑
M=−L

P∗
LM FLM(ω) (2.63)

with the vector spherical harmonics polarization factor

P∗
LM = ε̂εε f ·YYY LM(kkk f )YYY ∗

LM(kkki) · ε̂εε i (2.64)

The details of the resonant process is here encoded in the multipolar coefficients FLM.
This includes a sum of Fourier components of the multipolar transition operator and
their appropriate weighting by Clebsch-Gordan coefficients.

56



x-ray edge |i〉 ≡ | f 〉 ion |n〉 h̄ω (keV) type amplitude

L2 ( j = 1
2) , L3 ( j = 3

2) 2p j 3d TM 3d 0.5–0.9 E1 ≈ 0.1r0
4d TM 4d 2.2–3.8 E1 ≈ 0.1r0
5d TM 5d 10–13 E1 ≈ 0.1r0
Ltn. 4 f 5.7–10 E2 ≈ 0.1r0

5d 5.7–10 E1 ≈ 0.1r0
M2 ( j = 1

2) , M3 ( j = 3
2) 3p j Ltn. 4 f 1.2–2.2 E2 ≈ 0.1r0

5d 1.2–2.2 E1 ≈ 0.1r0
M4 ( j = 3

2) , M5 ( j = 5
2) 3d j Ltn. 4 f 0.9–1.6 E1 ≈ 100r0

Act. 5 f 3.3–3.7 E1 ≈ 100r0

Table 2.1: Overview of the energies and resonant x-ray scattering amplitudes of the most
commonly investigated electric dipole (E1) and quadrupole (E2) resonances (TM: tran-
sition metals, Ltn.: Lanthanides, Act.: Actinides).

I attempt so summarize the derivation of FLM in an accessible way in Appendix A, in
which I follow the work of Hamrick [336]. Even though an evaluation of absolute inten-
sities is normally not feasible (or necessary) in x-ray scattering, an evaluation of these
terms can yield useful information on the relative strengths of the different multipolar
processes that are expected for the ion that is being investigated.

Which transitions are allowed depends on the resonant x-ray edge that is being investi-
gated. The most common cases are summarized in Table 2.1.

In this thesis I report resonant x-ray studies at the Fe L3 edge (a dipole excitation, in
Chapter 3) and at the Eu L3 edge (Chapter 5). As evident from Table 2.1, the latter is a
special case, since the valence states not only include the rare earth 4 f shell (accessible
via quadrupole coupling), but also the lower-energy 5d shell (accessible via dipole cou-
pling). Indeed I found that it was not necessary to take into account E2 contributions in
order to model my data.

In the course of my dissertation work, I have also performed several resonant x-ray
studies of 5d transition metal (Os and Ir) L2/L3 edges (see [150]) and also soft x-ray
studies of rare earth (Tb and Sm) M4 and M5 edges (not reported in this thesis).

Due to the complex polarization dependence of Eqs. 2.63 and 2.64, it is convenient to ex-
press the REXS scattering amplitude in a basis of polarization vectors perpendicular (σσσ)
and parallel (ε̂εε‖) to the scattering plane. The orientation of these vectors is illustrated in
Fig. 2.7. Thus, the polarization factor takes on a matrix form, e.g.

P = ε̂εε f · ε̂εε i →

(
1 0
0 cos2θ

)
(2.65)
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Figure 2.7: (From [337]). The ûuui reference frame commonly used in x-ray polariza-
tion analysis. The orientations of the incoming (ε̂εε) and scattered (ε̂εε

′) polarization unit
vectors parallel (π) and perpendicular (σ) to the scattering plane are also indicated.
These conventions are identical to the illustration of the horizontal scattering geometry
at instrument P09-EH2 in Fig. 5.5 (Chapter 5).

To interpret polarized x-ray scattering experiments it is useful to choose the conventional
ûuui reference frame shown in Fig. 2.7, and defined in Eq. 5.1 (Chapter 5). Hill and
McMorrow have provided an expression of Eq. 2.63 in this reference frame. In terms of
the components of the magnetic structure factor vector MMMûuu = (Mûuu

1 ,M
ûuu
2 ,M

ûuu
3 ), the dipolar

(E1) part is given by

FE1 = F(0)

(
1 0
0 cos2θ

)
− iF(1)

(
0 Mûuu

1 cosθ +Mûuu
2 sinθ

Mûuu
3 sinθ −Mûuu

1 cosθ −Mûuu
2 sin2θ

)
+

+F(2)

(
(Mûuu

2 )
2 −Mûuu

2
[
Mûuu

1 sinθ −Mûuu
3 cosθ

]
Mûuu

2
[
Mûuu

1 sinθ +Mûuu
3 cosθ

]
−cos2 θ

[
(Mûuu

1 )
2 tan2 θ +(Mûuu

3 )
2]
) (2.66)

The dipole coefficients F(i)
E1 in this equation are given by (see Appendix A for a discussion

of the full evaluation of these FLM terms)

F(0)
E1 = 3/(4ki)(F11 +F1−1)

F(1)
E1 = 3/(4ki)(F11 −F1−1)

F(2)
E1 = 3/(4ki)(2F10−F11 −F1−1)

(2.67)

For quadrupolar transitions, an expression similar to Eq. 2.66, but with ten matrix terms
and five coefficients F(i)

E2 is obtained [338]. In my Eu L3 study of EuCd2As2 (Chapter 5),
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I considered the relevance of such higher order terms but found that the data are dom-
inated by the E1 (2p 3

2
↔ 5d) excitation. In most applications, all relevant information

can be obtained without evaluating the multipolar amplitude coefficients. They are then
treated as arbitrary scale factors.

2.4.5 Resonant inelastic x-ray scattering

Resonant inelastic x-ray scattering is one of the youngest scattering techniques and has
seen great instrumental advances in the last ten years [303]. The direct inelastic resonant
process is illustrated in Fig. 2.8. As in the elastic case, a core electron is excited to
the valence shell. However, the resulting core-hole is filled by another (lower energy)
electron of the valence shell, such that the system experiences a net energy transfer. In
RIXS, the final state of the scattering site depends on which atom is being excited. This
is a key difference from REXS process (which does not distinguish between sites). As a
consequence, RIXS scattering amplitudes have to be squared before being added [327].
In effect, this means that the scattered intensity will be proportional to the total number
N of sites — much weaker than for the elastic situation (∝ N2).

In the last decade or so, it has become possible to offset this disadvantage of weak
intensities with the extreme brilliance of modern synchrotron radiation sources [301,
311]. Compared to inelastic neutron scattering, the highly focused undulator radiation
(with beam sizes on the order of 10 µm) has the added advantage of being able to
investigate very small samples. With penetration depths of 0.1µm (soft x-ray regime) to
several µm (hard x-ray regime), RIXS is still a bulk probe [303].

Compared to any massive particles, photons have much higher energies in the relevant
momentum regime. For RIXS, this implies that the energy range of atomic excitations
that can be probed is effectively unlimited. On the downside, energies in the range
of 1–10 keV demand an extreme resolution to address the energy range that is most
relevant for magnetic fluctuations (< 100meV). The available photon count rate turns
out to be the key limiting factor in RIXS spectrometers. The focus of the technique
has therefore shifted commensurately with the improvement in photon brilliance. Until
recently, it had been used mostly to probe high energy inter-level or charge transfer
electronic excitations (≈eV range). This situation is now changing as a new generation
of RIXS beamlines with energy resolution on the order of 25 meV (both in the hard and
soft x-ray regimes) is becoming available [339].

Another advantage is afforded by the orbital specificity and intricate polarization depen-
dence of the XRES cross section. In principle, this allows access to momentum-resolved
information on the mixing, symmetry and spatial distribution of electronic states. How-
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Figure 2.8: (From [303]). (a) The two-step direct RIXS process. First, a core electron
is excited to the valence band. For a few femtoseconds, the system is in a complex,
highly unstable state, before another valence electron combines with the core-hole. In
this process, energy can be dissipated in various electronic, magnetic processes, as well
as lattice vibrations. (b) Schematic RIXS spectrum, illustrating the energy ranges of four
typical spectral contributions.

ever, Since the insertion of polarization analysers implies additional intensity losses, at
present these possibilities have only been partially realized [340].

A RIXS event can be described by the term

Wres =
2π

h̄ ∑
f

∣∣∣∣∑
n

〈 f |H2|n〉〈n|H2|i〉
Ei −En + h̄ωki + iΓn/2

∣∣∣∣2 δ (h̄ωQQQ − (E f −Ei)) , (2.68)

which corresponds to Eq. 2.61, except that here the energy of the final state | f 〉 is explic-
itly different from |i〉 (E f −Ei 6= 0). Instead, a sum over possible final states is introduced.
This energy can be transferred to various excitations that may (directly or indirectly)
couple to the momentum and polarization of the x-ray photon. This includes not only
electron-hole excitons of the states near the Fermi surface, but also lattice vibrations
(phonons), transfer of electrons from ligand ions, excitations within crystal-field split
valence manifolds and spin-wave excitations (magnons). A schematic RIXS spectrum
indicating the relevant energy transfer regimes is shown in Fig. (b) [303].

An analytical modelling of the non-equilibrium intermediate state is not feasible. Instead,
various complex numerical approaches have been proposed, which are presently one of
the most active parts of scattering theory [303].
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2.5 Muon spin rotation and relaxation

In the context of Chapter 6, I have used muon spin rotation and relaxation (MuSR) to
aid the interpretation of magnetic neutron powder diffraction data. MuSR is an unusual
case of a bulk microscopic probe, i.e. it does not involve a scattering process. Instead
of coherent interference of scattered waves, the access to microscopic information is
provided by a concatenation of radioactive particle decay phenomena.

The MuSR process entails the implantation of positive muons (µ+) with a well-defined
spin-orientation into the sample. The parity violation [341] of the muon’s weak decay
correlates the emission of decay products with the muon- spin–orientation at the time of
disintegration. In this way, it is possible to follow the Larmor precession of muon spins
in the local magnetic field at the muon stopping site [342].

Like electrons and positrons, muons are leptons that carry a positive or negative electron
charge (±e) — however with a rest-mass of mµ = 207me = 105.66MeV/c2 and a limited
lifetime of τµ = 2.2 µs. Muons were originally discovered due to their natural occurrence
in the form of cosmic rays [343]. Muon beams appropriate for condensed matter research
are today obtained as a byproduct at synchrotron- or linear accelerator facilities, e.g. at
the ISIS neutron spallation source. Here, the 800 MeV proton pulse intended for neutron
creation at Target Station 1 passes through a 10 mm thick graphite target. In this process,
2–3% of the protons (p) collide with protons and neutrons (n) in the carbon nuclei and
are lost to pion (π+/π−) creation processes [344]:

p + p → p + n + π
+

p + n → p + p + π
−

After a mean lifetime of 26 ns, these pions decay almost entirely (99.99 %) into muon
and muon-neutrino (νµ) pairs. For positive muons, π+ → µ++νµ . In this two-particle
decay, the conservation of angular momentum guarantees a fully spin-polarized muon
beam, i.e. all muons thus obtained carry their spin antiparallel to their momentum. In the
absence of electric fields, this left-handedness is conserved, and thus a beam of positive
muons can be selected, focused, and directed onto a sample using evacuated beam pipes
and multipole magnets.

Most muons arise from the surface of the graphite target and arrive at the sample with
a kinetic energy of ≈ 4.1MeV, as dictated by the pion rest mass. Within the sample,
they are slowed down by Coulomb collisions. After about 2 ns, and several mm into the
sample, they come to rest and thermalise at interstitial sites of the host structure. Due to
the details of this stopping process [345, 342], it can be assumed that the stopping site
lies approximately 2 µm beyond any radiation damage to the sample. To first order, the
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Figure 2.9: (a) Schematic of the MuSR process. Muons enter the instrument (momen-
tum kkk) and penetrate the sample, placed between the forward and backward detectors.
Initially, the muons come to rest with their spins sssµ directed towards the backward de-
tector. The angular dependence of the positron emission N(ϕ) is indicated as a polar
plot. (b) Typical evolution of forward (red) and backward (blue) positron counting rates
as the muon precesses in a magnetic field BBB. (c-e) Limiting cases of the mean muon spin
polarization pz(t) in a polycrystalline sample: (c) In the case of a fixed static field, (d)
for a random distribution of static fields, and (e) for fluctuating fields.

implanted particle can therefore be expected to experience an unaltered host environ-
ment. Notably, negative muons would not be favourable for condensed matter studies as
they penetrate into atomic shells and form bound states with the nuclei, or are absorbed
(µ−+ p → n+νµ).

As spin s = 1
2 particles, muons carry a magnetic moment (|µµµ| = 1/207 µB) and thus ex-

perience a torque τττ = µµµ ×BBB in the magnetic field BBB inside the sample. This results in a
Larmor precession with the frequency ω = γµ B where γµ = g e

2mµ
≈ e

mµ
= 2π ×135.5MHz/T

is the gyromagnetic ratio of the muon. The number of the implanted muons decreases
as exp

(
−t/τµ

)
as each disintegrates into a positron, an electron neutrino and a muon

antineutrino [346]:
µ
+ → e+ + νe + ν̄µ
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Due to the third decay product, this process has more degrees of freedom than the pion
decay which created the muon. Nevertheless, the parity violation of the weak nuclear
interaction still implies a bias of positron emission towards the direction of the muon
spin. On average, the number of positrons emitted at an angle ϕ with respect to the
muon spin is given by (see Fig. 2.9(a)):

N(θ) = N0(1+ cos(ϕ)/3) (averaged over e+ energies) (2.69)

In a MuSR experiment, the sample is positioned in between two (forward and backward)
positron detectors. The measured quantity is the asymmetry ratio between the forward
and backward counting rates NF and NB:

A(t) =
NF −α NB

NF +α NB
= A0 pz(t) (2.70)

Here, α is a calibration constant that accounts for relative detector efficiencies. As in-
dicated in Eq. 2.70, the measured asymmetry is proportional to the total muon polar-
ization along the instrument axis, pz. For the solid angles covered by detector banks of
real MuSR instruments, the initial asymmetry ratio is on the order of A0 ≈ 25% (see Sec-
tions 6.4.1 and 6.4.2). For a magnetic field B at an angle θ to the muon spin direction
(see Fig. 2.9a), the Larmor precession of pz is given by

pz(t) = cos(θ)2 + sin(θ)2 cos
(
γµBt

)
→ 1/3+ 2/3 cos

(
γµBt

)
(polycrystal)

(2.71)

In the case of powder samples, as for the experiments discussed in Chapter 6, the inter-
nal fields of each crystallite will be randomly oriented with respect to the fixed initial
direction of muon spins. Therefore, an average over an isotropic distribution of the
field directions has been introduced in the second line of Eq. 2.71. The corresponding
oscillation of A(t) and pz(t) is illustrated in Fig. 2.9(c).

Eq. 2.71 describes the muon response of a magnetically ordered system with a well-
defined stopping site, so that a single value of B applies across all sites. This will not be
the case in materials with static disorder or random stopping sites, where the magnetic
fields at the muon sites vary. In this situation, the fields experienced by the muons are
better described by a (static) Gaussian distribution, exp

(
−γ2

µ 〈B2〉 t2 /2
)

. This results in
a dephasing of the harmonic oscillation (Eq. 2.71, Fig. 2.9(c)), which leaves a single
minimum in the muon spin polarization relaxation [342]. This is described by the Kubo-
Toyabe formula:

pz(t) = 1/3+ 2/3
(
1− (γµB∆t)2) e−(γµ B∆t)2/2 , with B∆ =

√
〈B2〉 . (2.72)
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A key characteristic of static fields, whether ordered (Eq. 2.71) or random (Eq. 2.72) is
that the asymmetry ratio decays to a finite constant value of A0/3. This allows a clear
distinction from the case of rapidly fluctuating magnetic moments. In this case,

pz(t) = e−λ t , with the relaxation rate λ = γ
2
µB2

∆τ , (2.73)

where τ is a characteristic correlation time. A decay of A(t) towards zero, as illustrated
in Fig. 2.9(e) thus indicates the absence of static order (a slower decay of A(t) indicates
smaller τ, i.e., faster fluctuations).

Building on the basic relations laid out above, more elaborate situations can be con-
structed if external fields are applied, or single crystals are probed. Several thorough
reviews of the techniques are available [347, 348, 349, 342, 350]. To extract quantita-
tive microscopic information from muon data, it is necessary to determine the crystallo-
graphic positions of muon stopping sites, as well as the distribution of magnetic fields.
This can be achieved by numerical models of the surrounding Coulomb potentials and
dipole fields [344, 351]. Recently, attention has also been devoted to study and account
for possible perturbations of the ionic environment introduced by the presence of the
muon [352].

Such complications aside, it is a great advantage of the MuSR technique that some in-
formation can be gleaned from qualitative features of A(t), as for example the presence
or absence of oscillations or an “A0/3-tail”. For the purpose of the present thesis (Chap-
ter 6), such information proved sufficient to resolve an ambiguity in a magnetic neutron
powder diffraction dataset.
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Chapter 3

Strong (π,0) spin fluctuations in β -FeSe

In this chapter, I present a powder inelastic neutron scattering (INS) study and a single
crystal resonant inelastic x-ray scattering (RIXS) study of paramagnon excitations in the
unusual superconductor FeSe. With around 400 publications in 2015–20161, FeSe may
currently be receiving more scientific attention than any other single material. Knowl-
edge of its magnetic fluctuation spectrum has been sought after as a touchstone for
theories trying to model high-Tc superconductors (see 1.1).

Using powder INS, I was able to discern collective paramagnetic spin fluctuations emerg-
ing from qqqm = (π,0) and equivalent wave vectors, and extending to energies greater than
80 meV. I did not observe any significant change in the low energy (≈10–15 meV) part of
the spectrum on crossing the orthorhombic-to-tetragonal transition. The neutron results
presented in this chapter appeared in Physical Review B 91, 180501(R) (2015).

Using Fe L3 edge RIXS from a single crystal, I observed an anomalous dispersing signal
in the range of 100–300 meV. As noted in Section 2.4.5, RIXS is a relatively young tech-
nique. The quantitative modeling of my data is not straightforward, because a multitude
of complex processes may contribute RIXS spectral weight. Nevertheless, a comparison
with the available literature suggests that my observations can indeed be attributed to
spin-flip excitations. There exist no previous reports of successful soft RIXS studies of
magnetic states that are as itinerant as in FeSe.

1Thomson-Reuters Web of Science, http://www.webofknowledge.com
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3.1 Introduction

Iron selenide (β -Fe1+xSe, hereafter denoted “FeSe”) is structurally the simplest of the
iron-based superconductors, as it consist only of antifluorite layers - without intercalating
ions or “blocking layers” (see Fig. 3.1 (a) and Section 1.1). The layers are separated by
≈ 5.5Å and the interstitial space contains only trace amounts of iron (x ≈ 1 %).

Contrary to this apparent simplicity, FeSe is one of the most intriguing compounds of its
family. The superconducting transition temperature of the pure bulk phase is relatively
low, Tc ≈ 8 K [38], but it increases to 37 K under pressure [353] (see Fig. 3.1 (b)) and
rises above 40 K with intercalation of alkali ions A+ to form AxFe2−ySe2 [354] or by co-
intercalation of ammonia molecules and amide ions or organic molecules along with
A+ [355, 356, 357]. Superconductivity was even reported at temperatures as high as
100 K in monolayers of FeSe grown on SrTiO3 [358, 359] (however, the role of the
substrate remains controversial). There is evidence that superconductivity at ambient
pressure is favoured by reduction of Fe below the 2+ oxidation state and minimisation
of vacancies in the FeSe layers [356, 360]. Nevertheless, there is currently no simple
explanation for such an extraordinary variation in Tc among derivatives containing very
similar antifluorite layers of FeSe.

The structural and electronic ordering properties of FeSe differ qualitatively from those
of the related iron pnictide compounds in two important ways. First, superconduc-
tivity appears in FeSe without the need for doping and is very sensitive to composi-
tion [361]. Second, FeSe has a tetragonal-to-orthorhombic structural transition (Ts '
90 K [38, 362]), as in the parent phases of the iron pnictide superconductors, but this
transition is not followed by the development of long-range magnetic order [363]. The
phase below Ts is considered to be some form of electronic nematic, but opinions divide
over whether the nematic transition is driven by orbital ordering [74, 364, 365, 366] or
by spin degrees of freedom [367, 368, 369, 370].

As laid out in Section 1.1, spin fluctuations are a prominent feature of the iron-based
superconductors and are thought to play a significant role in the pairing interaction [20,
27, 371]. In the iron arsenide superconductors, spin fluctuations emerge from the same
(or nearly so) characteristic in-plane wave vector qm = (π,0)2, as the spin density wave
(SDW) order of the parent phases. This magnetic instability is understood to be assisted
by nesting of hole and electron Fermi surface pockets centred around the Γ and X points
of the square lattice.

2As in Section 1.1, I quote in-plane propagation vectors with respect to the one-Fe unit cell of the square
iron sub-lattice.

67



Spin fluctuations have also been observed in the superconducting iron selenides, but
the characteristic wave vector varies from system to system. For example, it is (π,0) in
FeTe1−xSex (x ≈ 0.5) [114], (π,π/2) in AxFe2−ySe2 (A = K, Rb, Cs) [372, 373, 110], and
different again in Lix(ND2)y(ND3)1−yFe2Se2 [374] (see also Fig. 1.5).

Figure 3.1: (adapted from [375, 353]). (a) Among the different families of iron-based
superconducting materials, FeSe is the structurally simplest prototype compound, as it
consists purely of antifluorite layers of edge-sharing FeSe4 tetrahedra. (b) The low tem-
perature electronic and structural phase diagram is atypical for iron-based superconduc-
tors as discussed in Section 1.1. In particular, there is no magnetically ordered phase and
the temperature scales of the structural and superconducting transitions are separated
by one order of magnitude.
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Ab initio electronic structure calculations indicate that FeSe is close to a magnetic or-
dering instability with characteristic wave vector qqqm = (π,0) [116, 376, 377]. How-
ever, angle-resolved photoemission spectroscopy and quantum oscillation studies have
revealed that the Fermi surface deviates significantly from the predictions [378, 379,
364, 365, 380, 57], and several models for the nematic phase predict competing mag-
netic phases with qm = (π,ξ ), 0 ≤ ξ ≤ π/2 [367, 368, 369, 370]. Experimental informa-
tion on the magnetic ground state of FeSe has been lacking, and is needed to elucidate
the nematic phase and to assess the role of spin fluctuations in the superconducting state.

3.2 Inelastic neutron scattering on MERLIN, ISIS

3.2.1 Characterization of polycrystalline sample

A powder sample of FeSe of total mass 13.8 g was prepared by my collaborators Prof. Si-
mon Clarke and Dr. Stefan Sedlmaier3, as described in Rahn et al. [381]. Throughout the
synthesis process and during all sample handling, special care was taken to avoid contact
with the ambient atmosphere. This was crucial due to the chemical reactivity of FeSe (to
avoid oxidation) as well as to avoid absorption of hydrogen-containing molecules. Hy-
drogen has a large incoherent neutron scattering cross section (σinc = 80.26barn), which
would add to the diffuse background signal. This can be a particular issue if weak or
diffuse magnetic scattering contributions are to be discerned, as in the present case. Pre-
liminary laboratory x-ray powder diffraction showed that this powder sample was of very
high phase purity, with trace amounts (< 1%) of hexagonal α-FeSe and unreacted Fe as
the only detectable impurities.

In order to confirm the onset of superconductivity at Tc ' 8K in this sample, I performed
magnetization measurements using a SQUID magnetometer (see Section 2.1). An ex-
ample of field-cooled and zero-field-cooled data is shown in Fig. 3.2(a). Measurements
retaken after the neutron scattering experiment confirmed that the sample did not de-
teriorate. The right-hand panel of Fig. 3.2(a) shows a broad magnetic anomaly at the
structural transition Ts ' 90K, consistent with previous data on FeSe powders [38].

For a detailed structural analysis, my collaborator Dr. Stefan Sedlmaier4 probed this
sample by high resolution neutron powder diffraction at the HRPD instrument (ISIS).
Measurements were made at several temperatures between 10 K and room tempera-
ture. Figure 3.2(b) shows data collected at room temperature, together with a Rietveld
fit (FullProf algorithm [382]). The temperature dependence of the lattice parameters

3Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, Oxford OX1 3QR, UK
4Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, Oxford OX1 3QR, UK
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Figure 3.2: (a) Magnetic susceptibility of FeSe powder. The field-cooled (FC) and zero-
field cooled (ZFC) curves confirm the onset of superconductivity at Tc ' 8 K (left). The
tetragonal-to-orthorhombic structural transition at Ts ' 90 K is signalled by a broad mag-
netic anomaly (right). (b) Rietveld refinement against room temperature neutron pow-
der diffraction data of FeSe. Peak positions for the β -FeSe phase are marked by vertical
red ticks beneath the data. The other ticks indicate peak positions for Fe impurities and
the vanadium sample can. (c) Temperature dependence of the orthorhombic lattice pa-
rameters of FeSe. The points at 150 K are the tetragonal parameters with a multiplied by√

2. The lines are visual guides.
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obtained from these refinements is shown in Fig. 3.2(c). The continuous tetragonal
(P4/nmm) to orthorhombic (Cmma) transition at Ts ' 90 K is consistent with earlier re-
sults [38, 375, 362]. The orthorhombic distortion (b−a)/a approaches 0.5% at 10K. Re-
finement of the composition Fe1+xSe against data above and below Ts yielded x= 0.01(1),
i.e. with interstitial Fe sites between the stoichiometric FeSe layers occupied at the 1%
level, a finding consistent with a previous report correlating composition with Tc [361].

3.2.2 Experimental setup

As discussed in Section 2.3, inelastic neutron scattering is usually the method of choice
to probe magnetic fluctuations with good energy and momentum resolution. In the case
of FeSe, no previous information on the magnetic fluctuations was available at the time
these measurements were performed. Since the material does not order magnetically, it
was not clear whether a well-defined magnon response could be observed. The high flux
direct geometry chopper spectrometer MERLIN (ISIS) is particularly suited for resolving
possibly weak magnetic scattering contributions (see Section 2.3).

Figure 3.3: (from [383]). Technical drawing of the MERLIN high flux neutron TOF
spectrometer at ISIS. An incident neutron energy is selected using a chopper assembly.
After scattering from the sample, neutrons are detected on a wide time- and position-
resolving detector bank. By relating the scattering angle to the chopper and detector
time stamps, an energy- and momentum transfer can be assigned to each neutron event.

Merlin receives neutrons from a 300 K heavy water moderator, and thus reaches its peak
flux in the relevant energy range, Ei ≈ 30meV. The use of supermirror neutron guides, an
evacuated detector vessel and a short sample-detector distance (2.5m) further optimize
the neutron flux, at the expense of energy resolution (∆E/Ei ≈ 3–5 % ) [383]. The wide
detector array, which covers scattering angles from 2θ = −45º to 135º gives access to
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a wide range of momentum transfer without moving any parts of the instrument. The
range of possible kinematic conditions is determined by Ei and the extremal scattering
angles, θmin ≈ 0 and θmax = 135º. This constrains the neutron events to a paraboloid
(h̄ω,Q) map, with a maximum at (h̄ω,Q) = (Ei,ki) and momentum transfer limits at
(0,2ki sinθmin/max).

Because the magnetic response of sample was expected to be weak, I optimized the
sample geometry for neutron absorption effects. The powder sample was loaded into
aluminium foil packets and placed in an aluminium can in an annular arrangement. The
can was then attached to a closed-cycle refrigerator. Neutron spectra were recorded
with incident energies of Ei = 34, 50 and 100 meV at temperatures from 8 to 104 K. The
spectra were normalised to the incoherent scattering from a standard vanadium sample
measured with the same incident energies. This enables a presentation of the data in
absolute units of mbsr−1 meV−1f.u.−1 (where f.u. refers to one formula unit of FeSe).

3.2.3 Results

Figure 3.5(a) shows an intensity map of part of the Ei = 100meV spectrum measured
at 8 K on MERLIN. The spectrum is dominated by scattering from phonons for energies
E below the phonon cut-off at 40 meV [384]. Above 40 meV, there is a broad vertical
column of scattering centred on the wave vector Q = 2.6 Å−1, and a weaker column
centred on 3.5 Å−1. Figure 3.5(b) is a similar intensity map measured with Ei = 34meV
to probe the low (Q,E) part of the spectrum. Phonon scattering dominates in this regime,
but there is a window between 10 and 15 meV in which the phonon signal is small, and a
vertical column of weak scattering can be seen centred near Q = 1.2 Å−1. Such scattering
columns are observed in neutron powder spectra of other iron-based superconductors
and have been confirmed to arise from strongly dispersive spin fluctuations [95, 127, 93,
385].

The magnetic signals identified in the intensity maps can be seen in more detail in the Q
cuts made at fixed average energy shown in Fig. 3.6(b). The cuts contain peaks centred
on Q = 1.2, 2.6 and 3.5 Å−1, and there are additional weak signals near Q = 4.5 Å−1.
The series of magnetic peaks can be indexed as orders of the square lattice wave vec-
tor (π,0), illustrated by the red markers in Fig. 3.4. The magnetic signal will also extend
in the out-of-plane direction, either as a diffuse rod of scattering if the correlations are
quasi-two-dimensional or as a series of peaks if there are strong inter-layer correlations.
Simulations of such types of out-of-plane scattering show that, after powder averaging,
the peaks have a tail on the high Q side but the maxima shift by only a small amount
(< 0.06 Å−1) from the ideal two-dimensional wave vectors.
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Figure 3.4: Reciprocal lattice of the square iron layer in FeSe. The red and green
markers indicate the symmetry-equivalent positions of the (π,0)-type and (π,π/4)-type
propagation vectors, respectively (including the equivalent 90◦ domains). The circles
show the corresponding effect of powder averaging, and the table lists the corresponding
values of Q = |qqqm|.
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3.2.4 Analysis and discussion

Although FeSe does not order magnetically, the present inelastic neutron scattering data
show that it has a strong magnetic response at (π,0) and equivalent positions which
characterise the in-plane SDW order found in the parent phases of the iron arsenide
superconductors.

To quantify the analysis, I compare the data to a phenomenological model for the low en-
ergy response of a two-dimensional (2D) antiferromagnetically-correlated paramagnet.
This model has been used previously to describe the low energy part of the spectrum of
superconducting Ba(Fe1−xCox)2As2 [387]. The neutron scattering cross section is given
by Eqs. 2.37 and 2.40 in Section 2.3.1. For an isotropic paramagnet, the absorptive part
of the generalized susceptibility χ ′′(qqq,ω) becomes a scalar quantity and the orientation
term in Eq. 2.37 reduces to a factor 2. This leaves

d2σ

dΩdω
=
(

γr0

2

)2 kf

ki

1
1− exp(−β h̄ω)

2
π

F(QQQ)2
χ
′′(qqq,ω), (3.1)

where (γr0/2)2 = 72.7 mb, β = 1/kBT , and F(QQQ) is the magnetic form factor of Fe2+, as
plotted in Fig. 2.5.

The low-energy magnetic excitations are envisaged as damped spin waves with a linear
dispersion. To capture this behaviour in simplest terms, I modelled χ ′′ as a damped
harmonic oscillation (DHO):

χ
′′(qqq,ω) ∝

E2
q 2 h̄ω Γ

[E2
q − (h̄ω)2]2 +(2 h̄ω Γ)2 , (3.2)

with the anisotropic linear dispersion

Eq = h̄
√
(v‖q‖)2 +(v⊥q⊥)2 (3.3)

described by the spin velocities v‖ and v⊥ in the longitudinal and transverse directions
relative to 2D magnetic propagation vector qqqm = (π,0). Γ = Γ∗h̄ω is the inverse lifetime,
and qqq is the spin-wave wave vector.

Under the assumptions that the magnetic correlations are purely in-plane, χ ′′(qqq,ω) does
not vary with qz, and is repeated in 2D momentum space with the periodicity of qqqm. In
order to to fit the model to the constant-energy cuts, I first calculated the cross section
(Eq. 3.1) in three dimensions. For each iteration of the least square algorithm, a numeri-
cal powder average was then performed over constant-Q spheres, also taking into account
the experimental Q resolution.
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The DHO model contains three physical parameters that were allowed to vary (Γ∗, v‖,
v⊥), along with an intensity scale factor and a linear background. The results deter-
mined from the fit are Γ∗ = 0.13± 0.06, v‖ = 460± 120 meVÅ and v⊥ = 150± 20 meVÅ.
The anisotropy ratio v‖/v⊥ ≈ 3 obtained from this analysis is statistically significant.
Spectra simulated with the best-fit parameters are shown as blue lines in Fig. 3.6(b)
and as a colour map in Figs. 3.5(c,d). The simulations match the peak at Q = 1.2 Å−1

and closely reproduce the observed dispersion of the signals centred near 2.6, 3.5 and
4.5 Å−1. The model parameters are similar to those found for Ba(Fe1−xCox)2As2: Γ∗ =

0.15, v‖ = 580 meVÅ, v⊥ = 230 meVÅ [387].

Despite the limitations inherent in powder-averaging, the success of the model in ac-
counting for features in the data over several Brillouin zones places a tight constraint
on the wave vector qqqm that describes the dominant mode of paramagnon excitations in
FeSe. To determine how tightly qqqm is constrained by the data, I carried out fits with
the damped spin-wave model modified to have qm = (π,ξ ), as suggested by some the-
oretical studies. To perform a simple test, I modified the periodicity in reciprocal space
of χ ′′(qqq,ω) (for the DHO model) accordingly (see Fig. 3.4). I then fitted the model to
the data for 0 ≤ ξ ≤ π/2, while constraining for simplicity the spin-wave velocity to be
isotropic.

Figure 3.6(c) shows the best fit that could be achieved with this modified DHO model,
which was with ξ ≈ π/4. The fit is not as good as the DHO model with anisotropic ve-
locity and qqqm = (π,0). The discrepancies are most noticeable for the signal near 2.6Å−1

at low energies. The reason for this is illustrated by the schematic of reciprocal space
shown in Fig. 3.4. The unmodified DHO model (red markers) converges at low energies
to qqqm = (π,0) and equivalent points, whereas the modified DHO model dispersion con-
verges to two points at qqqm = (π,±π/4), and equivalent positions (green markers). There-
fore, in a powder-averaged spectrum, at low energies the anisotropic model will show
a rise in intensity at Q = 2.64Å−1 corresponding to qqqm = (π,2π), whereas the isotropic
model will show a rise in intensity at Q = 2.38Å−1, corresponding to qqqm = (π,7π/4). To
illustrate this effect more directly, I show in Fig. 3.6(a) the intensity distribution in 2D
momentum space for the two choices of qqqm, calculated for energy ranges that correspond
to the momentum-transfer cuts in 3.6(b).

Strictly speaking, the DHO spin-wave model applies to systems with short-range mag-
netic order. The justification for applying it to FeSe is that there are strong magnetic
correlations, which means that the spins will appear ordered over sufficiently short dis-
tances and time scales. Therefore, above some crossover energy scale the spectrum is
expected to be very similar to that of a system whose spins are ordered with propagation
vector qqqm and whose excitations are propagating damped spin waves.
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An alternative approach is to employ a description that does not imply any magnetic
order in the ground state. Such a phenomenological model was used by Tucker et
al. to analyse neutron scattering data on superconducting Ba(Fe1−xCox)2As2 with x =

0.047 [386]. This model is designed to capture the diffusive nature of the spin dynamics
inherent in a paramagnet while at the same time allowing spatial and temporal magnetic
correlations. The corresponding imaginary part of the dynamic magnetic susceptibility
is modified to

χ
′′(qqq,ω) ∝

Γq h̄ω

(h̄ω)2 + Γq (1+ξ 2
q q2)2 , (3.4)

with momentum-dependent correlation lengths ξq and relaxation rates 1/Γq:

ξ
2
q q2 = ξ

2
‖ q2

‖+ξ
2
⊥q2

⊥

Γq = Γ+
α2

Γ

(
Γ

2
‖q2

‖+Γ
2
⊥q2

⊥

) (3.5)

This diffusive model thus has five physical parameters (ξ‖, ξ⊥, Γ‖, Γ⊥, α). These are
related to the reduced parameters used by Tucker et al. [386] by

ξ
2
‖ = ξ

2(1+ηξ ) , ξ
2
⊥ = ξ

2(1−ηξ ) ,

Γ
2
‖ = Γ

2(1+ηΓ) , Γ
2
⊥ = Γ(1−ηΓ)

(3.6)

In Eqs. 3.4 and 3.5, qqq = (q‖,q⊥) is the reduced wave vector measured relative to a mag-
netic wave vector, i.e. qqq = 0 is at qqqm. The components q‖ and q⊥ are parallel and perpen-
dicular to the vector joining qqqm to the nearest reciprocal lattice vector, e.g. for qqqm =(π,0),
q‖ and q⊥ are components parallel and perpendicular to qqqm. At low energies this model
describes an elliptical intensity distribution centred on qqq = 0, with q‖ and q⊥ as the prin-
cipal axes of the ellipse. χ ′′(qqq,ω) is repeated in 2D momentum space at each of the 2D
wave vectors qqqm.

The best fit of the diffusive model to the data was obtained with parameters ξ‖ = 7±2Å,
ξ⊥ = 1.5 ± 0.8Å, Γ‖ = 0meV, Γ⊥ = 7 ± 5meV and α = 7 ± 5Å. The parameter Γ‖ was
not well controlled and had little effect on the fit. The large difference between ξ‖
and ξ⊥ means that the intensity distribution is highly anisotropic, consistent with what
was found with the DHO model. Spectra simulated with the best-fit parameters of the
diffusive model are shown in Figs. 3.6(d,e) and 3.5(e,f). As for the DHO model, the
simulated Q cuts match the data well when qqqm = (π,0) (Fig. 3.6(d)), but less well for
qqqm = (π,±π/4) (Fig. 3.6(e)). The main conclusions are, firstly, that the phenomenolog-
ical diffusive model provides a good description of the magnetic dynamics of FeSe, and
secondly, that the analysis with the diffusive model reinforces the findings from the DHO
spin-wave model analysis that FeSe is close to an instability towards (π,0) antiferromag-
netism and has highly anisotropic magnetic correlations.
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Figure 3.7: Temperature dependence of the magnetic scattering at (π,0) ≈ 1.2 Å−1 av-
eraged over the energy range 11−14 meV. The solid lines are fits to a Gaussian function
on a linear background (dotted). The upper three scans are offset vertically by 0.25, 0.5
and 0.75 units, respectively.

Using the closed-cycle refrigerator at MERLIN, it was not possible to cool the sample
below 8 K, and thus I did not study the magnetic signal in the superconducting state
(Tc ≈ 8K) at low energies, where a neutron spin resonance could be expected (see Sec-
tion 1.1.4). Instead, I investigated the influence of the structural transition on the mag-
netic response by performing runs with an incident energy Ei = 50 meV at temperatures
of 8, 17, 67 and 104 K.

Figure 3.7 shows Q cuts through the (π,0) position at each temperature. The data
are averaged over the energy interval from 11 to 14 meV to stay within the window
where phonon scattering is weak. The magnetic peaks show very little variation with
temperature. To quantify this, I fitted a Gaussian function on a linear background
to each cut. To within the fitting error, the integrated intensity remains constant at
0.10±0.01mbsr−1 meV−1 Å−1 f.u.−1, which compares with the value 0.08±0.01 found at
the same energy for LiFeAs at T = 20 K > Tc [385]. This shows that the spin fluctuations
in FeSe have a similar strength to those in other Fe-based superconductors.
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3.3 Resonant inelastic x-ray scattering at ID32, ESRF

3.3.1 Characterization of single-crystalline sample

High quality single crystals of tetragonal (space group P4/nmm) β -FeSe were synthe-
sized by my colleague Dr. Amir-Abbas Haghighirad5 using a KCl-AlCl3 vapour deposition
technique [388]. The Fe–Se system has a complex metallurgical phase diagram [389].
In particular, the 1:1 tetragonal β -phase does not crystallize from the melt and so its
preparation had been a long-standing challenge. The growth from the gas phase avoids
this issue and produces small crystallites of very high quality (see Fig. 3.8(a,b)).

Figure 3.8: (a) β -FeSe single crystals grown by the vapour deposition technique. The
crystallites have dimensions on the order of 1mm2, ≈ 200 µm thickness, and masses of
< 1 mg. (b) (HK0) reciprocal space intensity map integrated from a Mo-Kα four-circle
x-ray diffraction dataset. (c) SQUID magnetometry of the single crystal investigated by
inelastic x-ray scattering, with a clean superconducting transition at Tc ≈ 8K.

I characterized a number of such FeSe single crystals by four-circle Mo Kα single-crystal
x-ray diffraction (see Section 2.1.3) to select a specimen of highest crystalline quality.
The crystals generally grow as rectangular platelets and x-ray diffraction revealed that
their edges are parallel to the tetragonal unit cell. Figure 3.8(c) shows an example
of laboratory x-ray data, with intensity integrated over a margin perpendicular to the
(HK0) plane of reciprocal space. The negligible spread of the Bragg reflections confirms
the high intrinsic crystalline quality. As the material is relatively soft, the platelets easily
bend, which causes imperfections in the vertical stacking of the atomic planes. In x-ray
diffraction, this can be quantified by the mosaic spread of Bragg reflections along the
(00L) direction (not shown).

For selected crystallites, I performed SQUID magnetization measurements (see Section 2.1.1)
to confirm the onset of ideal diamagnetism associated with superconductivity (the Meissner-
Ochsenfeld effect). The zero-field-cooled temperature sweep in Fig. 3.8(b) shows this

5Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3DW, UK
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abrupt expulsion of the magnetic field (10 Oe) at the superconducting critical tempera-
ture at Tc ≈ 8K.

3.3.2 Experimental setup

As described in Section 2.4, the excitation of electric dipole transitions of electrons from
2p core levels to the correlated d-orbitals can strongly enhance the resonant part of the
x-ray scattering cross section (Eqs. 2.61 and 2.55). Resonant inelastic x-ray scattering
(RIXS) at transition metal L edges has proven to be a powerful tool for the study of elec-
tronic correlations in cuprate high temperature superconductors [390, 391, 392, 393].
This success has motivated the development of a new generation of spectrometers [394].
Naturally, it is of interest to extend the application of this technique beyond the Cu 3d9

states in cuprates. In the present context, one key advantage is that the highly fo-
cused beams obtained from undulator devices enable experiments with minute sam-
ples (< 100 µm).

I performed a single crystal RIXS study of FeSe at beamline ID32 at the European Syn-
chrotron Radiation Facility (ESRF) [340]. The RIXS endstation of this beamline, which
had been commissioned only few months before this experiment, offers an unprece-
dented energy resolving power of up to E/∆E = 30000 (a quantity that is generally lim-
ited by count rate of the scattered signal). The extreme brilliance of the beam and
sensitivity of the detector notwithstanding, the weakness of the inelastic signal is the
main limiting factor — especially in the case of partly delocalized valence states, as in
FeSe. Here, most of the observed RIXS spectral weight is due to excitations into the
continuum of itinerant states. In the present experiment, the intensity which may be
due to magnetic excitations contributed less than one photon per minute to the spectra
(for an estimated flux of 1014 photons per second at the sample position). In a compro-
mise for intensity, the spectrometer had to be used in a “low resolution” configuration of
E/∆E ≈ 14000. At the Fe L3 edge (707 eV), this corresponds to an energy resolution of
50–60 meV (FWHM).

Figure 3.9 illustrates the instrumental setup at ID32. The beam enters the hutch from
the right-hand side (not seen) and scatters from the sample, which is mounted on a four-
cicle goniometer inside the ultra-high vacuum (UHV) vessel seen on the left hand side.
After scattering from the sample, the outgoing beam is collimated by a mirror, dispersed
by a spherical grating and then imaged using a CCD detector placed in the focus of the
grating. The ≈11 m long detector arm can be rotated over a 100º range of scattering
angle. To minimize the attenuation of the soft x-ray beam, the beam pipes form an
uninterrupted vacuum which contains both undulator and detector.
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Figure 3.9: (a) The RIXS endstation of beamline ID32, ESRF (from [340]).
(b) Schematic of the RIXS scattering geometry commonly used to probe samples with
quasi-two-dimensional electronic states. (c) Conventions for labelling the Brillouin zones
of iron-based superconductors. The range of in-plane momentum transfer Q‖ accessible
at the Fe L3 edge is indicated as a gray circle. (d) The corresponding definition of unit
cells in real space square iron lattice.
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When exposed to air, FeSe crystals quickly tarnish. Before the RIXS measurement, a
surface layer was therefore stripped from the sample using adhesive tape. This revealed
a clean, mirror-like surface. The sample was then immediately transferred to the UHV
tank. Inside this sample chamber, the copper sample carrier is mounted on a four circle
goniometer, which is connected to the cold finger of a helium flow cryostat via copper
braids. Throughout the experiment, the temperature of this sample stage was held at the
base temperature of 21K. The sample holder also is also connected to an ampere meter
which allows to measure the drain current or total electron yield (TEY) during irradiation.
This quantity is usually proportional to the x-ray fluorescence (or absorption) of the
sample surface. The beam size at the sample position is 4×60 µm2.

Due to the thermal expansion of the liquid-nitrogen-cooled CCD detector, the position
of the image on the chip drifted over time. I therefore collected the data in short cycles
of 2.5–5 minutes. Tens of such short scans comprising one RIXS spectrum are then
calibrated and centred with respect to each other using the quasielastic line as reference.
The amount of thermal drift within the minimal exposure time that is required to obtain
adequate counting statistics on the quasielastic line is an additional limiting factor to the
energy resolution of the experiment.

Soft x-rays are on the border of what can be considered a probe of the bulk of the sample.
With the incident x-ray energy tuned to the Fe L3 edge (Ei = 706.8eV, λ = 17.54Å), the
penetration depth into FeSe is on the order of ≈ 200nm. The scattering triangle of the
present experiment is drawn in Figure 3.9 (c), which corresponds to a top-view of the
instrument. Since the magnetic fluctuations are assumed to be purely two dimensional,
the momentum transfer perpendicular to the sample (parallel to the c axis) is neglected.
Instead, only the in-plane momentum transfer Q‖ is considered. The range of Q‖ is
limited by the fixed incident energy, the maximum scattering angles (here, 2θmax = 150º),
and the minimum grazing angle δ . The accessible regime is marked as a grey circle in
Fig. 3.9(c).

I aligned the crystal using the specular (001) reflection, which was only accessible by
increasing the incident energy to 1.7 keV. Since no other Bragg reflection is accessible as
a second reference, I aligned the azimuth of the sample by half-cutting the beam with
one edge of the quadratic platelet (which is parallel to a 〈100〉 direction of the tetragonal
cell).

3.3.3 Results

I collected RIXS spectra up to energy-transfers of ≈ 3.5 eV for a number of momentum
transfers Q‖ along the (100) and (110) crystallographic directions. As an example, the
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Figure 3.10: Example of a β -FeSe L3 RIXS spectrum, recorded at Q‖ = 0. The top panel
shows the summed and calibrated data measured over a total of eight hours. The fit of
the sloping fluorescent background and quasielastic line is drawn as a red line (fitted
data indicated by thick black markers). The lower panel shows a magnified view of the
difference signal, fitted by several Gaussian contributions as detailed below in Figs. 3.12
and 3.13.

RIXS spectrum at Q‖ = 0, collected over a total of eight hours, is shown in Figure 3.10.
Apart from the atomic-like excitations of interest (below E ≤ 400 meV), each spectrum
contains a quasielastic peak and is dominated by the fluorescent background due to exci-
tations of the continuum of itinerant states.

In experiments with previous generation soft RIXS spectrometers, it had already been
observed that the Fe L3 RIXS spectra of iron based superconductors are generally dom-
inated by this broad feature, peaked at several eV energy transfer [50]. This is due to
the tetrahedral environment of the Fe ions, which allows a hybridization of Fe 3d states
with empty 4p bands [395]. By contrast, such excitations are not observed in Cu L3 RIXS
studies of cuprate superconductors, where the 3d states are octahedrally coordinated
and remain more localized [392]. The detailed shape of this resonant x-ray fluorescence
has been studied in the related system Fe1.087Te [396]. Here, it was established that
the fluorescent slope at low energy transfers and its decay (up to energy transfers of
≈ 10eV) may yield characteristic information about the low temperature Fermi liquid
state of metallic samples.

In the present context, continuum electronic excitations are not of direct interest, but
only add to a background signal which partly obscures the spin-flip excitations. As a
minimal phenomenological model for the fluorescent background and quasielastic scat-
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Figure 3.11: Deterioration of the sample surface by x-ray irradiation. (a) TEY spectra
at the beginning of the experiment and after several hours of irradiation. (b) (adapted
from [397]) L-edge electron energy-loss near-edge spectra for various mixed-valent min-
erals, which illustrate the evolution from the Fe2+ to the Fe3+ oxidation state.

tering, I fitted and subtracted the following function from the RIXS spectra, as indicated
by the red line in Figure 3.10 (upper panel):

I(h̄ω) = c1 + c2 · (1/2)(2 h̄ω/α1)
2
+
(

c3 + c4 · (e−α2∗h̄ω −1)
)
· 1

eh̄ω/α3 +1
(3.7)

This contains a constant background, a Gaussian peak centred at h̄ω = 0, a stretched
exponential decay function and an intensity cutoff at h̄ω = 0 (ci are scale constants and
αi determine the slope of the background and the widths of the Gaussian and cutoff).
To ensure a fit to the relevant part of the spectral weight I excluded the regime with
relevant atomic-like excitations from the fit (from −300 to −10meV). The FWHM of
the fitted Gaussian peak was not constrained to the intrinsic width of elastic reference
measurements. Therefore, the remaining difference signal does not represent the full
excitation spectrum but may be overcompensated for low-energy excitations adding to
the quasielastic line. This applies in particular to those data obtained at a scattering
angle 2θ = 90: Given the polarization factor of Eq. 2.48), Thomson scattering vanishes
in this setting — yet the spectra feature a sizeable Gaussian peak at h̄ω = 0. Moving
the detector arm away from the 2θ = 90 condition in small steps revealed that this low
energy inelastic intensity is indeed centred at the position of the then emerging elastic
line.

The difference spectra thus obtained are summarized in Fig. 3.12 for momentum trans-
fers along the (π,π) direction in the one-Fe lattice and in Fig. 3.13 for the (π,0) direction.
In all cases, residual RIXS intensity is observed up to energies of ≈ 300meV. Moreover,
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the spectra show significant structure and show some weak dispersive trends. To quan-
tify these effects, I fitted the data with three Gaussian peaks, indicated as red, blue and
green lines. The dispersion of these features is indicated in panels (f) of Figs. 3.12 and
3.13 in the corresponding colours.

As an important caveat, the details of these difference spectra shown here are correlated
to the choice and fit of the background function, Eq. 3.7. The energy-calibration and
alignment of individual spectra can act as an additional source of small systematic er-
rors (varying approaches of calibration and alignment however do not shift or broaden
the composite spectra by more than a few meV). Overall, this implies some limit on
the amount of information that can reasonably be interpreted into the difference spec-
tra. Nevertheless, the presence of additional spectral weight in the energy-range up to
300meV and a weak dispersive trend of this signal are features that are relatively inde-
pendent of any assumptions made in the processing of the raw data.

An additional source of uncertainty comes from possible irradiation damage to the sam-
ple. Even though the experiment was performed under UHV conditions and at ≈ 20K,
the chemical reactivity of FeSe proved to be an issue in RIXS. All data were obtained
at an incident energy of 707eV, which is slightly above the Fe L3 edge. Incident-energy
scans of the total electron yield (TEY) over this absorption edge changed to over time
with beam irradiation. As shown in Fig. 3.11, the spectrum of the pristine sample surface
is peaked at a 707 meV. After few minutes of irradiation, a hump at ≈709 meV begins to
gain in in spectral weight and the overall electron yield increases. After several hours of
irradiation, the feature at ≈709meV saturates. I confirmed that the same characteristics
were also observed in the x-ray absorption spectrum, which suggests that it is not merely
a surface effect. Moving the beam to a different position on the sample surface readily
restored the original features.

The iron L3 absorption edge characteristics of fluorides, oxides and covalent compounds
have recently been reviewed by Miedema et al. [398]. Across various compounds, it
is seen that the second peak (2meV above the first L3 edge peak) is a general feature
of the Fe3+ oxidation state. The variation of electron energy loss spectroscopy (EELS)
characteristics between minerals of varying Fe3+ / Fe2+ proportion has been studied by
van Aken et al. [397] (reproduced in Figure 3.12(b)). This implies that some of the
sample volume probed in this experiment may have been altered by the beam, possibly
locally forming an Fe3+ compound such as Fe2O3 or Fe2Se3.

These observations call into question the validity of the present results, as some of the
extracted signal presented in Figs. 3.12 and 3.13 could arise from near-surface electronic
states which are altered during the measurement. Additional test measurements were
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Figure 3.12: (a-e) Background-subtracted β -FeSe L3 RIXS spectra for momentum trans-
fers along the (π,π) direction (black markers). A phenomenological fit by three Gaussian
peaks is indicated by red, green and blue lines. (f) The energy of and widths at half-
maximum of these contributions, indicated in corresponding colours. The inset shows a
map of the (HK0) plane of reciprocal space with markers et the momenta Q‖ measured
here.
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Figure 3.13: Background-subtracted β -FeSe L3 RIXS spectra for momentum transfers
along the (π,0) presented as in Fig. 3.12.
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therefore performed in a second experimental session6, using a different crystallite. In
this follow-up experiment, the beam position was moved in steps along a straight tra-
jectory on the sample surface after every 10 minutes of irradiation. Due to the minute
vertical beam dimension (≈ 4 µm), this is feasible even for small sample dimensions.
TEY spectra recorded every 10 minutes did not show indications of deterioration. This
confirms that Fe2+ states were probed throughout this second experiment.

Such reference measurements were obtained for Q‖ =0, 0.18 and 0.35 (π,π). In these
spectra, the dispersive feature around 150meV, with a broad tail up to ≈ 300meV was
well reproduced. On the other hand, the low energy contributions peaked around
40–50 meV (marked by red lines in Figs. 3.12 and 3.13) are absent in the revised spec-
tra. The clear separation of these contributions suggest that the higher-energy features
(marked by blue and green lines) are intrinsic to pristine FeSe.

3.3.4 Discussion

Soft RIXS studies of cuprates are already well established, as recently reviewed by Dean
[394]. By contrast, only a few such experiments have been reported for iron based su-
perconductors (IBSCs) [50, 396, 399, 395]. Due to the lower resolution (≈200–700 meV
FWHM) of the previous generation of spectrometers, these studies focused on eV-scale
excitations, such as dd [50] transitions and the fluorescence peak [396]. Previous exper-
iments avoided the complications of soft-xrays by studying the Fe K edge (≈ 7keV)[399,
395] or “suppressed” the fluorescence background by choosing the least itinerant IB-
SCs [395]. In terms of high-resolution Fe L3 RIXS, only one study, of the (Ba,K)Fe2As2

system, has been reported, by Zhou et al. [400].

The experiment by Zhou et al. had been performed on a similar spectrometer, with a
slightly inferior energy resolution (≈80 meV FWHM) [400]. Both the parent BaFe2As2

and the “optimally doped” (40% K doping, Tc = 39K) compound were investigated. All
key features of these results, reproduced in Fig. 3.14, resemble the present results on
FeSe. The subtraction of background and quasielastic line leaves a broad peak around
150–200 meV with a tail extending up to 300 meV. As in FeSe, the features weakly dis-
perse towards higher energies as Q‖ increases. The magnetic RIXS response of BaFe2As2

shown in Fig. 3.14 just appears to be stronger and better defined than in the present
dataset, as expected for a more localized system with static magnetic order.

The modelling of RIXS spectra is presently a theoretical challenge, and it is not straight-
forward to distinguish between a range of possible energy transfer mechanisms. For
example, spectral weight in the present energy range of interest may also be due to tran-

6Courtesy of Dr. Kurt Kummer, ESRF
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Figure 3.14: High resolution Fe L3 RIXS spectra recorded in the low-temperature, mag-
netically ordered phase of the “122” parent compound BaFe2As2 (see Section 1.1), as
reported by Zhou et al. [400]. The data closely resemble the present results on FeSe.

sitions between d-electron levels (“dd excitations”) [50], as well as to higher harmonics
of phonon scattering [303]. Zhou et al. confirmed the magnetic origin of this signal by
its weakening above TN and by direct comparison to the dispersion obtained from sin-
gle crystal neutron spectroscopy (see Fig. 3.14, bottom panel). As FeSe does not order
magnetically and high quality single crystal neutron data is not available for this range
of momentum transfer, neither is possible in the present case.

In summary, the data presented in Figs. 3.12 and 3.13 is likely to describe dispers-
ing high-energy paramagnon fluctuations. The observed line-width of these excitations
(>100 meV) is much broader than the instrumental resolution, consistent with diffuse
excitations in a broad Stoner continuum. Although the signal obtained from FeSe is much
weaker, the resemblance with the results obtained in the magnetically ordered phase of
the 122 parent compound BaFe2As2 is striking. Even though no static order is found
in its magnetic phase diagram, the ground state of FeSe appears to feature short-range
spin correlations of a similar bandwidth as in the more “conventional” arsenide family of
IBSCs.
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3.4 Conclusion

In the neutron part of this study, I established that the collective spin fluctuations in FeSe
share many similarities with those in the high-Tc Fe arsenide superconductors, including
a very steep dispersion and a low frequency response that is strongest at or very close to
the square lattice wave vector (π,0). I found no direct evidence for competing magnetic
orders, although the highly anisotropic spin-wave velocity implies a greater tendency for
transverse spin fluctuations.

Since the publication of these results [381], three single crystal INS studies have been
reported [368, 401, 402]. To achieve a measurable magnetic response, up to 700 crys-
tallites, equivalent to the sample used in my RIXS study, were co-aligned for these exper-
iments [402]. With incident energies between 8 meV [368] and 475 meV [402], these
studies complement the energy range of my powder experiment. Notably, the single
crystal data confirm all information that I inferred from the powder data. This includes
(1) the wave vector of the low energy spin fluctuations, qqqm = (π,0), (2) the anisotropy of
the magnetic dispersion, (3) the fact that the strength of the dynamic magnetic suscepti-
bility of FeSe is of similar magnitude as in iron arsenide superconductors, and (4) the ab-
sence of significant renormalization of the dynamic magnetic susceptibility at the struc-
tural transition at Ts = 90 K.

One key additional insight gained from single crystals comes from the high-energy study
by Wang et al. [401]. While the stripe-type (π,0) fluctuations are dominant in this data,
weak additional low-energy features centred at (π,π) were observed at high tempera-
tures T > Ts (see Fig. 3.15). This may indicate a competition between stripe- and Néel
type correlations. The orthorhombic distortion at Ts may then play the role of favouring
the stripe-like fluctuations (which also break C4 symmetry). To confirm the relevance
of the weak (π,π) instability to the superconducting mechanism, it would be of great
interest to perform similar studies of samples that have been tuned to higher Tc, e.g. by
application of pressure, or electron doping.

Secondly, by use of a high-flux triple-axis neutron spectrometer and a small incident
energy of 8 meV, the same authors were able to distinguish a neutron magnetic resonance
peak in the superconducting phase of FeSe [368]. This manifested as a re-distribution
of low-energy (π,0) spectral weight to a resonance peak centred at 4meV ≈ 5.3kBTc. As
discussed in Section 1.1.4, this feature is associated with sign-changing s± symmetry
of the superconducting gap function and is seen as strong evidence for spin-fluctuation
mediated Cooper pairing.

If spin fluctuations are important for the pairing mechanism in IBSCs, then my results
have shown that the ingredients for high-Tc are present in FeSe, and something other
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Figure 3.15: Results of the high energy single crystal neutron inelastic study of FeSe
reported by Wang et al. [401]. The data confirm the steep dispersion inferred from
my study of a polycrystalline sample. The energy-distribution of the dynamic magnetic
susceptibility is reminiscent of the anomalous spectral weight observed in my RIXS ex-
periment. Momenta are here stated in the 2-Fe unit cell, i.e. (1,0) corresponds to (π,0)
in the notation used in this thesis.

than conventional magnetic dipole fluctuations must compete with superconductivity.
Several different nematic degrees of freedom that could suppress superconductivity have
been discussed recently [74, 364, 365, 403, 367, 368, 369, 370], and experiments to
search for possible orbital and spin nematic order parameters compatible with (π,0) spin
fluctuations will be an important next step.

The resonant x-ray data presented in this chapter marks the first time that RIXS has been
able to resolve spin-flip excitations of such itinerant states as in the iron chalcogenides.
This is encouraging, but also illustrates the limits of current experimental possibilities.
The extreme counting times (≈ 8h) needed to obtain the present spectra imply that
in-depth RIXS studies of metallic correlated states are only beginning to be feasible.
For example, higher count rates would have allowed me to infer information from the
detailed line-shape of the excitations and to investigate their temperature- and incident-
energy–dependence.

The present studies may thus create the impression that INS is the superior technique. By
choice of low incident energies, INS can achieve sub-meV resolution and its momentum
transfer is not constrained by fixed resonant energies. Moreover, successful studies of co-
aligned crystallites suggest that the issue of sample dimensions can be avoided. However,
it must be taken into account that this is only possible in favourable cases and under
considerable experimental effort. It is easily underestimated that, relative to the probed
sample volume, RIXS is actually ≈ 1011 times more sensitive to magnetism [394].
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Most importantly, the complexity of the resonant exchange scattering cross section (see
Section 2.4.4) harbours potential which is not being fully realized in current experi-
ments. For example, very few RIXS studies have yet exploited the polarization analysis
of the scattered beam [340]. The record RIXS photon count and energy resolution will
already increase as new beamlines are being commissioned within the next year [394].
Nevertheless, even with significant instrumental and theoretical advances expected for
the coming decade, RIXS is unlikely to become an alternative to neutron scattering —
instead its merit will be to probe qualitatively new information encoded in the energy,
orbital and momentum dependence of electronic and magnetic excitations.
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Chapter 4

Spin dispersion in the anisotropic Dirac
semimetals AMnBi2 (A=Ca,Sr)

In this chapter I present a triple-axis inelastic neutron scattering study of the anisotropic
Dirac semimetals SrMnBi2 and CaMnBi2, as also reported in Physical Review B 95,
134405 (2017). The AMnBi2 system attracts special interest because it features topo-
logically protected band crossings, as well as electronic correlations. The antiferromag-
netism (AFM) and Dirac fermions in these materials are highly two-dimensional and oc-
cur in distinct layers. Nevertheless, previous studies had indicated that the Dirac states
may play a special role in mediating additional exchange interactions between the mag-
netically ordered layers [404].

By mapping the complete magnon dispersion in these two materials I was able to de-
termine all relevant magnetic exchange interactions within small error margins. I found
no evidence for anomalies due to coupling between magnetism and Dirac physics. No-
tably, these results call into question the interpretation of a recent Raman scattering
study [405]. I show that INS is a more direct probe of magnetism and likely rules out
the relevance of the present compounds in the search for magnetically tuned Dirac trans-
port. Instead, I point to recent discoveries of closely related materials which may hold
more promise in this regard [406].

Structurally, the AMnBi2 class of ternary bismuthides bears close resemblance to iron
based superconductors (IBSCs). It is therefore interesting to compare the ground states
arising from corresponding square layers of Fe2+ and Mn2+ ions. The present chapter
thus connects the topics of unconventional superconductivity (see Chapters 1.1 and 3)
and Dirac physics (see Chapters 1.2 and 5).
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4.1 Introduction

There is presently an intense interest in materials which combine topologically non-
trivial electronic states with electronic correlations. As reviewed in Section 1.2, Dirac
fermions in condensed matter were originally discovered in graphene [147], which
then led to proposals and realizations of 3D topological insulators [202, 407] and Weyl
semimetals [408, 232]. The two-spinor character of Dirac states in such materials orig-
inates from structural symmetries and the effects of spin orbit coupling. Although the
number of known Dirac materials is constantly growing [409], none of these novel elec-
tronic phases feature strong interactions between electrons. For example, there has so far
been no report of materials where Dirac fermions couple to magnetic correlations. The
search for such compounds is motivated by the prospect of being able to use external
fields as a handle on charge transport in future “Dirac-electronic devices”.

The current interest in AMnBi2 ternary bismuthides is mainly due to the Dirac points
in their electronic dispersion. Nevertheless, it is relevant to note that these materials
were re-discovered in the search for novel high-temperature superconductors. As parent
compounds of high-temperature superconductors, the “122” class of iron arsenides such
as SrFe2As2 and BaFe2As2 belong to the most-researched compounds of the last decade.
Shortly after the original discovery of iron-based superconductivity in 2008 [32], a com-
putational study by Shim et al. suggested that, apart from the known “122” iron based
superconductors, a family of related “112” compounds should also be chemically sta-
ble [412].

It was predicted that compounds of either stoichiometry would share the tetragonal sym-
metry and the basic structural motif of layers of edge-sharing transition-metal–pnictide
tetrahedra (see Fig. 4.1). In both 122 and 112 materials, these antifluorite layers would
be spaced by insulating “blocking layers” acting as charge reservoirs (see Fig. 4.1). Spe-
cial interest in the hypothetical 112 superconductors was due to additional metallic pnic-
togen layers. This would have allowed to study the interaction of superconductivity with
additional itinerant states.

Although efforts to synthesize the computationally predicted BaFeAs2 compound have
not been successful to date, they led to the re-discovery of the ternary bismuthides
AMnBi2 (A = Ca, Sr) [413, 414, 410]. The transition-metal–pnictide layers in these
compounds indeed form the same basic structural motif as in IBSCs (compare Figs. 4.1
and 1.1). In analogy to the Fe2+ (3d6) state in IBSCs, the Mn2+ (3d5) ions in these MnBi
layers strongly interact. As discussed below, the resulting ground state is however dif-
ferent, and overall the correlations are stronger. This leads to antiferromagnetic order
below TN ≈ 260–290 K.
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Figure 4.1: (adapted from [410, 411]). Crystal structures of ternary transition metal
pnictides. The “122” family of iron based superconductors (space group I4/mmm)
and the two compounds investigated in this project, CaMnBi2 (P4/nmm) and SrMnBi2
(I4/mmm), share the same structural motif of transition-metal–pnictide antifluorite lay-
ers. The structures of the Ca and Sr compounds differ only by the symmetry element in
the Bi layer (a glide plane and a mirror plane, respectively). This effectively doubles the
unit cell in the case of SrMnBi2.

The key difference from IBSCs lies in the additional square pnictogen layers. The two
compounds CaMnBi2 and SrMnBi2 differ only by the symmetry element in the Bi layer (a
glide plane and a mirror plane, respectively). This effectively doubles the unit cell (along
the c axis) in the case of SrMnBi2. In both materials, the staggering of cations in the
adjacent layers leads to a doubling of the unit cell (relative to the one-Bi lattice) along the
a and b axes. Several first principles band calculations realized that the corresponding
back-folding of the bismuth 2px and 2py bands entails linear band crossings close to
the Fermi surface [415, 411] (see Fig. 4.2 a,b). A little later, direct evidence of these
Dirac-points along the (110) direction in reciprocal space was found by angle-resolved
photoemission spectroscopy (ARPES), see Fig. 4.2 c–f [415, 416].

The Dirac dispersion in these materials has the unprecedented property of being highly
anisotropic: The Fermi velocity varies by up to an order of magnitude, depending on the
direction of the charge transport (parallel or perpendicular to the 〈110〉 or “Γ–M” direc-
tion of reciprocal space). In view of potential technological applications, there had previ-
ously been efforts to engineer such a situation, e.g. by inducing strain in graphene [417].
In the present case, the Dirac anisotropy occurs naturally, due to a weak hybridization of
Bi states with their environment (i.e. with the adjacent A cation layers).

Notably, it was found that, as these materials order magnetically, the Mn bands are spin-
split away from the Fermi level. In effect, the density of states (DOS) at the Fermi surface
is then dominated by the strongly spin-orbit-coupled square Bi planes. The macroscopic
properties therefore share the unusual transport characteristics of graphene or topologi-
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cal insulators [178, 181, 179, 409]: Due to the suppression of backscattering processes,
the electronic and thermal conductivities are enhanced, and the large separation of Lan-
dau levels produces a large linear magnetoresistance.

Figure 4.2: (adapted from [411, 416]). (a) Highly anisotropic linear band crossing at the
Fermi surface as predicted from first principles calculations. (b) In the ordered magnetic
state, the calculated electronic density of states at the Fermi surface is dominated by
the 6px,y states of the square Bi layers (case of CaMnBi2 shown). (c,e) Experimental
Fermi surfaces and (d,f) energy–momentum-space slices of the electronic dispersion of
CaMnBi2 and SrMnBi2 measured by angle-resolved photoemission spectroscopy.

To determine whether the magnetic moments of Mn ions may couple to this behaviour,
Guo et al. characterized the magnetic order in the adjacent MnBi layers [404]. By neu-
tron diffraction of powder and single-crystalline samples, the authors showed that below
T Sr

N ≈ 290K and T Ca
N ≈ 265K, the Mn2+ (3d5, S = 5/2) magnetic moments align parallel to

the c axis and form AFM structures with an ordered moment of ≈ 3.7µB [404]. The two
compounds were found to differ in the sign of their interlayer coupling, which results in
ferro- and antiferromagnetic stacking of Néel-ordered layers in CaMnBi2 and SrMnBi2,
respectively [404].
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Figure 4.3: Magnetic properties of CaMnBi2 and SrMnBi2. (a) Néel-type (“checker-
board”) magnetic structures of the two compounds, as determined by neutron diffrac-
tion in [404]. The compounds differ in the (anti-)ferromagnetic stacking of the spins
along the c axis. (b) Magnetic susceptibility of the samples used in my neutron study. A
weak splitting of the data obtained under zero-field-cooled (ZFC) vs. field-cooled (FC)
condition reveals the onset of magnetic order at the indicated Néel temperatures.

An interpretation based on first-principles calculations suggests that in the ferromagne-
tically stacked case (CaMnBi2), the Dirac bands may provide an itinerant interlayer ex-
change path and thus directly couple to the magnetic ground state [404]. In particular,
this exchange path would be allowed by the non-symmorphic (i.e., glide plane) symme-
try of the Bi layers in the Ca compound (which corresponds to the “crossed” orientation
of the adjacent cations illustrated in Fig. 4.3(a)). This appeared to be supported by a
weak resistivity anomaly observed at TN in CaMnBi2, but not in SrMnBi2 [404]. Earlier
transport studies, however, had not registered such an anomaly in either SrMnBi2 [410]
or CaMnBi2 [418, 419].

In metallic magnets, a coupling between the ordered magnetic moments and conduc-
tion electron states can reveal itself in the magnetic excitation spectrum. For example,
there can be damping due to spin-wave decay into the Stoner continuum, anomalies in
the magnon dispersion due to modifications of the exchange interactions by conduction
electron states, or a gap could form due to an additional Kondo energy scale.

In the following sections I report a single-crystal inelastic neutron scattering (INS) study
of SrMnBi2 and CaMnBi2 in the magnetically ordered state. My analysis shows that the
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magnon spectrum in both materials can be accurately reproduced from a Heisenberg
model describing a local-moment, quasi-two-dimensional (2D) antiferromagnet. The
model includes nearest- and next-nearest-neighbour in-plane exchange interactions and
a weak interlayer exchange interaction, together with an easy-axis anisotropy. I did not
find any anomalies that would suggest significant coupling between the magnons and
conduction electron states. The interlayer coupling is smaller than found in the reference
compound BaMn2Bi2, consistent with the larger separation of the Mn spins along the c
axis in AMnBi2.

4.2 Characterization

The single crystals of CaMnBi2 and SrMnBi2 were prepared by my collaborators Youguo
Shi1 and Yanfeng Guo2, as previously reported [404]. Polycrystalline AMnBi2 was first
synthesized by solid-state reaction of the elements. Single crystals of several grams were
then grown from self-flux in an alumina crucible. Electron-probe microanalysis con-
firmed near-ideal stoichiometry, with a small (≈ 2%) Bi deficiency in the Sr compound
(for details, see Ref. [404]). Laboratory x-ray-diffraction measurements confirmed the
originally reported tetragonal crystal structures [413, 414], with space groups I4/mmm
(SrMnBi2) and P4/nmm (CaMnBi2) (see Fig. 4.3).

To check for consistency with previous studies, I measured the thermal variation of the
magnetic properties of the batch of samples that I investigated by INS (see Fig. 4.3(b,c)).
I first aligned these single crystals on a four-circle x-ray diffractometer (Mo Kα radia-
tion). I then measured the magnetic susceptibility using a SQUID magnetometer (see
Section 2.1), with a magnetic field of 1T applied either in-plane or out-of-plane. The
key characteristics (Fig. 4.3(b,c)) are qualitatively consistent with earlier results [404].
The samples used in my experiments have a larger Curie contribution, which may be
attributed to paramagnetic impurities induced by sample decay. Since the magnon dis-
persion is a coherent response of the main crystal phase, such impurities are not of
relevance to inelastic neutron scattering, apart from a possible small contribution to the
diffuse background scattering.

1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of
Sciences, Beijing 100190, China

2School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China and
CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050, China
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4.3 Inelastic neutron scattering at IN8 (ILL)

I performed the neutron inelastic measurements at the Institut Laue–Langevin on the
triple-axis neutron spectrometer IN8 [420], using the FlatCone detector array [421].
This scattering geometry is illustrated in Figs. 4.5 and 4.6 (in real and reciprocal space,
respectively). By keeping the outgoing energy fixed and recording rocking scans at vari-
ous incident energies, this setup allows an efficient collection of constant energy-transfer
maps covering a wide range of reciprocal space.

The FlatCone array of analyzer crystals and helium tube detectors consists of 31 chan-
nels spaced by 2.5º, thus covering a 75º range of scattering angle 2θ . Throughout the
study, the FlatCone was used with its Si (111) analyzer crystals selecting a fixed outgoing
wave vector of k f = 3 Å−1 (E f = 18.6meV). For energy transfers below and above 40meV
(Ei =58.6 meV), the double-focusing Si (111) and pyrolitic graphite (002) monochroma-
tors were used, respectively.

In four separate experiments, I investigated the scattering from the SrMnBi2 and CaMnBi2
single crystals (of mass 3.3 and 1.6g, respectively) in the (HK0) (ab orientation) and
(H0L) (ac orientation) scattering planes3. The samples were mounted in a standard
top-loading liquid helium cryostat. I recorded all spectra at a sample temperature of
approximately 5K.

Figure 4.4: Temperature dependence of the intensity difference I(T )− I(315K) at se-
lected wave vectors (see legend), recorded while cooling (a) SrMnBi2 and (b) CaMnBi2.
Power law fits to the Bragg intensities yield transition temperatures of T Sr

N = 287(5)K
and T Ca

N = 264(2)K. Above TN, incipient in-plane correlations contribute diffuse rods of
magnetic scattering along (10L). These fluctuations are enhanced towards TN (critical
scattering) and then freeze out with the onset of inter-plane order (blue symbols). The
decrease in intensity of the (100) reflection of CaMnBi2 below 200K is not consistent
with previous data and should be disregarded (see main text).

3Throughout this section, I give wave vectors in reciprocal lattice units (r.l.u.)
Q = (H,K,L)≡ (H ×2π/a,K ×2π/b,L×2π/c)
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Figure 4.5: Illustration of the triple-axis inelastic neutron scattering technique using
the FlatCone detector at instrument IN8 (Institut Laue-Langevin). The outgoing neutron
energy is fixed by the setting of 31 Si (111) analyzer crystals inside the FlatCone assem-
bly. The energy transfer to the sample is controlled by the monochromator angle. The
detector bank is then positioned to cover a range of suitable scattering angles.

Figure 4.6: Reciprocal space view of Figure 4.5, illustrated on a raw dataset in the (H0L)
plane of SrMnBi2. (HKL) coordinates are indicated by a dashed grid. The FlatCone de-
tector bank corresponds to an arc of 31 measurement points in reciprocal space. Two
scans, with an offset of half the detector spacing (∆2θ = 1.25º), are combined to effec-
tively double this number of pixels. In a rocking scan, a wide ring-section of momentum
space is traced out, which covers several Brillouin zones.

103



4.4 Results and analysis

While cooling the samples in the ac orientation, I tracked the intensities at selected posi-
tions in the (H0L) plane of reciprocal space. Figure 4.4 shows the resulting temperature
dependences for SrMnBi2 and CaMnBi2. This includes the magnetic Bragg contribution
at (101) and (103) (for Sr) and (100) (for Ca), as well as the diffuse magnetic scattering
at another position along the (10L) direction away from the Bragg condition. The data,
here represented as the change in intensity relative to the paramagnetic phase, demon-
strate the order-parameter characteristics of magnetic Bragg scattering at the antiferro-
magnetic transitions. I note that the decrease of the CaMnBi2 (100) magnetic scattering
below 200K is not consistent with the previous powder neutron-diffraction data [404],
which could be due to a shift of the peak between two detector channels as the crystal
contracted.

Above the ordering temperature, incipient in-plane magnetic correlations form diffuse
rods of magnetic scattering along the c direction of reciprocal space, which is seen
at those (10L) positions where Bragg scattering is extinct. When cooling towards TN,
this diffuse scattering initially intensifies and then subsides when the weaker inter-
layer correlations set in and neutron spectral weight is confined to the Bragg peaks.
Fits of a power law to the thermal variation of the (101) (Sr) and (100) (Ca) peaks
yield Néel temperatures of T Sr

N = 287(5)K and TCa
N = 264(2)K. These values are con-

sistent with previous single-crystal bulk measurements of transport and ARPES sam-
ples [410, 415, 419, 418], but differ slightly from the values found in the earlier neutron
powder diffraction study [404]. This difference is likely due to small structural or com-
positional variations among the samples.

The critical exponents β Sr = 0.15(3) and β Ca = 0.11(2) obtained from the power-law fit
are much smaller than the value β = 0.365 of the three-dimensional Heisenberg model.
This indicates the reduced dimensionality of the magnetism in these systems. Due to
the additional bismuth layers in the unit cells, the magnetism is more two-dimensional
in AMnBi2 than in the related (122) manganese arsenide BaMn2As2, β = 0.35(2) [68].
Instead, the interlayer correlations compare well to the parent compounds of (122)
iron-based superconductors, e.g. β = 0.098(1) for SrFe2As2 [422] and β = 0.125 for
BaFe2As2 [423].

The measured neutron spectra are summarized in Figure 4.7. Due to the periodicity of
the antiferromagnetic order, the magnetic zone centres are located at (HKL) positions
with (H +K) and L both odd integers for SrMnBi2, and at positions with (H +K) odd
and L any integer for CaMnBi2. For both compounds, the spectra reveal a well-defined
magnon dispersion above spin gaps of approximately 10 meV (Sr) and 8 meV (Ca). The
magnons are highly dispersive parallel to the layers, but only weakly dispersive perpen-
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Figure 4.7: Magnon spectrum of SrMnBi2 (top) and CaMnBi2 (bottom) in the (H0L)
(left) and (HK0) (right) planes in reciprocal space. The data are illustrated by a stacking
plot of constant-energy slices (left panels), and the best-fit spin-wave model is repre-
sented by the corresponding dispersion surface (right panels).
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dicular to the layers. For both samples, the magnon bandwidth is around 50meV for
spin waves propagating in the (HK0) plane and 3–4 meV along (10L). Figures 4.8(a,b)
represent more quantitatively the magnon dispersion in the (HK0) plane as obtained
from Gaussian fits to constant-energy cuts, and the left-hand panels of Figs. 4.8(c,d) il-
lustrate the out-of-plane dispersion by energy-wave-vector slices of the data along the
(10L) direction.

To obtain quantitative information on the magnetic couplings, I have compared the data
with the linear spin-wave spectrum calculated from an effective spin Hamiltonian that
includes a Heisenberg coupling term and an Ising-like single- ion anisotropy:

Ĥ = ∑
〈i, j〉

Ji j Ŝi · Ŝ j − ∑
i

D(Ŝz
i )

2 . (4.1)

Here I include nearest-neighbour (J1) and next-nearest-neighbour (J2) exchange con-
stants, an interlayer exchange interaction Jc , and the anisotropy constant D. The ex-
change paths are shown in Fig. 4.3(a). In Appendix B, I outline how the magnon dis-
persion can be derived from this Hamiltonian by linear spin wave theory. By use of the
Holstein-Primakoff transformation of two interacting Bose fields, which correspond to
the two collinear antiferromagnetic sublattices, one obtains the relation

E(Q) =
√

A(Q)2 −B(Q)2 (4.2)

where Q is the magnon wavevector,

A(Q) = S [JAF(0)−JF(0)+JF(Q)+2D ]

B(Q) = S JAF(Q)

and
J(Q) = ∑

n
Jn e2πi Q·rn (4.3)

are Fourier transforms of the exchange interactions. The subscripts F and AF refer to
summation over ferromagnetically and antiferromagnetically aligned pairs of spins, re-
spectively. The resulting differential scattering cross section for single-magnon creation
is (see also, Eq. B.27)

dσ

dΩdω
=

kf

ki

(
γr0 g

2

)2
F(Q)2 (1+ Q̂2

z
)

N S
A(Q)−B(Q)

E(Q)

1
1− e−β h̄ω

δ (h̄ω −E(Q)) (4.4)

where h̄ω is the neutron energy transfer, kf and ki are the outgoing and incoming neutron
wave vectors, γ = 1.913, r0 is the classical electron radius, g the Landé g-factor, N the
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Figure 4.8: Fits to the magnon spectrum of SrMnBi2 and CaMnBi2. (a,b) Dispersion in
the (HK0) plane of reciprocal space. (c,d) Dispersion along (10L), comparing the inter-
polated data (left) and the model convoluted with the numerically simulated resolution
function. The analytical dispersion is indicated as a red dashed line.
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number of magnetic ions per sublattice, S the spin quantum number, and (eh̄ω/kBT −1)−1

is the boson occupation number. With the magnetic structures and exchange paths as
defined in Fig. 4.3(a), the explicit Fourier exchange terms for the case of SrMnBi2 are

JSr
AF(Q) = 2J1 [cos(π H +π K)+ cos(π H −π K)]+

+ 2Jc cos(π L)

JSr
F (Q) = 2J2 [cos(2π H)+ cos(2π K)]

and, in the case of CaMnBi2,

JCa
AF(Q) = 2J1 [cos(π H +π K)+ cos(π H −π K)]

JCa
F (Q) = 2J2 [cos(2π H)+ cos(2π K)]+ 2Jc cos(2π L).

This allows an analytical description of the spin gaps:

∆
Sr ≈ ∆

Ca ≈ 4
√

SJ1
√

SD, (4.5)

where I have applied the appropriate approximations for the present case (J1 � Jc,
J1 � D). Complete expressions for these terms and their explicit derivation are given
in Appendix B.

Similarly, the band width W of the dispersion along (10L) is given by

W Sr ≈ W Ca ≈ 4
√

SJ1

(√
SD+2 |SJc|−

√
SD
)
. (4.6)

If J1 is the dominant exchange, as is found to be the case here, then the maximum of
the in-plane dispersion is ≈ 4SJ1. Given J1 , one sees from Eqs. (4.5) and (4.6) that in
the relevant parameter regime, D and Jc are determined by the size of the gap ∆Sr/Ca

and bandwidth of the out-of-plane modulation W Sr/Ca, respectively. On the other hand,
the balance between the parameters J1 and J2 determines details of the dispersion at
higher energies in the (HK0) plane. For example, a local minimum of the dispersion
at the M point, (1

2 ,
1
2 ,0), as observed in both materials, will only occur for positive J2.

This indicates a competition (frustration) between nearest- and next-nearest-neighbour
exchange.

Thus, I found that the above model is able to reproduce very well all features in the data.
For a quantitative comparison, I folded and averaged the raw constant-energy maps of
reciprocal space into tiles of 2× 2 r.l.u.. With the data in this reduced form, I could
compare it to the model after convolution of the theoretical spectrum, Eqs. (4.4)–(4.2),
with an energy- and wave- vector-dependent broadening function to take into account
the instrumental resolution. A phenomenological Gaussian broadening of the analytical
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dispersion proved insufficient to achieve a consistent global fit to the data, particularly
for the low-energy part of the magnetic dispersion in the ac plane.

Instead, it was necessary to take into account the resolution of the triple-axis spectrome-
ter, which was calculated with the RESTRAX ray-tracing algorithm [424, 425]. My pro-
cedure to determine the parameters of the spin Hamiltonian J1, J2, Jc, and D comprised
three steps. First, a global fit of all data, using phenomenological Gaussian broadening
of the dispersion, produced rough estimates of all parameters. Using these as starting
values and fixing the in-plane exchange interactions J1 and J2, I obtained precise bounds
on the interlayer exchange Jc and anisotropy D by fitting the resolution-convoluted spec-
trum for low energies (0–20meV) to an energy–wave-vector slice with wave vector along
(10L), as illustrated in Figs. 4.8(c,d). Finally, I refined J1 and J2 by fitting the in-plane
(ab) dispersion at high energies (3–44meV) using Gaussian broadening.

4.5 Discussion

The exchange parameters for SrMnBi2 and CaMnBi2 obtained from the fits are summa-
rized in Table 4.1. Apart from the opposite sign of the interlayer exchange Jc, there are no
significant differences between the parameters of SrMnBi2 and CaMnBi2. The absolute
values of J1 and J2 are slightly larger in the case of CaMnBi2, which is consistent with the
smaller nearest-neighbour spacing (dNN). The magnitudes of Jc for the two compounds,
which are the same to within the error, are much smaller than J1 and J2. This confirms
the quasi-2D character of the magnetism in these materials. Notably, these results are
in good agreement with previous estimations based on first-principles calculations of
the electronic structure, which gave an average in-plane exchange of SJab ≈ 30meV and
|SJc| ≈ 0.3meV [404].

Regarding the magnetocrystalline anisotropy, I observe that D is enhanced by a factor
1.8 in SrMnBi2 compared with CaMnBi2. According to the initial structure determina-
tions at room temperature [413, 414], the local environment of the Mn ion is similar
in both compounds: The MnBi4 tetrahedra are elongated by ≈ 14% along c and the lig-
and distances are dCa

Mn−Bi = 2.87(1)Å and dSr
Mn−Bi = 2.89(1)Å. The significant difference

in anisotropy may therefore point to unknown structural distortions at 5K (at present,
no full refinement of crystallographic parameters at low temperatures is available). The
anisotropy is in good agreement with the result of the density functional prediction by
Guo et al. (SDCa

DFT = 0.3meV [404]), as was also the case with the exchange constants.

It is instructive to compare the present results to two available inelastic neutron scat-
tering studies of the related compounds BaMn2Bi2 [426] and BaMn2As2 [427]. The
corresponding parameters for these materials are also quoted in Table 4.1. The pnictide-
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Table 4.1: Exchange parameters, magnetocrystalline anisotropy constants and spin gaps
of SrMnBi2 and CaMnBi2 obtained from a fit of the linear spin-wave model, as described
in the text. The parameters can be related to the nearest-neighbour (dNN) and interlayer
(dc) Mn–Mn atomic spacings, the ordered magnetic moment µ, and the ordering temper-
ature TN [404]. The corresponding values for two related Mn pnictides are reproduced
below [426, 427].

SrMnBi2 CaMnBi2 BaMn2Bi2 [426] BaMn2As2 [427]
SJ1 (meV) 21.3(2) 23.4(6) 21.7(1.5) 33(3)
SJ2 (meV) 6.39(15) 7.9(5) 7.85(1.4) 9.5(1.3)
SJc (meV) 0.11(2) -0.10(5) 1.26(2) 3.0(6)
SD (meV) 0.31(2) 0.18(3) 0.87(15)∗

∆ (meV) 10.2(2) 8.3(8) 16.29(26)
dNN (Å) 3.24 3.18 3.18 2.95
dc (Å) 11.57 11.07 7.34 6.73
µ(µB) 3.75(5) 3.73(5) 3.83(4) 3.88(4)
TN (K) 290.2(3) 267.0(1.6) 387.2(4) 625(1)

∗ The value of SD for BaMn2Bi2 was misquoted in Ref. [426]. Here I give the correct value [428].

coordinated magnetic Mn2+ layers in BaMn2Bi2 and BaMn2As2 (“122 materials”) are
analogous to those in the 112 materials investigated in this thesis. On the other hand,
the I4/mmm 122 compounds do not feature additional pnictide layers (which carry the
Dirac bands in the present case). Hence, while the in-plane Mn–Mn spacing is very sim-
ilar, the spacing of the magnetic layers in the 122 compounds is only 58–66% of that
in CaMnBi2 and SrMnBi2. Both BaMn2Bi2 and BaMn2As2 form antiferromagnetically
stacked layers of Néel-type order, in analogy to SrMnBi2.

As may be expected from these circumstances, I find that the in-plane exchange interac-
tions in 122 compounds are similar or identical to those in 112 compounds. On the other
hand, in the present 112 materials the inter-plane exchange is significantly reduced. This
is consistent with the much higher transition temperatures and the smaller separation of
the Mn layers in the 122 materials compared with the 112 compounds.

I find no evidence that the additional Bi layers in 112 materials, which host the Dirac
fermions, cause any qualitative changes in the magnon spectrum, such as anomalous
broadening or dispersion. The instrument’s simulated energy resolution provides an up-
per bound on the influence of such effects. The characteristics of the Bragg (0.5–1.0meV)
and vanadium (1–4meV) widths of energy resolution are illustrated in Figure 4.9. By
contrast, neutron inelastic measurements of many iron-based superconductors, as dis-
cussed in Chapters 1.1.4 and 3, show obvious signatures of a strong hybridization of
magnetic and itinerant states.
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Figure 4.9: Simulated energy resolution of the IN8 spectrometer calculated using the
RESTRAX raytracing algorithm for the experimental conditions of the present study. Cal-
culations were performed for Si(111) monochromator and Si(111) analyzer crystals. The
energy dimension of the resolution ellipsoid is only weakly dependent on the momentum
transfer and was here sampled at an arbitrary position in reciprocal space.

A typical example is SrFe2As2 [102], which shows a crossover into the regime of itiner-
ant (Stoner) spin fluctuations. This manifests as an increased dampening of spin fluc-
tuations (i.e. a broadening of the neutron spectrum) above a characteristic energy of
approximately 80 meV.

As in the 122 compounds, both J1 and J2 are positive (antiferromagnetic) in SrMnBi2 and
CaMnBi2, resulting in frustration between nearest- and next-nearest-neighbour interac-
tions. The theoretical phase diagram of the frustrated J1–J2 model on a square lattice
has been investigated extensively in the context of iron-based superconductors [429,
430, 431]. There is special interest in this phase diagram owing to a possible quan-
tum critical point and spin-liquid phase around J2/J1 ≈ 1

2 . This regime separates two
distinct ordered magnetic phases, with Néel-type order for J2/J1 <

1
2 and stripe antiferro-

magnetic order for J2/J1 >
1
2 . Both 112 and 122 Mn-based compounds exhibit dominant

nearest-neighbour exchange, with J2/J1 ≈ 0.3. According to one study, the exchange and
anisotropy parameters for AMnBi2 place these materials close to the phase boundary be-
tween Néel-ordered and frustrated paramagnetic phases [431]. The resulting quantum
fluctuations could explain some of the observed reduction in ordered magnetic moment
('3.7 µB) compared to the ideal local-moment value of 5 µB [427]. By contrast, in par-
ent compounds of iron-based superconductors such as BaFe2As2 and SrFe2As2, J1 and J2

are of similar magnitude, resulting in stripe-antiferromagnetic order.
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4.6 Conclusion

In summary, I have performed a comprehensive triple-axis neutron-scattering study of
the anisotropic Dirac materials SrMnBi2 and CaMnBi2, with the aim of searching for pos-
sible influences of the unusual band topology at their Fermi surfaces on their magnetism.
In particular, for CaMnBi2 previous findings had indicated that the Bi 6px,y bands may
play a role in mediating the magnetic exchange between Mn layers.

In both compounds, I observed well-defined magnon spectra consistent with local-mo-
ment, semiclassical antiferromagnetism. By use of linear spin-wave theory to describe
the neutron spectra, I have identified and quantified all relevant exchange and anisotropy
parameters of a Heisenberg model for the two compounds. In both cases, all details of
the dispersion are well reproduced by the model and there is no indication of anomalous
broadening or dispersion to within experimental precision. The absolute values of the
exchange parameters indicate no substantive differences between the compounds (aside
from opposite interlayer coupling).

Figure 4.10: Magnon dispersion along the (10L) direction in SrMnBi2 (left) and CaMnBi2
(right), as shown in Figure 4.8 (c,d). The dispersion corresponding to the parameters
obtained from the Raman spectroscopy study by Zhang et al. [405] are superimposed as
a red dashed line.

After completion of this work, a Raman spectroscopic study of SrMnBi2 and CaMnBi2
was reported by Zhang et al. [405]. Raman spectroscopy probes the spin dynamics
through a small number of characteristic frequencies which are associated with van-Hove
singularities in the two-magnon density of states. The authors of Ref. [405] interpret
their data using a similar spin Hamiltonian as in this thesis chapter, but without the
magnetocrystalline anisotropy term (D in my study). Their analysis yields values for
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the spin-exchange parameters J1 and J2 that are similar to my results, but produces
anomalously large values of the interlayer exchange Jc for both materials (one order of
magnitude larger than in my study or in other related materials).

The authors of Ref. [405] suggest that this enhanced coupling is caused by the Bi Dirac
bands. I draw attention to the fact that the parameters J1, Jc, and D are strongly corre-
lated in modelling key features of the magnon dispersion (see Eqs. 4.5 and 4.6), so the
neglect of D in the Raman analysis could significantly affect the obtained values of Jc. In
Fig. 4.10, I illustrate that the Raman value of Jc would imply a stronger interlayer disper-
sion of the one-magnon spectrum than that found here directly by neutron spectroscopy,
by a factor of 11 (Sr) or 7 (Ca) (see Eq. 4.6). It seems likely, therefore, that the analysis
of the Raman spectra has produced erroneously large values for Jc.

I conclude that different routes have to be found to achieve an entanglement of mag-
netic order and nontrivial band topology. One very promising option is the substitution
of magnetic rare-earth ions on the A site, providing a more direct interaction with the rel-
evant Bi layers. In particular, a strong response of the transport properties to rare-earth
magnetic order has recently been observed in EuMnBi2 [432], along with the trademark
signatures of Dirac transport [433]. Furthermore, recent high-resolution ARPES results
and first-principles calculations identify YbMnBi2 as a type-2 Weyl semimetal and pos-
tulate canted antiferromagnetic order (see Fig. 4.11) [406]. The latter study further
suggests that this state would be tuned to a Dirac metal by spin alignment. Naturally, it
would be of great interest to perform analogous inelastic neutron studies of the magnetic
ground states in those materials.

Figure 4.11: (adapted from [406]): High resolution ARPES study of YbMnBi2, which is
structurally identical to CaMnBi2. (a) The diamond-shaped Fermi surface is reminiscent
of the materials investigated in this thesis. (b) The authors identify a Fermi arc surface
state consistent with Weyl nodes that have been predicted in this compound.
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Chapter 5

Magnetic ground state of Dirac
semimetal candidate EuCd2As2

EuCd2As2 is a magnetic semimetal with unusual transport properties. Renewed inter-
est in this material is due to the recent discovery of a bulk Dirac semimetallic state in the
related material Cd3As2 [254, 259] (see Chapter 1.2.6). The present compound features
similar networks of edge-sharing CdAs4 tetrahedra, albeit not in a three-dimensional,
but layered configuration. These Cd2As2 planes in EuCd2As2 are separated by trigonal
planes of magnetic Eu ions.

Even though preliminary first principles studies indicate the possibility of unusual linear
band crossings close to the Fermi surface of EuCd2As2, experimental evidence is still
lacking. In analogy to the preceding Chapter 4 on Mn magnetism in bismuth-based
Dirac metals, there is a special interest in the possibility of coupling Dirac fermions to the
large Eu2+ magnetic moment. The situation in EuCd2As2 is particularly encouraging as
it exhibits a strong resistivity anomaly at the magnetic ordering temperature, TN ≈ 9.5K,
as well as a large negative magnetoresistance.

Since EuCd2As2 is a strong neutron absorber, it is not feasible to investigate this mate-
rial by neutron techniques. I have therefore used hard resonant elastic x-ray scattering
(REXS) at the Eu L3 edge to determine the magnetic ground state as well as its evolution
in applied magnetic fields. Thus I demonstrate that REXS can be a complex, but power-
ful alternative to neutron diffraction. Notably, my results contradict previous models of
the magnetic state that had been inferred from bulk measurements [401]. My findings
will form the basis for an in-depth first principles search for non-trivial band-topology in
EuCd2As2.
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5.1 Introduction

EuCd2As2 was first synthesized in polycrystalline form by Artmann et al. [434], in the
search for novel pnictides with 122 stoichiometry. As in the iron based superconductors
discussed in preceding chapters, such materials often crystallize in tetragonal (I4/mma)
symmetry. By contrast, the so-called Zintl phases with a trigonal CaAl2Si2-type structure
(P3̄m1) are less common. Magnetometry of these powders revealed ferromagnetic corre-
lations (a positive Curie-Weiss temperature ΘCW = 9.3K) and a large effective magnetic
moment of 7.7 µB, close to the free-ion value of 7.94 µB expected for the divalent state
of Eu [434]. An unusual magnetic transition at low temperatures was interpreted as
a successive ferromagnetic (16 K) and then antiferromagnetic (9.5 K) ordering of these
S = 7/2, L= 0 magnetic moments in the triangular layers. In a Mössbauer study of single-
crystalline EuCd2As2 [435], a ferromagnetic phase was later ruled out and attributed to
Eu3+ impurities introduced by oxidation of previous polycrystalline samples.

The present investigation of the material was motivated by the 2014 discovery of a first
bulk Dirac semimetallic state in the material Cd3As2 [257, 259] (see Section 1.2.6). In
analogy to the investigation of AMnBi2 compounds presented in Chapter 4, it would
be of great interest to couple 3D topological transport properties of Cd3As2, such as
giant negative magnetoresistance, to magnetism [436, 256]. With this motivation, my
collaborator Dr. Youguo Shi1 synthesized the present EuCd2As2 crystals [437]. In the
characterization of these samples, an unusual resistivity anomaly was discovered, which
is associated with the magnetic phase transition. Within the ordered state, a sizeable
negative magnetoresistance effect is observed (albeit in perpendicular fields).

Preliminary first principles band structure calculations in the paramagnetic state have
indeed indicated the possibility of topologically protected linear crossings of Cd and As
bands, in proximity to the Fermi surface [438]. Although Cd3As2 features a complex
tetragonal superstructure (space group I41cd) with ordered vacancies and distortions of
the fundamental structural motif, the three-dimensional network of edge-sharing CdAs4

tetrahedra is structurally reminiscent of the corresponding Cd-As layers in EuCd2As2, as
illustrated in Fig. 5.1.

Nevertheless, there are several alternative mechanisms which could potentially explain
the observed charge transport anomalies, such as (1) the scattering of charge carriers
from magnetic fluctuations, (2) the relative shift of Fermi surface pockets, associated
with changes in the carrier density of states and mobility and also (3) a Kondo-like
mechanism in which itinerant spins become localized in the vicinity of the large local
rare earth moments [437].

1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of
Sciences, Beijing 100190, China
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Figure 5.1: Views of Cd–As networks, (a,b) parallel to the [112] planes of Cd3As2 and
(c,d) in the layers of EuCd2As2. The two materials share the structural motif of edge-
sharing CdAs4 tetrahedra. By comparison to EuCd2As2, the Cd3As2 structure is distorted
and features ordered Cd vacancies.

The key to understanding the ground state of this material and to assess a potential rel-
evance of topological anomalies in its electronic band structure is to determine its mag-
netic ordering mechanism. In fact, a neutron diffraction study had been called for [437],
but is not feasible due to the overwhelming thermal neutron absorption cross sections
of both Eu (4530 barn) and Cd (2520 barn). On the other hand, the magnetic moments
of rare earth ions are known to couple to L edge resonant dipole (2p → 5d) transitions
(see Section 2.4.4). Resonant elastic x-ray scattering (REXS) in the hard x-ray regime
(≈ 7keV) is therefore a promising alternative for magnetic structure determination in
this material.

5.2 Structural, transport and magnetic measurements

Single crystals of EuCd2As2 were prepared by my collaborators Youguo Shi2 and Yanfeng
Guo3, using the NaCl/KCl flux method previously reported by Schellenberg et al. [435].
This yields shiny metallic platelets (c axis surface normal) with dimensions up to ≈ 2mm
and ≈ 500 µm thickness.

I used Mo Kα x-ray diffraction (at room temperature / see also Section 2.1.3) to confirm
the trigonal (space group P3̄m1) crystal structure that had been originally determined

2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of
Sciences, Beijing 100190, China

3School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China and
CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050, China
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Wyck. x y z B occ. (%)
Eu 1a 0 0 0 1.08(6) 100
Cd 2d 1/3 2⁄3 0.6333(3) 1.27(7) 100
As 2d 1/3 2⁄3 0.2463(5) 1.09(7) 100

Table 5.1: Results of the refinement of integrated single crystal x-ray diffraction inten-
sities of EuCd2As2 (as illustrated in Fig. 5.2): Wyckoff sites of space group P3̄m1, atomic
positions, thermal parameters and site occupations. The observed peaks were indexed
in a trigonal cell with lattice parameters a ≈ 4.44Å and c ≈ 7.33Å.

by Artmann et al. [434], and is shown in Fig. 5.2(c,d). The dataset comprised 1077
Bragg reflections, which were indexed in the cell [a,a,c,90,90,120] with a ≈ 4.44Å and
c ≈ 7.33Å. Once this reference system has been assigned, the data can be integrated over
a margin perpendicular to selected high symmetry planes of reciprocal space, shown in
Fig. 5.2(b). In all directions, the average mosaicity was smaller than the instrumental
resolution (≈ 0.6º–0.9º), which proves the high crystalline quality of these samples.

I also performed a Rietveld refinement of the integrated Bragg intensities (FullProf algo-
rithm [382]). The best fit to the data is shown in Fig. 5.2(a). Due to the heavy elements,
absorption effects are strong and the comparison factor of equivalent reflections is high,
Rint = 14%. Nevertheless, a satisfactory refinement (RF = 3.74) was achieved. The ob-
tained atomic parameters, listed in Table 5.1, are consistent with literature [434, 435].
The refinement of atomic occupation factors also confirmed the ideal stoichiometry of
the sample.

Magnetic measurements had been previously reported for polycrystalline samples [434],
and on single crystals with the field applied along an arbitrary direction [435]. I com-
plemented these results with detailed SQUID magnetometry (see Section 2.1.1), with a
magnetic field applied either along the a or c axis, as summarized in Fig. 5.3. The temper-
ature sweeps reveal a magnetic ordering transition with unusual characteristics. A Curie-
Weiss divergence of the magnetization is seen around 16 K. However, this ferromagnetic-
like transition is arrested at TN = 9.5K, where antiferromagnetism sets in.

This behaviour is consistent with previous studies [434, 435], and had been interpreted
as two distinct consecutive ferro- and antiferromagnetic phases by some authors [434].
However, these earlier studies had not been direction-selective. In the left and right
panels of Fig. 5.3(a) I compare data obtained with the magnetic field parallel to the a
and c axes, respectively. This reveals that the magnetic state is strongly anisotropic, with
an in-plane susceptibility ≈ 7 times larger than the out-of-plane susceptibility. The in-
plane response is also qualitatively different, in that it appears to saturate (around 12 K,
see 5 mT data) and form a plateau, 2–3 K before onset of antiferromagnetism.

The comparison of temperature sweeps recorded in field-cooled (FC) and zero-field-
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Figure 5.2: Room temperature Mo Kα four circle x-ray diffraction of a ≈ 200 µm
EuCd2As2 crystallite. (a) Integrated intensities sorted by momentum transfer Q, along
with the refined values (FullProf [382]) and the corresponding differences. (b) Integra-
tion of the dataset over a small margin perpendicular to the (H0L) and (HK0) reciprocal
lattice planes. (c,d) Top and perspective view of the trigonal structure of EuCd2As2. A
model of the qqqm = (0,0, 1/2) antiferromagnetic order inferred from the REXS experiment
is also drawn.

120



Figure 5.3: Direction-resolved SQUID magnetization measurements of EuCd2As2.
(a) Low-temperature thermal variation of the magnetization in magnetic fields between
5 and 100 mT applied along the a axis (left panel) and c axis (right panels). (b) Field
sweeps of the magnetization at temperatures between 2 and 15 K, in a field oriented
almost parallel to the c axis. The lower panel indicates two changes in slope (at 0.2 and
1.55 T), emphasized by the second derivative of the 2K M(H) curve (arbitrary scale).

cooled (ZFC) conditions shows a splitting, which is more significant for HHH ‖ ccc (≈ 10%).
For very low applied fields, µ0H < 50mT, an additional transition appears in the out-of-
plane susceptibility, seen as an additional decrease of the signal (reaching ≈ 3K at the
lowest field, 5 mT).

Field sweeps of the out-of-plane magnetization are shown in Fig. 5.3(b). As reported ear-
lier, the saturation magnetization approaches the value of 7.94 µB expected for an ideal
Eu2+ (4 f 7, S = 7/2, L = 0) state [434, 435]. At base temperature (2 K), this saturation is
achieved already in a relatively low field of 1.55T. This data of spin-alignment along the
c axis shows no indication of a spin-flop transition. Instead, only a weak change in slope
is observed at 200 mT (at 2 K), as indicated by the second derivative curve in the bottom
panel of Fig. 5.3(b).

A detailed explanation of all the subtle magnetometry features noted above is provided
in the context of the REXS data in Section 5.5.

In order to characterize the electronic transport properties of EuCd2As2, I performed
alternating current transport (ACT) measurements using the six-point sample contacting
geometry discussed in Section 2.1.2. The sample used in this measurement is shown in
Fig. 2.1(a). The field was applied along the c axis throughout. In the top and bottom
panels of Fig. 5.4, I summarize the low temperature characteristics of the longitudinal
resistivity ρxx and transversal (Hall) resistivity ρxy, respectively.
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Above ≈ 80K, the thermal variation of the resistivity shows a weak semimetallic be-
haviour (Fig. 5.4(a) and inset). However, at lower temperatures, the resistivity increases
by up to 100% and forms an acute peak at TN = 9.5K. This is reminiscent of the corre-
sponding magnetization characteristics (Fig. 5.3(a)), although the anomalous resistive
contributions set in at even higher temperatures ≈ 50K ≈ 5TN. When a magnetic field is
applied (out-of-plane), this resistivity peak splits into two broad features: (1) One with
a leading edge that moves to higher temperatures in higher fields and (2) Another con-
tribution separated by a dip (minimum) of ρxx. By comparison with the magnetization
data, it can be inferred that this minimum corresponds to the magnetic phase boundary,
and, accordingly, disappears with the complete spin-alignment at 1.55T.

The field sweeps of this resistivity signal (Fig. 5.4(c)) emphasize a strong negative mag-
netoresistance, corresponding to a ≈ 75% reduction of the measured signal. Within
the magnetically ordered phase, the negative magnetoresistance is clearly associated
with the spin-alignment, as it abruptly saturates at the upper phase boundary at 1.55T.
Notably, the observed minimum resistivity of 2 mΩcm is significantly lower than the
minimum in resistivity that one would extrapolate from the high-temperature slope
(≈ 3mΩcm, see inset of Fig. 5.4(a)). This implies that the negative magnetoresistance
inside the ordered phase is not merely due to the suppression of additional scattering
processes associated with antiferromagnetic order. Another magnetoresistive feature is
observed at temperatures above the ordering transition. It does not set in continuously,
but is delineated by a clear kink in the field sweep (see data for 20 K in Fig. 5.4(c) and
inset).

The features discussed above can all be recognized in the phase diagram of interpolated
resistivity data presented in Fig. 5.4(e). Here, the magnetically ordered phase corre-
sponds to a bright patch with a white-to-red gradient. The regime of strong negative
magnetoresistance appears as a dark-red-to-black gradient and forms a diagonal phase
line from the ordered phase towards high fields and high temperatures.

The characteristics of the Hall resistivity are summarized in the corresponding lower
panels (b,d,f) of Fig. 5.4 and are governed by a similar phase diagram. In particular, the
effective charge transport is electron-like and is superposed by two anomalous contribu-
tions: (1) One which is confined to the magnetically ordered phase and (2) a distinct
Hall contribution associated with the spin-polarized state, which is clearly delineated by
a diagonal phase line.
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5.3 Resonant x-ray scattering at P09 (PETRA-III)

With the aim to determine the magnetic structure of EuCd2As2, I performed two REXS
experiments in the second experimental hutch (EH2) of beamline P09 [439] at PETRA-
III (DESY, Hamburg). In these experiments, single crystals of EuCd2As2 were probed
with a magnetic field applied perpendicular and parallel to the c axis, respectively. EH2
has three unique advantages for the present study: (1) Up to high energies (3.2–14 keV),
the angle of the incident linear x-ray polarization can be rotated using a pair of diamond
phase plates [440]. (2) The diffractometer holds a cryomagnet for vertical applied fields
up to 14 T (Fig. 5.5(d)). (3) By contrast to commonly used closed cycle refrigerators, the
sample space of the top-loading liquid helium cryostat is filled with exchange gas, which
reduces the effects of beam heating and allows base temperatures of ≈ 2.3K.

The scattering geometry and sample environment of EH2 is illustrated in Fig. 5.5. The
experiment is performed in horizontal scattering. The hard x-ray beam penetrates the
cryostat through thin beryllium windows, which imposes constraints on the detector
angles 2θ (azimuth) and γ (elevation). To avoid a tilting of the heavy cryostat (χ axis),
the instrument is effectively used as a two-circle diffractometer (with scattering angle
2θ and a parallel sample rotation axis ω). Small misalignments of the sample can be
compensated by an elevation of the detector out of the horizontal plane (−5º< γ <

5º ). In principle, this tilts the scattering plane away from that shown in Fig. 5.5(a,b),
which complicates the polarization analysis. However, as only peaks with γ < 1.5º were
investigated, I neglect this effect in the data analysis. Since the incident energy is fixed in
a REXS experiment, a constraint in 2θ (see inset of Fig. 5.5(d)) also implies strict limits
on the accessible ranges of momentum transfer Q.

For these reasons, the sample must be oriented and mounted strategically (details of
this procedure are noted in Section 2.1.3). Fig. 5.6 illustrates such planning of the
scattering geometry in the case of the HHH ‖ ccc sample. In this case, it was desirable to
access a (H,0,−1/2)-type magnetic Bragg peak with largest possible index H. A crystal
was first polished with a surface parallel to the [100] crystal planes (which do not grow
naturally / see Fig. 5.6(a)). A dedicated brass (non-magnetic) sample holder was then
micro-machined with a 5º offset, such that the (4,0,−1/2) direction is in the scattering
plane and the field is applied only 5º from the c axis, see Fig. 5.6(a,b). As shown in
Fig. 5.6(d), this left a narrow margin in reciprocal space in which (H,K,−1/2)-type peaks
were accessible, delineated by the constraints in γ and 2θ .

To study the magnetic x-ray scattering from Eu2+ magnetic ions, the undulator energy
was tuned to the Eu L3 edge at h̄ω ≈ 6.972 keV (λ = 1.778Å). At this energy, the estimated
x-ray penetration depth in EuCd2As2 is ≈ 6.3 µm, and the observed signal is therefore
dominated by the bulk of the sample. The polarization of the scattered beam can be
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Figure 5.5: (a) Schematic of the horizontal scattering setup in the second experimental
hutch of instrument P09, PETRA-III. The scattering triangle (kkki, kkk f , QQQ) for an arbitrary
scattering angle 2θ is shown, along with the definitions of the laboratory reference frame
(xxx,yyy,zzz) and the conventional scattering reference frame (ûuu1, ûuu2, ûuu3). (b) Perspective view
of (a), illustrating the orientation of the incident (ε̂σ , ε̂π) and scattered (ε̂ ′σ , ε̂ ′π) polariza-
tion vectors as well as the corresponding polarization angles η and η ′. (c) Definition of
the amplitudes of the linearly polarized light, parallel (V1) and perpendicular (V2) to the
scattering plane (view towards the beam). (d) (from [439]) Photograph of the diffrac-
tometer carrying the heavy cryomagnet. The inset indicates which ranges of 2θ are
accessible through the beryllium windows of the cryostat (blocked range shaded). Out
of plane, the accessible detector elevation is γ ≈ ±5º, if the sample is vertically centred
with respect to the windows.
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Figure 5.6: (a) Photograph of the crystal that was aligned and polished for HHH ‖ ccc-
measurements. A surface parallel to the [1,0,0] crystallographic planes has been pre-
pared. (2) Technical drawing of a micro-machined sample holder for horizontal scatter-
ing with a 5º offset from the sample surface. (c) Unit cell of EuCd2As2 viewed along
the (100) direction. The [4,0,−1/2] crystallographic plane is indicated by a black line.
(d) View of the (H,K,−1/2) plane of reciprocal space investigated in this sample. The
dashed lines mark the constraints imposed by the maximum scattering angle (2θ) and
the vertical aperture of the Be windows (γ). Accessible qqqm = (0,0, 1/2) magnetic peaks are
indicated by red markers.

determined by inserting an evacuated rotating analyzer arm into the beam path [439].
Inside the polarization analyzer arm, the outgoing beam was scattered from the [110]
planes of a polished Cu crystal. At the magnetic resonance, the Cu (110) scattering angle
is 2θ = 89.4º. Thus, only cos2 2θ = 0.01% of the components of the scattered light that are
linearly polarized in the polarization analyzer scattering plane are transmitted. A scan
of the analyzer arm from −15º to 105º therefore corresponds to a scan of the outgoing
linear polarization angle η ′ from 105º to −15º (see definitions in Fig. 5.5(b)).

The relevant polarization directions and angles and reference frames are defined in
Fig. 5.5(a–c). By convention, the REXS scattering process is described in the reference
system (ûuu1, ûuu2, ûuu3), as introduced in Section 2.4.4:

ûuu1 = (k̂kki + k̂kk f )/(2 cosθ)

ûuu2 = (k̂kki × k̂kk f )/(2 sin2θ)

ûuu3 = (k̂kki − k̂kk f )/(2 sinθ)

(5.1)

Linear polarization vectors are labelled π and σ for polarization parallel and perpendic-
ular to the scattering plane, respectively. Since the undulator radiation is highly linearly
polarized in the horizontal plane, in the present horizontal scattering geometry the de-
fault incoming polarization is ε̂εεπ (η = 90º).
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The scattered polarization vectors are labelled by π ′ and σ ′. In the ûi reference frame,
these orthogonal polarization vectors are given by

ε̂εεσ = ε̂εεσ ′ =−ûuu2

ε̂εεπ = sinθ ûuu1 − cosθ ûuu3

ε̂εεπ ′ =−sinθ ûuu1 − cosθ ûuu3

(5.2)

As introduced in Section 2.4.4, x-ray scattering amplitudes can be be expressed as a
2× 2-matrix in this (π/σ) basis. The scattering amplitude for arbitrary incoming and
outgoing linear polarization angles η and η ′ is then given by the matrix product

F ∝ ε̂εε f ·

(
σσ ′ πσ ′

σπ ′ ππ ′

)
· ε̂εε i , with ε̂εε i =

(
cosη

sinη

)
and ε̂εε f =

(
cosη ′

sinη ′

)
(5.3)

As introduced in Chapter 2, the REXS amplitude has a complex dependence on the rela-
tive orientations of the magnetic moments, x-ray polarization and wave vectors. In the
case of dominant electric dipole (E1) excitations, it takes the following form [338]:

FE1 ∝
(
ε̂εε f × ε̂εε i

)
· M̂MMû =

(
0 k̂kki

−k̂kk f k̂kk f × k̂kki

)
· M̂MMû

=

(
0 Mû

1 cosθ +Mû
3 sinθ

Mû
3 sinθ −Mû

1 cosθ −Mû
2 sin2θ

)
,

(5.4)

where M̂MMû refers to the magnetic structure factor vector in the ûuui reference frame defined
in Eq. 5.1. As discovered in this experiment, the antiferromagnetic state of EuCd2As2 has
a magnetic propagation vector qqqm =(0,0, 1/2) and its magnetic unit cell therefore contains
only two, antiparallel, magnetic moments mmm at rrr1 = (0,0,0) and −mmm at rrr2 = (0,0,c). The
magnetic structure factor vector in the reference frame of the crystal is therefore

MMMcryst = ∑
i

mmmi ei qqqm·rrri → 2mmm . (5.5)

With the knowledge of qqqm, the determination of the magnetic structure thus reduces to
the determination of the orientation of mmm. For convenience, I parametrized the direction
of this antiferromagnetic orientation by the azimuth ψm and elevation αm:

M̂MMcryst =

cosαm cosψm

cosαm sinψm

sinαm

 (5.6)

This vector can be transformed to the diffractometer-, laboratory-, and finally to the
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ûuui–reference-frame, as follows [441]:

M̂MMû = A · M̂MMlab = A ·Ω · M̂MMdiff = A ·Ω ·U · M̂MMcryst (5.7)

with unitary orientation matrix U and the rotation matrices

A =

 sinθ cosθ 0
0 0 −1

−cosθ sinθ 0

 and Ω =

 cosω sinω 0
−sinω cosω 0

0 0 1

 (5.8)

The transformation A is specific to the definition of the laboratory reference frame (x̂xx, ŷyy, ẑzz)
shown in Fig. 5.5. The unitary matrix U describes the orientation of the crystal relative
to the sample holder and is obtained from the indexing of two Bragg reflections [441].

To characterize the tensor properties of the magnetic scattering cross section in more
detail, I used the full polarization analysis (FPA) method. To perform a FPA scan, a
pair of phase retarding λ/2 diamond planes (300 µm thickness, ≈ 48% transmission) is
inserted in the incoming beam [440, 439]. This allows a continuous rotation of the angle
η of the incident linear polarization (indicated in Fig. 5.5(c)).

The FPA method is described in detail in Appendix C. First, a given magnetic reflec-
tion was centred in the detector. The incoming polarization was then rotated in steps
between η = −90º and 90º. For each incoming polarization, the polarization analyzer
was then moved in steps over a similar angular range. For each selected outgoing lin-
ear polarization angle η ′, a rocking scan (θP) of the polarization analyzer crystal was
performed. For each incident polarization η , one thus obtains a sinusoidal curve (of
integrated intensities from Lorentzian fits to θP scans), as a function of η ′.

The polarization state of the scattered x-ray beam is described by the Poincaré-Stokes
parameters (P′

1,P′
2,P′

3), as defined in Eq. C.3 of Appendix C. In effect, these parameters
measure whether the linear polarization is parallel to the main polarization axes (|P′

1|),
rotated by 45º from a main polarization axis (|P′

2|), or whether it contains circularly po-
larized components (|P′

3|). By definition, the η ′ curve of integrated θP scans will therefore
be cosine-like for P1′ scattered polarization and sine-like for P2′:

Iη ′ = I0 (1+ P1′ cos
(
2η

′)+ P2′ sin
(
2η

′)) (5.9)

In Fig. C.1, Appendix C, I illustrate these characteristics for a FPA scan of the direct
beam as rotated by the P09 phase plate device [440]. The evaluation of FPA scans
can be complicated by varying conventions of reference frames, and some care must be
taken since one sign error will significantly influence the inferred information. On the
other hand, this method has the great advantage that no diffractometer angle is moved
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throughout the scan. This precludes several possible sources of systematic errors, such
as drifting alignment, a varying beam cross section on the sample and self-absorption.

As an alternative to FPA, the polarization dependence of the scattering cross section can
also be probed in azimuthal (ψ) scans, i.e. by rotation of the sample around the momen-
tum transfer axis. In the course of my thesis I have also used this type of technique [150].
Since ψ is not normally a physical axis, it is usually required to re-align the sample posi-
tion and orientation after each azimuthal step. Even so, the ψ scans may be complicated
by other azimuth-dependent phenomena such as multiple scattering. P09 is presently the
only hard REXS instrument that offers the thick diamond phase plate setup necessary for
FPA at hard x-ray energies [440].

5.4 Results

After aligning and cooling the sample to base temperature (≈ 2.3K), I first determined
that the magnetic propagation vector in EuCd2As2 is qqqm = (0,0, 1/2). This is consistent
with other magnetic materials of the same structural family for which neutron studies
have been possible, such as EuMn2P2 [442] and EuAl2Si2 [443]. The magnetic character
of these peaks was confirmed by scanning the incident energy over the resonance, while
keeping QQQ fixed. In Fig. 5.7(a) I compare such an energy scan of the (0,0,3.5) reflection
(measured without polarization analysis) with the x-ray fluorescence background. In
addition to the fluorescence, the observed reflection contains a strong Lorentzian peak
centred in the pre-edge region at 6972 eV. This undulator energy was selected for the
remainder of the experiment.

After locating the magnetic Bragg peaks, I tracked the field and temperature dependence
of integrated magnetic intensities in the πσ ′ and ππ ′ polarization channels. Given the
form of the scattering amplitude, Eq. 5.4 (with reference to the ûuui reference frame shown
in Fig. 5.5), these channels probe magnetic Fourier components parallel and perpendic-
ular to the scattering plane, respectively. Fig. 5.7(b) shows the thermal variation of these
intensities for the (4,0,−1/2) peak, for zero field and for 0.5 T applied 5º from the c axis.

The πσ ′ channel shows a clear order parameter behaviour, which I fitted with a power
law. The obtained Néel temperatures are TN = 8.43(3)K (0 T) and 8.08(2) K (0.5 T). By
attenuating the beam, I confirmed that the reduction by ≈ 1K from the expected value is
due to beam heating. Notably, beam heating did not affect the FPA scans (discussed be-
low), since the beam is attenuated by insertion of the phase plates. The critical exponent
obtained from the power-law fit is β = 0.34(1) (0 T). This agrees with the values expected
for the 3D Ising model (β = 0.3250) or 3D xy-antiferromagnet (β = 0.3460). This points
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Figure 5.7: (a) Energy scans at the Eu L3 resonance, recorded without polarization anal-
ysis of the scattered beam. The magnetic resonance at the (0,0,3.5) reflection can be de-
composed into a contribution due to x-ray fluorescence (black markers) and a Lorentzian
peak centred in the pre-edge region, at 6972 eV. (b) Temperature dependence of the
(4,0,−1/2) peak, recorded at zero field (red) and 0.5T applied along the c axis (black).
The solid lines indicate power law fits to the data (TN = 8.43(3), β = 0.34(1) for πσ ′

at 0 T). The ππ ′ channel contains a strong fluorescence background, but no magnetic
contribution (see text).

to a three-dimensional character of the antiferromagnetic state in EuCd2As2 [444], al-
though β may also be altered by beam heating.

The ππ ′ intensity of the (4,0,−1/2) peak in Fig. 5.7(b) shows no thermal variation, which
indicates that there are no sizeable qqqm magnetic Fourier components perpendicular to
the scattering plane, i.e. parallel to the c-axis. Instead, the ππ ′ channel contains a strong
x-ray fluorescence background signal proportional to |cos2θ |2 (see Section 2.4).

The field dependences of three magnetic peaks at base temperature (2.3K) are shown
in Fig. 5.8. Again, the (0,0,4.5) and (1,0,4.5) peaks correspond to an in-plane magnetic
field, whereas for (4,0,−1/2), the c axis is directed 5º away from the magnet axis. Both
HHH ⊥ ccc -type peaks show a transition at a low field of ≈ 50mT, where magnetically scat-
tered intensity changes abruptly form the ππ ′ to the πσ ′ channel. As noted above, this
implies a switching of antiferromagnetic Fourier components, which are initially per-
pendicular to the scattering plane, into the scattering plane. By 0.5T applied in-plane,
the πσ ′ intensity has also completely subsided. At this point the sample is fully spin-
polarized, i.e. all magnetic intensity would be located at the Γ point of the Brillouin
zone.

A very different behaviour is observed for the almost HHH ‖ ccc -like situation shown in
Fig. 5.8(c). Here, the ππ ′ channel is flat (no component perpendicular to the scatter-
ing plane). The intensity in the πσ ′ channel varies little up to ≈ 0.4T and then decreases
monotonically. By contrast to panels (a) and (b), a much larger field of ≈ 1.5T is required
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Figure 5.8: Field dependence of EuCd2As2 resonant magnetic x-ray scattering observed
in the πσ ′ and ππ ′ polarization channels. (a) For fields applied in the a-b plane of the
crystal, the scattered intensity abruptly switches from ππ ′ to πσ ′ character at ≈ 50mT
and is then fully suppressed at ≈ 0.5T. (b) When a magnetic field is applied parallel to
the c-axis, ≈ 1.5T is required to spin-polarize the sample. The anomaly at 50mT is seen
as a small decrease in πσ ′ intensity (inset, explanation in the main text). Dashed lines
are intended as visual guides.

to spin-polarize the material (at 2.3 K), which is consistent with the magnetization field
sweeps shown above in Fig. 5.3(b). In the inset of Fig. 5.8(c), I draw attention to an
abrupt ≈ 1% decrease in πσ ′ intensity at ≈ 40mT. This very subtle feature is also cap-
tured by the picture of the magnetic ground state established in Section 5.5.

For the purpose of FPA scans, I selected and probed two peaks in either experimental set-
ting. In particular, in the first experiment (HHH ⊥ ccc setting), I characterized the (0,0,4.5)
and (1,0,5.5) peaks in zero field as well as in applied fields of 50 and 300 mT. In the sec-
ond experiment (HHH ‖ ccc setting, cf. Fig. 5.6), I investigated the (4,0,−1/2) and (4,−2,−1/2),
in zero field and in applied fields of 0.5 and 1.0 T.
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For each case, I determined the Poincaré-Stokes parameters (P′
1,P

′
2) of the scattered beam

as described in Appendix C. For each situation (field direction and magnitude), I then
performed simultaneous least squares fits of the polarization characteristics of the corre-
sponding pair of magnetic reflections. The results of this procedure are summarized in
Figs. 5.9 (HHH ⊥ ccc) and 5.10 (HHH ‖ ccc).

5.5 Discussion

As a first observation, several datasets (Fig. 5.9(a) and 5.10(a,d,g)) show a significant

reduction in the degree of linear polarization of the scattered beam (P′
lin =

√
P′2

1 +P′2
2 , see

green markers). In the corresponding η ′ curves (cf. Eq. 5.9, and Fig. C.1), this manifests
as a non-vanishing residual intensity in the minimum of the curve. I considered several
factors that may cause this effect:

1. Due to an improper alignment of the phase retarder setup, the incoming beam may
not be perfectly linearly polarized. This can be ruled out given the characterization
of the direct beam shown in Appendix C, Fig. C.1. For any angle of incoming
polarization η , the beam had an excellent Plin > 97%.

2. Linearly polarized light can acquire circular components by scattering from helical
spin structures. Such a long-range modulated structure would correspond to an
incommensurate magnetic propagation vector, which is clearly at odds with the
present case of qqqm = (0,0, 1/2).

3. Circular components may also arise from the higher order term in the electric
dipole (E1) part or from the electric quadrupole (E2) resonances in the REXS scat-
tering amplitude. For the L3 edge of Eu2+, direct excitations of the magnetic shells
(2p 3

2
→ 4 f ) are actually of quadrupolar character, while the (stronger) E1 transi-

tion excites electrons the unoccupied 5d shell and thus couples only indirectly to
4 f magnetic moments. The relevance of quadrupolar contributions at rare earth
L3 edges has been noted in the literature [338], and the interference of E1 and E2
contributions as been investigated by Mazzoli et al. [445] at the Cr K edge. How-
ever, the dipolar and quadrupolar contributions should be separated in energy, and
this is not observed in the present fluorescence scan (see Fig. 5.7). Even when
including the intricate quadrupolar terms in the scattering cross section (and thus
adding five additional fit parameters) I was not able to reproduce the present data.

4. The effective observed Stokes parameters may also vary if the signal contains size-
able contributions from charge scattering or fluorescence background. These con-
tributions may interfere coherently or occur independently (i.e. added intensities).
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This is a key issue in non-resonant magnetic x-ray scattering, where charge back-
ground is often dominating the magnetic signal.

5. In general, it must be expected that a zero-field–cooled sample will contain all
symmetry-equivalent magnetic domains, whose scattered intensities add. Antiphase
signals from different domains will introduce circular components to the beam. For
trigonal EuCd2As2, six equivalent magnetic domains would be expected if the mag-
netic moments are not aligned strictly along the c axis.

In the present data, I found that effect (4), the interference of x-ray fluorescence and
magnetic scattering, is indeed significant in certain cases. In particular, the effect be-
comes important for peaks at large scattering angles when the sample is almost spin-
polarized and antiferromagnetic scattering is weak. This can be gleaned from the field
sweep of the (4,0,−1/2) peak shown in Fig. 5.8(c): At 1 T (corresponding to the FPA
shown in 5.10(g)) the background intensity in the ππ ′ channel is about ≈ 50% of the
magnetic signal seen in πσ ′. In fact, when considering the panels (a,d,g) of Fig. 5.10, it
can be recognized that the Stokes parameter P′

1 continuously becomes more “cos2η-like”
and P′

2 becomes more “−sin2η-like” as the magnetic field is applied. In effect, these anti-

phase contributions decrease the amplitudes of both P′
1 and P′

2, and so P′
lin =

√
P′2

1 +P′2
2

is no longer unity.

Nevertheless, this interference with the Eu L3 fluorescence does not account for the de-
crease in P′

lin in the case of 5.10(a), where the magnetic intensity is strongly dominating
the observed signal. This points to the relevance of the effect (5), and indeed it was pos-
sible to precisely reproduce the observed η dependence of P′

lin by imposing the six-fold
domain structure expected for EuCd2As2.

Taking into account these considerations, all results can be explained as follows (see
Fig. 5.11). The magnetic structure of EuCd2As2 is defined by ferromagnetic layers which
are stacked antiferromagnetically, in other words, an A-type antiferromagnet. Even
though the Eu2+ state has no angular momentum, the magnetic moments experience
a weak magnetocrystalline anisotropy which favours an alignment in the a-b plane, as
already illustrated in Fig. 5.2. The six magnetic domains (in-plane moment orientations
separated by 60º) are smaller than the probed sample volume. In this experiment I
measured the sum of their magnetic intensities. For each pair of FPA scans in Figs. 5.9
and 5.10, I indicate the best fit moment-directions and domain populations in panels
(b,e,h) and show a χ2 map of least squares fits with fixed magnetic moment directions
in panels (c,f,i) (azimuth ψm and elevation αm as defined in Eq. 5.6). Red contours im-
posed onto these χ2 maps delineate the parameter range corresponding to one standard
deviation from the best fit parameters.
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Figure 5.11: Model of the magnetization process in EuCd2As2. For in-plane (left) and
out-of-plane (right) applied magnetic fields HHH, three stages of the spin alignment are
shown, from the zero-field situation (bottom) to an almost spin-polarized state (top). In
each situation, the magnetic structure in the six domain is shown. Each is, the trigonal
planes are symbolized by the two Eu ions in the magnetic unit cell (at rrr = (0,0,0) and
(0,0,c)). For HHH ⊥ ccc, this process entails the elimination of four less favourable domains
(intermediate step), before the moments can cant continuously into the field direction.

For zero applied field, in both cases (Figs. 5.9(a) and 5.10(a)) the obtained fits were
superior when imposing an arbitrary six-fold domain population. The fits allow a definite
exclusion that the magnetic moments have a significant out-of-plane antiferromagnetic
component. On the other hand, the fit is rather degenerate regarding the azimuthal
orientation ψm. In fact, the two crystals investigated favour different orientations, with
best fits at ψm ≈ 37º and ψm ≈ 0º for the HHH ⊥ ccc and HHH ‖ ccc samples, respectively. This
may indicate that there is no strong in-plane anisotropy, or a dependence on sample
history. Nevertheless, in all cases, it was not possible to reproduce the data by assuming
a continuous (i.e., not six-fold but random) distribution of azimuthal moment direction.

When a 50mT in-plane magnetic field is applied (Fig. 5.9(d,e,f)), P′
lin is restored to unity

throughout and the Stokes parameters can be perfectly reproduced by a two-domain
model with the magnetic moments aligned almost perpendicular to the applied field
(which happens to be close to the a axis in this experiment). This behaviour corre-
sponds to a spin-flop–like re-distribution of domain populations, before all moments can
be continuously canted into the field direction. The small magnitude of the magnetic
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field which effects this domain-flop corresponds to the weakness of the dipolar coupling
between antiferromagnetic domains. This model also naturally explains the HHH ⊥ ccc field
sweeps shown in Fig. 5.8(a,b) and discussed above. Increasing the in-plane field to
300 mT (Fig. 5.9(g,h,i)) only suppresses the antiferromagnetic Bragg peaks (as the mo-
ments cant, intensity is redistributed to the Brillouin zone centre), but the Stokes scans
are hardly changed. I illustrate these spin-polarization processes in Fig. 5.11.

As expected in this model, the selection of a single domain does not occur if the field
does not break the six-fold symmetry. Accordingly, all results shown in Fig. 5.10 were
better modelled by imposing the six-fold domain structure. However, since this crystal
was actually mounted with a 5º tilt from the magnet axis, one domain (the only direc-
tion in which the magnetic moments lie both in the a-b plane and in the scattering plane)
is clearly favoured by the fits. As the out-of-plane field is successively increased to 0.5
and 1 T, the favoured moment direction (close to the a axis) does not change. Instead,
the continuous change in Stokes-scan characteristics is attributed to the increasing rele-
vance of interference terms between magnetic scattering and x-ray fluorescence, as the
magnetic intensity subsides.

The subtle downward step of (4,0,−1/2) πσ ′ intensity shown in the inset of Fig. 5.8 could
also be understood in this picture. According to Eq. 5.4, the πσ ′ the (4,0,−1/2) scattering
cross section is proportional to(

dσ

dΩ

)
πσ

∝ |M1 cosθ +M3 sinθ |2
(4,0,− 1

2 )→ | 0.37M1 +0.92M3 |2

The observed intensity is therefore dominated by the Fourier components parallel to û3,
i.e. (anti-)parallel to the momentum transfer Q, see Fig. 5.5. As illustrated in Figure 5.6,
this sample was mounted with a 5º offset between the c axis and the field direction,
corresponding to a 5º tilt between the ab plane and û3. For any distribution of magnetic
domains with magnetic moments lying in the ab plane, some domains will lie at an
angle (of up to 5º) to the scattering plane. Similar to the HHH ⊥ ccc situation, a very small
applied field then suffices to select the only in-plane moment direction which is also
perpendicular to the field (i.e., û1). This is seen at ≈ 50mT in the inset of Fig. 5.8(b).
Since moments aligned parallel to û1 have a smaller weight scattering cross section, a
small downward step in intensity is expected.

Going back to the HHH ‖ ccc magnetization data shown in Fig. 5.3, it is likely that the SQUID
sample had similar or worse mis-alignment from the field direction. The additional
“phase line” observed as a decrease in susceptibility below ≈ 50mT and 3 K could then
be attributed to the same effect, i.e. the magnetic state shows a larger resilience to spin-
canting (a smaller susceptibility), if domains are locked-in with magnetic moments ori-
ented at an angle to the field direction.
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The in-plane ferromagnetic correlations are expected to be much stronger than the inter-
plane antiferromagnetic exchange interactions (six in-plane ferromagnetic nearest neigh-
bours vs. two further antiferromagnetic neighbours along c). This explains the continu-
ous onset of short-range in-plane ferromagnetic correlations that sets in at T � TN and
leads to an incipient ferromagnetic-like transition, before the pre-formed ferromagnetic
planes lock into an antiferromagnetic stacking at TN.

It is interesting to discuss the resistivity and Hall resistivity characteristics in the light of
this model. For small applied fields, anomalous Hall effect (AHE) contributions in the
multi-domain state will cancel. On the other hand, once the 2D ferromagnetic domains
are aligned out-of plane, a sizeable anomalous Hall effect would expected, also above
the (3D-) magnetic ordering temperature [446]. The out-of-plane polarization of pre-
formed 2D ferromagnetic correlations will cost more energy for increasing temperatures,
which explains the diagonal phase line observed in 5.4(f). AHE contributions can also be
understood at low temperatures and high fields (i.e. where the initially antiferromagnetic
order has been fully spin-polarized).

If the full spin alignment reduces the scattering of charge carriers from magnetic fluc-
tuations, the above ρxy argument simultaneously explains the corresponding “inverse”
ρxx phase diagram of Fig. 5.4(e). On the other hand, this explanation does not en-
compass the transport characteristics within the antiferromagnetically ordered phase. In
particular, the insets of Figs. 5.4(c) and (d) show both large longitudinal and transversal
resistivity contributions that are effectively proportional to the antiferromagnetic com-
ponent measured by REXS, see 5.8(c). This implies a more subtle coupling between the
magnetic state and the electronic state.

Optical reflectivity measurements suggest that EuCd2As2 is a semimetal with almost com-
pensated electron- and hole pockets [437]. Whether electronic states in the vicinity of
the Fermi surface form topologically protected states or not, it is plausible that a cou-
pling of the antiferromagnetic order parameter with the Cd and As states could shift the
electronic bands. This would would have the potential to tune the charge carrier density
of states and mobility. It would also explain why very similar characteristic are observed
in both longitudinal and transversal transport.
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5.6 Conclusion

In conclusion, by comprehensive REXS experiments in applied magnetic fields, I have
formed a consistent picture of the magnetic ground state of EuCd2As2, which naturally
explains subtle features of the bulk measurements that were previously not understood.
The relation of the magnetic structure to resistivity and Hall effect measurements sug-
gests a coupling between the Eu2+ antiferromagnetic order parameter and the charge
transport within the heavily spin-orbit–coupled Cd-As states at the Fermi surface.

This study also demonstrates a successful application of REXS, in a material where neu-
tron diffraction had been called for in the literature [437], but would not be feasible
without isotopic enrichment with both Eu-153 and Cd-114. Furthermore, the results
discussed in this chapter illustrate the inherent ambiguities of bulk techniques and show
how the “conventional interpretations” of magnetization and resistivity data may lead to
wrong conclusions.

For example, I have shown that the magnetic susceptibility of EuCd2As2 is about 7 times
larger if the magnetic field is applied in the a-b plane. For a conventional antiferromag-
net, it is expected that the magnetic state is softer for magnetic fields applied perpen-
dicular to the moment direction. One would therefore infer an out-of-plane alignment.
However, in the present case, the magnetic moments are actually lying in-plane, and
due to the six-fold domain structure, EuCd2As2 can avoid a true spin-flop transition ir-
respective of the field direction. Instead, the anisotropy of the susceptibility is mainly
a measure of in-plane vs. out-of-plane magnetocrystalline anisotropy. Due to the lack
of orbital angular momentum, neither is expected to be significant, but this does not
contradict a 1:7 ratio. This is also reflected by the fact that the saturation fields (0.5T vs.
1.5T) are small along both directions, but smaller for an in-plane field. In fact, this also
justifies why in all cases where REXS was used to probe a multi-domain state, the FPA fit
quality was almost degenerate along the azimuthal direction (cf. Figs. 5.9 and 5.10).

Very recently, Wang et al. have reported an electrical and optical conductivity study of
EuCd2As2, in which, based on resistivity measurements, an out-of-plane magnetic mo-
ment direction is postulated [437]. The present findings contradict this model and call
into question whether the unusual transport properties of EuCd2As2 can be purely as-
cribed to the magnetic scattering of the charge carriers. As a next step, it will be of great
interest to perform photoemission and quantum oscillation experiments and establish an
accurate picture of the Fermi surface. In-depth density-functional studies are also un-
derway, which will verify which states form the electron and hole pockets and how they
may couple to the antiferromagnetic order parameter.
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Chapter 6

Varying degrees of magnetic frustration
in two polymorphs of Ca2Os2O7

The heavy transition metal oxide calcium osmate Ca2Os2O7 forms two chemically sta-
ble polymorphs. Depending on synthesis conditions, the compound crystallizes in a
pyrochlore (cubic) or weberite (orthorhombic) structure. In this chapter, I present an
in-depth investigation of these materials by magnetization and resistivity measurements,
x-ray and neutron diffraction, as well as muon spin rotation and relaxation experiments.

The present interest in these materials arose in the context of other heavy transition
metal oxides (TMOs). As laid out in Section 1.3, it has recently been realized that this
family of materials features effects of both strong spin-orbit coupling (SOC) and elec-
tronic correlation (EC). A number of emergent phenomena have been predicted to arise
from the interplay of these interactions. In analogy to perovskite and pyrochlore iridates
(5d5), an unusual metal-to-insulator–like transition has been reported at the magnetic
ordering transition of (5d3) weberite Ca2Os2O7 [447], even though it must be of different
origin.

In this half frustrated material, I discovered a complex magnetic ordering transition and
determined the magnetic order at low temperatures. This is the first step towards an
understanding of the charge gap in this state. Beyond SOC and EC, the parallel study of
the pyrochlore compound emphasized the importance of magnetic frustration. For this
fully frustrated modification of Ca2Os2O7, I was able rule out static magnetic order at
temperatures down to 40mK.
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6.1 Introduction

Systematic synthesis studies of 3d transition metal compounds with the composition
A2(B1)(B2)C6,7 (B1, B2: transition metals, C: O or F) indicate that the crystal chemistry
of these materials depends largely on the electronegativity and ionic radius of the A
cation [448, 449]. In particular, it has been shown that for A=Ca, the compounds are
poised at the interface between the pyrochlore and weberite structural phases. As in the
present case, two polymorphs may then be chemically stable.

The pyrochlore and weberite crystal structures (see Fig. 6.1) are derivatives of the fluo-
rite structure and their structural properties have been reviewed in depth in the context
of 3d transition metal oxides and fluorides [277, 449]. Starting from the face-centred
cubic fluorite (CaF2, Fm3̄m) structure, the pyrochlore is obtained by an ordering of an-
ion vacancies (one per fluorite unit cell). This breaks the fluorite’s mirror symmetry
and reduces its four-fold rotation symmetry to a screw-axis perpendicular to a diamond
glide plane. This effectively doubles the unit cell in each dimension and lowers the
symmetry to subgroup Fd3̄m. In turn, the orthorhombic weberite structure is related to
the pyrochlore by an angular transformation that further lowers the symmetry to the
orthorhombic subgroup Imma [449]. The true symmetry of the weberite structure has
been subject to intense debate. A definite structural determination was achieved due to
the experimental efforts of Knop et al. [450, 451]. However, this is not of immediate
relevance in the present context of magnetism.

For the study of magnetic ground states, it is sufficient to consider these fluorite-related
oxides as networks of corner-sharing BO6 (B: transition metal) octahedra, with superex-
change interactions mediated through the oxygen ions on connecting vertices. I illustrate
this in Fig. 6.1 with a comparison of the pyrochlore and weberite unit cells and the cor-
responding transition metal environments. In the pyrochlore structure, all transition
metal sites are equivalent (Wyckoff site 16c of Fd3̄m) and all BO6 octahedra are fully
connected, which yields a network of regular transition metal tetrahedra. Panels (b,e,f)
of Fig. 6.1 compare the connection of these tetrahedra along the (111)-direction of the
cubic cell with the corresponding situation in the orthorhombic weberite variant. Here,
transition metal ions occupy two distinct Wyckoff-sites 4b and 4c (of Imma). While the
full connectivity of weberite 4c sites (to two 4c sites and four 4b sites) resembles the
situation in the pyrochlore, the 4b sites only feature four superexchange paths (all to 4c
sites) and two disconnected vertices with “dangling” anions.

The pyrochlore is thus fully magnetically frustrated, while the weberite has been chris-
tened a half-frustrated structure by Zheng et al. [447]. In the present case of Ca2Os2O7,
density functional calculations have indicated that both osmium ions in the weberite
(Os1 at 4c and Os2 at 4b) are pentavalent (Os5+, 5d3), as they are in the pyrochlore. Any
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Figure 6.1: Crystal structures of Ca2Os2O7 (oxygen ions not shown). (a) The cubic
(Fd3̄m) pyrochlore phase, forming a three-dimensional network of fully connected OsO6
octahedra. (b) Detailed view of the resulting three-dimensional triangular network of
osmium ions at the 16c Wyckoff sites. (c) The relation of the pyrochlore (red) and
weberite (blue) unit cells. (d) Crystal structure of weberite Ca2Os2O7, with a model of
the low-temperature magnetic structure inferred in this chapter. Due to the orthorhombic
(Imma) symmetry, the osmium ions occupy two distinct crystallographic sites. (e,f) Views
of the Os1 (4c, frustrated) and Os2 (4b, not frustrated) environments in the weberite,
corresponding to panel (b). Due to the relative “distortion” along the weberite b axis,
the (Os2)O6 octahedra are disconnected along this direction, which partially relieves the
magnetic frustration at these sites.

difference between the respective magnetic ground states must therefore be attributed
to the frustrating geometric arrangement of the ions or subtle structural modifications of
the superexchange paths between osmium sites.

The bulk properties of weberite Ca2Os2O7 had previously attracted interest. Resistiv-
ity and magnetization measurements indicated a metal–insulator-like transition, con-
comitant with a continuous magnetic ordering transition above room temperature (TN ≈
320K) [452]. The opening of a charge gap of ≈ 240meV had also been reproduced in
density functional calculations, consistent with optical reflectivity experiments [447].
However, the character of the magnetically ordered state was not known at the time.
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In the case of the pyrochlore phase, little is known beyond initial crystal chemistry stud-
ies. In particular, magnetometry or other bulk data have not been reported. The py-
rochlore structure is common in ternary heavy transition metal oxides. In the search for
new members of this family, pyrochlore Ca2Os2O7 powders were originally synthesized
by thermal composition of osmium hydroxides [453]. Around the same time, the same
phase was also synthesized by reacting CaO and OsO2 powders at moderate pressure
(0.3 GPa) [454]. It was found that the compound actually forms with a 15% anion defi-
ciency, Ca1.7Os2O7, as is frequently the case in pyrochlores [454]. For simplicity, in the
rest of this chapter I frequently omit explicit reference to this non-stoichiometry. Single
crystals of this compound have not been previously reported.

Figure 6.2: Single crystal Mo Kα x-ray diffraction of the pyrochlore (top) and weberite
(bottom) phases. (a,d) Results of a refinement (FullProf program [382]) of integrated
Bragg intensities (sorted by momentum transfer Q), corresponding to the structures
show in Fig. 6.1. (b,c/e,f) Intensity maps of the (HK0) and (0KL) planes of recipro-
cal space, illustrating the high crystalline quality of these samples.
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6.2 Structural, transport and magnetic measurements

Single crystals and powders of pyrochlore and weberite Ca2Os2O7 were prepared by my
collaborators Prof. Kazunari Yamaura1, Dr. Yanfeng Guo2 and Dr. Youguo Shi3, using a
belt-type high pressure apparatus at the National Institute for Materials Science (NIMS,
Tsukuba, Japan). The synthesis of the weberite phase, at 3GPa and 1500ºC, has already
been reported by Zheng et al. [447].

First, I confirmed the structural properties of pyrochlore and weberite Ca2Os2O7 single
crystals by Mo Kα x-ray diffraction (see Section 2.1.3). The corresponding datasets,
along with a refinement of the observed integrated intensities is illustrated in Fig. 6.2.
The inferred structural parameters, which are consistent with all previous reports [453,
454, 452, 447], are listed in Table 6.1.

Pyrochlore (Fd3̄m, a = 10.22537(1)Å)
3129 reflections, 96% indexed, Rint = 11.61%, RF = 2.89

Wyck. x y z B occ. (%)
Ca 16d 1/2 1/2 1/2 0.7(4) 85.2(8.4)
Os 16c 0 0 0 0.05(1) 100
O1 48 f 0.32049(8) 1/8 1/8 0.7(3) 100
O2 8b 3/8 3/8 3/8 2(1) 100

Weberite (Imma, a = 7.2094(1)Å, b = 10.1169(2)Å, c = 7.3926(1)Å)
2942 reflections, 98% indexed, Rint = 10.25%, RF = 3.81

Wyck. x y z B occ. (%)
Ca1 4a 0 0 0 0.8(2) 100
Ca2 4d 1/4 1/4 3/4 0.8(2) 100
Os1 4c 1/4 1/4 1/4 0.1(1) 100
Os2 4b 0 0 1/2 0.0(5) 100
O1 4e 0 1/4 0.15693(47) 0.1(5) 100
O2 8h 0 0.40633(28) 0.72901(38) 0.7(4) 100
O3 16 j 0.20374(26) 0.38266(19) 0.43599(23) 0.7(3) 100

Table 6.1: Room temperature structural parameters of pyrochlore and weberite
Ca2Os2O7, inferred from the single crystal x-ray diffraction illustrated in Fig. 6.2. The
corresponding structural models are shown in Fig. 6.1. For lattice parameters and oxy-
gen positions, the more precise results of neutron powder diffraction (see below) are
given. All results, including the ≈ 15% Ca deficiency, are consistent for both single- and
polycrystalline samples and across various diffraction techniques.

1Superconducting Properties Unit, National Institute for Material Science, 1-1 Namiki, Tsukuba, 305-
0044 Ibaraki, Japan

2School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China and
CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050, China

3Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of
Sciences, Beijing 100190, China
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The mosaicity of both samples was smaller than the experimental resolution (0.6–0.9º)
along all crystal directions. This is demonstrated by the reciprocal space intensity maps
in Fig. 6.2(b,c) and (e,f). Notably, this measurement confirmed the ≈ 15% Ca deficiency
of the pyrochlore phase, which had already been reported for powder samples [454].

To understand the nature of the unusual phase transition at TN ≈ 325K in weberite
Ca2Os2O7, it is relevant to quantify to what extent this phase transition couples to the
lattice. To search for structural anomalies at TN, my colleague Christian Donnerer4 per-
formed a high resolution x-ray powder diffraction experiment at instrument I11 (DI-
AMOND Light Source). By use of a highly monochromated beam and five arrays of
multiple-analyzer-crystal (MAC) scintillation detectors, the powder diffractometer I11
achieves an extreme structural (d-spacing) resolution of ∆d/d = 10−5–10−6 [455, 456].
The instrument is therefore ideally suited to detect minute variations in the lattice con-
stant. This experiment was however affected by the strong x-ray absorption of osmium
(Z = 76, calculated attenuation coefficient µR≈ 25 [457]). In the histogram of Fig 6.3(a),
this is recognized as a rapid suppression of Bragg intensities with momentum transfer.
Since such strong absorption (µR > 1) cannot be reliably corrected by analytical models,
I did not attempt to determine atomic positions from this data. Instead, I used a LeBail
(peak matching) algorithm to refine the lattice and profile parameters only [458].

In Fig. 6.3(b–f), I present the thermal variation of the lattice constants and the result-
ing Os-Os spacing in the weberite phase, together with structural refinements of time-
of-flight neutron powder diffraction (TOF NPD) data discussed in Section 6.4.2. No
structural transition is observed over the complete temperature range (3–350 K). Upon
cooling from 350 K to 100 K, the lattice constants b and c contract by ≈0.02 Å (0.2%)
and ≈ 0.01 Å(0.1%), respectively, while a is almost constant. Below ≈ 100 K, the weak
thermal contraction appears to be abruptly arrested. A tiny anomaly in the a lattice
constant (on the order of 0.001 Å) aside, a structural coupling of the magnetic ordering
mechanism can be ruled out. Figure 6.3(g) shows the corresponding thermal variation
of the Os-O-Os bond angles inferred from the oxygen atomic positions refined from NPD
data. This reveals a weak (up to 1.5º) continuous counter-rotation of (Os1)O6 octahe-
dra, which sets in below TN. This is also consistent with the shown contraction of the
Os1–Os2 spacing d12 (while d11 stays constant). As discussed in Section 6.5, the absence
of any symmetry breaking structural transition would be consistent with the scenarios of
Slater or Lifshitz transitions, which have been proposed for several 5d3 osmates.

Next, I measured the thermal variation of the resistivity of both cubic and orthorhombic
Ca2Os2O7 by the four-point AC transport method described in Section 2.1.2. Sample
dimensions obtained from the high pressure synthesis method do not exceed ≈ 500 µm.

4London Centre for Nanotechnology and Department of Physics and Astronomy, University College
London, London WC1E 6BT, United Kingdom
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Figure 6.3: Structural properties of the polycrystalline weberite sample. (a) High res-
olution x-ray powder diffraction pattern obtained at I11, DIAMOND light source (300 K
dataset shown). The black and blue lines indicate a LeBail refinement and the differ-
ence, respectively. (b,c,d) Thermal variation of the orthorhombic lattice parameters.
The results of both synchrotron x-ray (I11, blue markers) and neutron (WISH, ISIS, red
markers) powder diffraction are shown. All panels are plotted on the same scale. The
insets give the contraction relative to the room temperature value. (e) Definition of
inter-atomic distances (d11, d12) and bond angles (α11, α12). (f,g) Thermal variation of
these quantities.
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Figure 6.4: 30 Hz AC resistivity of pyrochlore and weberite Ca2Os2O7, measured on
polycrystalline pellets (insets). (a) The cubic phase shows insulating or semiconduct-
ing behaviour, with a plateau of resistivity between 20–200 K. The overall increase in
resistivity between 350 and 2 K is ≈ 30%. (b) (Note log scale) In the orthorhombic poly-
morph, a charge gap opens at the magnetic ordering temperature TN ≈ 325K. Due to
the limited temperature range, this measurement does not reveal the character of charge
transport in the high temperature (T > TN) phase. Discontinuities in the measured curves
are systematic errors of the lock-in amplifiers.

A quantitative resistivity measurement on these single crystals is therefore not feasible
by standard methods. Instead, I used a hydraulic press to obtain polycrystalline pellets
(≈ 2mm, see insets to Fig. 6.4) from the powders. The resulting resistivity curves are
shown in Fig. 6.4. For the pyrochlore phase, no transport data has been published, but it
had been noted that the resistivity of polycrystalline samples were “roughly temperature
independent at about one Ohm-cm” [454]. My measurement confirms that resistivity is
not very temperature dependent over the temperature range probed (2–350 K), but has
weak insulating or semiconducting behaviour between 200 and 350K, constant resistivity
between 20K and 200K, and a small upturn below 20K.

By contrast, the weberite phase shows a marked transition in its resistive behaviour
at TN ≈ 327K. This observation has been interpreted as a metal–insulator transition by
Zheng et al. [447]. However, the high-temperature state is actually not well character-
ized due to the limited temperature range of these measurements. In the present data,
the incipient T > TN phase does not appear metallic. Instead, it is more likely that there
is still a small band gap or semimetallic state at high temperatures. Below TN, the resis-
tivity first increases by 2–3 orders of magnitude and then diverges below ≈ 50K. Notably,
the charge transport in this orthorhombic phase is likely to be anisotropic and the present
results are effectively a powder-average of this behaviour.

Inspired by the neutron powder diffraction results presented below (Section 6.4.2), I per-
formed detailed direction-dependent SQUID magnetization measurements of weberite
Ca2Os2O7 (see Section 2.1.1). The results of these experiments are summarized in
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Figure 6.5: Single crystal SQUID magnetometry of weberite Ca2Os2O7 (all lines are
guides to the eye). (a) View of the sample, mounted on a quartz capillary and aligned by
four-circle x-ray diffraction. (b) Field cooled (black markers) and zero field cooled (green
markers) temperature dependence of the magnetization, in a field of 10 mT aligned par-
allel to the c or a axes. The gradient of the FC HHH ‖ ccc data is also shown (red markers).
All curves were measured upon warming the sample. (c,d) Comparison of hysteresis
curves, HHH ‖ aaa and HHH ‖ ccc at 200 and 300 K. (e) Thermal variation of the c axis coercivity
Hc, compared to the polycrystal resistivity also shown in Fig. 6.4. (f) Illustration of three
components in the observed HHH ‖ aaa hystereses (explanation cf. text).
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Fig. 6.5. The weberite phase single crystals do not grow with facets parallel to specific
crystallographic directions. These magnetization measurements therefore also required
a sample-alignment by laboratory x-ray diffraction. Fig. 6.5(a) shows an aligned crystal
with the assigned until cell and crystallographic main axes. Panel (b) shows the tem-
perature dependence of the magnetization M of this crystal, recorded upon warming
the sample in an external field of 10 mT applied either along the a or c crystallographic
axes. Field cooled (FC) and zero field cooled (ZFC) data are indicated by black and green
markers, respectively. The data have the characteristics of a ferromagnetic-like transition
at TN = 321K, followed by an abrupt drop in M(T ) curvature at T2 = 276K. The deviation
of Néel temperatures observed in single- and polycrystalline samples (TN = 321K / 327 K)
may well be due to a small oxygen deficiency or anion site mixing, which is frequently
observed in fluorite-related structures.

The second transition at T2 = 276K is seen more clearly in the derivative of the HHH ‖ ccc FC
data, which is shown in red (on an arbitrary scale). At low temperatures, the HHH ‖ ccc FC
magnetization reaches ≈ 0.26 µB per formula unit (f.u.), which is one order of magnitude
larger than the corresponding HHH ‖ aaa signal. Notably, this is only ≈ 3% of single-ion
value of Os5+ single-ion value in the absence of interactions with the environment and
assuming weak spin-orbit coupling (5d3, L = 3, S = 3/2, 3.87 µB). In a previous study, an
effective magnetic moment of 2.59 µB per Os ion had been inferred from a Curie-Weiss
fit to high temperature (T < 550 K) susceptibility data [447].

For the case of HHH ‖ ccc, two ZFC curves are shown in Fig. 6.5(b), which represent situa-
tions in which magnetic domains either aligned in a FC-like configuration, or with a net
moment opposed to the field axis. This behaviour is due to residual fields in the mag-
net coils and reveals that the domain orientation “softens” as the systems approaches
T2 (upon warming). At this temperature, the small measuring field suffices to align all
domains and reproduce FC-like characteristics.

In Fig. 6.5(c,d) I compare hysteresis curves of weberite Ca2Os2O7, measured at 200 K
with a field directed along the a and c axes (panel c) and in the HHH ‖ aaa configuration at 200
and 300 K (panel d). As noted above, the c-axis magnetization is clearly dominant, but
much smaller than expected for a ferromagnetic alignment of Os5+ ions. At 200 K, a small
coercive field on the order of ≈ 100mT is enough to force this alignment of domains.
However, the magnetic order appears very hard against a further spin alignment. This
is recognized by the shallow slope of M(H), with a net magnetic moment that does not
reach 0.3 µB/f.u. in an applied field of 7 T.

I have also tracked the thermal evolution of the HHH ‖ ccc coercivity (Fig. 6.5(e)). Below
≈ 50K, this quantity appears to increase exponentially. In Section 6.5, I speculate on a
potential indirect relation of this effect to charge transport in the sample, as suggested
by the superimposed polycrystalline resistivity curve (data as in Fig. 6.4(b), but on an
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Figure 6.6: SQUID magnetometry of polycrystalline pyrochlore Ca2Os2O7. (a) Zero
field and field cooled temperature sweeps of the magnetization at 10 mT (recorded upon
warming the sample). The curves show a order-parameter behaviour at the Néel temper-
ature of the weberite polymorph, TN ≈ 327K. The net magnetic moment at base temper-
ature is only ≈ 5.8×10−4 µB/f.u. (b) Hysteresis curves indicate paramagnetic behaviour,
superimposed by a weak hysteresis at low temperatures.

arbitrary linear scale).

If the magnetic field is applied along the a axis (Figs. 6.5(c,d,f)), the magnetic hys-
teresis shows an intricate two-step behaviour. I propose that this can be understood
in terms of three components, as illustrated in panel (f): (1) The strongest compo-
nent, with the largest coercive field, can be attributed to a parasitic HHH ‖ ccc-like contri-
bution due to a small misalignment of the sample. The magnitude of this component,
≈ 0.03 µB/f.u.= 0.25 sinα may be explained by a sample tilt of α < 7º. The coercivity of
this component is expected to be inversely proportional to the net moment in the field
direction. This component therefore appears much wider than that of the corresponding
HHH ‖ ccc measurement. (2) This spurious signal is superimposed on a small (≈ 0.01 µB/f.u.)
constant component with vanishing coercivity < 200mT (see also insets of panels c and
d). This second contribution does not show a marked temperature dependence and, on
closer inspection, is also observed in the HHH ‖ ccc data. (3) Lastly, the additional diamag-
netic signal (negative slope) is likely a spurious contribution from the glue or quartz
capillary, which becomes noticeable only on this small scale of 0.01 µB/f.u. .

SQUID magnetization data for a polycrystalline sample of the pyrochlore polymorph
is shown in Fig. 6.6. The temperature dependence at 10 mT (panel a) resembles that
of the weberite phase (Fig. 6.5(b)), but with a magnetization of only 5.8× 10−4 µB at
base temperature. The field sweep in the low temperature phase (panel b) appears to
be dominated by paramagnetic behaviour, with only a weak hysteresis at 7 K. A signal
of this magnitude and with this transition temperature could be explained by a small
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0.22% weberite impurity. Indeed, the refinement of constant wavelength neutron pow-
der diffraction data (D2B, ILL) of the pyrochlore phase revealed a weberite impurity of
0.43(22)% (see Section 6.4.1, Fig. 6.7). The present magnetization data therefore points
to the fact that pyrochlore Ca2Os2O7 does not feature a magnetically ordered phase in
this temperature range (2–350 K).

6.3 Neutron diffraction and MuSR experiments

In order to determine the magnetic order in weberite Ca2Os2O7, and to further character-
ize the magnetic ground state of the pyrochlore polymorph, I performed neutron powder
diffraction (NPD) and muon spin relaxation and rotation (MuSR) studies of both com-
pounds.

I used two neutron powder diffractometers. For an initial screening of the nuclear
structure and to search for magnetic Bragg scattering, I used the high resolution in-
strument D2B at the reactor source ILL. At this beamline, a vertically focusing Ge (335)
monochromator is used to select a wavelength of λ = 1.594Å from the thermal neutrons
coming from a liquid D2O moderator. The choice of a high monochromator take-off
angle (135º) minimizes the wavelength spread ∆λ/λ . Thus a d-spacing resolution of
∆d/d = 10−4 is achieved at large momentum transfers Q. Notably, this instrument is
not designed for high flux and good resolution at low Q, as is most relevant for magnetic
scattering. Powders of weberite and pyrochlore Ca2Os2O7 were filled into standard vana-
dium sample cans and cooled in a top-loading ILL Orange liquid helium cryostat. The
diffracted neutrons are detected on a bank of 128 3He detector tubes, covering a range
of 5º< 2θ <165º in scattering angle (see Fig. 6.7(b)). The tubes are spaced by 1.25º,
and a complete NPD histogram is obtained by scanning the detector bank over this range
in 0.05º steps [459, 460].

For a dedicated study of the magnetic Bragg scattering in weberite Ca2Os2O7, I used the
WISH (Wide angle In a Single Histogram) instrument. This is a state-of-the-art neutron
time-of-flight (TOF) diffractometer at the second target station of the ISIS spallation
source. With a low repetition rate of 10 Hz and a solid methane (40 K) moderator, this
setup is optimized for the production of long-wavelength neutrons and the investigation
of the low-momentum transfer regime [461]. The instrument reaches its peak flux at
λ = 2.8 Å and a frame-width of ∆λ = 8Å is diffracted by the sample after each pulse. In
contrast to constant-wavelength instruments, the resolution of TOF instruments is not
determined by a monochromator take-off angle, and depends only weakly on the scat-
tering angle. The high flux and good resolution in the low momentum transfer regime
proved critical in distinguishing the weak magnetic signal from the sample-intrinsic back-
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ground. Since the large detector vessel at WISH is fully boron-shielded, the extrinsic
background at this beamline is negligible [462].

The WISH instrument features two gap-less 10º< 2θ < 170º arrays of 760 3He detec-
tor tubes each [461]. As shown in Fig. 6.8, the detectors are grouped into ten banks.
For the present powder diffraction study, the neutron events recorded on opposite banks
were combined. The best resolution is achieved at large TOF. As shown in the follow-
ing section, magnetic Bragg peaks were observed in the Q =1–1.25 Å−1 regime, which
was best resolved on banks 3 and 8. The powder was loaded in a vanadium sample
can and cooled in a top-loading liquid helium cryostat. I obtained NPD histograms at
temperatures between 3 and 350 K.

To clarify an ambiguity of the weberite TOF NPD dataset and to rule out static magnetic
order in the pyrochlore, I performed muon spin rotation experiments of both compounds
on the instrument MuSR (ISIS). As shown in Fig. 6.7(d), the instrument features two
circular arrays of 32+32 positron detector tubes, up- and downstream of sample po-
sition. As described in Section 2.5, the time-resolved variation between forward- and
backward detector events is stated in terms of the asymmetry ratio (Eq. 2.70). To de-
termine the detector constant α in Eq. 2.70, reference measurements were performed in
the paramagnetic state of each sample, in applied transversal fields of 20 Oe. α is then
determined by the condition that the time-integrated asymmetry-ratio should vanish for
a constant muon Larmor precession in the horizontal plane. Samples of both compounds
were packed in thin Ag-foil sachets. The evolution of the magnetic order in the weberite
phase was investigated between 350 and 3 K using a standard liquid helium cryostat.
Test measurements of the pyrochlore sample were first performed in the same setting
(down to 1.4 K). In a separate experiment, I used a dilution refrigerator to track the
MuSR anisotropy of pyrochlore Ca2Os2O7 down to 40 mK.

6.4 Results and analysis

6.4.1 Pyrochlore Ca2Os2O7

Constant wavelength neutron diffraction data of pyrochlore Ca2Os2O7, measured at in-
strument D2B (ILL) is presented in Fig. 6.7(a,b). Room temperature structural parame-
ters obtained from a Rietveld refinement of this data (FullProf program [382]) have been
given in Table 6.1. As noted above, the refinement of this data confirmed a 14.8% Ca
deficiency and 0.42(22)% weberite impurity. Conventional crystallographic RF-factors
between 2–7 were achieved in the refinement [382]. The comparison of 350 and 3 K his-
tograms in Fig. 6.7(a) illustrates that there is no evidence of additional contributions at
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low temperature. Nevertheless, the background at low momentum transfer Q < 1.5Å is
significant, and a very weak magnetic signal would not necessarily be resolved.

Even though muon spin rotation and relaxation is a bulk probe and does not allow a di-
rect magnetic structure determination, it is more sensitive to weak magnetic fields in the
sample (i.e. to small ordered magnetic moments) than neutron diffraction. MuSR results
for pyrochlore Ca2Os2O7 are shown in Fig 6.7(c). Down to 1.4 K, only a weak slowing
down of the spin fluctuations is observed, which was modelled by the phenomenological
fit of the MuSR asymmetry ratio with a stretched exponential function,

A(t) = A0 e−(λ t)β

(6.1)

The best fit parameters (λ = 0.09MHz, β = 0.99) did not show any variation at temper-
atures down to 40 mK. This observation rules out any static order or significant slowing
down of the paramagnetic fluctuations in the pyrochlore phase down to this temperature.

Figure 6.7: Constant wavelength neutron powder diffraction (D2B, ILL) of pyrochlore
Ca2Os2O7. (a) Rietveld refinement (black line) of the 10 K dataset (red markers). The
inset shows a comparison of 350 K and 10 K histograms in the low momentum transfer
regime. (b) (from [463]) Perspective technical drawing of the D2B instrument. (c) Muon
decay anisotropy in pyrochlore Ca2Os2O7, at 130 and 1.4 K (markers). Fits of stretched
exponentials are indicated by lines. The right hand panels demonstrates the absence of
thermal variation down to 40 mK in the fit parameters (λ , β). (d) (from [464]) Per-
spective technical drawing of the MuSR instrument, which features two circular arrays
of 32+32 positron detector tubes, up- and downstream of the sample position.
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6.4.2 Weberite Ca2Os2O7

Neutron time-of-flight powder diffraction data (WISH, ISIS) of weberite Ca2Os2O7 is
shown in Fig. 6.8. The left hand panels (a,b,c) show the results of a simultaneous re-
finement of the base temperature (3 K) dataset of banks 3–8, grouped into three pairs.
It can be seen that the instrument allows a good resolution of nuclear Bragg peaks over
a wide range of momentum transfer and the observed background signal is negligible.
Room temperature structural parameters inferred from such datasets have been listed in
Table 6.1, and the thermal variation of these parameters has been shown and discussed
in the context of Fig. 6.3 (red markers).

The Os5+ magnetic form factor (plotted in Fig. 2.5) decreases rapidly with momentum
transfer [321]. At Q ≈ 1.5Å−1, magnetic intensities are expected to be suppressed by
50%. Indeed, within the ordered phase, several weak magnetic Bragg scattering con-
tributions appear at integer Bragg positions with Q < 1.25Å−1. The magnetic order in
weberite Ca2Os2O7 is therefore described by a magnetic propagation vector qqqm = (0,0,0)
(also denoted as “qqqm = 0”).

The (011) and (101) Bragg positions of the weberite phase are strong nuclear reflections
and and the small additional magnetic contributions at low temperatures are barely re-
solved within the statistics of this experiment. For this reason, the determination qqqm = 0
magnetic structures can be challenging. However, due to its orthorhombic symmetry, we-
berite Ca2Os2O7 features two Bragg positions that are dominated by the magnetic con-
tributions. The thermal variations of the integrated intensities at these (110) and (020)
peaks is shown in 6.8(e). Both reflections show an order-parameter-like temperature
dependence at transition temperatures TN ≈ 331K and T2 = 278K. As noted above, small
variations in TN between polycrystalline batches (TN = 325–327 K observed in magneti-
zation and transport measurements) may be due to a small oxygen deficiency or cation
mixing. Enlarged views of diffraction patterns showing the (110) and (020) peaks are
also found below, in Fig. 6.10.

First, at TN ≈ 331K, magnetic intensity appears at the (020) position. The (020) reflection
is symmetry allowed in the Imma space group, but has no contributions from the Ca or
Os sites and the nuclear scattering contributions from the three oxygen Wyckoff sites of
the weberite structure (4e, 8h and 16 j, see Table 6.1) nearly cancel. On the other hand,
the reflection (110) is extinct by the a and b-glide planes (x,y, 1

4) and (x,y,0) (symmetry

operation 6 in space group Imma, which results in the reflection condition HK0 : H,K !
=

2n).

Thus, the consecutive appearance of magnetic intensity at these two positions implies
the following two-step process: First, at TN, the magnetic moments order with the full
symmetry of the nuclear structure, i.e. the moments must be aligned collinearly. Then, at
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the intermediate transition at T2, the magnetic moments cant, whereby the glide plane
symmetry of the underlying nuclear structure is broken and intensity appears at the
“nuclear-forbidden” peak (110).

A qqqm = 0-type spin structure is consistent with the magnetization measurements pre-
sented in Section 6.2, which suggest a net magnetic moment along the c axis. How-
ever, the neutron data is ambiguous regarding the distribution of this net magnetic mo-
ment over the two osmium sites (Os1 at 4c and Os2 at 4b). In the intermediate phase
(T2 < T < TN), the moments could (1) align parallel (ferromagnetically) or (2) antiparal-
lel (ferrimagnetically) and, notably, (3) not both sites must necessarily carry an ordered
moment.

As noted in Section 6.1, the weberite structure has been described as magnetically half
frustrated. In other words, antiferromagnetic exchange interactions between nearest
neighbour osmium ions do not favour a unique ground state at the Os1 (4c) site. For
the Os2 (4b) site, this frustration is lifted (see Fig. 6.1). I therefore propose that the
two sites do not order simultaneously. Instead, there may be only a small or vanishing
ordered magnetic moment at the Os1 site in the intermediate phase. In this picture, the
observed canting of the spin arrangement below T2 follows naturally from the increasing
interaction between the two sites as the fluctuating frustrated moment at Os1 begins to
freeze out.

In order to test this hypothesis, I performed the MuSR experiment summarized in Fig. 6.9.
The variation of the MuSR anisotropy (see Eq. 2.70) up to 3 µs after the muon pulse, for
sample temperatures between 351.5 and 3.5 K, is shown in panel (a). The data (mark-
ers) are approximated by the following phenomenological model (lines):

A(t) =C+A0 ·R · e−(λ t)β

+A0 · (1−R) ·
(

1
3
+

2
3

cos(ω t)e−λ2 t
)

(6.2)

Here, A0 = 25.23% is the initial anisotropy, which was held constant. The parameter
0 < R < 1 models the changeover between two types of behaviour that have been il-
lustrated in Fig. 2.9 (Section 2.5): (1) Either, the local fields are dominated by fluctu-
ating magnetic moments. This leads to a fast relaxation of the muons, described by a
stretched exponential decay with parameters λ and β . Or, (2), the muons experience
sizeable static components of the local fields, which lead to Larmor precession. Due to
the polycrystalline character of the sample, the muon anisotropy component due to this
precession does not decay completely, but only to a fraction of one third. The constant
baseline C = 5.25% is a background contribution attributed to 1/6 of the muons stopping
outside the sample, e.g. in the Ag sachet. As expected for (non-magnetic) Ag, this effect
is temperature-independent and does not affect the intrinsic signal of the sample.
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Figure 6.8: Time-of-flight neutron powder diffraction (WISH, ISIS) of weberite
Ca2Os2O7. (a,b,c) Simultaneous Rietveld refinement (FullProf algorithm [382], black
line) of data (red markers) from six detector banks, grouped into three pairs. The insets
show detail views of the low momentum transfer regimes. Magnetic Bragg intensities
are indicated by green arrows. (d) Assembly of the WISH instrument, with labels of
the ten detector banks. The beam direction is indicated by a black arrow (from [465]).
(e) Temperature dependence of the magnetic intensities at the (110) and (020) Bragg
reflections. The green lines are guides to the eye.
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Figure 6.9: Muon spin rotation and relaxation (MuSR) in weberite Ca2Os2O7. (a) Muon
decay anisotropy (markers) between 351.5 and 3.6 K, and the phenomenological model
of Eq. 6.2 (solid lines). The baseline C = 5.25% is indicated by a dashed black line.
(b,c) Corresponding thermal variation of the model parameters λ and ω.
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The temperature dependence of the model parameters λ and ω corresponding to the
lines in Fig. 6.9(a) are summarized in panels (b,c). The ratio R is close to unity above
the ordering transition and in the intermediate range of 150–250 K. Immediately below
TN, as well as at low temperatures T < 150K, R is reduced down to 10–30%. In the
relevant regime, β was largely constant at 0.2–0.3.

It should be noted that the above model is not uniquely determined over the full tem-
perature range. Instead, the fits presented here should be understood merely as the sim-
plest model which can account for all features in the data. The muon rotation frequency
(panel (b)) reveals the characteristic order parameter behaviour at TN = 327K. Below
≈ 305K, the precession grows too fast to be resolved by the MuSR instrument. When
cooling below 315 K, fluctuating fields dominate (R → 1) and λ diverges. In the data,
this is seen as a sharp drop down to the baseline C (indicated as a black dashed line) at
intermediate temperatures. At lower temperatures, static field components become more
important again and the muon anisotropy relaxes to the “1/3-tail” of C+A0/3 ≈ 14%.

The above observations lend strong support to the picture that the magnetic moment
at the two osmium sites of weberite Ca2Os2O7 do not order simultaneously. Instead,
the non-monotonic changeover between two types of muon relaxation characteristics
can be explained more naturally by two separate components of the magnetic order.
First, the Os2 magnetic moments order in a c axis ferromagnetic arrangement. Due to
the antiferromagnetic interactions, this frustrates the Os1 neighbours. In the interme-
diate state T2 < T < TN, the Os1 ions therefore remain in a “cooperative paramagnetic”
state [466], with diverging fluctuations of the magnetic moments at T2. A detailed view
of the Rietveld refinement of the 300 K WISH TOF neutron data, and a illustration of this
magnetic state is shown in Fig. 6.10(a,b)

More detailed information on the low-temperature, canted magnetic order in weberite
Ca2Os2O7 can be gained from representational analysis [467]. The space group Imma
yields four irreducible representations (irreps) Γ1, Γ3, Γ5 and Γ7 (see Table 6.2) for a
qqqm = 0 magnetic structure with a finite magnetic moment at both osmium sites. The pos-
sible magnetic structures can be further constrained by comparing the magnetic structure
factors for the magnetic basis vectors corresponding to each irreducible representation
with experiment.

In particular, a magnetic structure corresponding to Γ1 cannot yield a Bragg peak at
(020) (which is observed). Conversely, Γ3 or Γ5 magnetic order would generally scatter
at (002), but I observe no magnetic intensity at this position. The magnetic basis vectors
of the remaining choice Γ7 implies a net magnetic moment along the c-axis, which I con-
firmed by direction-dependent single crystal magnetization measurements (see Fig. 6.5).
Similarly, Γ3 and Γ5-type structures would be “weakly ferromagnetic” along the a- and b-
axes, respectively, which is not observed in magnetometry. Since the magnetic moments
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Figure 6.10: Magnetic structure determination of weberite Ca2Os2O7. (a) Detailed
view of 300 K time-of-flight neutron powder diffraction data obtained at WISH (compare
Fig. 6.8). The refined scattering contributions of the pyrochlore impurity and weberite
magnetic order are indicated by separate lines. (b) Model of ferromagnetic order at
300 K at the Os2 site. (c,d) Corresponding data, refinement and model of the canted
magnetic structure at 100 K. (e) χ2 map of refinements of the data shown in panel (c),
with fixed angles (θ1, θ2) of the magnetic moments (m1 = 2 µB, m2 = 3 µB). The red
contour delineates one standard deviation from the best fit. The black lines bound the
narrow region for which the net magnetic moment almost vanishes (mnet =±0.26 µB/f.u.
margins indicated). (f) Definition of the basis vectors (uuu,vvv,www) of the magnetic structure at
the two osmium sites (Os1/Os2). The angles θ1 and θ2, along with the magnitudes of the
ordered moments are the only degrees of freedom in the Γ7 irreducible representation.
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Table 6.2: Representational analysis of the propagation vector kkk = (0,0,0) in the space-
group Imma with magnetic moments at the Osmium positions Os1 (4c site) and Os2
(4b site). The positions are listed explicitly in unit cell fractions below the table. For
each irreducible representation, the magnetic basis vectors are noted in terms of the
fundamental modes F and G, as defined below the table.

irr. rep.
basis vectors

comment
Os1 Os2

Γ1 Gy Gy I(020) = 0
Γ3 Fx Gz Fx I(002) 6= 0
Γ5 Fy Fy Gz I(002) 6= 0
Γ7 Gx Fz Gy Fz FiM. ||ccc

Os1 (4c): (1/4 1/4 1/4) (3/4 1/4 1/4) (3/4 3/4 3/4) (1/4 3/4 3/4)
Os2 (4b): (0 0 1/2) (0 1/2 1/2) (1/2 1/2 0) (1/2 0 0)

“F” + + + +
“G” + − + −

order above room temperature (TN = 47º C), the correct irrep can also be determined
using a permanent magnet: Single crystals align with their c axis along the field-lines,
which confirms the more quantitative experiment of Fig. 6.5.

The irreducible representation Γ7 yields magnetic basis vectors

Os1
(4c site,
frustrated)

:
(1

4
1
4

1
4)

(3
4

3
4

3
4)


 u1

0
w1

 and
(3

4
1
4

1
4)

(1
4

3
4

3
4)


 −u1

0
w1


and

Os2
(4b site,
un-frust.)

:
(001

2)

(1
2

1
20)


 0

v2

w2

 and
(01

2
1
2)

(1
200)


 0

−v2

w2


Thus, the magnetic moments of the Os1 and Os2 sites are restricted to lie in the a–c and
b–c planes, respectively, and the refinement of the magnetic structure can be restricted
to the magnitudes (m1, m2) and canting angles (θ1, θ2) of the magnetic moments at the
two sites. The definitions of these angles and magnetic basis vectors are also shown
in Fig. 6.10. As noted above, magnetic intensities are observed at four integer (HKL)
positions at Q < 1.25Å−1. For a refinement of the magnetic structure parameters (100 K
dataset), I fixed the structural parameters and constrained the Rietveld algorithm to the
Q-range shown in the panels of Fig. 6.10(c).
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By writing out the magnetic structure factors of the four reflections, one obtains the
following relationships between magnetic Bragg intensities and basis vectors of Γ7:

I(011) ∝ (2v2 −3w1)
2/13 I(101) ∝ (u1 −3w2)

2/10

I(110) ∝ (u1 +2v2)
2/5 I(020) ∝ (w1 −w2)

2

This confirms that the I(020) integrated intensity effectively measures the “staggered”
c axis magnetization, while I(110) is determined by the canting due to transversal (u1,
v2) components. An additional constraint comes from the SQUID magnetometry results
(Fig. 6.5(b–d)): The net c axis magnetization must be w1+w2 ≈ ±0.26 µB. Taken to-
gether, these constraints still do not unambiguously define the structure. To quantify
these constrains I performed systematic refinements of the data shown in Fig. 6.10(c).

In Fig 6.10(e), I show a χ2-map as a function of the magnetic moment angles (θ1, θ2).
To obtain this map, I fixed the magnitudes of the magnetic moments at m1 = 2 µB and
m2 = 3 µB. Although the magnitudes are only weakly constrained, I calculated χ2 maps
for several values of (m1, m2) and obtained the best results in this setting. The red con-
tours in Fig. 6.10(e) delineate the regime of one standard deviation from the best fit.
The black lines bound the narrow region in which the net moment (per f.u.) is smaller
than ±0.26 µB. Acceptable configurations are thus confined to narrow regions around
(θ1,θ2) =(30º, 130º) or (210º, 310º), which corresponds to the spin structure illustrated
in Fig. 6.10(d). This double degeneracy of the fit results corresponds to spin inver-
sion (i.e. time-reversal), and cannot be avoided due to the phase problem in scattering
techniques. The two choices also correspond to two magnetic domains, which would
necessarily both be realized in the sample.

6.5 Discussion

The present study has revealed very different results for the magnetism in pyrochlore
and weberite Ca2Os2O7. The cubic material appears to be a semimetal, in which the
full frustration of Os5+ magnetic moments prevents even a sizeable slowing down of
spin fluctuation, down to 40mK. The local environments and magnetic superexchange
interactions are not expected to be dissimilar for the orthorhombic polymorph. It is
therefore impressive that the partial relief of frustration suffices for the formation of
magnetic order above room temperature.

Magnetic order in weberite materials has been previously investigated for several 3d tran-
sition metal fluorides A1+

2 (B1)2+(B2)3+F7, as well as fluoro-hydrates (B1)2+(B2)3+F5(H2O)2

(A: alkali metal, B1 and B2: 3d transition metal) [468, 469, 470, 471]. In cases where
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neutron diffraction data is available, similar two-step magnetic ordering transition as in
the present case have been observed [472, 473, 474]. In these materials, these intricate
magnetic ordering transitions were generally discussed in terms of competing exchange
interactions between the different B1 and B2 magnetic ions. A number of scenarios was
investigated, either (1) with different elements (Ni2+Fe3+), or (2) with the same ele-
ment in mixed valency (Fe2+Fe3+), or (3) with one site occupied by a non-magnetic ion
(Cu2+In3+). Cooperative paramagnetism or idle spin behaviour has also been reported in
mixed valent materials of the hexagonal tungsten bronze structure, which is also based
on the fluorite structural motif [475].

There exist far fewer studies of magnetism in weberite oxides [449]. To my knowl-
edge, magnetic properties have only been reported for certain rare-earth based mate-
rials, which are not directly relevant in the present context [476, 477, 478]. Notably,
first principles calculations of weberite Ca2Os2O7 indicate a strict pentavalence at both
sites [447]. If the transition at T2 is driven by a crossover in superexchange interactions,
this must then be due to the variations in exchange paths, which I have quantified in pan-
els (e,f,g) of Fig. 6.3 (Section 6.2). This is surprising, since these structural parameters
vary only weakly. Nevertheless, the in-ward counter-rotation of the (Os1)O6 octahedra
(in reference to 6.3(e)) is clearly coupled to TN and is arrested at lower temperatures,
T < 100K. It is debatable whether this very subtle effect is responsible for tipping the
scale towards a spin freeze-out at the Os1 site.

As introduced in Chapter 1.3, the driving motivation for the present study has been the
unusual physics of strongly spin-orbit coupled heavy transition metal oxides (TMOs) with
electronic correlations. Indeed, the poor-metal- or semimetal-to-insulator transition ob-
served in weberite Ca2Os2O7 (see Fig. 6.4) cannot be explained by the traditional Mott-
Hubbard scenario. Instead, it is reminiscent of the metal-insulator-transitions (MITs)
which have recently attracted great interest 5d TMOs. This includes several families of
iridates as well as the osmates NaOsO3 and Cd2Os2O7 (see discussion in Section 1.3).

The magnetization and resistivity measurements presented in this chapter (see Figs. 6.4, 6.5
and 6.6) suggest that the charge transport transition observed in weberite Ca2Os2O7 is
induced by the evolution of magnetic order. This is also consistent with the fact that no
such transition is observed in the paramagnetic pyrochlore phase. Os5+ in the octahedral
environment is in a 5d3 state with quantum numbers S = 1 and L = 0 (see level scheme
in Fig. 1.11). The Jeff = 1/2 scenario of a spin-orbit–assisted MIT does therefore not apply
in the present case (see Section 1.3). Two alternative candidate mechanisms are the
Slater [298] and Lifshitz [297] transitions.

A metal-insulator transition driven by the Slater scenario has recently been evidenced
in the 5d3 compound NaOsO3 [293, 294]. Resistive characteristics of this material are
indeed similar to the present results [293]. Simple antiferromagnetic order implies a
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doubling (or generally, increase) of the primitive unit cell along the propagation direc-
tion of the magnetic structure. In momentum space, this corresponds to a reduction of
the effective primitive Brillouin zone, which entails a back-folding of electronic bands. If
the parent band structure features a band crossing at the new Brillouin zone boundary,
these states will hybridize and open a gap. If the gapped bands have been half-filled
(as expected for the Os5+ t2g manifold), this results in a MIT [298]. The Slater MIT
is expected to occur continuously, and does not directly couple to the lattice. I have
shown by bulk measurements and high resolution x-ray diffraction5 that both require-
ments are satisfied in weberite Ca2Os2O7. On the other hand, my neutron diffraction
study revealed no sizeable antiferromagnetic component of the magnetic structure in
the intermediate magnetic phase. Within the accuracy of the measurement, this rules
out the Slater mechanism.

In another 5d3 compound, the pyrochlore Cd2Os2O7, a metal insulator transition has
been interpreted as a Lifshitz transition [479]. This is a general term applied to any
transition which changes the topology of the electronic band structure, i.e. by creation
or destruction of electron or hole pockets [297]. In the case of Cd2Os2O7, it is attributed
to the coupling of Os bands to the all-in/all-out magnetic order [479, 480]. I have shown
that weberite Ca2Os2O7 forms a similar qqqm = 0 ground state. The Lifshitz opening of the
charge gap would be expected to occur continuously, which is also consistent with the
observed second order transition.

Preliminary first principles band structure calculations have demonstrated that collinear
magnetic order in weberite Ca2Os2O7 have the potential to split the Os2 (4b site) t2g

manifold away from the Fermi surface [447]. On the other hand, a canting of magnetic
structure was required to split the remaining Os1 (4c) states. The two-step ordering
process and character of the low temperature magnetic order was not known at the time
of this study.

In this chapter, I have noted that the charge gap in weberite Ca2Os2O7 appears to open in
two steps. Although the transition sets in at TN, the resistivity of the polycrystalline sam-
ple shows an inflection after increasing by 2–3 orders of magnitude, before it diverges
at much lower temperatures T < 50K. The present results therefore do seem compati-
ble with a two-step Lifshitz transition, meaning a consecutive destruction of Os2 Fermi
pockets (at TN) and Os1 Fermi pockets (at T2).

In their study of the Lifshitz transition in Cd2Os2O7, Hiroi et al. have emphasized the
importance of metallic antiferromagnetic domain walls in the interpretation of the trans-
port characteristics. The presence of these all-in/all-out – all-out/all-in interfaces has
also been evidenced by resonant magnetic x-ray micro-diffraction [481].

5Experiment performed by Christian Donnerer, London Centre for Nanotechnology and Department of
Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
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In my magnetization measurements, I observed an exponential increase in coercivity
in the temperature regime where the resistivity the material diverges (see Fig. 6.5(e)).
This could be attributed to a growth of the magnetic domains, or, inversely, a reduction in
domain wall density. I therefore speculate that conductive magnetic walls could also play
an important role in the effective charge transport properties of weberite Ca2Os2O7. It
would be of great interest to investigate the anisotropy of the resistivity and Hall effect in
single crystal magnetotransport experiments, and to compare field cooled and zero-field
cooled characteristics.

6.6 Conclusion

In this chapter, I have presented an in-depth transport, magnetization, MuSR, and x-
ray and neutron powder diffraction study of the magnetism in cubic and orthorhombic
polymorphs of the 5d TMO Ca2Os2O7. The orthorhombic phase is of special interest,
because it features the unconventional opening of a charge gap, simultaneously with
magnetic ordering, above room temperature. Although the cubic polymorph does not
exhibit such a transition, its study is of interest since its physical properties have not
been previously reported.

Taken together, the chemical stability of both phases also affords a fortuitous opportu-
nity to assess the impact of magnetic frustration. In the fully frustrated, cubic phase,
magnetic order is completely suppressed, and the material therefore also forgoes any
transport anomalies. By contrast, for the orthorhombic material, I was able to estab-
lish a consistent picture of a multi-axial spin structure with a net ferrimagnetic moment,
which is preceded by an intermediate state with idle spin behaviour on one site.

My observations in weberite Ca2Os2O7 would be consistent with a two-step Lifshitz tran-
sition due consecutive diffraction of distinct Fermi pockets. It will be interesting to per-
form first principle calculations of the electronic structure at the Fermi surface, as in
Ref. [447], but based on the two-step magnetic ordering process that I discovered. Ide-
ally, such results could also be verified by photoemission and quantum oscillation mea-
surements. As noted in Section 6.5, a magnetotransport study of oriented single crystals
would also aid the understanding of this transition.

Metal-insulator transitions in the room temperature regime also deserve attention in
view of technological application. Very little is presently known about heavy transi-
tion metal oxides of the weberite structure. As fluorite-related structures are flexible
with regards to ionic substitution, the synthesis of new compounds in this family seems
promising [449].
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From an experimental point of view, I have intended to demonstrate how subtle micro-
scopic information can be extracted from powder-averaged neutron and x-ray diffraction
data. In the present case of a magnetic structure that is commensurate with the nu-
clear structure, the information obtained from neutron powder diffraction is necessarily
ambiguous. However, additional information from symmetry analysis and bulk proper-
ties (e.g. single crystal magnetization and MuSR data) are often enough to obtain tight
constraints on possible magnetic structures.
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Chapter 7

Summary and conclusion

In this thesis I have presented investigations of magnetism in several unusual materi-
als, using state-of-the-art neutron and x-ray scattering techniques.

To this end, I first provided a broad overview of emergent phenomena in quantum ma-
terials, which includes the topics of unconventional superconductivity (1.1), topologi-
cally non-trivial band structures (1.2) and heavy transition metal oxides (1.3). In the
last decade, each of these topics has experienced a surge of scientific activity. This
was sparked by the discoveries of iron-based high temperature superconductors [32],
Dirac fermions in condensed matter [146], and spin-orbit assisted metal–insulator tran-
sitions [262], respectively. Taken together, these discoveries have broadened the focus
of the field, from strong electronic correlations, to quantum materials in general [13].

The exploration of these complex electronic states requires experimental tools that can
probe the bulk of materials on atomic length- and energy scales. This is achieved
uniquely by the coherent interference of radiation that is scattered from electrons and
nuclei. In chapter 2, I explained how the different properties of neutron and x-ray ra-
diation each provide access to specific attributes of condensed matter, including charge,
magnetic and nuclear order and excitations. The subsequent four chapters then served
as examples of successful applications of these elastic and inelastic neutron- and x-ray
scattering techniques. In each case, I demonstrated the state-of-the-art of experimental
capabilities.
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In Chapters 3 and 4, I reported inelastic scattering experiments, i.e. studies of magnetic
excitations.

By use of time-of-flight neutron spectroscopy, I was able to determine the wave vector
of paramagnon excitations in the unusual superconductor FeSe (Chapter 3). I com-
pared the dispersion of these fluctuations with several theoretical models that had been
proposed [482]. This data demonstrated the advantage of high-flux neutron chopper
spectrometers as a simultaneous probe of a wide regime in momentum and energy-
transfer–space. A special feature of this technique is that intensities can be measured
in absolute units, which allowed a quantitative comparison with other iron-based super-
conductors. My analysis of this data also showed that, even though much information is
lost in the powder average, a careful consideration of selected features can lead to cor-
rect conclusions (as later corroborated by single crystal studies). I also complemented
my neutron powder study with a single crystal resonant x-ray spectroscopic experiment.
RIXS measurements with such energy resolution had only become possible few months
before this experiment. Although the results yield only little information on the magnetic
state of the material, it marks the first time that this technique has produced evidence
of such weak magnetic fluctuations of such itinerant states. The modelling of this data
will provide a touchstone for computational models of the magnetic RIXS process that
are currently being developed.

In the following chapter (4), I presented another inelastic neutron scattering study, in
a rather different context. In this case, I used a triple-axis spectrometer at a reactor
source and determined the energy transfer with a special multi-analyzer device. The
subject of this study was a pair of bismuthides AMnBi2 (A=Ca, Sr). These were promis-
ing to be the first materials in which a coupling of electronic correlations and Dirac
fermions is shaping the magnetic ground state. I obtained high resolution spectra of
the magnetic excitations in both materials and quantified their magnetic anisotropy and
exchange interactions. Within the small errors of this measurement, my results rule out
the elusive correlated topological state in these compounds [482]. This finding will play
an important role in steering future experimental efforts towards more promising can-
didate materials. This chapter demonstrated several great advantages of single crystal
inelastic neutron scattering: With a relatively small experimental effort, it is possible
to map a large four-dimensional volume of momentum- and energy-transfer, with good
resolution in all dimensions. In the analysis of this data (see also Appendix B), I showed
that in favourable cases, it can be straightforward to construct an analytical model of the
neutron spectroscopic response from linear spin wave theory.
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In Chapters 5 and 6, the focus of this thesis shifted to elastic scattering, i.e. studies
of magnetic order. I used two very different experimental approaches to obtain this
information: In Chapter 5, I exploited the intricate polarization-dependence of resonant
elastic x-ray scattering from a single crystal. By contrast, in Chapter 6, I refined details
of a magnetic ordering process in a polycrystalline sample from cold neutron chopper
diffraction data.

My measurements of the magnetic and charge transport properties of EuCd2As2 (Chap-
ter 5) showed that it is a promising candidate for unusual band topology — and a possi-
ble coupling of these bands to large Eu2+ magnetic moments. EuCd2As2 is also the ideal
example to point out a strong limitation of neutron scattering: Cadmium is commonly
used for neutron shielding, and the absorption cross section of europium is even almost
twice as large. In the case of EuCd2As2, resonant x-ray scattering at the Eu L3 edge
proved to be an excellent alternative probe of magnetic order. I was able to construct
a coherent picture of the magnetic state and its evolution in a magnetic field. Notably,
these results contradict the previous perception of the magnetic order in this material.
Based on my findings, in-depth computational and photoemission spectroscopy studies
are now underway to determine the potential relevance of a topologically protected band
crossing in this material. My analysis of the full x-ray polarization scans shows that the
interpretation of such data is rather involved, even under the favourable circumstances
of this experiment. On the other hand, the complexity of the REXS scattering cross sec-
tion is proportional to the amount of information that is potentially encoded in a single
scan.

The neutron powder diffraction experiments of weberite and pyrochlore Ca2Os2O7 (Chap-
ter 6) echoed the limitations of neutron powder techniques that were already evident in
Chapter 3. The disparate results for the orthorhombic and cubic polymorphs are exem-
plary for the effects of magnetic frustration — an extrinsic factor which increases the
complexity of these 5d electron states. Pyrochlore Ca2Os2O7 turned out to be a param-
agnet down to very low temperatures. By contrast, weberite Ca2Os2O7 is magnetically
ordered at room temperature — but the suppression of magnetic scattering due to the
neutron magnetic form factor and the commensurability of the magnetic and nuclear
structure complicated the powder diffraction experiment. The few observed magnetic
reflections would have likely been obscured on instruments that are not optimized for
low momentum transfer, high resolution and low background. I analysed the ambiguities
of this neutron data in detail and showed how some of the missing information can be
substituted by symmetry analysis and targeted bulk magnetic measurements. In particu-
lar, I used both direction-dependent SQUID magnetometry and muon spin rotation and
relaxation. My model of the ordering process in weberite Ca2Os2O7 suggests that the
partial release of magnetic frustration has a striking indirect consequence: It results in a

171



two-step Lifshitz metal–insulator-like transition that sets in above room temperature.

In conclusion, the research presented in this thesis provides a cross section of the most
relevant topics in current quantum materials physics. On the background of these topics
I have attempted to showcase and contrast the impressive capabilities — but also the
limitations — of a wide scope of modern x-ray and neutron scattering techniques. By
choice of the appropriate scattering technique, method of data analysis and supporting
bulk measurements, I have been able to make an important scientific contribution with
each of these four case studies.
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Appendix A

XRES multipolar coefficients

As stated in Eq. 2.63 (Chapter 2), the resonant elastic x-ray scattering amplitude for the
multipolar process described by the indices (L,M) is given by

Fres
LM =

4π

ki

L

∑
M=−L

P∗
LM FLM(ω) (A.1)

For a fixed initial state |i〉, the multipolar coefficients for transitions via the intermediate
state |n〉 are given by (in the notation of Hannon [332] an Hill [338]):

FLM(ω) = ∑
n

PiPi(n)
1

(xn − i)
Γx

Γ(n)
(A.2)

here Pi is the probability of the initial state |i〉 and Pi(n) is the probability that |n〉 is
vacant if the system is in the state |i〉. x is the resonance parameter that measures how far
off-resonant the incident photon energy h̄ωi is from the system’s resonance at En −Ei (in
units of the total line width Γn of the state |n〉):

xn(ωi) =
En −Ei − h̄ωi

Γn/2
(A.3)

The key observation is that FLM is proportional to the ratio Γx/Γn. Γn is the total line
width (i.e., for decays including all available multipolar processes) of an excited state
|n〉. It depends only weakly on a particular |n〉, but mainly on the core-hole.

The corresponding values Γn|any n ≈ Γres have been tabulated for most relevant atomic
absorption edges [336]. Γx is the partial line width which will depend on the particular
choice of multipolar (L,M) decay path:

Γx = 〈i|J†
LM|n〉〈n|JLM|i〉/λres , with λres =

2π h̄c
En −Ei

(A.4)
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Here, JLM are the Fourier components of the electric multipole operator [336]:

JLM =− 4π iL kL

(2L+1)!!

√
L+1

L ∑
j

erL
j YLM(r̂rr j)+

h̄ω

mc2
1

L+1 ∑
j

erL
j YLM(r̂rr j) lll j · sss j (A.5)

Where (!!) is the double factorial (5!! = 5×3×1).

To determine the relative strength of different resonant processes to the scattering am-
plitude 2.63, it is necessary to evaluate the multipolar coefficients FLM. This has been
discussed in detail by Hamrick [336]. In his notation,

FLM =
r0

4π h̄c ∑
n

En −Ei

xn − i
An

LM (A.6)

with amplitude coefficients

An
LM =

2λres

r0

Γx

Γn

≈ 8π
mc2

Γres

(L+1)(2L+1)
L [(2L+1)!!]2

2li +1
2ln +1

(ka0)
2L |〈Rn|(

r
a0

)L|Ri〉|2C2(li,L, ln,0,0,0)C̃LM(ln, li, j)

(A.7)

As noted above, Γres is the (tabulated) total line-width of the absorption edge. k is the
modulus of the wave vector at the resonance energy and a0 is the Bohr radius.

As seen in Eq. A.7, the amplitude coefficients are also proportional to the squares of
radial matrix elements, which measures the overlap between the radial wave function of
initial and excited states. Hamrick has evaluated these terms for a number of lanthanide
and actinide ions using a Hartree-Fock-Slater algorithm [336]. It turns out that the
results vary only little among ions of the same series. For example, the orbital overlap
relevant for the L3, 2p 3

2
↔ 4 f electric quadrupole (E2) transition is

|〈R4 f |(
r

a0
)L|R2p3/2〉|

2 ≈ 0.0020–0.0025 (A.8)

The multipolar transition / selection rules in Eq. A.7 are encoded in the reduced amplitude
coefficient C̃LM:

C̃LM(ln, li, j) = ∑
mn

l ,m
n
s

p(mn
l ,m

n
s )C2(li,L, ln;mn

l −M,M,mn
l )C2(li,

1
2
, j;mn

l −M,mn
s ,m

n
l −M+mn

s )

(A.9)
Here, the initial (core) and intermediate (valence) states are denoted by the quantum
numbers

|i〉= | li, j, m j 〉 and |n〉= | ln, mn
l , mn

s 〉 (A.10)
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For example, the electronic dipole transitions at the rare earth L3 edge excite 2p3/2 core
electrons into 4 f states, so

|i〉= | 1, 3/2, (−3/2...+3/2) 〉 and |n〉= | 3, (−3...+3), (±1/2) 〉 (A.11)

The factors p(mn
l ,m

n
s ) in Eq. A.9 are the occupation probabilities for states in the valence

shell. For the ion Eu2+ (4 f 7), this is a particularly clear-cut case:

ms

m4 f
l 3 2 1 0 -1 -2 -3

+1
2 1 1 1 1 1 1 1

−1
2 0 0 0 0 0 0 0

Thus, the x-ray resonant exchange scattering coefficients can be estimated by substituting
Eqs. A.9, A.8 and A.7 into Eq. A.6.
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Appendix B

Linear spin-wave theory

In reference to the inelastic neutron study of Chapter 4, I demonstrate how linear spin-
wave theory can be used to derive the magnon dispersion and neutron scattering cross
section of a collinear antiferromagnet. I start by separating the Heisenberg spin Hamil-
tonian (Eq. 4.1) into its exchange and one-ion anisotropy parts:

Ĥ = ∑
〈i, j〉

Ji, j ŜiŜ j − ∑
i

D(Sz
i )

2 (B.1)

≡ ĤJ + ĤD (B.2)

Using the spin creation and annihilation operators

S+ = Sx + iSy S− = Sx − iSy , (B.3)

ĤJ can be rewritten

ĤJ = ∑
〈i, j〉

Ji, j

{
Sz

i S
z
j +

1
2

(
S+i S−j +S−i S+j

)}
. (B.4)

Next, the summation can be simplified as follows. Instead of summing over all pairs
〈i, j〉, for each magnetic ion at a position r, one sums over all possible exchange partners
at relative positions d.

∑
〈i, j〉

→ 1
2 ∑

r
∑
d

(B.5)

As indicated in Fig. 4.3, the explicit form of the relative positions or exchange paths d
will be

SrMnBi2: ddd1 =
(a

2
,
a
2
,0
)

ddd2 = (a,0,0) dddc =
(

0,0,
c
2

)
CaMnBi2: ddd1 =

(a
2
,
a
2
,0
)

ddd2 = (a,0,0) dddc = (0,0,c)
(B.6)
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Where ddd1/2/c correspond to the exchange interactions J1/2/c. Thus, the exchange Hamil-
tonian takes the form

ĤJ =
1
2 ∑

r
∑
d

Jr,d

(
PA

r,d +PB
r,d

)
(B.7)

Here, I have explicitly separated the summation over the two sublattices A and B that
carry antiparallel magnetic moments. The lattices A and B are offset from each other by
an arbitray vector a, which will not appear in the derived formulae.

PA
r,d = Sz

r Sz
r+d +

1
2
(
S+r S−r+d +S−r S+r+d

)
(B.8)

PB
r,d = Sz

r+a Sz
r+a+d +

1
2
(
S+r+a S−r+a+d +S−r+a S+r+a+d

)
(B.9)

Similarly, I split the anisotropy Hamiltonian into two sublattices:

ĤD =−D ∑
r

[
(Sz

r)
2 +(Sz

r+a)
2] (B.10)

To evaluate these terms, they are now stated in second quantization. The spin raising
and lowering operators are expressed as creation (a†,b†) and destruction (a,b) operators
acting on two boson fields describing the sublattices A and B. The Holstein-Primakoff
transformation operators are given by

S+A =
√

2Sa S+B =
√

2Sb†

S−A =
√

2Sa† S−B =
√

2Sb

Sz
A = S−a†a Sz

B =−S+b†b

When substituting these into Eq. B.8, a distinction has to be made whether the exchange
partners connected by ddd are parallel (↑↑) or antiparallel (↑↓):

PA↑↓
r,d = (S−a†

rar)(−S+b†
r+dbr+d)+S(arbr+d +a†

rb†
r+d)

≈−S2 +S(a†
rar +b†

r+dbr+d +arbr+d +a†
rb†

r+d)

PB↑↓
r,d = (−S+b†

r+abr+a)(S−a†
r+a+dar+a+d)+S(b†

r+aa†
r+a+d +br+aar+a+d)

≈−S2 +S(b†
r+abr+a +a†

r+a+dar+a+d +b†
r+aa†

r+a+d +br+aar+a+d)

and similarly, in the case of parallel neighbours:

PA↑↑
r,d = (S−a†

rar)(S−a†
r+dar+d)+S(ara†

r+d +a†
rar+d)

≈ S2 +S(−a†
rar −a†

r+dar+d +ara†
r+d +a†

rar+d)

PB↑↑
r,d = (−S+b†

r+abr+a)(−S+b†
r+a+dbr+a+d)+S(b†

r+ab†
r+a+d +br+abr+a+d)

≈ S2 +S(−b†
r+abr+a −b†

r+a+dbr+a+d +b†
r+abr+a+d +br+ab†

r+a+d)
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The anisotropy Hamiltonian (Eq. B.10) can also be stated in terms of Holstein-Primakoff
operators:

ĤD =−D ∑
r

[
(S−a†

rar)
2 +(−S+b†

r+abr+a)
2
]

≈−2DS ∑
r

[
S−a†

rar −b†
r+abr+a

] (B.11)

In the case of AMnBi2, the nearest neighbours (ddd1, J1) are antiparallel, the next nearest
neighbours (ddd2, J2) are parallel, and the stacking of the layers (dddc, Jc) is parallel for
A =Ca and antiparallel for A =Sr (see Fig. 4.3(a)). The sum over ∑d Jr,d in Eq. B.7 will
therefore split into six parts:

ĤJ =
1
2 ∑

r

{
∑
d1

J1

(
PA↑↓

r,d1
+PB↑↓

r,d1

)
+ ∑

d2

J2

(
PA↑↑

r,d2
+PB↑↑

r,d2

)
+ ∑

dc

Jc

(
PA

r,dc
+PB

r,dc

)}
:= ĤA

J1 + ĤB
J1 + ĤA

J2 + ĤB
J2 + ĤA

Jc + ĤB
Jc

(B.12)

These ĤJ are now evaluated by Fourier transformation of the exchange parameters:

J1(Q) = ∑
d1

J1 ei Qd1 J2(Q) = ∑
d2

J2 ei Qd2 Jc(Q) = ∑
dc

Jc ei Qdc

And Fourier transformation of the Holstein Primakoff operators:

ar =
1√
N ∑

Q
ei Qr aQ br =

1√
N ∑

Q
ei Qr bQ

a†
r =

1√
N ∑

Q
e−i Qr a†

Q b†
r =

1√
N ∑

Q
e−i Qr b†

Q
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By carrying out these sums, one gets, for example:

ĤA
J1 =

1
2 ∑

r
∑
d1

J1 PA↑↓
r,d1

≈ 1
2 ∑

r
∑
d1

J1

[
−S2 +S(a†

rar +b†
r+d1

br+d1 +arbr+d1 +a†
rb†

r+d1
)
]

= −1
2

S2
∑
r

∑
d1

J1 +
1
2

S∑
Q

∑
d1

J1

(
a†

QaQ +b†
QbQ + eiQd1a−QbQ + eiQd1a†

Qb†
−Q

)
= −1

2
NS2 J1(0)+

1
2

S∑
Q

[
J1(0)(a

†
QaQ +b†

QbQ)+J1(Q)(a−QbQ +a†
Qb†

−Q)
]

= −1
2

NS2 J1(0)−
1
2

NSJ1(0)+
1
4

S∑
Q

[
J1(0)(a

†
QaQ +a−Qa†

−Q +b†
QbQ +b−Qb†

−Q)+

+ J1(Q)(a−QbQ +a†
Qb†

−Q +b†
Qa†

−Q +b−QaQ)
]

≡−1
2

NS (S+1)J1(0)+
1
4

S∑
Q

[J1(0) v̂1 +J1(QQQ) v̂2]

Here, I have used the commutation relations of Holstein-Primakoff operators,
[aQ,a

†
Q] [aQ,b

†
Q] [aQ,a−Q] [aQ,b−Q]

[bQ,a
†
Q] [bQ,b

†
Q] [bQ,a−Q] [bQ,b−Q]

[a†
−Q,a

†
Q] [a†

−Q,b
†
Q] [a†

−Q,a−Q] [a†
−Q,b−Q]

[b†
−Q,a

†
Q] [b†

−Q,b
†
Q] [b†

−Q,a−Q] [b†
−Q,b−Q]

=


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 . (B.13)

Along with the relations b−QaQ = bQa−Q (etc.), this allows some terms to be written in
a more symmetrical form:

a†
QaQ = 1/2 (a†

QaQ) + 1/2 (a−Qa†
−Q) − 1/2

b†
QbQ = 1/2 (b†

QbQ) + 1/2 (b−Qb†
−Q) − 1/2

a−QbQ = 1/2 (a−QbQ) + 1/2 (b−QaQ)

a†
Qb†

−Q = 1/2 (a†
Qb†

−Q) + 1/2 (b†
Qa†

−Q) ,

(B.14)

and thus introduce the abbreviations

v̂1 := (a†
QaQ +a−Qa†

−Q +b†
QbQ +b−Qb†

−Q)

v̂2 := (a−QbQ +a†
Qb†

−Q +b†
Qa†

−Q +b−QaQ)
(B.15)

Futhermore, by use of the commutation relations, one finds that

ĤA
J1 = ĤB

J1
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and similarly, it follows that

ĤA
J2 =

1
2

NS (S+1)J2(0)+
1
2

S∑
Q

[
(−J2(0)+J2(Q))(a†

QaQ +a−Qa†
−Q)

]
ĤB

J2 =
1
2

NS (S+1)J2(0)+
1
2

S∑
Q

[
(−J2(0)+J2(Q))(b†

QbQ +b−Qb†
−Q)

]
ĤD = −NS (S+1)(2D) +

1
2

S∑
Q
[2Dv̂1]

The interlayer Ĥ
A,B
c terms correspond directly to Ĥ

A,B
1 or Ĥ

A,B
2 , in the cases of anti-

ferromagnetic (SrMnBi2) or ferromagnetic (CaMnBi2) stacking, respectively. Therefore,
adding the terms of the two sublattices back together gives

ĤA
J1 + ĤB

J1 =−NS(S+1)J1(0) +
1
2

S∑
Q
[J1(0) v̂1 + J1(Q) v̂2]

ĤA
J2 + ĤB

J2 =+NS(S+1)J2(0) +
1
2

S∑
Q
[−J2(0) v̂1 + J2(Q) v̂1](

ĤA
Jc + ĤB

Jc

) Sr
Ca =

−
+

NS(S+1)Jc(0) +
1
2

S∑
Q

[
+
− Jc(0) v̂1 + Jc(Q)

v̂2
v̂1

] (B.16)

After collecting all terms, the Fourier transformation of Eq. B.1 becomes

H
Sr
Ca =−NS(S+1)

(
J1(0)−J2(0)

+
− Jc(0)+2D

)
+

1
2 ∑

Q
[v̂1 A+ v̂2 B] (B.17)

where

A = S (JAF(0)−JF(0)+JF(QQQ)+2D)

B = SJAF(QQQ)
(B.18)

and the ferromagnetic and antiferromagnetic exchange terms have been collected as

JF =

{
J2

J2 +Jc
and JAF =

{
J1 +Jc (SrMnBi2)
J1 (CaMnBi2)

(B.19)

The boson operators from Eq. B.15 can be substituted back to obtain a general expression
of Eq. B.17 in the basis of X = (aQ,bQ,a

†
−Q,b

†
−Q):

H =H0 +
1
2 ∑

Q
X†

QHQXQ (B.20)
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with

HQ =


A 0 0 B
0 A B 0
0 B A 0
B 0 0 A

 , (B.21)

The eigenvalue E is given by the condition

|gggHQ −E1| !
= 0 , with ggg = [X ,X†] =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 . (B.22)

Thus, one obtains the magnon dispersion

E =
√

A2 −B2 (B.23)

As introduced in Eq. 2.37 (Chapter 2.3.2), the double differential magnetic neutron scat-
tering cross section is given by

dσ

dΩdω
=
(

γ r0 g
2

)2 k f

ki
F2(QQQ)e−2W (QQQ)

∑
α,β

(
δαβ − Q̂αQ̂β

)
Sαβ (QQQ,ω) , (B.24)

In the present case of a c axis collinear antiferromagnet, all off-diagonal terms of Sαβ

vanish and Szz contributes only elastic scattering. From Eq. 2.38, (with the same notation
as in Chapter 2.3.2),

Sxx(QQQ,ω) = ∑
λi,λ f

pλi 〈λi|Sx†(QQQ)|λ f 〉〈λ f |Sx(QQQ)|λi〉δ (h̄ω − (E f −Ei)) (B.25)

In analogy to the diagonalization of the Hamiltonian, these terms are evaluated in second
quantization, with the result (for neutron energy-loss processes)

Sxx = Syy = N S
A−B

E
1

1− e−β h̄ω
δ (h̄ω −E) (B.26)

By substituting this ino Eq. B.24, the orientation factor can be simplified and the cross
section becomes

dσ

dΩdω
=
(

γ r0 g
2

)2 k f

ki
F2(QQQ)e−2W (QQQ)

(
1+ Q̂2

z
)

N S
A−B

E
1

1− e−β h̄ω
δ (h̄ω −E)

(B.27)

To avoid clutter, the Debye-Waller factor has been omitted in the main text (Eq. 4.4).
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Appendix C

REXS polarization analysis

The formalism of x-ray full polarization analysis (FPA) has been summarized by Detlefs
et al. [337]. Useful discussions of the technique are also found in several reports of
successful FPA studies [445, 483, 484]. Here I give a brief presentation of the concepts
that are relevant to the data analysis of Chapter 5.

The electric field EEE of an x-ray beam of energy h̄ω and wave vector kkk can be decomposed
into two orthogonal amplitudes V1 and V2.

EEE(t,rrr) =R
[
(V1 ε̂εεσ +V2 ε̂εεπ) · e−i(ωt−kkk·rrr)

]
, (C.1)

where R signifies the real part of this field. This is not relevant in the linearly polarized
case, where the Jones polarization vector,

ε̂εε =

(
V1
V2

)
=

(
cosη

sinη

)
(C.2)

has no imaginary components. As shown in Fig. 5.5(a,b), the unit vectors ε̂εεσ , ε̂εεπ and k̂kk
form a right-handed coordinate system. For linearly polarized light, the Jones vector can
thus be reduced to the polarization angle η , as shown in Fig. 5.5(c).

The polarization state of the beam is described by the Poincaré-Stokes vector (P1,P2,P3),
which is defined as

P1 =
|V1|2 −|V2|2

|V1|2 + |V2|2

P2 =
|V1 +V2|2 −|V1 −V2|2

2(|V1|2 + |V2|2)

P3 =
(|V1 − iV2|2 −|V1 + iV2|2)

2(|V1|2 + |V2|2)

(C.3)

For fully linearly polarized light, P3 vanishes and the degree of linear polarization is unity,

Plin =
√

P2
1 +P2

2 → 1 (C.4)
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Figure C.1: Full polarization analysis of the direct beam at beamline P09 (DESY). The
Stokes parameters follow Eq. C.5, which confirms that the beam is fully linearly polarized
for any setting of the phase retarder. Each set of (P1,P2) plotted in the top panel is
obtained by fitting Eq. C.6 to the integrated intensities (black markers) shown in the
bottom panels (best fit indicated as a blue line).

By combining Eqs. C.2 and C.3, it also follows that in this case

P1 = cos2η and P2 = sin2η . (C.5)

These characteristics are confirmed by the FPA scan of the direct beam at beamline P09
(DESY) shown in Figure C.1, top panel. To obtain these parameters, the phase plates
were rotated in ten steps, corresponding to ten angles of incident linear polarization η

between −90º and +90º. For each incident polarization, rocking scans of the analyzer
crystal were measured at seven analyzer angles η ′ between −15º and +105º. The inte-
grated intensities of these rocking curves are shown in the bottom panels of Fig. C.1.

As gleaned from Eq. C.5, the Stokes parameters P1, P2 quantify whether these η ′-scans
are more cosine- or sine-like. They can thus be extracted by fitting the relation

I(η ′) = I0 + I0 (P1 cos2η
′ + P2 sin2η

′) (C.6)
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In the study of EuCd2As2 in Chapter 5, I used the same type of analysis to obtain the
Stokes parameters (P′

1,P
′
2) of magnetically scattered x-rays (shown in Figs. 5.9 and 5.10).

The effect of the scattering process on the polarization state can be obtained in the
coherency matrix formalism [337]. The incoming beam is described by the density matrix

ρ = c/2(1+σ ·P) (C.7)

where c is an arbitrary intensity constant, P = (P1,P2,P3) and σ = (σ1,σ2,σ3) is the vector
of Pauli matrices,

σ1 =

(
1 0
0 −1

)
, σ2 =

(
0 1
1 0

)
, σ3 =

(
0 i
−i 0

)
(C.8)

For a scattering process with a tensor scattering amplitude

F =

(
σσ ′ πσ ′

σπ ′ ππ ′

)
(C.9)

The scattered beam is described by the density matrix

ρ
′ = F ·ρ ·F† (C.10)

And the Stokes parameters describing the scattered intensity are then obtained from

P′
i =

tr(σi ·ρ ′)

tr(ρ ′)
(i = 1,2,3) (C.11)

By substituting the relevant REXS scattering amplitude for F , the Stokes parameters can
thus be simulated for a given magnetic structure.

In the context of Chapter 5, I also considered situations in which the probed sample
volume contains several magnetic domains. To determine the effect of these contribu-
tions, I calculated Stokes parameters P′i

1 and P′i
2 for N domains (i = 1–N). Each domain

contributes an intensity Ii(η ′) ∝ Ii
0 as in Eq. C.6 which add to the total signal:

I(η ′) = Itot + Itot

(
Peff

1 cos2η
′+Peff

2 sin2η
′
)

(C.12)

The effective Stokes parameters are therefore obtained as weighted sums,

Peff
1 =

∑ Ii
0 P′i

1
Itot

, Peff
2 =

∑ Ii
0 P′i

2
Itot

, with Itot = ∑ Ii
0 (C.13)
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