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Abstract

Notions of topology are of considerable interest currently in physics, especially

in the way topology influences the electronic properties of crystalline solids. This

thesis concerns the experimental investigation of four different magnetic materials,

which have been predicted to display a strong interplay between magnetism and the

topology of the electronic band structure.

I demonstrate that EuCd2Sb2, below TN = 7.4 K, displays an A-type anti-

ferromagnetic order on the Eu sub-lattice with a magnetic propagation vector of

k =
(
0, 0, 1

2

)
. I also establish that the C3 rotational symmetry along the crystal c

axis (essential for the stabilisation of band crossings called Dirac nodes) is broken

by the in-plane orientation of the Eu moments.

Following the initial discoveries of crystalline solids which can host topologically-

protected band crossings called Weyl nodes, there is now a need for better material

realisations, ideally comprising a single pair of nodes located at or very close to the

Fermi level and in an energy window free from other overlapping bands. I propose

that EuCd2As2, in a magnetic field of B > 1.6 T along the c axis, to be such a

system. This material is of general interest as it represents the simplest possible

Weyl semimetal, and is therefore a model system for fundamental investigations of

Weyl physics.

I refute the proposition that semimetallic YbMnBi2 hosts Weyl nodes induced

by the time-reversal symmetry breaking mechanism. Furthermore, the full magnetic

excitation spectrum of YbMnBi2, which has been mapped for the first time, demon-

strates that the magnetic order of the Mn sub-lattice is weakly coupled to the charge

carriers in the Bi square net.

Finally, the complex magnetic order of the Mn sub-lattice in Mn3Ge has been

elucidated for the first time. This will shed light on the origin of the large anomalous

Hall effect in Mn3Ge, which is unusual for an antiferromagnet.
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Chapter 1

Introduction

This thesis concerns the properties of metals in which the electrons do not behave

in a conventional way, specifically, electrons which have a linear dispersion at or near

the chemical potential. These quasiparticle excitations can mimic the behaviour of

relativistic Dirac or Weyl fermions and are robust against perturbations due to

the protection afforded by topology. Materials that host massless charge carriers

are interesting because of the enhanced charge transport properties which could be

exploited in electronic devices.

In particular, I consider topological materials which display spontaneous mag-

netic order. If the magnetism in these crystals is intimately coupled to the electronic

bands, altering the magnetic order – with, for example, an external magnetic field –

might give us an experimental handle on these exotic quasiparticle excitations. In-

sights gleaned from the study of the coupling between the topology of the electronic

band structure and magnetism can help realise a new class of spintronic devices

based on magnetic topological semimetals.

In this introductory chapter, I outline some concepts that are pertinent to un-

derstanding how the topological features of the electronic bands of these magnetic

semimetals can be created, identified and controlled.
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1 Introduction

1.1 The Weyl equation

In 1929, Hermann Weyl predicted the existence of massless fermions [1]. He discov-

ered this by considering the massless form of the Dirac equation [2], which describes

massive relativistic fermions. Weyl arrived at the following equation,

σµ∂µψ = 0, (1)

which is now known as the Weyl equation. Using the wave function ψ = χe−i(k·r−ωt)

– here χ is a 2 component spinor – as a trial solution, one can arrive at an energy-

momentum relation of these particles that is linear in k, resembling that for the

dispersion for light. Given that these eigenstates are massless, the handedness and

the chirality of these spin 1
2

particles are the same and the thermal distribution

obeys Fermi–Dirac statistics.

However, it has been about 90 years since Weyl’s prediction and this elusive

massless fermion in free space has not yet been found [3]. The strongest candidate in

recent times was the neutrinos, which was briefly (although erroneously [4]) touted

to break the limit of the speed of light [5]. However, the presence of neutrino

oscillations suggests that these neutrinos carry a mass [6], albeit a small one [7]. This

nonetheless precludes these fermions from having a truly linear energy-momentum

dispersion. Hence, as far as the particle physics community is concerned, the search

continues for a massless fermion in free space.

1.2 Massless quasiparticle excitations in a crystal

On the other hand, Weyl’s prediction can be realised in condensed matter, where

the arrangement of the ions can be engineered in such a way that the Hamiltonian,

which describes the behaviour of the electronic states in the vicinity of the Fermi

energy, is identical to the Weyl equation [3, 8, 9, 10]. As such, the quasiparticle

excitations that exist in such environment can masquerade as massless fermions.

Here, the point from which the electronic bands disperse linearly in three dimensions

is called a Weyl node and the quasiparticle excitation that this linearly dispersing

band crossing gives rise to is called a Weyl fermion [9, 11, 12, 13].

12



As a starting point, the most obvious host of such particles will be crystalline

materials [11, 14, 15, 16]. This is because the condensed matter physics community

(i) has developed a good understanding of how to recreate the natural processes

of the earth to produce high-quality crystals in the laboratory [17, 18], (ii) is able

to use ab initio computational methods, expedited by the fact that these crystals

have symmetries which speed up calculation, to study whether these system can

give rise to linear dispersion in the electronic bands [3, 17, 19, 20] and (iii) can ex-

perimentally map the band dispersions of these electronic states with angle-resolved

photoemission spectroscopy (ARPES) [3, 11, 21].

Despite these advantages, I list, non-exhaustively, some caveats that come along

with using the crystalline lattice as a host. Firstly, although these fermions are

massless, they will have speeds much lower than c, the speed of light in vacuum [9,

10, 22]. This arises because the gradient of the linear dispersion can be a lot less steep

compared to that of light. Secondly, unlike fermions in free space, the dispersion of

these particles cannot have an arbitrarily large wave vector k, but are limited by

the size of the Brillouin zone, which is of order of a reciprocal lattice vector G as a

result of the translational symmetry of the crystal [22]. Thirdly, these quasiparticle

excitations only exist within the crystal. They emerge from the system of conduction

electrons and the periodic potential of the lattice [18, 23]. If these charge carriers

are pulled out of the crystal, they will acquire the mass of a free electron.

1.3 Topological protection

Realising a linear dispersion in a crystal to create massless fermions is routinely

possible [20, 24, 25, 26] and it gives rise to a whole host of desirable bulk crystalline

properties: extremely high electron mobility, large magnetoresistance and stability

to disorder [3, 10, 22]. However, if these crossing points are not robust but are de-

stroyed when we perturb the crystal (e.g. with an applied field, strain, temperature

etc.), then such materials are too unstable for electronic applications. One way to

solve this problem is to take advantage of topology to afford protection to these

nodes [3, 9, 10, 22].

The concept of topological protection is illustrated by the well-known Möbius

strip, Fig. 1(a), which is formed by taking a strip of paper, applying a twist of

13



Figure 1: (adapted from [27]) (a) A Möbius strip can be formed by taking a strip

of paper and applying a twist of 180◦ deg and connecting the ends. There is no

way of continuously deforming the strip to give an ordinary loop unless something

drastic is done [eg. cutting the strip (b), undoing the twist and connecting the ends

of the paper].

180◦ deg then connecting the ends together. This is topologically distinct from an

ordinary loop which is formed by connecting the ends of the strip of paper without

the 180◦ deg twist; specifically, it is not possible to continuously deform a Möbius

strip into an ordinary loop. Unless something drastic is done to the Möbius strip

[e.g. cutting the strip, Fig. 1(b)], there is no way of unravelling the twist in the strip

to change it from one state to the another. In the same way, in some crystals, the

electronic bands are twisted in such a way that the crossing points are topologically

protected [3, 9, 10]. For instance, in Weyl semimetals, Weyl nodes are examples

of such crossing point [see Fig. 2(a)]. These nodes appear in pairs and will not be

annihilated unless they meet in k-space. From these nodes, the electronic bands

disperse linearly in three dimensions and harbour massless Weyl fermions.

There is a strong set of criteria that distinguishes a topologically-protected Weyl

node from a topologically trivial band crossing [9, 10, 11, 12]. Whilst the dispersion

in both cases are identical and the differences subtle, the consequences are very

different with the former being robust against the aforementioned perturbations

14



(b)

Figure 2: (adapted from [28]) In a typical semiconductor, the conduction and

valence bands do not cross, giving rise to a small energy gap. In Weyl semimetals,

Weyl nodes can arise from an inversion of the bands. (a) depicts parabolic valence

and conduction bands intersecting at two points in k-space, which can arise from

such a band inversion. Here, the energy dispersion of the electrons close to the

nodes is linear with respect to momentum. (b) shows the vector plot of the Berry

curvature in k-space, with the direction of the arrows showing that the flux of the

Berry curvature from one monopole (red) to the other (blue). This flux is quantised

and defines the non-trivial topological properties of the topological semimetal in

question.

whilst the latter is not. If we take u(k) as the Bloch wave function describing an

electronic state with wave vector k, we can consider the Berry connection, which

is given by, A(k) = −i 〈u(k)|∇k|u(k)〉 [9, 11, 12]. Given that the vector A(k) is

analogous to the vector potential in electro-magnetism, we can obtain the Berry

curvature, Ω(k) = ∇k ×A(k). If the crossing point is indeed a Weyl node, then it

acts as either a source or sink of Berry curvature in k-space [see Fig. 2(b)], with the

total flux passing through a Gaussian surface which includes such a node, or more

succinctly,

C =
1

2π

∫
Ω(k) · dS, (2)

being +1 or −1 respectively [9, 10, 12].
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On the other hand, if the net flux is 0, then the node is topologically trivial.

Hence C, the Chern number, gives us a way to topologically classify nodes in the

Brillouin zone. Examples of crystals that contain topologically-trivial nodes include

Cd3As2 [29, 30, 31, 32] and Na3Bi [33, 34] [see Fig. 3]. The nodes are protected by

rotational symmetries rather than topology and are made up of doubly-degenerate

conduction and valence bands meeting at four-fold degenerate Dirac points in k-

space [11, 31, 35]. The points lie along the Γ−A high symmetry line, which remains

invariant under symmetry operations C4z in Cd3As2 and C3z in Na3Bi, and are

robust in so far as these rotational symmetries are not broken [31, 33]. For instance,

in Cd3As2, the doubly-degenerate Cd 5s and As 4p bands, which cross to give rise to

the Dirac points, are described by different irreducible representations under the C3z

symmetry transformation [31]. If the crystal is deformed, such that the rotational

symmetry is broken, the bands can no longer be distinguished by C3z and hybridise

to give rise to a gap. This arises because these Dirac points can be considered as

two copies of Weyl points which coincide in k-space and should be annihilated if not

for the rotational symmetries of the host crystal [31, 33]. In Chapter 3, I explore

the effects of broken rotational symmetries on Dirac nodes in EuCd2Sb2.

Compared to Dirac materials, such a hybridisation in Weyl semimetallic phases is

precluded as the double degeneracy of the bands are lifted. As such, Weyl nodes are

made up of singly-degenerate conduction and valence bands which touch at doubly-

degenerate points [9, 10, 11]. The nodes come in pairs with opposite chirality and

are separated in k-space. Under strain, applied field or other perturbations to the

crystal, the nodes move around in k-space but will not annihilate, unless pairs of

Weyl nodes with opposite chirality meet. This robustness stems from the non-trivial

topological nature of the nodes.

1.4 Topological properties of Weyl fermions in a crystal

Weyl nodes have a definite chirality associated with the sign of the Chern number,

and as a result the Weyl points have a definite helicity, i.e. the spin is locked to

the direction of the momentum [3, 9, 11, 12]. As a result, back scattering processes

that conserve spin, e.g. scattering from phonons, non-magnetic impurities, charge

scattering from electrons, etc, can be reduced. The mass and the size of the Fermi

16



Figure 3: (adapted from [29, 34])(a) and (c) depict the crystal structure of Cd3As2

and Na3Bi respectively. (b), (d), (f), (h) In both compounds, the pair Dirac nodes

lie on the Γ− A high symmetry line and are protected by the rotational symmetry

along the [111] and [001] direction for Cd3As2 and Na3Bi respectively. Each Dirac

node comprises two copies of Weyl nodes that coincide in k-space. (e) and (g) depict

the linearly dispersion of the bands in the vicinity of the Dirac points.

surface of these charge carriers can be estimated from the quantum oscillations

observed in magnetotransport and other measurements [3, 11, 12].

Furthermore, since the Weyl points are separated in k-space, electrons can be

pumped between nodes of opposite chirality [9, 10, 11]. This violation of the con-

servation of chiral charge, or chiral anomaly, increases the conductivity of Weyl

materials with increasing applied field and can be achieved if the electric and mag-

netic field are applied in the same direction.

Moreover, in recent years, there has been a great deal of interest in measuring

anomalous transport effects caused by Berry curvature in topological semimetals,

especially the anomalous Hall effect (AHE). In a Weyl semimetal, the Berry curva-

ture is associated with the separation ∆k (in the ẑ direction) of the Weyl nodes in

k-space. For a single pair of nodes at EF, the anomalous Hall conductivity has the

universal form [9, 10, 11],
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σAHExy =
e2

2πh
∆k. (3)

This too, can be estimated from magnetotransport measurements.

Another distinct signature of the topological nature of the Weyl nodes in the

crystal is the Fermi arcs [Fig. 4(c), (f)]. They connect the nodes that can be in

any general k-space position in the Brillouin zone. Unlike the linearly dispersing

electronic bands emanating from these nodes that appear in the bulk, these Fermi

arcs manifest as surface states [3, 9, 11]. Detecting Fermi arc surface states with

ARPES is the definitive way of demonstrating that a crystal hosts Weyl nodes (at

least at the surface of the crystal) [3, 11, 12], [Fig. 4(e), (f)].

Figure 4: (adapted from [36]) (a) illustrates how the Dirac point splits into two

Weyl nodes of opposite chirality due to inversion symmetry breaking. This is true

for TaAs [see (d) for crystal structure] which lack an inversion centre. (b) shows

the k-space distribution of the Weyl nodes that are in the vicinity of the chemical

potential for TaAs. (e) is the projection of the nodes (viewing down the kz direction)

and the Fermi arcs connecting the nodes onto the kx − ky plane. There is strong

agreement between the (c) predicted and (f) measured Fermi arcs.
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Figure 5: In this thesis, I investigate materials which display spontaneous magnetic

order and non-trivial topological features in the electronic bands.

1.4.1 TaAs structural family

Weyl nodes can be found in crystals with either broken spatial inversion symmetry

(IS), or broken time-reversal symmetry (TRS), or both [3, 9, 11, 12]. In these

crystals, the electronic bands are singly-degenerate and the topologically protected

Weyl points, if they exist, are not limited by the symmetries of host crystal and can

be situated at any general position in k-space and energy [see Fig. 4(b)]. However,

for the Weyl node to have an effect on the observable properties of the material,

they have to be at or very close to the Fermi energy of the system [3, 9, 11, 12].

Here, I define Weyl semimetals (WSM) as crystals which contain Weyl nodes in the

vicinity of the Fermi energy.

Examples of the first type (with broken inversion symmetry only) were found in

2015 with the first being TaAs [see Fig. 4]. This was confirmed by the observation of

distinctive features of Weyl nodes: Fermi arcs connecting the points as revealed by

ARPES [36, 37, 38], light masses of the charge carriers as indicated by the magne-

totransport measurements [39], quantum transport induced by chiral anomaly [40],

etc. Soon after, TaP, NbAs and NbP, which belong to the same non-centrosymmetric

structural family as TaAs, were also found to host Weyl fermions [41, 42, 43].

19



1.5 Control of massless fermions in crystals

In Sections 1.1 and 1.2, I introduce the concept of Weyl fermions along with their

properties and how they can be realised in crystals. Subsequently, in Sections 1.3

and 1.4, I consider how we can afford these massless fermions robust protection and

summarised some of their attributes arising from the topological nature of the Weyl

nodes. In Sections 1.5–1.6, I am going to discuss a class of WSMs where we can

potentially exert stronger control of these topologically-protected massless charge

carriers compared to those examples listed in 1.4.1.

This can be realised in crystalline materials with broken TRS, where magnetic

order coexists with the topological electronic band structure [11, 12, 44]. If the

Weyl nodes are strongly coupled to the magnetic sub-lattice of the host crystals,

we can modulate the properties of these exotic quasiparticle excitations. Wielding

control of massless charge carriers, which are robust against perturbations, can help

realise a new generation of spintronic devices with low power consumption and

resistance [11, 12, 44].

This is the class of materials that is investigated in my thesis, where the crys-

talline unit cell is decorated with magnetic ions such as Eu2+ and Mn2+, which

possess partially-filled 4f and 3d bands respectively, and heavy elements such as Sb,

Bi, As and Ge, which support strong spin-orbit interaction. Such material systems

provide for an avenue to explore the rich interplay between the physics of strong elec-

tron correlations, which produce magnetism, and large spin-orbit coupling (SOC),

which gives rise to non-trivial topologies in the electronic band structure. Before

considering examples of magnetic WSMs [1.6], I discuss in the subsequent sections

the SOC phenomena which might cause the electronic bands to invert [1.5.1], strong

electronic correlations which give rise to magnetism [1.5.2] and the possible exchange

coupling between the two [1.5.3].

1.5.1 Spin-orbit coupling

In the search for topological materials, a particular route that has proved very

successful in the identification of crystals with non-trivial band topology is in the

exploration of materials that possess heavy constituent atoms (eg. As, Sb, Bi, Se,

Te). This modus operandi is in fact common across the three different topological
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material classes: topological insulators, Dirac and Weyl semimetals. Here, the un-

derlying principle is that these heavy atoms can give rise to a large SOC strength,

which roughly scales as Z4 (where Z is the atomic number), and alter the topology

of the electronic band structure. This subsection aims to address how the spin-

orbit coupling phenomena (i) produces topological features in the electronic band

structure, and (ii) informs some of the material considerations when deciding which

elements are used in the host crystal. This can also shed light on certain trends of

the electronic band evolution across a family of isostructural compounds and guide

the search for better topological materials. While there will inevitably be some over-

lap with the earlier discussions on the topological nature of the bands, I will focus,

in particular, on how the SOC aspect bears out in the band topology of the various

classes of topological materials.

Topological insulators The isostructural A2B3 (A=Sb, Bi; B=Se, Te) family

of compounds crystallises with a trigonal unit cell which can be described by the

R3̄m (No. 166) space group. The five atoms in the rhombohedral primitive unit

cell are situated at Wyckoff positions 6c (Sb, Se-1) and 3a (Se-2). Here Se-1 and

Se-2 refer to Se atoms at two symmetry inequivalent Wyckoff sites [see Fig. 6(a)].

DFT ab initio band structure calculations suggest that all four A2B3 compounds

are insulating in the bulk [45] [see Figs. 6(b)–(e)].

Sb2Se3 in particular, as shown in Fig. 6(b), is a narrow-gap semiconductor

(EG ∼1 eV [46]), with hole and electron bands formed by Sb 5p and Se-1 4p states

respectively [45]. At the Γ point, these bands display pz orbital character with

normal ordering with respect to energy. In other words, if the constituent atoms

of the crystal are separated to give isolated elements, we find that these electronic

bands can be smoothly deformed to give the energy levels of Sb and Se atoms. Since

the electronic structure of the crystalline bands and the energy level of isolated Sb

and Se atoms belongs to the same topological class, we classify Sb2Se3 as a trivial

insulator.

On the other hand, in Bi2Se3, Bi2Te3 and Sb2Te3, the ordering of the valence and

conduction bands with respect to energy at the Γ point is inverted compared to the

atomic case. For instance in Bi2Se3, the energy of the Bi 6p states at the Γ point lies

below that of the Se-1 4p states, as shown in Fig. 7(a), which is switched compared
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to the energy levels of isolated Bi and Se atoms. Hence, we might intuitively expect

that such a twisting of the valence and conduction bands, giving rise to a band

inversion, would lead to band crossings at discrete points or along nodal lines in

k-space near the Fermi energy. However, the DFT calculations demonstrate that

Bi2Se3, Bi2Te3 and Sb2Te3 are all insulating in the bulk [45]. This arises because in

all three compounds, the bands which cross are doubly-degenerate and are described

by the same irreducible representation with respect to the C3v double group along

the kz axis [35]. As such, these electronic states hybridise and give rise to an energy

gap in the electronic dispersion at the Fermi energy. Due to this band gap in the

Bi2Se3 crystal, there is no way to smoothly deform the inverted Bi 6p and Se-1 4p

bands to give us the atomic case without having the bands to cross. Hence we say

that the bands in Bi2Se3, Sb2Te3 and Bi2Te3 are topologically non-trivial and belong

to a different topological class compared to that of Sb2Se3.

In other words, the trivial topology of the electronic bands of narrow-gap semi-

conductors, like Sb2Se3, can be altered by inverting the order of the valence and

conduction bands. Notably, this band inversion can be induced in many ways other

than the SOC mechanism described thus far: magnetic exchange, lattice strain,

Figure 6: (adapted from [45]) (a) The crystal structure of Bi2Se3. (b)–(e) depict

the energy and momentum dependence of the local density of states for Sb2Se3,

Sb2Te3, Bi2Se3 and Bi2Te3 respectively.
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Figure 7: (adapted from [45, 47]) (a) In the context of the Bi2Se3 crystal, the

ordering of the Bi and Se pz atomic orbitals with respect to energy is inverted at

the Γ point. Here, the three stages, (I)–(III), demonstrate the effects of chemical

bonding, crystal-field splitting and SOC respectively on the energy levels of the

orbitals. (b) The experimental energy dispersion of the surface states in Bi2Te3,

measured with ARPES, reveals a Dirac cone.

crystalline symmetries and the Kondo effect [48, 49, 50, 51]. Nonetheless, the SOC

mechanism, accounts for the band inversion in most of the experimentally confirmed

topological materials. It is, therefore, instructive to consider how this brings to bear

in the A2B3 family of compounds. For instance, comparing Sb2Se3 and Sb2Te3, we

find that the strength of SOC is larger in the latter compound, given that Te is

heavier compared to Se, giving rise to band inversion and a non-trivial band topol-

ogy. The same is true if we consider Sb2Se3 and Bi2Se3. Note, however, that the

inverted band structure – while necessary – is not sufficient for the existence of a

non-trivial electronic band topology [19]. To properly ascertain the nature of the

bands, we need to calculate the Chern number.

Although Bi2Se3, Bi2Te3 and Sb2Te3 are all predicted to be insulating in the

bulk [45], these materials have conducting states on the crystal surfaces that are

protected by topology [47, 52, 53] [see Fig. 6(c)–(e)]. This arises because the inverted

bands cannot be smoothly deformed to give the atomic case unless the electronic

bands cross, resulting in electronic states on the surface of the crystals. The 2D

energy momentum dispersion of these surface states in the topological insulators are
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reminiscent of the Dirac cones in graphene [47] [see Fig. 7(b)]. Moreover, given that

the electronic bands emanating from these topologically protected crossing points

on the surface are linearly dispersing, the massless quasiparticle excitations that

they host have reduced back scattering due to spin-momentum locking [45].

Dirac semimetals This discovery of topological two-dimensional Dirac cones also

sparked off the search for crystals which host bands that disperse linearly in three

dimensions, where electronic states are not just on the surface of the crystal but

also in the bulk [11, 31, 35]. The approach undertaken in the study by Wang et al.

(Ref. [31]) was to consider how the hybridisation of the doubly-degenerate bands,

which cross due to the band inversion, could be prevented.

Within the A2B3 (A=Zn, Cd; B= P, As) family of narrow-gapped semiconduc-

tors, Cd3As2 has received particular interest as the Cd 5s and As 4p bands, which

are inverted at the Γ point, belong to different irreducible representations of the C4v

double group along the Γ− Z high symmetry direction [31]. Hence, unlike the case

in Bi2Te3, Bi2Se3 and Sb2Te3 where the bands which cross hybridise completely, in

Cd3As2 the bands are gapped at all but two points in k-space at (0, 0,±k0) near

the Fermi energy, as shown in Figs. 3(b) and (f). Here, doubly-degnerate electronic

bands disperse linearly in three dimensions from these four-fold degenerate Dirac

points. Again, the inverted band structure at the Γ point is driven by the large SOC

arising from the heavy Cd and As atoms. This is contrasted with Zn3As2, Zn3P2

and Cd3P2, which possess lighter elements and have normal band ordering near EF

due to the weaker SOC.

The same is also true for the A3Bi (A= K, Na, Rb) family of compounds, where

a band inversion at the Γ point is present [33]. The inverted bands in Na3Bi are

described by different irreducible representations with respect to the C3v double

group along the Γ−A high symmetry line. As such these bands, which have Na 2s

and Bi 6p orbital character, are gapped out at all but two Dirac points from which

the electronic bands disperses linearly in three dimensions, as shown in Figs. 3(d),

(g) and (h).

Unfortunately, both of these Dirac semimetals are not suitable for device appli-

cations: the constituent elements of Cd3As2 are very toxic; Na3Bi is very unstable in

air. As such, an extensive search for other compounds with such Dirac nodes in the
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electronic band structure was soon underway. These studies considered compounds

that would not only have an inverted band structure, due to the presence of heavy

elements, but also band crossings which can be described by different irreducible

representations. Specifically, the compounds have to possess the C3, C4 or C6 sym-

metries so that the double group along these rotational axes will have at least two

distinct irreducible representations describing the electronic states. This is not the

case for the C2 symmetry which has only one irreducible representation along the

axis of two-fold rotation. Examples of such compounds include the XY Bi (X = Ba,

Sr; Y = Cu, Ag and Au) family [35].

Weyl semimetals In Section 1.3, I pointed out that these Dirac crossing points,

which have a Chern number of zero, are not protected by topology and considered

other ways in which the hybridisation of band crossings can be prevented. That

is, rather than exploiting certain rotational symmetries of the crystal, the band

hybridisation can be avoided by the lifting of the double degeneracy in the bands via

TRS or inversion symmetry breaking to create three-dimensional linearly dispersing

bands that are robust against perturbations.

In a recent theoretical study of the topological phase transition between TIs

and normal insulators [49, 55], Murakami et al. considered all the space groups

that lack an inversion centre (138 in total) and studied how the electronic band

topology changes with the strength of SOC, which is described succinctly by a tuning

parameter m, and the extent of inversion symmetry breaking. If the crystal has an

inversion centre, the study found that the normal and topological gapped phases

are demarcated by a sharp Dirac semimetal phase at a given m value. On the other

hand, if inversion symmetry is broken, the topological phase diagram shows that a

broad WSM phase can be stabilised over a range of m values [Fig. 8(a)]. Again the

SOC phenomenon is important in the creation of Weyl nodes in the Brillouin zone.

Furthermore, the strength of SOC determines the extent of band inversion and

hence the distance between the Weyl nodes in the Brillouin zone. For instance, in

the TaAs family of compounds, [54] Liu et al. found the separation between the

Weyl nodes increases in the following order: NbP, TaP and TaAs [Fig. 8(b) and (c)].

This roughly scales as the atomic number of the constituent atoms and hence the

strength of SOC. The study also found that the Weyl nodes coincide in k-space if
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Figure 8: (adapted from [49, 54]) (a) shows the topological phase diagram where δ

is the extent of inversion symmetry breaking and m is the strength of SOC. (b) and

(c) demonstrate that the distance between the Weyl nodes depends on the strength

of SOC.

there is no SOC giving rise to Dirac nodes. Furthermore, on the other extreme, if

the SOC strength is too strong, it might cause the Weyl points to annihilate with

each other or be pushed beyond the Brillouin zone. This is the case in the Mn3X

(X= Ge, Sn) family of compounds where Mn3Sn has fewer Weyl nodes compared

to Mn3Ge, as shown in Fig. 9, due to the stronger SOC arising from the heavier Sn

atom [56].

1.5.2 Strong correlations - Local vs itinerant magnetism

Magnetism in condensed matter can arise from ions that have incompletely-filled

shells. For instance, rare-earth magnetism is produced by the incompletely-filled 4f

shells in ions such as Nd3+ and Eu2+. Similarly, magnetism in transition metal ions

such as Mn2+ originates from incompletely-filled 3d shells. Yet, the nature of the

magnetism and the interaction between these magnetic ions strongly depend on the

spatial distribution of the electronic wavefunctions. For instance, the 3d electrons

are usually highly delocalised while the 4f electrons are highly localised. This bears

out in the size of the moment of the magnetic ions, the nature of the interaction
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Figure 9: (adapted from [56]) Panels (a) and (b) show the electronic band dispersion

along high symmetry lines of the hexagonal Brillouin zone of Mn3Sn and Mn3Ge

respectively. The projection of the position in momentum space of the Weyl nodes

in Mn3Sn and Mn3Ge on to the kx − ky plane (which is bounded by the hexagonal

zone boundary) are shown in panels (c) and (d) respectively.

between the magnetic species and the contribution to electron conduction in the

crystal. The following two paragraphs discuss the local and itinerant models used

to describe magnetic phenomena in 4f and 3d electrons respectively.

The local magnetic moment description provides a satisfactory description in

lanthanides with partially-filled 4f orbitals. Here the localised 4f orbitals overlap

weakly, which leads to narrow 4f bands and drives the bands into a Mott insulating

state to minimise the strong on-site electron-electron Coulomb interactions. Hence

the 4f electrons do not participate in electron conduction in the bulk crystal. Fur-
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thermore, the size of the moment depends on how the electrons in the unfilled 4f

arrange themselves. In Eu2+ (4f 7) for example, the most energetically favourable

arrangement of the 7 electrons produces the large moment of a pure spin state of

S = 7/2 with µeff = 7.94µB and µsat = 7.0µB. This optimal arrangement of the

electrons, summarised by Hund’s rules, minimises the coulomb interactions between

the 4f electrons. In terms of exchange, the localised magnetism in the rare-earths

is usually characterised by low ordering temperatures mediated by metallic valence

bands due to the negligible overlap between the 4f ions. This is also known as the

Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction.

On the other hand, the magnetism which arises from delocalised 3d electrons (for

example Fe, Mn, Co) is often better described in an itinerant electron framework.

Magnetism is produced by exchange splitting in the spin up and spin down 3d

bands so as to reduce the Coulomb interaction between the electronic states. These

3d electrons may also contribute to the electron conduction. It follows that the

TN is typically around room temperature due to the strong interactions between

the itinerant 3d electrons. Furthermore, due to the delocalised nature of the 3d

electrons, there is orbital quenching of the angular momentum of the 3d orbitals.

This tends to result in a smaller moment in 3d magnetism compared to that in 4f

magnetism.

1.5.3 Coupling between localised magnetism and electronic bands

In this subsection, I discuss a possible mechanism that might drive the coupling

between the electronic bands and magnetism in systems where non-trivial band

topology co-exists with spontaneous magnetic order. As I have discussed earlier, in

some compounds, the linear band crossings are stabilised by additional rotational

symmetries along crystalline axes of high symmetry. These features are protected

from gapping out if the bands which cross can be distinguished as different irre-

ducible representations of the rotational symmetries along these axes. For magnetic

crystals, the symmetry of the spontaneous magnetic order also needs to preserve

these rotational symmetries for these band crossings to survive hybridisation. Oth-

erwise, if the rotational symmetries are broken then gaps will form where the bands

cross. Furthermore, if an external field can influence the magnetic order in such a
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Figure 10: (adapted from [58, 59, 60]) Panels (a) and (d) show the crystal structure

of EuCd2Pn2 (Pn= Sb, As) and RePtBi (Re = Y, Nd, Gd) respectively. Panels (b),

(c) and (e) show how the Weyl nodes are induced when an external field is applied

along the [001] and [111] directions for EuCd2Sb2 and GdPtBi respectively.

way that these rotational symmetries are broken for a system in which the sym-

metries are otherwise preserved, we essentially have an experimental handle with

which to control the existence of the gaps. The reverse is also true, where band

gaps can be closed when the symmetry is preserved by means of an external field.

Some examples of the latter type, shown in Fig. 10, include GdPtBi [57, 58] and

EuCd2Pn2 (Pn = Sb, As) [59, 60].

1.6 Examples of magnetic Weyl semimetals

As I have described earlier, Weyl semimetals can occur in two types of crystals,

one having broken spatial inversion symmetry, and the other having broken time-

reversal symmetry (TRS)[9]. In the following few sections, I list some examples of

candidate crystals of the latter type, that is magnetic WSMs, and the corresponding

experimental evidence [11].
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1.6.1 Rare-earth iridates

The rare-earth pyrochlore iridate family, Re2Ir2O7 (Re = rare-earth ion), was the

first system that was proposed to host Weyl nodes through broken TRS [61]. The

topologically-protected crossing points arise out of the competition between the large

spin-orbit coupling and the strong electronic correlations in the Ir 5d bands, which

also give rise to magnetism. The cubic crystal structure (space group Fd3m, No.

227) contains two interpenetrating pyrochlore sub-lattices [Ir and rare-earth; see

Fig. 11(a)] [62, 63]. It was predicted that the crystal could host Weyl fermions if the

Ir spin structure display an all-in-all-out (AIAO) magnetic configuration. However,

since Ir has a small magnetic moment size and is also neutron absorbing (σIr
abs = 425

barns), it was initially difficult to determine the nature of the magnetic order by

neutron powder diffraction [64, 65]. Moreover, it is not feasible to map the spin-wave

spectrum of the pyrochlore iridates, which is needed to differentiate between differ-

ent irreducible representations describing the Ir spin structure, by the conventional

method of inelastic neutron scattering due to the small size of the single crystals.

These hurdles were eventually overcome by means of the resonant magnetic X-ray

scattering technique, which confirmed the AIAO magnetic order and measured the

spin-wave dispersion in Sm2Ir2O7 [66].

One member of the rare-earth iridate family, namely Nd2Ir2O7, displays strongly

anisotropic magnetotransport, with the in-plane resistivity changing by ∼3 orders

of magnitude for fields applied in different directions of the crystal axes [67, 69][see

Figs. 11(b) and (c)]. Such a huge anisotropy can only arise from modifications

of the electronic bandstructure resulting from changes in the spin structure. This

suggests a strong exchange coupling between the Ir 5d bands, which are responsible

for charge transport, and the Nd 4f states, which give rise to the large magnetic

moments that are more susceptible to the applied magnetic field [64, 69, 70, 71]. If

Nd2Ir2O7 does indeed host massless Weyl fermions, this strong coupling gives us a

handle to modulate the properties of these exotic charge carriers. I contributed to a

resonant elastic X-ray scattering (REXS) study of the ground state structure of both

magnetic sub-lattices in Nd2Ir2O7, and how the corresponding spin configurations

change in an applied field. This work is not presented in this thesis as we are

awaiting additional beam time to complete the study.
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Figure 11: (adapted from [64, 67, 68]) (a) Crystal structure of the Re2Ir2O7 family

of compounds. Here, the red and blue spheres correspond to the rare-earth and

Ir sub-lattices respectively. The AIAO order on the Ir sub-lattice induces a local

exchange field on the rare-earth ion site (Hloc). The metal-to-insulator transition

of Nd2Ir2O7, as shown in the in-plane resistivity measurements (b), is suppressed

when the field is applied along the [001] direction (c).

A recent AHE study of the another member of the 227-iridate family, Pr2Ir2O7,

also suggested the existence of Weyl points in the crystal [68]. However, there is no

straightforward way of interpreting the data as many pairs of Weyl points contribute

to charge transport. Moreover, as the 5d electrons are strongly correlated, it is dif-

ficult to properly describe the electronic bands of the rare-earth iridate compounds

with ab initio DFT methods, which are best suited for weakly interacting wavefunc-

tion states [61, 71]. Corrections to these methods like DFT+U and DMFT also do

not fully account for the correlations in these electronic states [61, 62, 71]. Further-

more, it has not been possible to validate the ab initio predictions with ARPES as

the experimental dispersion is smeared out due to the strong electron correlations,

and as the crystals are difficult to cleave [72].
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Figure 12: (adapted from [73]) (a) and (b) shows the crystal structure of SrMnBi2

and CaMnBi2, respectively, of the AMnX2 structural family. (d) and (e) exemplifies

the in-plane bismuth layers that are responsible for the charge transport in both of

the 112-pnictides. The linearly dispersing electronic bands in the kx − ky plane of

(c) SrMnBi2 and (f) CaMnBi2 are highly anisotropic.

1.6.2 112-pnictides

The AMnX2 (A= Ca, Sr, Ba, Eu, Yb; X= Bi, Sb) structural family [see Figs. 12(a)

and (b)], which displays AFM order on the Mn sub-lattice near room temperature,

is also predicted to host topological fermions [73, 74, 75, 76, 77, 78, 79, 80, 81, 82,

83]. These charge carriers are contained in the 2D in-plane pnictide layer of the

orthorhombic or tetragonal crystal structure [see Figs. 12(d) and (e)]. Below the

Néel temperature, if the Mn moments are fully ordered along the c axis, then the

electronic bands are doubly-degenerate with an avoided Dirac node of Bi 4px,y or Sb

5px,y bands due to SOC. This gap is created due to the lack of additional crystalline

rotational symmetries required to prevent the hybridisation of the bands. Within

this 112-pnictide family, SrMnSb2 was suggested to host Weyl fermions [84]. The

orthorhombic unit cell, which can be described by the Pnma space group (No. 62),

contains a zig-zag Sb layer which hosts the predicted topological charge carriers.

It was predicted that if the Mn magnetic order was canted away from the fully
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collinear structure, the net ferromagnetic in-plane component will lift the double

degeneracy in the bands to create Weyl fermions. Although evidence for a canted

Mn spin structure has been demonstrated from single crystal neutron diffraction

measurements [84], ARPES and SdH data of the compound indicate trivial band

topology [85]. This suggest that coupling between the Mn sub-lattice to the pnictide

layer is too weak to create Weyl fermions.

Another candidate Weyl semimetal in the 112-pnictide family, where the pre-

dicted nodes are created by the same mechanism, is YbMnBi2 [74]. The tetragonal

unit cell, which can be described by the P4/nmm space group (No. 129), contains a

2D square net of Bi atoms that hosts the purported topological fermions [74, 78, 79].

This prediction was supported by the SdH oscillations in the magnetotransport data

which pointed to a light mass of the charge carriers, consistent with YbMnBi2 hav-

ing Weyl nodes near EF [78]. The ARPES measurements of YbMnBi2, which show

some evidence of Fermi arcs emanating from the supposed Weyl nodes, are however

not definitive as the claimed arcs are unfortunately difficult to distinguish from hole

bands which are adjacent to them [74]. Moreover, neutron diffraction studies which

will be sensitive to the predicted canting of 10◦ in the Mn spins has not yet been

reported [79]. I present, in Chapter 5, single crystal magnetic neutron diffraction of

YbMnBi2 to ascertain whether the Mn sub-lattice does indeed display the predicted

canted structure. Moreover, if the canted structure produces Weyl fermions, it might

alter the cross-plane exchange coupling between the Mn moments. This could lead

to, for instance, an enhancement of the bandwidth of the magnon spectrum. This

is also presented in Chapter 5.

In EuMnX2, the pnictide layer is sandwiched by two interpenetrating magnetic

sub-lattices (Eu and Mn) [81, 82, 83, 86]. Such a structure may lead to an enhance-

ment of the coupling between the topological quasiparticle excitations and mag-

netism, compared to that in compounds with a non-magnetic atom on the A site.

Compared to all of the compounds in the AMnX2 family explored thus far, EuMnX2

demonstrates a significantly stronger coupling between the topological charge car-

riers and magnetism as evidenced by magnetotransport measurements. This high-

lights the significance of having a magnetic ion on the A site to enhance the coupling,

as has been suggested by Klemenz et al. Moreover, magnetotransport in EuMnX2,
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Figure 13: (adapted from [88, 89, 90]) The unit cell of (a) Mn3X (X=Ge, Sn) and

(c) XY Bi (X=Ba, Eu; Y=Au, Ag, Cu) can both be described by the P63/mmc

space group. Mn3Sn displays large anomalous Hall effect that can be switched with

a small applied field. (d) In BaAuBi, the electronic bands which cross along the

Γ − A high symmetry line transforms as different irreducible representations, with

respect to the C3z rotation, and hence do not hybridise to give rise to an energy gap.

which is strongly anisotropic, could arise from some f–p exchange between the Eu

4f bands, which give rise to magnetism, and the Bi 4p or Sb 5p electronic states,

which dominate charge transport in the pnictide layer. More specifically, it is the

exchange between the half-filled 4f states and the charge carriers since YbMnX2

does not demonstrate such a behaviour [74, 87]. Such a coupling in EuMnX2 leads

to changes in the electron bandstructure due to changes in the magnetic structure

of the Eu sub-lattice. I contributed to a recent study of the ground state magnetic

configuration and the electronic bandstructure of EuMnSb2, which support this.

Results of this study will be reported separately.

1.6.3 Mn3X

Another candidate material class is the hexagonal AFM Mn3X (X= Ge, Sn, Ga).

The Mn sub-lattice can be described by a stacked kagome lattice along the c axis,

which gives rise to a frustrated magnetic order [Fig. 13(a)]. Recent experiments
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demonstrated that Mn3Ge and Mn3Sn display large anomalous Hall effect at room

temperature, as shown in Fig. 13(b), which is unusual for antiferromagnets. This

was attributed to the compounds having Weyl points in the Brillouin zone, which

is supported by ab initio bandstructure calculations. Moreover, these studies also

suggest that the Weyl nodes can be moved in k-space by altering the spin structure

with an external applied field. However, the true ground state magnetic structure

is still not yet known. This is addressed in Chapter 6.

1.6.4 111-compounds

The experimental validation of the theoretical prediction by Wang et al. that

additional rotational symmetries, like C3 and C4 in Na3Bi and Cd3As2 respec-

tively [31, 33], along high symmetry lines can prevent the hybridisation of the elec-

tronic band crossings and produce symmetry protected Dirac nodes has sparked off

similar theoretical predictions for other materials. These studies have focused on

crystals which possess these rotational symmetries to identify if the associated elec-

tronic bands which cross along these high symmetry lines (along the axis of rotation)

can be described by different irreducible representations.

One class of material that has been identified is the 111-family of hexagonal

ZrBeSi-type compounds, which crystallises in the P63/mmc space group [35, 90].

These hexagonal compounds possess the C3 rotational symmetry along the crystal c

axis, which is necessary to prevent the hybridisation of the bands along the Γ−A high

symmetry line. Examples include XY Bi (X = Ba, Sr; Y = Cu, Ag and Au). Here,

electronic bands that dominate charge transport comes from the bismuth states,

which produces the strong spin-orbit interaction that drives the band inversion along

Γ− A [see Figs. 13(c) and (d)].

To create Weyl nodes in these centrosymmetric crystals, Du et al. [90] considered

magnetic variants such as EuY Bi and Ba0.5Eu0.5Y Bi, in the hope that the magnetic

order of Eu2+ might lift the double degeneracy in the electronic bands to create

Weyl nodes via the TRS-breaking mechanism. The creation of a WSM state in the

XY Bi family of compounds is certainly promising given that EuCuAs [91], which

is isostructural to EuY Bi, displays intimate coupling between the magnetic order

on the Eu2+ sub-lattice and charge transport. The strong exchange between the
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two will facilitate the creation of Weyl nodes via TRS breaking. Despite this, the

magnetic structure of the EuY Bi family of compounds has not yet been studied, due

in part to the fact that these compounds contain the strongly neutron absorbing

europium. In collaboration with Jinzhao Sun, I have identified the ground state

magnetic structure of EuCuAs and how the magnetic configuration changes in an

applied field with REXS (I16, Diamond) and powder neutron diffraction (WISH,

ISIS). This work is ongoing and is not presented in this thesis.

1.6.5 Other types of WSMs

Another route to create Weyl nodes in crystals via TRS breaking, other than the ones

that have been discussed thus far (namely in Re2Ir2O7 [1.6.1], 112-pnictides [1.6.2],

Mn3X [1.6.3] and the 111-compounds [1.6.4] where the Weyl nodes are spontaneously

induced [Fig. 14(b)]) is to apply an external magnetic field. In this case, the Weyl

nodes are magnetically induced by the applied field and the dominant mechanism

driving the creation of the Weyl nodes depend on whether the crystal is non-magnetic

or magnetic.

If the crystal is non-magnetic, the double degeneracy is lifted by the Zeeman

effect. Here, the applied field essentially separates the Weyl nodes that would oth-

erwise coincide in k-space in the absence of a field to give rise to Dirac nodes.

Examples of such crystals include ZrTe5 [92], Na3Bi [93], Cd3As2 [28, 94, 95] and

YbPtBi [96][Fig. 14(a)]. Given that the distance between the nodes is proportional

to the strength of the applied field [94], high field strengths are required to achieve

a non-negligible separation of the Weyl nodes in k-space sufficient for experimental

studies.

On the other hand, if the crystal is magnetic, the band splitting is driven mainly

by the exchange interaction between the magnetic moments and the topological

states. Here, the magnetic field serves to alter the configuration of the magnetic

structure, which in turn modifies the electronic bands via exchange coupling. In

these systems, the Zeeman effect, although present, is not the dominant interaction

that creates the Weyl nodes, unless the magnetic moments are fully polarised by the

applied field and the bands fully exchange split. Examples of such crystals include

the magnetic half-Heuslers RePtBi [Re = Gd, Nd; Fig. 14(a)] [57, 58, 97, 98] and
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AIAO

2I2O

Figure 14: (adapted from [69, 99]) (a) Weyl nodes can be induced by exchange

interaction between the electronic bands and the 4f magnetic moments. (b) In

the rare-earth pyrochlore iridates, the all-in-all-out (AIAO) order gives rise to Weyl

nodes in the Brillouin zone. This becomes a line node when the moments are driven

into the two-in-two-out (2I2O) configuration in an applied field.

the 122-pnictides EuCd2Pn2 [Pn = Sb, As; Figs. 10(b) and (c)] [59, 60]. Compared

to non-magnetic crystals, larger band splitting can potentially be realised in these

materials, giving rise to a larger separation of the Weyl nodes in k-space.

In both cases, the detection of Fermi arc surface states with ARPES, which is

the definitive test for the presence of Weyl nodes, can be excluded as ARPES cannot

be performed in an applied field. Instead, alternative tests commonly used to verify

the existence of Weyl nodes for this class of WSMs is from the anomalous Hall

effect [57, 58, 98] and the Chiral anomaly [57, 60, 95, 97], which can be probed in

magnetotransport studies.

1.7 All not ideal

1.7.1 Nodes close to EF

The compounds discussed thus far, along with some other candidate WSM materials

that have been suggested, are tabulated in Table 1. Although these crystals have
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Weyl nodes that are generally distributed in energy, only the nodes that are in the

vicinity of EF will have an observable effect on the material. For instance, in the

isostructural compounds TaAs [15, 100], TaP [43], NbAs [42] and NbP [41], the

observed Fermi arcs only emanate from and connect the nodes that are near the

Fermi energy, even though there are many other nodes distributed above and below

EF. Hence, the ideal case is if the nodes are exactly at the Fermi energy, where the

the topological features of the nodes will dominate in the bulk properties. Under the

heading |E −EF| in Table 1, I list the smallest energy difference between the Fermi

energy and all of the Weyl nodes in the Brillouin zone. The case where |E−EF| = 0

applies for Pr2Ir2O7 [61, 68, 71, 101], LaAlGe [102, 103], the chalcopyrites (CuTlSe2,

AgTlSe2, AuTlSe2, ZnPbAs2) [104], HgTe [105] and Zr0.725Nb0.275Co2Sn [44]. For

the other compounds where the nodes are not exactly at EF, there is a possibility

of shifting the energy of the nodes with chemically suitable dopants. This is indeed

the case for the magnetic Heusler Zr1−xNbxCo2Sn [44] where the Weyl nodes in the

parent phase (x = 0) is not at the Fermi energy, but can be tuned to be at the EF

by alloying with the dopant Nb (x = 0.275). The |E − EF| column, however, does

not reflect the distance between all nodes and the EF. In LaAlGe, for instance, only

8 nodes lie at the EF whereas the other 16 are not.

1.7.2 Number of Weyl nodes

As I discussed earlier, these compounds can be categorised into two main classes

based on the mechanism that induces the Weyl nodes: non-centrosymmetric crystals

(with broken IS only) and magnetic crystals (with broken TRS).

The total number of nodes in crystals of the first type comes in multiples of

four. This arises because a Weyl node at k0, under TRS, is converted into another

Weyl node at −k0 with the same chirality and given that the net Berry flux in the

Brillouin zone has to be 0, there will be another pair of nodes with opposite chirality.

The listed crystals in Table 1 are arranged in descending order of the number of

Weyl nodes near EF. On the top of the list of this class is the TaAs structural family

along with the half-Heusler LaAlGe [102, 103], which has 6 sets of four nodes near

EF. Further down the list of crystals in this class include the molybdenum-doped

tungsten di-telluride (MoxW1−xTe2) [106], the chalcopyrites (CuTlSe2, AgTlSe2,
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AuTlSe2, ZnPbAs2) [104] and the binary mercury telluride (HgTe) under strain [105],

with 2 sets of four nodes near EF. Having many sets of these nodes, however, makes

it harder to disentangle effects from the different nodes and perform fundamental

tests of the Weyl physics. Hence there has been a considerable effort to search

for non-centrosymmetric crystals with less nodes near EF. This search culminated

with the prediction that the transition metal di-tellurides, MoTe2 [107, 108] and

WTe2 [109], can realise the minimum four nodes near EF.

On the other hand, for magnetic crystals, if a Weyl node is present at momentum

k0, another node with the opposite chirality must be present at −k0. As a result,

the total number of nodes in crystals with broken TRS comes in multiples of two.

Hence, WSMs of this class can potentially realise a single pair of Weyl nodes near EF,

half the minimum number of nodes in non-centrosymmetric crystals. Despite this

prospect, identifying compounds with this minimum number of Weyl nodes has been

challenging. Also listed in Table 1 are compounds with broken TRS arranged accord-

ing to the number of Weyl nodes near EF. In some of these magnetic crystals, the

nodes are created by spontaneous magnetic order whereas in others, the nodes are

induced by magnetic exchange when the magnetic moments are fully polarised along

certain applied field directions. On the top of the list is the hexagonal Mn3Ge [56]

which possess 17 pairs of Weyl nodes created by the spontaneous collinear magnetic

order of the Mn sub-lattice. As described earlier, the position of these nodes in

this antiferromagnet can, purportedly, be manipulated with an applied field. Next

on the list are the 227-pyrochlore iridates (e.g. Pr2Ir2O7 [61, 68, 71, 101]) which

host 12 pairs of Weyl nodes if the Ir sub-lattice does indeed display the AIAO spin

structure below the Néel temperature. This is followed by compounds with 6 pairs

of nodes in the Brillouin zone which include the Shandite Co3Sn2S2 [110], where the

nodes are induced by the spontaneous ferromagnetic order of the cobalt moments,

and the hexagonal AFM Mn3Sn, where the nodes are predicted to be responsible for

the large AHE at room temperature [56]. Like Mn3Ge, EuCd2Sb2 has an odd num-

ber of pairs of Weyl nodes, which is not allowed for crystals which have broken IS

only. The 5 pairs of nodes in this hexagonal rare-earth 122-pnictide antiferromagnet

are induced by magnetic exchange when the Eu moments are fully polarised along

the crystal c axis by an external field [60]. Examples of magnetic crystals with 4
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Table 1: A non-exhaustive list of Weyl semimetal candidates. This list also indicates

whether there are other bands that cross the EF, which might shroud the contri-

butions from the Weyl nodes. The four mechanisms for producing Weyl nodes are

breaking time reversal symmetry (TRS), breaking inversion symmetry (IS), break-

ing TRS by magnetic exchange (e-TRS) and breaking IS in a crystal under strain

(s-IS).

Compound Pairs of Irre. |E − EF| Mechanism Reference

Weyl Nodes Bands (meV)

Mn3Ge 17 Yes 8 TRS [56]

Pr2Ir2O7 12 Yes 0 TRS [61, 68, 71, 101]

LaAlGe 12 Yes 0 IS [102, 103]

TaAs 12 Yes 2 IS [15, 100]

TaP 12 Yes 24 IS [43]

NbAs 12 Yes 38 IS [42]

NbP 12 Yes 26 IS [41]

Mn3Sn 6 Yes 86 TRS [56]

Co3Sn2S2 6 Yes 60 TRS [110]

EuCd2Sb2 5 Yes 50 e-TRS [60]

YbMnBi2 4 Yes 40 TRS [74]

SrMnSb2 4 Yes 700 TRS [84, 85]

GdPtBi 4 Yes >0 e-TRS [57, 58, 97, 98]

MoxW1−xTe2 4 Yes 80 IS [106]

CuTlSe2 4 No 0 IS [104]

AgTlTe2 4 No 0 IS [104]

AuTlTe2 4 No 0 IS [104]

ZnPbAs2 4 No 0 IS [104]

HgTe 4 No 0 s-IS [105]

MoTe2 2 Yes 6 IS [107, 108]

WTe2 2 Yes 52 IS [109]

Zr0.725Nb0.275Co2Sn 1 Yes 0 TRS [44]

EuCd2As2 1 No 0 e-TRS [59, 111]
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pairs of nodes include the 112-pnitides (YbMnBi2 [74] and SrMnSb2 [84, 85]), where

the nodes are induced spontaneously by an in-plane component of the Mn magnetic

order, and the half-Heusler GdPtBi [57, 58, 97, 98], where the nodes are created by

magnetic exchange when the Gd moments are fully polarised.

As there are many pairs of Weyl points in all of these aforementioned WSM

candidates, it is difficult to distinguish the contributions from the different nodes to

the bulk measurements (e.g. AHE, magnetotransport, etc.) and link the observables

of these materials to specific nodes. Hence, an ideal WSM crystal will contain a

single pair of Weyl nodes, which is the minimum number that conserves the net

Berry flux. Such a material will belong to the second class (with broken TRS) and

will be a suitable platform to perform fundamental tests of Weyl physics.

1.7.3 Irrelevant bands

Another difficulty with identifying suitable WSMs is the existence of extraneous,

topologically-trivial, bands which cross the Fermi surface. The quasiparticles in

these bands will inevitably contribute to properties of the material and make it

harder to isolate effects due to the Weyl fermions. This has indeed been proposed to

be the case for the magnetic Heuslser family XCo2Z (X =V, Zr, Nb, Ti, Hf; Z=Si,

Ge, Sn) [44]. Here a single pair of Weyl nodes is predicted to lie along the [110]

direction, driven by the ferromagnetic order of the magnetic cobalt sub-lattice in the

same direction. However, ab initio calculations predict that there are other bands

which cross the Fermi energy in this family of cubic crystals. The presence of other

bands will potentially shroud the effects of topological nodes on the bulk material

properties. This arises because the electron eigenstates with trivial topology will

have a significantly higher density of states compared to that for Weyl nodes, which

have a vanishing density of states as the chemical potential approaches the crossing

points.

The ideal test bed for the physics of Weyl fermions will, hence, be in crys-

tals with Weyl nodes that are in an energy window free from other irrelevant non-

topological bands. This is case for the chalcopyrites (CuTlSe2, AgTlSe2, AuTlSe2,

ZnPbAs2) [104] and the binary mercury telluride (HgTe) under strain [105], all of

which, however, have 4 Weyl nodes at EF.
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1.8 The ideal Weyl semimetal

None of the WSM candidates suggested thus far fulfill all three requirements of (i)

hosting a single pair of Weyl fermions (ii) in the vicinity of the Fermi energy and

(iii) in an energy window free from other bands. To perform fundamental tests of

Weyl physics, there is an imperative need to find better material realisations of a

WSM which satisfy all three requirements [3, 9, 11, 12]. The search for an ideal

WSM is the topic of Chapter 4.
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Chapter 2

Experimental Methods

A physicist, in my view, observes the natural workings of the (seemingly ordered)

universe around us, assigns numbers to quantify (where possible) the phenomenon

under investigation, and then writes down a model to describe it.

The definition of a physical variable in a model should, therefore, not be am-

biguous. It is upon that firm description of the physical quantity that we can then

proceed to design careful experiments and make precise measurements to ascertain

if the model provides a good description of the phenomena or not. On that note, it

is also an art, in my view, to make a case for why a particular size of the error bar

is chosen as it may exclude one model from another.

However, caution must be taken, especially if a model provides for an extremely

good description of the phenomena in question, to distinguish between a description

and a prescription. While nature might seem to follow the model, it should not

be assumed that natural phenomena obeys these laws. In my view, we have to be

cautious not to ascribe a quality to an observation that is a feature of a model.

Nonetheless, a good model can serve to predict other phenomena and offer us deep

insights into the mysterious inner workings of our universe.

In the area of magnetic topological crystalline materials, there has been a wealth

of ab initio studies predicting the existence of massless charge carriers in the crys-

tals. However, when I embarked on my thesis, there were not many experimental

studies devoted to making well-qualified statements, based on the measured quan-

tities, about the existence of these quasiparticle excitations in these crystals. For

instance, in many of these studies, the magnetic structure was not solved.
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What I have tried to achieve in my thesis is to perform experiments to address

some of these open questions rigorously. In this chapter, I outline some of the

experimental techniques that I employed to investigate these magnetic topological

materials.
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2 Experimental methods

2.1 Diffraction and the reciprocal lattice

The aim of this section is to relate the physical crystal that has been described thus

far with experimentally measurable physical quantities obtained from neutron and

X-ray studies. While it is more natural and intuitive to describe1 crystals in terms

of the lattice positions, Rn = n1a1 + n2a2 + n3a3 (where n1, n2, n3 ∈ Z and a1,

a2, a3 are primitive lattice vectors of the direct lattice), the abstract description of

the crystal in reciprocal space2 offers a better comparison with experimental results

from scattering studies. This succinct and elegant way of describing the crystal in

terms of the Fourier components is given by, G = hb1 + kb2 + lb3 where b1,b2,b3

are the primitive lattice vectors of the reciprocal lattice such that ai · bj = δij and

h, k, l are integers.

This abstract description arises naturally from how radiation interferes construc-

tively after scattering from the periodic arrangement of ions in the crystal. Within

this formalism, there is a term that is proportional to exp(iq ·Rn), where q is the

scattering vector [see Fig. 15(a)]. This term, when summed over the lattice array,

adds constructively when the exponents in each term are in phase, that is, when

q ·Rn = 2π, giving rise to coherent scattering when q = G since G ·Rn = 2π.

In single crystal diffraction studies, we can measure the fraction of the incident

radiation scattered into the (θ, φ) direction, which I define here as dσ/dΩ, the dif-

ferential cross-section. When the diffraction condition of q = G is met, then the

scattered intensity at the given (θ, φ) will be very large relative to the background

(see Sections 2.3.1 and 2.4.1). The resulting spatial distribution of the intensity of

the scattered radiation will correspond directly with the 3D lattice points mapped

out by these reciprocal lattice vectors. From this, we can extract the lattice param-

1It is worth distinguishing a physical crystal from a lattice, which is a mathematical concept.

The former is a regular arrangement of atoms while the latter is an infinite set of points that display

spatial translation symmetry, T : r = r+Rn, which in 3D space have only 14 different types (and

in my view is a rather neat result shown by Bravais). Strictly speaking, the term crystalline lattice

does not make sense. However, I think the way around this impasse is to use the term describe,

where what I mean is that we can use the idea of a lattice to describe a physical crystal.
2The Fourier transformation of the lattice points from real to reciprocal space.
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Figure 15: (a) depicts elastic scattering, where |kf |=|ki|, in the (h k 0) plane of

reciprocal (or momentum) space. Here I define the scattering vector as q = kf −ki,

where ki and kf are incoming and scattered beam wavevectors respectively. When q

matches the reciprocal lattice vector G (orange crosses), we get coherent scattering.

(b) illustrates elastic scattering in real space where the beam is scattered by a

scattering angle of 2θ. Alternatively, the scattering event can be visualised as the

reflection of the incoming beam by uniformly spaced layers, with interlayer spacing

d.

eters to find out the distances between atoms, the space group of the crystal, the

arrangement of the atoms within the unit cell and the single crystal quality among

many other things.

The magnetic structure of crystals that display antiferromagnetic ordering in the

magnetic ions can also be elucidated by radiation. In these crystals, the magnetic

moments cancel out and do not produce a net magnetisation in bulk measurements.

Hence it is difficult to identify the arrangement of the magnetic ions solely from mag-

netometry measurements. The magnetic order in these single crystals can provide

significant contributions to dσ/dΩ. In terms of the spatial distribution of this mag-

netic scattering intensity, this can manifest at reciprocal lattice positions which are

rational fractions or irrational fractions of G, depending on whether the magnetic

arrangement is commensurate or incommensurate with the host crystal structure.
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Figure 16: The scattering geometry in both spherical polar and Cartesian coordi-

nates. Here, 2θ is the scattering angle as defined earlier. If φ = ±90◦, then the

experiment is said to be done in the horizontal scattering geometry within the y–z

plane.

From this, the magnetic structure, the size of magnetic moment and the critical

exponent β, which describes the magnetic order parameter near the transition tem-

perature, can be determined. The magnetic scattering also allows us to estimate the

correlation length of the magnetic order and is sensitive to the presence of magnetic

domains among many things.

The behaviour of electrons that live in a periodic coulomb potential and the exci-

tations of an ordered magnetic periodic lattice can also be succinctly described in re-

ciprocal space as the energy dispersion of electronic wavefunction states and magnon

modes, respectively. For the electronic band structure, which can be mapped with

angle-resolved photoemission spectroscopy (ARPES) and calculated with density

functional theory (DFT), the wave vector k for a given energy eigenstate defines a

plane-wave envelope, eik·r, specifying the spatial modulation of the electron wave-

function along r. On the other hand, for the magnon modes, this plane wave defines

the relative phase of spin precession of the magnetic ions at position rm. Fur-

thermore, the E − k spectrum of these quasiparticles and collective excitations are

periodic across Brillouin zones and possess some point group symmetry elements of
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the crystalline (or magnetic) space group. Hence, it is natural to present these en-

ergy dispersions along high symmetry lines in k space that connect high symmetry

points in the Brillouin zone [see section 2.8]. These dispersions provide an estimate

of the propagation speed of the collective excitations, the effective mass of the quasi-

particles near EF , how the topology of the bands are related to the magnetic and

crystalline symmetry, exchange constants, etc.

2.2 Scattering cross-sections

In this section, I want to define the differential cross-section dσ/dΩ properly. It is

defined in such a way that it is independent of the incoming radiation flux Φ0 and

the actual experimental set-up. As such, we know that these physical quantities are

the fundamental properties arising from the crystal. It also makes comparing data

sets from different experimental set-ups easier as well. The total cross section is

defined as [112],

σ =
(total number of neutrons/photons scattered per second in all directions)

the flux of the incident radiation,Φ0

.

This quantity can be understood as such: if a sample is irradiated with flux Φ0,

σ gives a measure of how much of the incident radiation is scattered, regardless of

direction. Intuitively, it gives a sense of how much space there is between the scat-

terers in a sample, which depends on the mechanism that gives rise to scattering.

In other words, this probability of radiation scattering from crystalline materials

depends on the total cross-sectional area the scattering atom presents to the radia-

tion. For instance, in neutron scattering, the cross-sectional area presented by the

atoms is very small as the strong interaction is very short ranged [113]. On the

other hand, X-rays, which interact electromagnetically with the electron cloud of

these scatterers, tend to have a higher total cross-section [114]. Here the scattering

area that the atoms present is significantly larger compared to that for neutrons.3

In these scattering experiments, we can measure the neutrons or X-rays that are

scattered into certain angular directions with a detector, which, in turn, subtends

3Yet, if we also consider the stronger interaction in neutron scattering (strong force) compared

to X-ray scattering (electromagnetic force), both processes have very similar scattering lengths on

the order of of ∼ r0
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a solid angle, ∆Ω(θ, φ). This can gives us an estimate4 of the probability that the

incident radiation with wavevector ki will be scattered into the solid angle element

dΩ(θ, φ), which is centred on the scattered wavevector kf . This is defined by the

differential cross-section [112],

dσ

dΩ
' (total number of neutrons/photons detected per second in solid angle ∆Ω(θ, φ))

Φ0 ∆Ω η
,

where η is the detector efficiency. Here, the scattered radiation may not necessarily

be isotropic, but could have a strong angular dependence. Similar to σ, this quantity

is material-specific and should not depend on experimental conditions such as the

size of detector or the incident flux as these are normalised out.

Finally, I define the double differential cross-section, d2σ
dΩdEf

, which gives the num-

ber of neutrons scattered per second into the solid angle dΩ(θ, φ) in the direction

(θ,φ) with final energy between Ef and Ef + dEf . This can be measured with an

analyser crystal5 which selects the energy of the scattered neutron/X-ray within the

uncertainty of ∆Ef .

2.3 X-ray scattering

2.3.1 Non-resonant elastic X-ray scattering

Before we consider X-ray scattering in the context of a crystalline solid, we first

treat elastic scattering from a fixed atom with N electrons.6 Here the X-ray photon

interacts electromagnetically with the electron cloud that can be described by a

continuous electron density function and is given by [114],

ρ(r) = N

∫
dr2dr3...drN |Ψ(r, r2, ..., rN)|2. (4)

The amplitude of scattering at r due to this continuous scatterer is proportional

to volume element dr at r, namely ρ(r)dr. In the second quantisation formalism of

radiation, this elastic scattering process involves annihilating a photon (with wave

4I use the word estimate because, the quantity dσ
dΩ is a differential. We usually choose the

detector slits to be small enough so that we do not pick up effects due to the variation of dσ
dΩ across

the detector area but not at the cost of expediency of the experiment or the neutron/X-ray counts

on the detector.
5This admittedly is also scattering and has a corresponding dσ

dΩ .
6This is treated more comprehensively by Altarelli and Sivia in Refs. [114, 112].
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vector k and incident polarisation ε) and creating a photon (with wave vector k′

and scattered polarisation ε′), yet leaving the system unchanged. In other words,

this elastic process does not impart (or absorb) any energy such that initial and final

state of the system, namely Ψ(r1, r2, ..., rN), are in same state. The amplitude of

scattering a photon with incident wave k to a photon with scattered wave vector k′

is proportional to
∫
dr Ψ∗(r) ε a(k) exp(ik ·r) ·ε′∗ a†(k′) exp(ik′ ·r)Ψ(r), where a†(k)

and a(k) are the creation and annihilation operators respectively [114]. Hence, the

elastic X-ray scattering cross section from a single fixed atom is given by [114],

dσ

dΩ
= r2

0|f(q)|2(ε′∗ · ε)2. (5)

Here, f(q) =
∫
dr exp(iq · r) ρ(r), or the Fourier transform of the electron density,

is defined as the atomic form factor and r0 is the classical electron radius. In this

description, the polarisation dependence in the transition rate originates from the

way perturbation from light on the momentum of the electron, p̂, enters the Hamil-

tonian describing the light-matter interaction. Classically, this can be understood

as the incident photon polarising the electron cloud with the incident polarisation ε

such that probability of scattering a photon with polarisation ε′ is dependent on the

relative polarisation of the incoming and outgoing photon [114, 115, 116]. Moreover,

given that X-rays are scattered by electrons, the intensity of scattering varies with

the atomic form factor f(q), which scales with the atomic number of the scatterer

ZA, and decreases monotonically with |q|.

For X-ray scattering from a periodic array of atoms, described by m basis atoms

in the unit cell at positions rm with respect to each lattice points Rn, we have [114],

dσ

dΩ
= r2

0

∣∣∣∣∣∑
n

exp(iq ·Rn)
∑
m

fm(q) exp(iq · rm)

∣∣∣∣∣
2

(ε′∗ · ε)2. (6)

Here, fm(q) is the form factor of the atom at site m and ρ(r) =
∑

m,n ρm(r −

Rn − rm) is the periodic electron density cloud [112, 114, 115, 116, 117].

In the case where the incident X-rays are unpolarised – as is the case in the

Laue camera and 6-circle κ laboratory diffractometer (Supernova) used in this work

– the radiation is averaged over all polarisations such that the term (ε · ε′∗)2 =

(1 + cos2 θ)/2. As such we recover the expression for Thomson scattering of light.

However, at synchrotron sources, the incoming light is polarised in the plane of
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Figure 17: The (a) vertical and (b) horizontal scattering geometry and the corre-

sponding definitions of the incident and scattered light polarisations.

the undulator (which could be π or σ depending whether the experiment is in the

horizontal or vertical scattering geometry [see Fig. 17]).

Equation (6), in my view, is a beautiful equation connecting the spatial distribu-

tion of the scattered X-rays with information about the underlying crystal structure.

It allows us to pry into the inner workings of a crystal to identify which atoms are in

the crystal, how they arrange themselves, whether they interact, etc. For instance,

the form factor, fm(q), which looks unassuming, can contain rich information about

the identity of the atoms in the basis which might decorate each lattice point. Fur-

thermore, the phase factor (iq·rm), which can give rise to extinctions in the scattered

intensity that are otherwise allowed by the lattice, can shed light on how the atoms

arrange themselves within the basis.7 In equation (6) it is, as if, in irradiating the

crystal with the incident X-rays, each atom in the lattice acts a point source of

X-rays (weighted by the form factor) to give rise to the X-ray diffraction pattern

we observe. Furthermore, other rich subtleties can be captured in the equation. A

pointed example is how the atomic form factor may differ for the same element on

inequivalent symmetry sites due to the different chemical environment where they

reside. This might give rise to peaks that are otherwise forbidden if we had assumed

7Notwithstanding the phase problem where the phase information is lost when we measure dσ
dΩ .
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that the form factor is isotropic and identical for all atoms of the same element.

2.3.2 Resonant elastic X-ray scattering (REXS)

As some of the crystals which I have studied in my thesis contain atoms which

are strongly neutron absorbing (e.g. EuCd2As2, EuCd2Sb2), studying the magnetic

order of these topological materials with powder neutron diffraction is not feasible.

Furthermore, crystals of these materials currently available tend to be relatively

small (. 1mm), which compounded with the fact that magnetic neutron scattering

has a small scattering cross-section, makes studying the evolution of these spin

structures in an applied magnetic field less expedient. An alternative method is

to use X-rays tuned to the resonant energy (which is close to absorption energy)

of the magnetic ion in question. This not only leads to a strong enhancement in

the scattering amplitude but also to a strong dependence on the polarisation of the

incoming and scattered X-rays. The theoretical framework for this phenomena is

covered in more detail in Refs. [114, 117, 118].

In my thesis, resonant X-ray magnetic scattering was used to study the magnetic

order of EuCd2Sb2 and how it evolves in an applied field. The derivations for the

expressions that describe the scattering cross-section in the soft X-ray resonant

scattering in EuCd2Sb2 are based on the work by Hill and McMorrow [118], and

are described in more detail in the Appendix [see Chapter 8]. Nonetheless, there

are some salient points that I would like to address here, namely, how the magnetic

propagation vector τ and the spin orientation can be identified.

For the EuCd2Sb2 sample in particular, a new set of peaks appeared as the

sample was cooled below the magnetic ordering temperature [see Fig. 18]. In general,

magnetic scattering can appear as additional intensity on top of existing Bragg peaks

or as purely magnetic peaks at reflections that are not allowed by the lattice or

basis. The expression describing the additional intensity arising from the scattering

of EuCd2Sb2 with incident X-rays tuned to the resonant edge of europium is given
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by,8

dσ

dΩ

∣∣∣∣REXS

E1

' 1/4F (2)2δ(q−G)

+ 1/4 cos2 θF (1)2δ(q−G± τ )

+ 1/16
(
sin2 θ + 1

)
F (2)2δ(q−G± 2τ ).

This is adapted from the general expression for REXS that is shown in Refs. [114,

118]. Here, F (1) and F (2) are strongly energy-dependent dimensionless co-efficients

which describe the resonant strengths for the dipole transitions [114, 115, 118] and

2θ is the scattering angle. By indexing the additional peaks with a suitable τ (or

τ s) one can identify the magnetic propagation vector (or vectors) of the magnetic

sub-lattice. In general, these peaks may or may not be commensurate with the

host crystal structure. Fortunately for EuCd2Sb2, the magnetic peaks can simply

be indexed by the hexagonal unit cell with a magnetic propagation vector of τ =

(0,0,1
2
). This means that the magnetic contribution does not have to contend with

the strong Bragg peaks, where the magnetic intensity will manifest, perhaps, as a

small additional contribution on top of the strong structural peak. In those cases,

it might be expedient to study magnetic peaks at forbidden Bragg reflections. By

studying the intensity of say the q=(0,0,1
2
) peak, we can estimate the magnetic

ordering temperature, the order parameter β and the size of the correlation length

ξ (from the inverse width of the peaks).

Furthermore, the scattering amplitude for REXS also displays a strong depen-

dence on the orientation of the magnetic moment, which can be identified by study-

ing the scattered X-ray intensity of certain peaks. The origin of this strong sensi-

tivity of the scattered intensity to the light polarisations and the direction of the

magnetic moments is treated with more detail in Refs. [114, 117, 118]. Nonetheless

it is instructive to consider the general expression for REXS which is given by [114],

dσ

dΩ
=

∣∣∣∣∣
〈
a

∣∣∣∣∣∑
n

eiq·rn
[
(ε̂′ · ε̂)F (0) − i (ε̂′ × ε̂) · ẑnF (1) + (ε̂′ · ẑn)(ε̂ · ẑn)F (2)

]∣∣∣∣∣ a
〉∣∣∣∣∣

2

.

(7)

8Here I considered the scattering from the σ-σ′ and σ-π′ channels and an in-plane magnetic

order of the europium spins. Also, I use ' instead of = as the contributions from the F (0) term is

ignored.
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Figure 18: Illustration of REXS of EuCd2Sb2 in the real and reciprocal space –

in the (h 0 l) plane – at temperatures above and below TN. The (a) crystal dis-

plays magnetic order (c) as it is cooled below TN. This manifests as (d) additional

intensities in reciprocal space (b).

The first term (with the F (0) coefficient which was omitted earlier) refers to the

charge Bragg peaks while the last two terms refer to the magnetic dipolar interac-

tions as described earlier. rn refers to the lattice sites of the magnetic species, ẑn

is the magnetic moment at site n, |a〉 and 〈a| are the initial and final states of the

crystal respectively and ε̂ and ε̂′ refer to the polarisation of the incident and scat-

tered X-ray [see Fig. 18]. (7) explicitly shows how the scattered intensity depends

on the orientation of the spins (ẑn), and incoming and outgoing X-ray polarisations,

ε̂ and ε̂′ respectively. Reflections arising from the second term in the expression,

which is linear in ẑn, can be particularly helpful when identifying the spin orienta-

tion. The can done by studying the intensity of the q = (0,0,1
2
) peak with different

permutations of incoming and outgoing X-ray polarisations [119] or different angular

positions of the crystal about the scattering vector q, as was done for the EuCd2Sb2

study [see Fig. 18(c)].
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2.3.3 X-ray sources

In the exploration of magnetic topological materials in my thesis, I used X-rays from

two main sources: synchrotron X-rays to study the magnetic structure of EuCd2Sb2

and lab X-rays to study the orientation and the crystalline quality of the samples.

X-rays from the lab-based sources are produced when accelerated electrons are

made to collide with a metal target (e.g. copper, molybdenum) [114]. The energy

spectrum of the X-rays, which depends on the type of anode material and the

accelerating voltage used, can generally be described by a continuous curve, arising

from the bremsstrahlung effect, superposed with sharp spikes, which come from

the characteristic transitions of the given target metal [114]. If, for example, the

copper target is used, the dominant signal that is detected arises from the Kα

transition (λCu
Kα

=1.5406 Å) as it has the highest intensity. As part of my study

of the magnetic crystals, I used the 6-circle κ diffractometer (Agilent, Supernova)

to check the quality, structure and orientation of the samples [see Fig. 19(a)]. I

mount the crystal on the end of a sample mount with oil (if the sample is small)

or GE varnish (if the sample is larger). Next, I used the CrysAlisPro software

(version 38.41) to perform an automatic scan of the full sphere in reciprocal space,

Figure 19: The (a) 6-circle and (b) Laue diffractometers used in my thesis are

operating in the transmission and reflection experimental geometry respectively.
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where the sample is rotated through 4π steradians. The program also provides

for an automatic analysis of the detected peaks, where the crystal structure, cell

parameters, orientation with respect to the sample mount (UB matrix) and quality

(powder lines, twinning, stacking faults) can be identified. As lab X-rays typically

penetrate a few microns into a sample, care has to taken when interpreting the

X-ray diffraction data as the surface X-ray diffraction pattern may not be a good

indication of the underlying bulk crystalline quality.

If the crystals that require aligning are too large to be used on the Supernova

XRD, I use the Laue diffractometer instead. Here, X-ray scattering is performed

in the back-reflection geometry [see Fig. 19(b)]. The Laue technique is useful for

aligning crystals for X-ray/neutron/ARPES beamtime experiments and magneto-

transport/magetometry measurements.

On the other hand, the X-rays used for REXS experiments are produced by

synchrotron sources. In my work I used PETRA III (DESY, 6.0 GeV), Diamond

Light Source (Oxfordshire, 3 GeV) and BESSY II (Helmholtz-Zentrum Berlin, 1.7

GeV). In Diamond, the electrons are accelerated in three particle accelerators, start-

ing off with a linear accelerator, followed by a booster synchrotron and eventually

in a large storage ring.9 These electrons are steered around the polygon-shaped

ring by bending magnets, and in doing so, produce very intense light that propa-

gates tangentially to the electron path. Here, the term synchrotron is derived from

synchronised increase in the magnetic field strength of the bending magnets as the

kinetic energy of electrons is increased [114, 117]. The synchrotron light arrives in

pulses as the electrons that are accelerated around the synchrotron come in packets

(or bunches).

A special alternating array of magnets called insertion devices (e.g. undulators)

can be placed in the straight sections of the electron paths to produce light of higher

intensity. This is how the X-rays are produced at the beamlines that I have used for

the X-ray studies: UE46-PGM01 (BESSY II), P09 (PETRA III) and I16 (Diamond).

These undulators not only produce X-rays with high flux but also with a large range

of wavelengths, which is useful for tuning the light to match the resonant frequency

9This information is taken from https://www.diamond.ac.uk/Public/How-Diamond-

Works.html

56



in the L3 or M5 edges of some magnetic ions that I have studied in my thesis.

2.3.4 Examples

I have been involved in several REXS studies. At P09 (DESY, Germany), the mag-

netic order of EuCd2As2 (Eu L3), EuMnSb2 (Eu L3; Mn K) and Nd2Ir2O7 (Nd

L3; Ir L3) was studied with hard X-rays. Similarly, the magnetism of EuCd2Sb2

and EuCd2As2 was explored with soft X-rays at the Eu M5 edge at UE46-PGM01

(BESSY II, Germany). I have also been involved in the study of the magnetic struc-

ture of EuCuAs at I16 (Diamond, UK). Only the study of the magnetic structure

of EuCd2Sb2 is reported in this thesis.

2.4 Neutron scattering

Neutrons can also be used as a probe to study the magnetism of single crystals.

Given that neutrons do not carry an electric charge, they mainly scatter with the

nuclei in solids (via the strong force) or unpaired electrons (via the magnetic dipole-

dipole interaction). In the following three sub-sections, I explore these two phe-

nomena in turn, relating them to the experiments and discussing what we can learn

about the magnetic structure and dynamics of these topological materials.

2.4.1 Coherent elastic nuclear scattering

I will first consider the strong (nuclear) interaction between neutrons and a single

nucleus before generalising the discussion to treat elastic neutron scattering in the

context of a crystalline solid. Although the nature of this interaction mediated by

gluons is very strong, it is very short ranged (∼ 1 fm). This short-ranged interaction

potential can be described by [112, 113, 120],

V̂ (r) = bδ(r),

such that, in the Born approximation, the amplitude of scattering a neutron with

initial momentum k elastically into a state with momentum k′ is proportional to∫
dr exp(ik·r)V̂ (r) exp(ik′·r). Hence, the scattering cross-section for a single nucleus

is given by [112, 113, 120],
dσ

dΩ
= |b|2. (8)
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In other words, the single fixed nucleus provides a potential V̂ (r) to mediate the

transition of the neutron wavefunction from ψk ∝ exp(ik · r) to ψk′ ∝ exp(ik′ ·

r) [120]. Here we take the nuclear form factor b (which can be a complex number

and is more commonly known as the nuclear scattering length) to be approximately

constant, independent of the neutron wavelength (for non-absorbing elements) and

scattering vector q. The approximation of the nuclear scattering potential to a delta-

function works extremely well for the neutron energies employed in experiments to

study condensed matter. If the nuclear form factor b is complex, it adds a negative

exponent to the scattering cross-section which describes neutron absorption. This

is relevant for intermetallic compounds EuCd2As2 and EuCd2Sb2 studied in this

thesis that contain highly neutron-absorbing elements europium and cadmium. For

these materials, synchrotron radiation is a better technique for studying magnetic

structure [see Section 2.5].

For neutron scattering from an array of ions (described by an m ion unit cell

basis which decorates lattice positions Rn), the potential can be described by V̂ (r) =∑
m,n bmδ(r−Rn−rm) [112, 113, 120] such that the scattering cross-section is given

by,

dσ

dΩ
=

∣∣∣∣∣∑
n

exp(iq ·Rn)
∑
m

bm exp(iq · rm)

∣∣∣∣∣
2

. (9)

Here the scattering length, bm, is element (and in fact isotope) specific and varies

haphazardly across the periodic table. Given that only neutrons that get very close

to the nuclei can scatter, the bulk of the neutrons do not interact with the crystal

and, as far as the samples used in this thesis are concerned (dimensions < 5× 5× 5

mm3), they typically penetrate the whole crystal.10 Furthermore, note that in this

discussion, I take the incoming neutron beam to be unpolarised where the spin 1/2

is taken to be spherically averaged. Depending on the objective of the experiment,

it might be advantageous to polarise the incoming neutron beam (or in some cases

essential) and to analyse the polarisation state of the outgoing beam. This can be

achieved by the choice of monochromator crystal and the analyser set-up, which is

discussed further in Chapter 6.

10Even though a small fraction of the radiation will scatter, the scattering cross-section is com-

parable to that for X-ray scattering due to the stronger interaction.
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2.4.2 Elastic magnetic scattering

I will now turn to consider the electro-magnetic interaction between neutrons and a

single magnetic ion before treating the general case of elastic scattering of neutrons

with the magnetic ions in the context of a host crystal. Even though the electro-

magnetic interaction between neutrons (due to their spin) and the magnetic ion

(due to its unpaired electrons), mediated by virtual photons, is considerably weaker

compared to the strong interaction, it is more long ranged. As a result, both mech-

anisms (strong and electromagnetic interaction) can lead to a comparable number

of neutron scattering events.

The interaction potential between a neutron and a magnetic ion can be described

by V̂ (r) =−µ0µn ·M(r), where µn is the magnetic moment of a neutron, µ0 is the

permeability of free space and M(r) represents the magnetisation emanating from

the magnetic ion. Hence, the elastic scattering cross-section for a single magnetic

ion is given by [112, 120, 121],

dσ

dΩ
=

(
γr0

2µB

)2

|M⊥(q)|2 , (10)

where γ is the gyromagnetic ratio, r0 = µ0e
2/(4πme) is the classical radius of an

electron and µB is the Bohr magneton. Here, M⊥(q) is the component of M(q) that

is perpendicular to the scattering vector q, which can be defined by [112, 120, 121],

M⊥(q) = M(q)− (M(q) · q̂)q̂,

where M(q) refers to the Fourier transform of the spatial distribution of magnetic

field, M(r) [see Fig. 20(b)]. While it seems peculiar that only the component of

the magnetic moment which is perpendicular to the scattering vector q will be

contributing to the magnetic scattering, it is actually very helpful in identifying the

orientation of the magnetic moments. The expression for M(q), which can be quite

complicated in general, can be substantially simplified for the magnetic scattering

with the unpaired 3d electrons of Mn2+ ions, which was considered for my thesis.

If we assume the orbital angular momentum to be quenched, we can write the

magnetisation as,

M(q) = −gµBf(q)S,
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where g is the Landé g-factor (=2 for fully quenched orbital angular momentum) and

S is the spin quantum number. Here, the magnetic form factor f(q), which is the

Fourier transform of an electric spin distribution in space, decreases monotonically

with |q|. Hence, depending on the crystal lattice spacing, it may be advantageous

to study magnetic reflections with small |q|.

I will now turn to consider magnetic scattering in the context of a crystalline

solid, where the magnetic ions display long-range magnetic order. Here the sum is

taken over the magnetic ions such that,

M(q) = −µB

∑
j

gjSjfj(q) exp(iq · rj), (11)

where fj(q) is the magnetic form factor, Sj is the spin quantum number and rj

is the position of the jth magnetic ion. Here, the magnetic moments vector Sj at

site j does not have to be collinear with respect to the other magnetic moments

or even be of the same magnetic subspecies. Furthermore, in this formalism, it is

actually more expedient to describe these magnetic reflections in reference to the

host crystallographic unit cell. This is especially helpful if we have to account for

the possibility of a magnetic superstructure that might transcend the underlying

atomic crystal structure. For instance, we can describe a magnetic structure that

is incommensurate with the host crystal structure with magnetic propagation wave

vectors, τ , with respect to the reciprocal lattice G. Analogous to coherent elastic

scattering, the diffraction condition is met when the scattering vector q = G ± τ

and magnetic reflections can show up if |M⊥(q)| 6= 0 [see Figs. 20 for an example.].

2.4.3 Inelastic magnetic scattering

In my thesis, I studied the cooperative excitations of the ordered Mn2+ magnetic

moments about the average orientations along the c axis. The excitation energy (E)

of these magnons can be mapped using inelastic neutron scattering as a function of

wavevector q. The expression for the partial differential cross-section for magnetic

inelastic scattering of CaMnBi2, which is isostructural to YbMnBi2, has been worked

out by Rahn et al. [122]. Adapting the expression to the case for YbMnBi2, I arrived

at the partial differential cross-section,

d2σ

dΩdEf
=
kf
ki

(γr0

2

)2

g2f 2(q)S(q, E), (12)
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Figure 20: (a) The tetragonal unit cell of YbMnBi2. (b) Magnetic neutron scattering

is only sensitive to the component of the magnetisation that is perpendicular to the

scattering vector q. (d) shows the magnetic components that is perpendicular to

the scattering vector q for various scattering configurations and magnetic structures

shown in (c).

where ki and kf are magnitudes of the incoming and outgoing wavevectors. Similar

to elastic magnetic neutron scattering, the scattered intensity is only sensitive to

components of the magnetic fluctuation that are perpendicular to the scattering

vector q. For YbMnBi2, q||c is not a problem, because if the spins are aligned

along c then the spin deviations are perpendicular to c. Furthermore, the scattered

neutron intensity also decreases monotonically with |q| due to the magnetic form

factor f(q). As such, the experiment geometry on the triple-axis spectrometer IN8

(ILL) has to be optimised to study spin-waves with q that is close to the Γ point to

maximise the signal-to-noise ratio. For YbMnBi2, S(q, ω) is in turn given by [122],

S(q, ω) = NS
A(q)−B(q)

E(q)
[n(ω) + 1] δ(~ω − E), (13)

where N is the number of magnetic ions per sub-lattice, S is the spin quantum

number and E(q) is the magnon dispersion relation. Here the thermal population

of magnons with respect to energy can be described by the Bose-Einstein statistics

or n(ω) =
(
e(βE) − 1

)−1
. The terms A(q) and B(q) are functions of the different
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Figure 21: (a)–(c) The various scattering geometries of the D10, IN8 and Orient-

Express beamlines at the ILL.

magnetic exchange couplings between the magnetic moments and is discussed in

further detail in Ref. [122].

2.4.4 Examples

In this thesis, I studied the magnetic structure and dynamics of single crystalline

YbMnBi2 at the following beamlines: WISH (ISIS), D10 (ILL), IN8 (ILL) and

OrientExpress (ILL) [see Fig. 21 for illustrations of the last three.]. I also used

polarised neutrons to study the non-collinear magnetic structure of Mn3Ge single

crystals at the D3 beamline at the ILL.

Furthermore, I have studied three europium-based compounds with neutrons

on the WISH diffractometer (EuMnSb2, EuCd2As2 and EuCuAs). The high flux

at WISH meant that the magnetic signal was still discernible despite the strong

neutron absorption of the rare-earth ions. These studies are not reported here.

2.4.5 Neutron sources

At ISIS, the neutrons are produced by bombarding a tungsten target with a high-

energy proton beam. The beam is produced by initially accelerating H− ions in a

linear accelerator followed by a synchrotron. This gives rise to pulses (50 Hz) of
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Figure 22: Illustration of the inelastic neutron scattering of YbMnBi2 in (a) recip-

rocal and (b) real space. In this experiment, the scattered neutrons are detected by

an array of 31 detectors. This translates to an arc in k-space. A rotation of the

sample in real space – shown by the green arrow in (b) – corresponds to the arc

sweeping out an area in reciprocal space bounded by the green dashed line in (a).

spalled neutrons that are eventually slowed down in a series of moderators (water,

methane and liquid hydrogen) and are subsequently guided to the various beam

lines.

Neutrons at the ILL reactor source, on the other hand, are produced via the

controlled fission of uranium-235. The energy distribution of the continuous neutron

flux produced from this source can be described by the Maxwell-Boltzmann statistics

at T = 300 K with a peak intensity of neutrons with E = 25 meV.

2.5 Choice of radiation

In this subsection, I discuss the different considerations when deciding which type

of radiation is used to study the magnetic order and excitations in single crystalline

samples. This is strongly linked to the nature of the interaction between the radia-

tion and the sample [see Sections 2.3.2, 2.4.1,2.4.2 and 2.4.3], the properties (mass,

surface, etc.) of the single crystals under investigation, and the phenomena to be

probed.
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The chemical vapour transport method used in this work usually produce small

crystals (∼ 1 × 1 × 1 mm3). Due to the small neutron scattering amplitude, such

samples are not feasible for neutron scattering. Nonetheless, this crystal growth

method yields high-quality single crystals with natural shiny facets. Given that the

electromagnetic interaction is relatively strong (X-rays can typically only penetrate

a few hundreds of nm), the near-pristine surface of these crystals mean that these

samples are very suited for synchrotron X-ray diffraction studies. This is not always

possible for flux-grown crystals that may have substantial amount of flux on the

crystal surface.

Furthermore, other than the mass (and size) limitation, crystals containing

strongly neutron absorbing elements (e.g. Ir, Eu, Cd) severely reduce the inten-

sity of scattered neutrons. For such compounds, X-rays would be a more suitable

probe. Moreover, the resonant X-ray scattering technique provides for ion speci-

ficity, where the scattered signal is dominated by the contributions from ions whose

absorption edge energy matches the incident X-ray energy. This is helpful if there

is more than one type of magnetic species in the crystal. Whereas for magnetic

neutron scattering, distinguishing between the contribution from different magnetic

species, especially if the magnetic sub-lattices have the same magnetic propagation

vector and spin orientation, is less straight forward.

Magnetic resonant X-ray scattering does, however, pose some limitations. By

virtue of fixing the incident X-ray energy to match that of the resonant energy of

the element under investigation (and hence ki), the technique does restrict the ac-

cessible (h k l) reflections for long wavelengths.11 In terms of inelastic scattering,

neutrons tend to prove more useful for mapping magnon dispersion because a finite

change in X-ray momentum leads to a very tiny change in X-ray energy (typically

1 part in 106), which is very difficult to resolve experimentally. While the measure-

ment of magnons using X-rays is currently possible with resonant inelastic X-ray

scattering, it is however limited by the energy resolution of the currently available

instruments [114].

11This is not an issue for short wavelengths as the full reciprocal space is accessible
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2.6 Magnetotransport

In this work, I define the 3× 3 resistivity matrix ρ as E = ρj where E and j are the

electric field and current vectors respectively. Estimates of the resistivity matrix el-

ements ρij [where i, j = (x, y, z)] for my single crystalline samples were obtained by

performing magnetotransport measurements on a PPMS (Physical Property Mea-

surement System, Quantum Design) in a Hall configuration with the standard five-

contact method. Gold wires (15 µm, AU519209, Advent Research) were bonded

to the crystalline samples with conductive silver glue (4929N, DuPont). This gives

rise to a typical contact resistance of ∼ 2 Ω. Samples were mounted on a standard

PPMS (Quantum Design) puck with GE varnish (VGE-7031, LakeShore cryotron-

ics) and insulated from the ground with a piece of quartz. Hall measurements were

performed in B fields of up to 16 T applied along the ẑ axis and temperatures down

to 1.8 K in a pressure of ∼ 10−9 Torr [see Fig. 23(a)].

The in-plane resistivity, ρxx, is obtained by ρxx = VxA/Ixl where Vx is the

potential drop across the in-plane contact leads, Ix is the current magnitude, A is

the cross-sectional area of the sample (with surface normal to the direction of Ix)

and l the distance between the contacts [see Fig. 23(a)]. The Hall resistivity ρxy

is given by ρxy = Vyt/Ix where t is the thickness of the sample in the z direction

and Vy is the potential drop across the Hall wire contacts. As the position of the

contacts will slightly deviate from the ideal Hall bar configuration, the measured

in-plane potential drop and Hall voltage, namely V ′x and V ′y , will carry contributions

from the Hall and in-plane resistivity components respectively. Given that the true

Vx and Vy will be symmetric and anti-symmetric about B = 0 respectively, both V ′x

and V ′y can be symmetrised to give Vx and Vy. To remove the Hall contribution in

the measured in-plane voltage, V ′x is symmetrised via Vx = 1/2× [V ′x(B) +V ′x(−B)].

Similarly, to remove the contribution from the in-plane potential drop across the

Hall leads, V ′y is symmetrised via Vy = 1/2× [V ′y(B)− V ′y(−B)].

The resistivity matrix ρ can be inverted to give the conductivity tensor


σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 ,
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where σxx = ρxx/(ρ
2
xx + ρ2

xy) and σxy = −ρxy/(ρ2
xx + ρ2

xy).

2.7 SQUID measurements

A superconducting quantum interference device (SQUID) magnetometer (Magnetic

Properties Measurement System, Quantum Design) was used to perform the two

principal magnetic measurements: magnetisation as a function of temperature and

field. Measurements as a function of field were performed up to µ0H = ±7 T. The

field is generated by superconducting wires that are wound as a solenoid around the

cylindrical sample environment. Temperature-dependent measurements (in a non-

zero fixed field) can be performed in the temperature range of T= 1.8 K to 370 K,

which is achieved by a combination of a liquid helium and liquid nitrogen jacket.

The magnetometry studies in my thesis are limited to single-crystalline samples.

These are placed in the middle of a 20 cm long plastic straw and secured with Kapton

tape [see Fig. 23(b)]. To reduce background effects from the Kapton tape, the tape

extends along the entire length of the straw. The straw is attached to the rigid

sample rod which is connected to an actuator that translates the sample, vertically,

through superconducting detection coils which are connected to the SQUID. The

Figure 23: The sample geometry for (a) magnetotransport and (b) magnetometry

measurements.
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motion of the sample through the coils induces a current in the detection coil due to

the changing magnetic flux. This gives us an estimate of the dipole field emanating

from the sample and hence how susceptible the magnetic moments in the sample

are to the applied field with an accuracy on the order of 10−8 emu.

2.8 Density functional theory

The electronic band structure calculations were based on the implementation of den-

sity functional theory (DFT) provided by the plane wave basis Quantum Espresso

suite [123]. The calculations were performed in three steps.

• First, I run a self-consistent calculation. This is based on the experimental

cell parameters and Wyckoff positions of the atoms in the unit cell. The k-

point sampling mesh used for the calculations is based on a Monkhorst-Pack

grid.12 Furthermore, depending on which crystal is studied, I can also specify

the magnetic structure and perform calculations that account for the large

spin-orbit coupling in heavy atoms.

• Next, I define a path in reciprocal space (which does not necessarily have

to be along a high symmetry line) and repeat the calculations along the said

trajectory in k-space. This allows me to study how the electron bands disperse,

the degeneracy of the electronic states and the effect of spin-orbit coupling

strength on the band structure. For instance, I can track the influence of

the pnictide atom on the electronic band structure of the isostructural family

EuCd2Pn2 (Pn = As, Sb, P).

• Finally, I perform band character analysis to study the nature of the electronic

bands near the Fermi energy. This is important especially when dealing with

magnetic topological materials. While DFT is well-suited to describe bands

that have weak electron-electron interactions, it does not treat strong electron

correlations well. Hence, in studying the topology of the electronic bands, I

12While having a finer the mesh does seem like an attractive proposition, it gives rise to a

greater number of sampling points and hence an appreciably longer time for the calculation to

achieve convergence. Hence, k-point mesh is chosen based on how substantial the self-consistent

energy changes after the number of sampling points are increased.
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know the calculations can be trusted if the electronic bands near the Fermi

energy have s and p orbital character as these states are well described by

DFT.

As part of my thesis, I present the electronic band structure of EuCd2Sb2 in

detail. Other topological materials which I have studied but are not presented here

include: YbMnBi2, EuMnSb2, EuCd2As2, YbCd2As2, EuZn2As2, Mn3Ge, Mn3Sn,

Na3Bi, K3Bi, EuS, RhTe2, OsTe2, OsO2, IrO2, RhO2, CaAgP, CaAgAs, CaAgZn,

CaCuAs, EuCuAs, CaCuSb, CaCdGe, CaCdSn and CaAgZn.
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Chapter 3

Magnetic and electronic structure
of the layered rare-earth pnictide

EuCd2Sb2

In this chapter, I present the magnetic structure of EuCd2Sb2, which was studied

with synchrotron X-rays for the first time, and the implications in terms of electronic

transport, band structure and magnetisation.

Resonant elastic X-ray scattering (REXS) at the Eu M5 edge reveals an AFM

structure in layered EuCd2Sb2 at temperatures below TN = 7.4 K with a magnetic

propagation vector of (0, 0, 1/2) and spins in the basal plane. Magnetotransport

and REXS measurements with an in-plane magnetic field show that features in the

magnetoresistance are correlated with changes in the magnetic structure induced by

the field. Ab initio electronic structure calculations predict that the observed spin

structure gives rise to a gapped Dirac point close to the Fermi level with a gap of

∆E ∼ 0.01 eV. The results of this study indicate that the Eu spins are coupled to

conduction electron states near the Dirac point.
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3 Magnetic and electronic structure of the lay-

ered rare-earth pnictide EuCd2Sb2

3.1 Introduction

Condensed matter systems which combine non-trivial electron band topology and

magnetic order provide an arena in which to investigate the interplay between the

physics of strong electron correlations and large SOC [11, 71, 124, 125, 126]. The

intrinsic symmetries in these crystal structures afford protection to exotic quasipar-

ticle excitations which possess a whole host of desirable properties such as extremely

high mobility and large magnetoresistance [29, 31].

Systems in which topological charge carriers are coupled to magnetism have

strong potential for spintronic device applications, where the current can be modu-

lated by altering the spin structure with an externally applied field. The coexistence

of the two phenomena can be realised in europium-based antimonides, EuX2Sb2

(X=Cu, Pd, Zn, Cd) [127, 128, 129, 130, 131]. These 122-pnictides possess 4f elec-

trons which give rise to strong electron correlations, and heavy Sb which produces

large SOC.

Within the family of EuX2Sb2, EuCd2Sb2 has recently garnered interest due to

the discovery of a large thermoelectric figure of merit ZT of 0.60 at 617 K [133]. This

led to systematic investigations of various substitutions in YbxEu1−xCd2Sb2 [134],

CaCd2Sb2 [134], Eu(Zn1−xCdx)2Sb2 [135] and Eu(Cd1−xMnx)2Sb2 [136]. The large

ZT in EuCd2Sb2 was attributed to the heavy masses of Cd and Sb, which give rise

to the low thermal conductivity, and to the presence of conducting Eu 4f states,

which leads to a large enhancement in the density of states near EF compared to

CaCd2Sb2 [133]. The latter feature, however, is contradicted by an electron-spin

resonance (ESR) study of EuCd2Sb2, which suggested a localised moment picture

for the Eu spins [137]. Highly localised 4f orbitals usually host strong electron-

electron correlations which were not included in the electronic structure calculations

in Ref. [133]. Furthermore, the physics of large SOC in the Cd and Sb bands was

not explored.

Consistent with strong electronic correlations, EuCd2Sb2 displays AFM order

of the Eu spins below TN ' 7.4 K, as evidenced by magnetic susceptibility [131,
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133, 137, 138], Mössbauer spectroscopy [131], ESR [137] and heat capacity measure-

ments [133]. Moreover, electronic transport measurements show an anomaly in the

conductivity at TN, suggesting that the spin structure is coupled to the charge car-

riers [133]. Up to now, however, there are no reports on the ground state magnetic

structure in EuCd2Sb2, which would shed light on the nature and consequences of

this coupling.

In the light of this, I set out in this study (i) to determine the magnetic structure

by single-crystal soft X-ray resonant magnetic scattering, and (ii) to investigate the

nature of electrical conduction through ab initio electronic structure calculations

including correlations. X-rays, rather than neutrons, were used for the diffraction

study because of the very strong neutron absorption of both Eu and Cd. I find

that in zero field the Eu spins order in an A-type AFM structure with the spins

lying in the ab plane, and predict that this AFM structure gives rise to a gapped

Dirac point along the Γ − A high symmetry line in the Brillouin zone. I also find

that field-induced changes in the magnetic order are correlated with features in the

magnetoresistance.

Figure 24: (a) A unit cell of EuCd2Sb2. (b) The experimental set-up for the REXS

experiment, with Û1, Û2 and Û3 defined as in Refs. [118, 132]. The crystal was

mounted with the c axis parallel to the scattering vector q. In the high magnetic

field chamber, the field was applied along the direction of Û1 (H ⊥ c). The mag-

netotransport and magnetisation measurements reported in this study were also

performed with H ⊥ c.
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3.2 Experimental and theoretical methods

EuCd2Sb2 single crystals were prepared by a chemical vapour transport method by

Dharmalingam Prabhakaran.13 All handling was carried out in an argon glove box.

Stoichiometric amounts of high purity Eu (99.9%), Cd (99.99%) and Sb (99.999%)

elements were mixed and loaded in an alumina crucible, which was then sealed in

an evacuated quartz tube. The tube was slowly heated to 1275 K, kept for 24 h

and quenched to room temperature. The quartz tube was opened, and the powder

reground and reloaded in the crucible with iodine as the transport agent. The

crucible was sealed in the quartz tube, which was heated to 1325 K and kept for a

week before being cooled slowly to room temperature. Small single crystals were

separated from the crucible and used for my measurements. The crystal structure

and crystallographic quality of the crystals was studied on a Rigaku SuperNova

single-crystal diffractometer operated with a Cu Kα source.

The REXS measurements were performed on the UE46-PGM1 beamline [139]

at the BESSY II storage ring with Christian Donnerer14 and Enrico Schierle,15 the

beamline scientist. A plane grating monochromator was used to tune the X-ray

energy to match that of the Eu M5 edge (1.1284 keV). The dipole transition at the

M5 edge (3d to 4f) directly probes the magnetic 4f states, which leads to a strong

enhancement of the magnetic scattering.

The REXS experiment was performed in the horizontal scattering geometry in

the two-circle XUV diffractometer [Fig. 24(b)]. The sample was cooled below TN

by a liquid helium flow cryostat in conjunction with an aluminium shield to reduce

beam heating. The cryostat achieved a base temperature of 4.5 K, but due to beam

heating I estimate the sample temperature to be about 5 K. As in a typical magnetic

X-ray scattering experiment, the magnetic structure is determined by studying the

azimuthal dependence of the scattered intensity with σ and π incident photons [119,

140, 141, 142]. The intensity of the scattered beam was estimated with a AXUV100

13Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1

3PU, United Kingdom.
14London Centre for Nanotechnology, University College London, London WC1H 0AH, United

Kingdom.
15Helmholtz-Zentrum Berlin fur Materialien und Energie, Albert-Einstein-Straße 15, D-12489

Berlin, Germany.
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avalanche photodiode with no polarisation analysis. Therefore, when σ-polarisation

was used, both the σ → σ′ and σ → π′ channels contributed to the scattered

intensity. Likewise, π → σ′ and π → π′ channels contributed to the scattered

intensity when π-polarisation was used. To study the evolution of the magnetic

structure in an external magnetic field, diffraction measurements were performed

in the high field chamber with fields of up to 2 T applied in the direction of Û1

[Fig. 24(b)].

A SQUID magnetometer (Quantum Design) was used to perform magnetisation

measurements as a function of temperature and field applied perpendicular to the c

axis (H ⊥ c). Data for H ‖ c have been reported previously [137]. Measurements as

a function of field were performed for H ≤ 3 T at fixed temperatures T between 1.8

and 8 K, while temperature-dependent measurements were performed for T = 1.8 to

50 K at fixed fields up to 1 T. Field- and temperature-dependent electronic transport

measurements were performed for H ≤ 5 T and 2 K ≤ T ≤ 100 K on a Physical

Property Measurement System (Quantum Design). Gold wires were bonded to the

single crystal with silver paste in a four probe configuration.

To further explore the effects of magnetic order on electronic transport in

EuCd2Sb2, I carried out ab initio electronic structure calculations using the im-

plementation of density functional theory (DFT) provided by the plane wave basis

Quantum Espresso suite [123]. A Monkhorst-Pack mesh [143] of 8 × 8 × 6 was

used for k-point sampling. Relativistic pseudopotentials were used to account for

the strong spin-orbit interaction in cadmium and antimony [144]. The generalised

gradient approximation (GGA) functional was used to describe the exchange cor-

relation [145]. A spin-polarised calculation was also implemented to account for

the possible spin splitting in the electronic bands due to the magnetic europium

ions [146]. To model the strong electron correlations in the highly-localised eu-

ropium 4f orbitals, a correction to the exchange-correlation functional was imple-

mented [147, 148, 149, 150, 151]. This additional functional has an associated pa-

rameter U , which resembles the U in the Hubbard model. In this work U = 3.1 eV

was used, the justification for which will be given later (see Section 3.3.4). The unit

cell was doubled along the c axis to accommodate the (0, 0, 1/2) AFM propagation

vector found in the REXS study.
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Figure 25: (a)-(c), Reciprocal space maps of the (0 k l), (h 0 l) and (h k 0) planes

respectively show high crystalline quality in the flux-grown crystal. (d) The long

θ − 2θ (0 0L) scan through the (0 0 1
2
) and (0 0 1) peaks obtained from REXS of

EuCd2Sb2. The insert which plots the rocking scan of the magnetic peak in more

detail demonstrates the high crystalline quality. (e) The fixed-q energy scan of

EuCd2Sb2 measured below the Néel Temperature.

3.3 Results and analysis

Laboratory single crystal X-ray diffraction revealed the high crystalline quality of

the flux-grown crystals [see Fig. 25], and confirmed the P 3̄m1 space group with

room temperature cell parameters a = 4.7030(9) Å, c = 7.7267(18) Å, and Wyckoff

positions 1a (0, 0, 0), 2d (1/3, 2/3, 0.6322(3)) and 2d (1/3, 2/3, 0.2473(5)) for the Eu,

Cd and Sb atoms, respectively, in close agreement with the earlier studies [131, 133,

134, 138] [see Table 6]. These structural parameters were used in the subsequent

DFT calculations.

3.3.1 Magnetisation and magnetotransport

The temperature dependent susceptibility, χ(T ), for various fields is shown in Fig. 26(a).

Upon cooling, the susceptibility first increases then peaks sharply at TN ' 7.4 K,
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signalling that AFM order has set in. The low field data are well described by the

Curie–Weiss law, χ(T ) = C/(T − θp), C = µ0µ
2
eff/3kB, with µeff = 8.07(5)µB and

θp = −3.8(2) K [see Fig. 26(c)].

Figure 26(b) displays the isothermal magnetisation curves at various temper-

atures. At T = 1.8 K (T � TN) the magnetisation increases linearly with field

before saturating at Msat ' 6.95µB f.u.−1 for fields above µ0Hc ' 2 T. As there is

one Eu ion per formula unit, the values of Msat and µ2
eff = g2

JJ(J + 1)µ2
B are fully

consistent with divalent Eu2+ (4f 7, S = 7/2, gJ = 2). The deviations from linearity

that demarcate the AFM phase vanish above the Néel temperature. Taken together

with the susceptibility, transport and REXS measurements (see later), I propose the

µ0H–T phase diagram given in Fig. 27. The values of TN, θp and µeff found here are

consistent with those from earlier investigations, see Table 6.

3.3.2 Resonant X-ray magnetic scattering

When the sample was cooled below TN, a reflection with scattering vector q =

(0, 0, 1/2) was observed [Fig. 26(d)]. The intensity of the peak was strongly en-

hanced when the photon energy was tuned to the Eu M5 edge [See Fig. 25(e)].

These observations are consistent with magnetic Bragg scattering from an AFM

structure in which the Eu spins are ferromagnetically aligned in the ab plane and

antiferromagnetically stacked along the c axis, i.e. an A-type AFM. There are two

irreducible representations (irreps) of the space group that are compatible with the

Table 2: Magnetic and structural parameters of EuCd2Sb2 found in this work and

previous investigations. ∗ and † denote single crystalline and polycrystalline samples

respectively.

TN [K] θp [K] µeff a [Å] c [Å] Reference

7.4(1) −3.8(2) 8.07(5) 4.7030(9) 7.7267(18) this work∗

7.4 −4.6(5) 8.11(1) 4.699(2) 7.725(2) [131]∗,†

7.22 −3.14(7) 7.83(4) 4.6991(1) 7.7256(2) [133], [134]†

7.8 −3.3 7.37 4.698(1) 7.723(1) [138]∗

7.4 −3 7.83 - - [137] †
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observed propagation vector of (0, 0, 1/2): Γ3 and Γ5. The magnetic structures de-

scribed by these irreps differ only in the direction of the Eu spins, which point either

parallel (Γ3) or perpendicular (Γ5) to the c axis, as shown later in Figs. 32(a) and

(d). To establish which of the two irreps describes the symmetry in the AFM phase

of EuCd2Sb2 I performed an azimuthal (ψ) scan and recorded the scattered intensity

with both σ and π incident polarisations. During the scan the sample temperature

was T ' 5 K.
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Figure 26: (a) Temperature dependence of the susceptibility χ measured at various

field strengths with H ⊥ c. (b) Isothermal magnetisation with H ⊥ c at various

temperatures. (c) Plot of inverse magnetic susceptibility in EuCd2Sb2 at various in-

plane field strengths. This is fitted to obtain an estimate of the µeff which is given

by, χ−1 = C/(T −Tc) = (µ2
effµ0n)/(3kB(T −Tc)). (d) The temperature dependence

of the intensity of the (0, 0, 1/2) reflection for a sample. The magnetic reflection

comes from a doubling of the EuCd2Sb2 unit cell along the c axis. The temperature

dependence of the peak intensity fits very well to a power law with critical exponent

β = 0.3671, the value for the 3D Heisenberg universality class.
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Figure 27: The µ0H-T phase diagram (H ⊥ c) obtained from the anomalies in the

soft X-ray, magnetotransport and magnetic susceptibility data. The line demarcates

the paramagnetic (PM) from the canted AFM phase. The spin scattering in the

charge carriers is supressed when EuCd2Sb2 develops spontaneous magnetic order

or when the spin structure is in the fully polarised state. A small field of 0.2 T

is sufficient to re-orientate the multi-domain AFM to a single-domain AFM phase

with spins canted towards the applied field.

The calculated angular variation of the X-ray scattering amplitude for the Γ3 and

Γ5 structures is given in Table 3. Results for the four linear incident and scattered

polarisation channels are listed, but as the polarisation of the scattered photons was

not analysed in my experiment the intensities in the σ′ and π′ channels for a given

incident polarisation need to be summed. If the spin structure has Γ3 symmetry,

the scattered intensity averaged over both final polarisation states is the same for

both polarisation states of the incident photons. Furthermore, in the scattering

geometry, the c axis, and hence the spins, lies along the scattering vector q, such

that a rotation of the sample about q in an azimuthal scan will produce no variation

in the scattering amplitude.

On the other hand, if the spin structure displays Γ5 symmetry, the scattered

intensity with π incident polarisation should be larger than that with σ polarisation.

This arises from the additional contribution from the π → π′ scattering channel [see
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Figure 28: Variation in the intensity ratio for π and σ incident polarisations in an

azimuthal scan at the (0, 0, 1/2) magnetic Bragg peak. The data were recorded at

T ' 5 K. The full line shows a fit to the three domain model with Eu spins lying in

the plane (Γ5 structure). If the Eu spins point along the c axis (Γ3 structure), the

π/σ intensity ratio should be unity and show no angular dependence (broken line).

Table 3]. Furthermore, because the Eu spins lie in the plane in this irrep, a rotation

of the sample about the scattering vector q will produce a ψ dependence in the

intensity of the scattered beam.

Table 3: Calculated scattering amplitudes for the Γ3 or Γ5 magnetic structures of

EuCd2Sb2 (Refs. [115, 118]). z1, z2 and z3 are the projections of the magnetic

moment onto the Û1, Û2 and Û3 basis vectors as defined in Fig. 24 and Ref. [118].

Here 2θ is the scattering angle.

Scattering Channel Scattering Amplitude

Γ3 Γ5

σ → σ′ 0 0

σ → π′ z3 sin θ z1 cos θ

π → σ′ 0 −z1 cos θ

π → π′ z3 sin θ −z2 sin 2θ
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Figure 29: The field dependence (H ⊥ c) of the (0, 0, 1/2) magnetic reflection mea-

sured with σ and π incident polarisations. The data were recorded at temperature

T ' 5 K and azimuthal angle ψ = 0.

In Fig. 28 I plot the ratio of the scattered intensity with π incident polarisation

to that with σ incident polarisation, as a function of ψ. The data show that for all

ψ angles the π/σ ratio is greater than 1, consistent with the Γ5 irrep. Moreover,

there is a strong angular dependence of the π/σ ratio which can be described by

a three-domain model for the Γ5 structure, with the in-plane orientation of Eu

spins in each domain rotated by ± 120◦ around the c axis relative to the other

two domains. The three-domain model was recently found to describe the magnetic

order in EuCd2As2, which has the same Γ5 magnetic structure as found here [152].

The domain populations that give the best fit to the data are 18.4%, 73.5% and

8.1%, respectively. This preferential population of one domain could potentially

arise from the fact that the angular dependent measurements were performed after

the field dependent measurements below TN.

When a magnetic field is applied in the Û1 direction [see Fig. 24(b)], the scat-

tered intensity in the (0, 0, 1/2) reflection initially decreases strongly with field for

both incident polarisations, as shown in Fig. 29. At µ0H ' 0.2 T the intensity mea-

sured with σ polarisation has dropped to zero, and intensity with π polarisation has

decreased by about one-third relative to zero field. At higher fields, the π intensity
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Figure 30: (a) Temperature dependence of the in-plane resistivity ρxx at three

different field strengths (H ⊥ c). (b) Isothermal ρxx(H) at several temperatures.

continues to decrease, eventually vanishing when µ0H ' 1.8 T, a field close to the

critical field Hc at which the magnetisation saturates [see Fig. 26(b)].

The field-dependent behaviour can be understood as follows. Application of

small in-plane fields causes the spins in each 120◦ domain to rotate away from the

field while remaining in the plane and antiferromagnetically coupled along the c

axis. By the time µ0H ' 0.2 T, the spin component z1 along the field direction has

become zero, so the intensity with σ incident polarisation vanishes and the intensity

with π incident polarisation is reduced because only the π → π′ channel contributes

(Table 3). Fields above 0.2 T induce a FM component along the field direction

which saturates at µ0H ' 1.8 T. This canted spin structure can be regarded as a

combination of FM order of the z1 spin components and AFM order of the z2 spin

components. As a result, FM Bragg peaks appear and increase in intensity with

increasing field at the expense of the AFM peaks. The effect on the (0, 0, 1/2) peak

is to decrease the intensity in the π channel to zero without any change to the

intensity in the σ channel, which remains zero.

3.3.3 Magnetotransport

Figure 30(a) plots the in-plane resistivity ρxx as a function of temperature for three

different fields. In zero field there is a sharp drop in ρxx below TN, most likely caused

by a suppression of spin scattering due to AFM order. At µ0H = 1 T, ρxx is slightly

peaked around TN, and the reduction below TN is less than in zero field. Finally, at
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µ0H = 5 T the regime of reduced ρxx extends up to about 25 K.

To help understand the magnetoresistance behaviour I also measured ρxx as a

function of in-plane field at several temperatures. The data are plotted in Fig. 30(b).

At T = 2 K, three distinct features can be identified in ρxx(H): (i) In the low field

regime (|µ0H| . 0.2 T), associated with the rotation of the spins away from the

applied field, there is a small drop in ρxx which could be due to a reduction in spin

scattering as the multiple 120◦ spin domains form into a single domain. (ii) In the

intermediate regime (0.2 T . |µ0H| . 2 T), there is a peak in ρxx which ends at

the saturation field. The fractional change in ρxx(H) reaches about 15% at the

maximum. This increase in charge carrier scattering is associated with the canted

spin structure, as discussed above. (iii) In the high field regime (|µ0H| > 2 T), the

spins are fully polarised and the anomalous resistive phase is fully suppressed. At

higher temperatures, the initial low-field drop in ρxx becomes smaller and vanishes

for T > TN, and the region of negative magnetoresistance extends to higher fields

consistent with the increase in the saturation field with temperature.

3.3.4 DFT + U Calculations

In this section I discuss the results of ab initio electronic structure calculations

performed to understand the nature of the electron conduction in the AFM phase of

EuCd2Sb2. The calculated electron band structure along high symmetry lines in the

Brillouin zone, plotted in Fig. 31(a), reveals a low density of electronic states near the

Fermi energy, EF. This is consistent with the semimetallic nature of the compound

as suggested by transport measurements [133, 137], but contradicts a study of the

thermoelectric properties of EuCd2Sb2 by Zhang et al. [133]. In that study, a large

density of states near EF was predicted and was attributed to the flat 4f electron

bands from the europium species residing at the Fermi energy. In fact, the position

of these 4f bands depends strongly on the value of the Hubbard U parameter. A

choice of U = 0 eV will cause the 4f bands to lie at EF, as found in Ref. [133]. In

my calculations I chose a value of U = 3.1 eV. This choice was guided by a recent

ARPES measurement performed on a similar material EuCd2As2 which places the

4f electrons ∼ 2 eV below the Fermi level [153]. Based on this evidence it is unlikely

that the magnetic 4f bands contribute significantly to electrical conduction.
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Figure 31: (a) Band structure of EuCd2Sb2 along the high symmetry lines of

the hexagonal Brillouin zone, with the path shown in (b). The Fermi surface of

EuCd2Sb2 in the first Brillouin zone (b) is made up of one hole pocket (c) and two

electron pockets (d) and (e). The Fermi pockets have a mixture of Sb 5p Jz = 1
2
,

Sb 5p Jz = 3
2

and Cd 5s Jz = 1
2

band character. All of these surfaces are two-fold

degenerate.

The Fermi surface comprises one electron pocket and two hole pockets, both with

mixed Cd 5s and Sb 5p orbital character [Fig. 31 (b)–(e)]. As mentioned above, the

Eu 4f states which are responsible for producing the local magnetic moments reside

∼ 2 eV below EF [Fig. 32(g)]. This means that the charge carriers in the conducting

Cd-Sb double corrugated layer are weakly correlated, and DFT is well suited to

calculate the band dispersion in the vicinity of EF.

EuCd2Sb2 has several ingredients which could lead to non-trivial band topology.
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Figure 32: (a)–(f) Magnetic structure, detail of bands along the Γ−A high symmetry

line, and electronic dispersion in the kx − ky plane close to the Dirac point. (a)–(c)

Γ3 magnetic structure. The Γ3 irrep of the Eu spin structure would preserve the

C3 symmetry along Γ− A and afford protection to the Dirac point at kz = 0.0324.

(d)–(f) Γ5 magnetic structure as found here for EuCd2Sb2. The Γ5 irrep, on the

other hand, breaks this C3 symmetry and opens up a gap along Γ − A and in the

kx−ky plane. The colour scale is indicative of the weight of the (g) Eu 2F7/2, (h) Sb

2S1/2 and (i) Sb 2P3/2 orbitals. The results of the orbital analysis of the elements in

EuCd2Sb2 suggest that the europium magnetic 4f bands do not contribute to the

conduction.
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First, the heavy masses of Cd and Sb could lead to band inversion due to the

large SOC. Second, the three-fold (C3) symmetry along the Γ–A line in reciprocal

space [wave vectors (0, 0, kz)] might protect some accidental band crossings [36].

Third, in the AFM ordered phase, both non-symmorphic time-reversal symmetry

and inversion symmetry of the crystal are preserved [154], resulting in a two-fold

Figure 33: To demonstrate the nature of the (a) band crossing along the Γ − A

discussed in the text, I plot the density of states and the corresponding contributions

from the three constituent elements in (b) from europium, cadmium and antimony.

It shows that the main contribution comes from antimony. This is also shown in

the band character plot along the Γ − A line from the (e) total, (f) europium, (g)

cadmium and (h) antimony where the main contribution comes from antimony. (d)

shows the band structure spaghetti plot. Furthermore, the main contribution to the

bands in (a) are from p orbitals in antimony as shown in the partial density of states

plot in (c). (i) and (j) show that the crossing in (a) is between Jz = 1
2

and Jz = 3
2
.

84



degeneracy in the electronic bands.

I have identified a gapped band crossing with ∆E ∼ 0.01 eV at kz = 0.0266 r.l.u.

along the Γ − A high symmetry line, 0.215 eV above EF [Figs. 32(e) and (f)]. The

energy gap arises because for T < TN the C3 symmetry along the Γ−A line is broken

by the in-plane orientation of the spins in the Γ5 AFM structure. If, instead, the

spins were to point along the c axis, as would occur in the Γ3 magnetic structure,

the linear band crossing would be protected, see Figs. 32(b) and (c). In terms of

band structure, the bands which cross derive from the 2P3/2 orbitals of the Sb 5p

bands with Jz = 1
2

and 3
2

(see Fig. 33). In a c axis field Jz remains a good quantum

number and so the states which cross belong to different irreducible representations

of the C3 point group. In this case, doubly-degenerate valence and conduction Sb 5p

bands meet at a four-fold degenerate point in k-space from which the bands disperse

linearly, i.e. a Dirac point, as depicted in Figs. 32(b) and 32(c). In EuCd2Sb2, on

the other hand, we have in-plane spin alignment, so the Jz = 1/2 and 3/2 bands

hybridise, forming a gap at the Dirac point.

Given the evidence found here for a coupling between Eu spins and electronic

conduction it is possible that the magnetically-induced energy gap at the Dirac

point could influence the transport properties of EuCd2Sb2. However, there is no

evidence that the gapped band crossing in EuCd2Sb2 is exactly at EF, and there are

several other bands in the vicinity of EF which could contribute to the electronic

transport (see Fig. 33). Nonetheless, my analysis shows that the symmetry in the

spin structure affects features in the band structure of EuCd2Sb2, and emphasises

the importance of elucidating the orientation of the Eu spins. It also opens up

the possibility of realising a magnetic Dirac material in the 122-pnictides via spin

structure which preserves the C3 symmetry. A possible strategy is to find another

member of the family which has spins pointing along the c axis. Indeed a similar

situation is found in rare-earth half-Heuslers where the nature of the band topology

is strongly linked to the spin-orientation: Eu0.5Ba0.5AgBi is predicted to host Weyl

fermions protected by the C3 symmetry along the Γ − A line where the Eu spins

point along the c axis; these Weyl points annihilate in the case of EuAgBi where

the spins lie in the basal plane [90].

Finally, it is also interesting to compare the physical properties of EuCd2Sb2 with
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those of EuCd2As2 [152, 154, 155] and EuZn2Sb2 [129, 156, 157], which are isostruc-

tural and also exhibit Eu antiferromagnetic order with similar magnetic ordering

temperatures: 9.5 K in EuCd2As2 and 13.3 K in EuZn2Sb2. Of these, EuCd2As2 is

a semimetal and EuZn2Sb2 is a semiconductor with a band gap of around 0.5 eV. A

comparison of the band structures reveals a progression in the extent of inversion

in the conduction and valence bands. The band inversion is greatest in EuCd2Sb2,

with several bands crossing at EF as shown here, whereas in EuZn2Sb2 there is no

band crossing. In EuCd2As2 the bands touch at a Dirac point in k-space, which

becomes gapped for T < TN for the same reason as described here for EuCd2Sb2.

These band crossing features can be understood from the relative sizes of the spin-

orbit coupling in the double-corrugated conducting layers, which increases in the

order EuZn2Sb2 to EuCd2As2 to EuCd2Sb2. This suggests that a desired level of

band crossing can be achieved in the europium-based 122-pnictide by control of the

chemical composition.

3.4 Conclusion

I have determined that the magnetic propagation vector in EuCd2Sb2 is (0, 0, 1/2),

and shown unambiguously that the moments lie in the (001) plane. I have also

established how the magnetic structure is changed by an in-plane magnetic field,

and find that features observed in the magnetoresistance correlate closely with field-

induced changes in the magnetic structure. My results show that a coupling exists

between localised Eu spins and electron transport in EuCd2Sb2. Based on DFT

calculations I predict that for T < TN there exists a gapped Dirac point close to

the Fermi level, and although it remains to be seen to what extent this feature

may influence the charge transport in EuCd2Sb2, my findings suggest that non-

trivial band topologies could be induced by magnetic order in the wider family of

Eu-based hexagonal 122-pnictides.
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Chapter 4

An ideal Weyl semimetal induced
by magnetic exchange: EuCd2As2

In this chapter, I present theoretical and experimental evidence that EuCd2As2,

in magnetic fields greater than 1.6 T applied along the c axis, is a Weyl semimetal

with a single pair of Weyl nodes. Ab initio electronic structure calculations, veri-

fied at zero field by angle-resolved photoemission spectra, predict Weyl nodes with

wavevectors q = (0, 0,±0.03)× 2π/c at the Fermi level when the Eu spins are fully

aligned along the c axis. Shubnikov–de Haas oscillations measured in fields parallel

to c reveal a cyclotron effective mass of m∗c = 0.08me and a Fermi surface of ex-

tremal area Aext = 0.24 nm−2, corresponding to 0.1% of the area of the Brillouin

zone. The small values of m∗c and Aext are consistent with quasiparticles near a Weyl

node. The identification of EuCd2As2 as a model Weyl semimetal opens the door

to fundamental tests of Weyl physics.
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4 An ideal Weyl semimetal induced by magnetic

exchange: EuCd2As2

4.1 Introduction

Weyl semimetals (WSMs) exhibit exceptional quantum electronic transport due to

the presence of topologically-protected band crossings called Weyl nodes [10, 11].

The nodes come in pairs with opposite chirality, but their number and location in

momentum space is otherwise material specific.

Weyl nodes are distinct from other topological features of electron band struc-

tures in several respects, including (i) the bulk bands that cross at a Weyl node

are non-degenerate, (ii) the associated Weyl fermions have a definite chirality, and

(iii) the Weyl nodes are protected against perturbations that do not couple the

nodes [10, 11, 61]. Moreover, the individual nodes within a pair act as a source and

a sink of Berry curvature, a topological property of the electronic wavefunctions

which relates directly to several anomalous transport phenomena [11, 158].

Weyl semimetal phases in crystals require either broken spatial inversion sym-

metry, or broken time-reversal symmetry (TRS), or both. There are a number of

experimental realisations of the first type (with broken inversion symmetry only),

especially in the TaAs structural family [36, 37, 38, 42, 159], but magnetic WSMs

(with broken TRS) are still rare. The few known candidates are complicated by

multiple pairs of Weyl nodes and/or by extra (non-topological) Fermi surface pock-

ets which shroud the Weyl nodes [61, 89, 98, 110, 155, 160]. Magnetic WSMs are

important for fundamental studies of Weyl fermions because it is possible for such

systems to have only a single pair of Weyl nodes which, due to inversion symmetry,

are guaranteed to be at the same energy and so have a vanishing density of states.

By contrast, WSMs formed by breaking inversion symmetry (but with TRS) have a

minimum of four nodes which are in general separated in energy.

Following the initial discoveries [36, 37, 38] there is now a need for better material

realisations of WSMs, ideally comprising a single pair of Weyl nodes located at or

very close to the Fermi level and in an energy window free from other overlapping

bands. Here I propose the layered intermetallic EuCd2As2 [152, 155] to be such a

system. I show that Weyl nodes in EuCd2As2 are magnetically-induced via exchange
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Figure 34: Crystal structure of EuCd2As2 and location of Weyl nodes in the Bril-

louin zone. (a) The trigonal unit cell for the space group P 3̄m1 (No. 164). The

Weyl fermions predominantly occupy orbitals in the double-corrugated Cd2As2 lay-

ers, which are sandwiched between the Eu layers [152]. (b) The Weyl nodes lie along

the A–Γ–A high symmetry line and are separated by ∆kz (not shown to scale). (c)

In the fully polarised state, singly-degenerate conduction and valence bands meet

at a pair of Weyl nodes from which the bands disperse linearly. The nodes act as

a source and sink of Berry curvature and have distinct chirality which depends on

the direction of the field applied along the c axis.

coupling, emerging when the Eu spins are aligned by a small external magnetic field

applied along the c axis.

4.2 Methods and preliminary data

4.2.1 Single crystal X-ray diffraction

The bulk single crystals of EuCd2As2, which has a trigonal crystal structure [Fig. 34(a)]

containing alternating layers of Eu2+ and [Cd2As2]2− [138], were grown by the

NaCl/KCl flux method described in Ref. [131] by D. Y. Yan and Y. G. Shi.16 The

16Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese

Academy of Sciences, Beijing 100190, China.
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Figure 35: (a)-(d) X-ray diffraction intensity maps in different reciprocal space

planes for single crystalline EuCd2As2. (e)-(g) The magnetisation data for single

crystalline EuCd2As2 at T=2 K.

crystal structure and crystallographic quality of the flux-grown EuCd2As2 single

crystals were checked by me on a 6-circle X-ray (Mo, Kα) diffractometer (Oxford

Diffraction). Figs. 35 (a) and (b) present the scattered intensities in the (h k 0) and
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Figure 36: (a) Synchrotron X-ray powder diffraction pattern for EuCd2As2. Ri-

etveld plot of the EuCd2As2 sample with inset to show the two largest peaks not

indexed by the EuCd2As2 phase. The X-ray powder diffraction data were collected

at room temperature with the MAC detector on the I11 beamline. (b) Image of a

flux-grown crystal of dimensions (2.62 × 1.92 × 1.25 mm3) with the corresponding

crystal axes.

(h 0 l) planes, respectively. Figs. 35 (c) and (d) are the corresponding calculated

reciprocal space maps. The intensity distribution and the pattern of experimental

Bragg peaks in panels (a), (b) agree well with those in the calculated maps in pan-

els (c), (d). Of the 956 detected Bragg reflections, 98.7% fit with the P 3̄m1 space

group (No. 164), in agreement with previous studies [131, 138, 152, 155]. The flux-

grown crystals have natural facets that reflect the underlying hexagonal symmetry,

as shown in Fig. 36(b). The direction of the corresponding crystal axes, a, b and c,

was identified using a laboratory 6-circle X-ray diffractometer (Oxford Diffraction).

The axes in Fig. 36(b) correspond to that in the crystal structure in Fig. 34(a).

4.2.2 Magnetisation

Magnetisation measurements of single crystalline EuCd2As2, which displays A-type

AFM order with in-plane Eu moments, were performed on a SQUID magnetometer

(Quantum Design) at 2 K in fields up to 7 T. The curves in Figs. 35 (e), (f) and (g)

correspond to measurements in field directions B||a, B||b∗ and B||c respectively. In

all field directions, the saturated moment is Msat 7 µB/f.u., which is consistent with

the expected moment for fully divalent Eu2+ (4f 7, S = 7/2, L = 0). For B||a and

b∗, the Eu moments fully saturate at B ∼ 0.8 T, whereas for Bc, the coercive field
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Table 4: Structural parameters obtained from Rietveld refinement against powder

X-ray diffraction data collected at room temperature using the MAC detector on

the I11 beamline. The lattice parameters are a = 4.44204(2)Å; c = 7.33071(5) Å;

unit cell volume = 125.269(1) Å3; space group = P 3̄m1; χ2 = 1.767. ∗ Not refined.

Site x y z Occupancy U11 [Å2] U22 [Å2] U33 [Å2]

Eu 0 0 0 1∗ 0.0147(8) U11 0.0093(7)

Cd 1/3 2/3 0.6332(1) 1∗ 0.0163(8) U11 0.0093(7)

As 1/3 2/3 0.2474(2) 1∗ 0.0116(8) U11 0.0109(8)

is ∼ 1.6 T. These results agree with the magnetometry measurements reported in

Refs [131, 138, 152].

4.2.3 Powder X-ray diffraction

For detailed structural analysis I cleaved and ground a small EuCd2As2 crystal with

an approximate 1:1 volume ratio of grounded glass (in order to minimise absorp-

tion and preferred orientation effects). This powder was then loaded into a 0.5 mm

diameter borosilicate capillary. The capillary was measured using synchrotron pow-

der X-ray diffraction using the MAC detector on the I11 beamline at the Diamond

Light Source, Didcot UK by Jack Blandy.17 The wavelength of the X-ray radia-

tion was 0.824678 Å. The powder X-ray diffraction data was analysed by Rietveld

refinement using TOPAS academic, version [161] by Blandy. The Rietveld plot of

the powder diffraction data is shown in Fig. 36(a). The sample was found to be

∼99% pure hexagonal EuCd2As2. Two or three very small peaks are not indexed

by the EuCd2As2 model. These peaks most likely arise from a small EuxOy or

EuxAsy impurity (there are a few possible polymorphs). There is no trace of any

Cd3As2 impurity phase. When allowed to vary, each of the atomic site occupancies

converged to 100% within the error. Therefore, in the final fit the occupancies were

fixed at 100%. The refined structural parameters, listed in Table 4, are consistent

with literature data [131].

17Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, Oxford,

OX1 3QR, UK.
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Figure 37: Longitudinal and Hall resistivity of EuCd2As2 at various temperatures

with B||c. (a), (c) The longitudinal resistivity at various temperatures below and

above TN respectively. (b), (d) Similarly for the Hall resistivity.

4.2.4 Low-field magnetotransport

Low field (µ0H < 16 T) magnetotransport measurements were performed by a five-

probe method on a 14 T PPMS (Quantum Design) with B||c. The crystal was

shaped into a Hall bar with dimensions of 0.91× 0.33× 0.056 mm3. Figs. 37 (a)–(d)

show the symmetrised in-plane longitudinal and Hall resistivities, ρxx and ρyx, at

various temperatures above and below TN. Below TN, the longitudinal resistivity

peaks in an applied field of ∼ 0.2 T and decreases at higher field strengths, as shown

in Fig. 37(a). The resistivity peak increases with temperature up to TN and is then

suppressed at higher temperatures as shown in Fig. 37(c). This is in agreement with

earlier magnetotransport studies of EuCd2As2 [152]. Above TN, the Hall resistivity

increases linearly with applied field as shown in Fig. 37(d). As the sample is cooled
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Figure 38: (a) The in-plane Hall conductivity of EuCd2As2 with B||c is obtained

by inverting the resistivity matrix. (b) An anomalous component to the Hall con-

ductivity above the linear background (in red) is saturated above the coercive field

(B > Bc). The anomalous component of the Hall conductivity is obtained by sub-

tracting σyx(B), with the linear background and shown in Fig. 44(a).

below TN, an anomalous feature (-2 T< B < 2 T) above the linear background

develops as shown in Fig. 37(b). This deviation from the linear background is most

pronounced at ± 0.2 T.

The in-plane conductivity, σyx(B), obtained by inverting the resistivity matrix

is given by, σyx = − −ρyx
ρ2xx+ρ2yy

, and is shown in Fig. 38(a). In the measured field range

with B > Bc, ρxx(B) is approximately constant [Fig. 37(a) and (b)] and ρyx << ρxx.

Therefore the normal part of σyx is approximately linear in B. Given this, a linear

background was subtracted from σyx(B) to give σAHEyx (B) in Fig. 44(a).

4.2.5 High-field magnetotransport

High-field magnetotransport measurements were performed at the HFML in Ni-

jmegen (up to 37 T) and at the NHMFL in Tallahassee (up to 45 T) using an ac

four-probe technique by Matt Bristow and Pascal A. Reiß18 respectively. Fig. 39(a)

shows the in-plane resistivity measured on one such crystal with dimensions of

0.5× 0.2× 0.085 mm3, at HFML at 1.4 K and in fields up to 37 T with B||c. The

resistivity displays approximately 3 periods of Shubnikov—de Haas (SdH) quan-

tum oscillations. To remove the magnetoresistance background and extract the

18Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, OX1 3PU, UK.
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Figure 39: (a)–(d) Shubnikov–de Haas oscillations in magnetotransport data mea-

sured up to 37 T. (a) In-plane resistivity, ρxx(B), as function of magnetic field at

1.4 K with B||c. (b) Symmetrised data. By plotting the (c) first and (d) second

derivatives with respect to B, namely ρ′xx(B) and ρ′′xx(B), I am clearly able to ob-

serve the peaks and valleys of the quantum oscillations.

information about the oscillatory spectrum, I (i) symmetrised the data as shown

in Fig. 39(b), (ii) took the first and second derivatives of the symmetrised data

as shown in Figs. 39(c)-(d), (iii) found the peaks and valleys of these oscillations,

and (iv) calculated the gradient of the slope of the Landau fan plot as shown in

Fig. 43(f). Note, however, that if integers are assigned to the maxima rather than

the minima in ρxx, as prescribed in Ref. [162], then the value of F , the frequency of

the SdH oscillation, would be unchanged but the the intercept related to the phase

of the oscillation will change. In addition, the first Landau level would be at 20 T

not 30 T.

Fig. 40(a) shows the raw in-plane resistivity data obtained from the 45 T Bitter

magnet at the NHMFL at 1.7 K and 2.8 K with B||c. I augment the high-field
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Figure 40: Magnetotransport data measured up to 45 T. (a) In-plane resistivity,

ρxx(B), as a function of magnetic field with B||c measured at T = 1.7 K and T =

2.8 K for 11 T < B < 45 T and T = 2 K for –16 T < B < 16 T. (b) The first

derivative of ρxx(B) with respect to B.

(11 T< B < 45 T) data with low-field (–13 T< B < 13 T) measurements performed

on a 14 T PPMS (Quantum Design). In the same way, I plot the first derivative of

ρxx(B), in Fig. 40(b).

Prior to these high-field experiments, the resistivity of the as-grown single crystal

samples were measured on the 16 T by me. SdH oscillations in the resistivity of

these flux-grown EuCd2As2 crystals was observed across numerous samples. The

frequency of these oscillations are listed in Table 5. As there is only 1 period of

oscillation for measurements below 16 T, there is a larger uncertainty in the estimate

of the oscillation frequency obtained in the data up to 16 T compared to that which

is obtained in the data up to 37 T. Nonetheless, the estimated frequencies from the

different instruments are consistent within the experimental errors.

4.2.6 DFT Calculations

Initial density functional theory (DFT) calculations of the electronic structure of

EuCd2As2 were performed on the Quantum Espresso suite. Apart from the dif-

ferent atoms, lattice parameters and pseudopotentials, the methods employed for

EuCd2As2 is identical to that for EuCd2Sb2 which is described in Chapter 3. Sub-
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Table 5: Frequency of SdH oscillations measured on different EuCd2As2 crystals

from the same batch.

Sample Frequency [T] Remarks

DF2 25(3) Nijmegen measured to 37 T

DF2 23(7) 16 T PPMS

CD13 23(2) 16 T PPMS

BQ1 23(5) 16 T PPMS

CL1 21(5) 16 T PPMS

CQ1 22(4) 16 T PPMS

CQ5 20(7) 16 T PPMS

CQ7 19(5) 16 T PPMS

Figure 41: The calculated electronic band structure for EuCd2As2. (a) The calcu-

lated electronic band structure for EuCd2As2 for the ground state magnetic struc-

ture displays a gap at the Γ point. (b) When the moments are fully pointing along

the c axis, this gap is closed at a Weyl point along the Γ− A high symmetry line.

sequent DFT studies were performed by Maia G. Vergniory,19 who used the Vienna

Ab initio Simulation Package (VASP) [163, 164]. The exchange correlation term

is described according to the Perdew-Burke-Ernzerhof (PBE) prescription together

19Donostia International Physics Center, 20018 Donostia-San Sebastian, Spain; IKERBASQUE,

Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain.
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with projected augmented-wave pseudopotentials [145]. For the self-consistent cal-

culations a 10×10×5 k-points mesh was used. The kinetic energy cut-off was set to

550 eV. The spin-polarised band structures are calculated within GGA+U , with the

value of U chosen to be 5 eV. As the lattice parameters of EuCd2As2 for T < TN

has not been measured, the cell parameters used in the DFT calculation were es-

timates based on the powder neutron diffraction work by May et al. on AZn2Sb2

(A = Ca, Yb) [130], which is isostructural to EuCd2As2. In AZn2Sb2, the a and c

lattice parameters decreased by 0.2% and 0.5% respectively when the sample was

cooled from 300 K to 10 K. Hence, I estimated that the measured EuCd2As2 lattice

parameters at 300 K, which are a = 0.4442 nm and c = 0.7331 nm, changes to a =

0.443 nm and c = 0.729 nm at 10 K.

4.2.7 ARPES

ARPES measurements were performed at the high-resolution branch line of the

beamline I05 at the Diamond Light Source, UK [165]. I accompanied Niels B. M.

Schröter,20 who was leading the ARPES study, on three of the four beamtimes where

the electronic spectrum of EuCd2As2 was measured. The sample preparation and

the analysis of the results were done by the both of us. To compensate for the effect

of selection rules that suppress the photoemission signal from certain bands under

certain light polarisations, the intensities from two measurements taken at linear-

vertical and linear-horizontal polarisation (with respect to the sample normal) were

combined. Measurements were performed with a Scienta R4000 analyser at a photon

energy of 130 eV, which approximately corresponds to the kz = Γ measurement

plane, at a temperature of T ∼ 5K.

4.3 Results

In summary, the preliminary data shows that the magnetisation, magnetotransport

and crystallographic parameters of the EuCd2As2 crystals are fully consistent with

earlier reports [131, 152, 155]. The europium ions carry a localised magnetic mo-

ment with spin S = 7/2 and zero orbital angular momentum. Below TN = 9.5 K the

spins order in an A-type antiferromagnetic structure in which the spins form ferro-

20Paul Scherrer Institute, WSLA/202, 5232 Villigen PSI, Switzerland.
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Figure 42: Exchange-induced Weyl nodes in EuCd2As2. (a), (c) In zero field, the

Eu spins order in an A-type antiferromagnetic structure at T < TN, with the spins

lying in the ab plane. The corresponding band structure is gapped at Γ. (b), (d)

The Eu moments can be fully polarised along the c axis in a small coercive field

(B > Bc), lifting the double degeneracy of the bands and creating a pair of Weyl

nodes along Γ–A, at kz = 0.03 r.l.u.

magnetic layers which stack antiferromagnetically along the c axis [Fig. 42(a)][152].

A relatively small magnetic field (Bc = 1.6 T at T = 2 K for B ‖ c) can be used to

coerce the Eu spins into a fully aligned state [152]. EuCd2As2 is metallic at tem-

peratures down to T ∼ 80 K, but for lower temperatures the resistivity increases to

a sharp maximum at TN before falling again at lower temperatures. This behaviour

has been interpreted as being due to scattering of conduction electrons by fluctua-

tions of localised Eu magnetic moments which are exchange-coupled to the Cd and

As orbitals [152, 155].

In previous ab initio electronic structure calculations, where spins in the AFM

state were found to be aligned with the c axis, EuCd2As2 was predicted to host a
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band inversion of doubly-degenerate As 4p and Cd 5s states near the Fermi level

(EF), producing a crossing along the Γ−A line protected by C3 symmetry [152, 154].

Experimentally [152] (and in more recent calculations [166]) the spins are in fact

found to point perpendicular to the c axis [Fig. 42(a)] breaking C3 symmetry, so an

avoided crossing at finite momentum would be expected.

The new ab initio calculations of the electronic structure of EuCd2As2 in which

the spins are configured in the AFM state [Fig. 42(a)] and in the ferromagnetic state

with Eu spins fully aligned along the c axis [Fig. 42(b)] are presented in Figs. 41(a),

(b) and 42(c), (d). In the AFM state, Vergniory found for a wide range of parameters

a small direct gap at Γ [Figs. 41(a) and 42(c)] which is mostly insensitive to the

orientation of the spins. When the Eu spins are fully spin-polarised along the c axis

the double degeneracy is lifted, and a single pair of Weyl nodes appears at EF with

no other Fermi surface pockets in the Brillouin zone [Figs. 41(b) and 42(d)]. These

Weyl nodes lie along the Γ−A high symmetry line [see Fig. 34(b)] at wavevector

~k = (0, 0, k0) with k0 ' ±0.03×2π/c = ±0.26 nm−1. EuCd2As2 in a small magnetic

field applied along the c axis, therefore, is predicted to be a Weyl semimetal with a

single pair of Weyl nodes located at EF.

The band splitting in the saturated phase is found to be ∼100 meV, which is

two orders of magnitude larger than the Zeeman splitting in the saturation field Bc.

From this I can conclude, first, that the calculations, which include exchange but

no Zeeman interaction, are a good representation of the experimental situation in

which a small magnetic field is used to align the Eu spins, and second, that the

existence of the Weyl nodes is driven by exchange coupling to the Eu spins.

In order to validate the ab initio predictions I discuss the ARPES and quantum

oscillations measurements. ARPES data on EuCd2As2 for T < TN and zero applied

magnetic field are presented in Fig. 43(a), (c). These k–E plots are for k along the

M–Γ–M path [see Fig. 34(b)] and show steeply dispersing bands approaching EF.

Qualitatively, the spectra are in good agreement with the ab initio band structure

[Figs. 43(b) and (d)] calculated for the observed AFM state with spins lying in

the plane. The agreement is best when EF is shifted slightly downward by about

50 meV, which indicates that the sample is very slightly hole-doped.

The quantum oscillations measurements are summarised in Figs. 43(e)–(g). Fig-

100



Figure 43: ARPES and high-field magnetotransport of EuCd2As2. (a), (c) ARPES

spectrum as a function of wavevector along the M–Γ–M high symmetry line mea-

sured at T ' 5 K with incident photon energy of 130 eV. The data shown here are a

sum of two measurements taken with linear-vertical and linear-horizontal polarisa-

tion, respectively, to compensate the effect of selection-rules. Nonlinear scaling was

applied to the intensity to enhance the visibility of bands with a small photoemission

cross-section. (b), (d) Electronic bands calculated by DFT (in red). (e) The second

derivative of the longitudinal resistivity ρ′′xx(B) as a function of field applied along

the c axis. (f) Plot of 1/Bint at the minima and maxima in ρxx against Landau

level index, with integers assigned to the minima, where Bint = B + µ0M is the

internal field. The SdH frequency F is obtained from the gradient of the linear fit

shown. (g) Temperature dependence of the amplitude in the SdH oscillation, mea-

sured at B = 10 T. The line is a fit to the Lifshitz–Kosevich formula, from which

the cyclotron effective mass m∗c of the charge carriers is estimated. The quoted error

in m∗c derives from the least-squares fit, but the uncertainty in the measurement is

expected to be larger because of the long period of the oscillations and the relatively

narrow field range.
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ure 43(e) shows the second derivative of the in-plane longitudinal resistance mea-

sured at T = 1.4 K in magnetic fields applied parallel to the c axis (B ‖ c) up to

37 T, well above the coercive field. For B < Bc there is a very strong variation

in magnetoresistance associated with the progressive canting of the spins towards

the c axis, shown also in Fig. 44(a), but at higher fields the curve displays clear

Shubnikov–de Haas (SdH) oscillations. Only a single SdH oscillation frequency

could be resolved, consistent with a single band. Moreover, I do not find any evi-

dence for a spin-splitting of the Landau levels, in contrast to the SdH data on the

structurally-related Dirac semimetal Cd3As2 (Ref. [167]). A lack of spin splitting

would be consistent with the prediction that for B > Bc the bands are already split

by a constant exchange field, implying that the observed SdH oscillations correspond

to the small pockets derived from the Weyl points when EF is shifted downwards

slightly, as suggested by the ARPES measurements.

The maxima and minima of the oscillations are plotted on a Landau level index

plot in Fig. 43(f), with minima in ρxx assigned to the integers [168]. The SdH

frequency obtained from the gradient is F = 25±3 T, which converts via the Onsager

relation F = (~/2πe)Aext to an extremal area of the Fermi surface perpendicular to

the c axis of Aext = 0.24 nm−2, or kF = 0.28 nm−1 assuming a circular cross-section.

Measurements at higher fields up to 45 T did not find any additional oscilla-

tion frequencies (see Fig. 40), and confirmed that the maximum centred on 30 T in

Fig. 43(d) corresponds to the quantum limit (first Landau level).

Figure 43(g) shows the temperature dependence of the SdH oscillation ampli-

tude up to 40 K. By fitting the data to the Lifshitz–Kosevich formula (amplitude

∼ X/ sinhX, where X = 2π2kBTm
∗
c/e~B and m∗c = (~2/2π) dAext/dE) I obtain a

cyclotron effective mass of about m∗c = 0.08me. The observation that m∗c/me � 1

is consistent with quasiparticles near a Dirac or Weyl node.

A small effective mass is also found in the ab initio calculations. Assuming

kF = 0.28 nm−1, as determined from the SdH data, and a circular Fermi surface

cross-section, I obtain m∗c = 0.18me from the calculated band structure. I caution,

however, that the measured and calculated m∗c are not directly comparable because

the Lifshitz–Kosevich formula assumes that the Landau levels are equally-spaced

and that many levels are filled, neither of which applies here.
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Figure 44: Magnetotransport of EuCd2As2. (a) ρxx and σyx as a function of field.

(b) Definition of the xyz axes relative to the crystal orientation and directions of

the current and applied field used in the measurement.

The quantum oscillations and ARPES results, as well as previous optical reflec-

tivity measurements which found clear evidence for a very low carrier density [155],

all point to a very small Fermi surface, and support the prediction that in the spin-

polarised state of EuCd2As2 there is a single pair of Weyl nodes located close to

Γ along Γ−A, in a small window of energy free from other bands. The small ef-

fective mass and Fermi surface area from the SdH data, together with p-type Hall

transport [152], indicate that the crystals used in this study are slightly hole-doped.

From the SdH measurements and ab initio in-plane dispersion Fernando de Juan21

estimated that EF is located approximately 52 meV below the Weyl node, which is

consistent with the shift applied to the DFT bands in order to match the ARPES

data.

In recent years, there has been a great deal of interest in measuring anomalous

transport effects caused by Berry curvature in topological semimetals, especially the

anomalous Hall effect (AHE) [158, 169]. In a Weyl semimetal, the Berry curvature

is associated with the separation ∆k of the Weyl nodes in k-space, as illustrated in

21Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, OX1 3PU, UK;

Donostia International Physics Center, 20018 Donostia-San Sebastian, Spain; IKERBASQUE,

Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain.
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Fig. 34(c), and for a single pair of nodes at EF the anomalous Hall conductivity has

the universal form [158],

σAHE
yx =

e2

2πh
∆k. (14)

In experiments, ∆k is typically field-dependent due to the effect of field on the

band splitting. This makes it difficult to separate the anomalous and semi-classical

contributions to the Hall effect, as the latter is also field-dependent. In EuCd2As2,

however, ∆k is almost constant for fields above the saturation field Bc = 1.6 T,

which makes it straightforward to isolate the anomalous part of the Hall resistiv-

ity. In principle, therefore, EuCd2As2 is an ideal system for studying the AHE

experimentally.

Figure 44(a) presents measurements of the longitudinal magnetoresistance ρxx

and the anomalous part of the transverse (Hall) conductivity σAHE
yx at T = 2 K as a

function of field applied parallel to the c axis (the experimental geometry is shown

in Fig. 44(b), and the procedure to obtain the anomalous part of σyx is described

earlier). There are rapid changes in ρxx at low field due to the reorientation of the Eu

spins in the magnetic field, as noted earlier, but above the saturation field Bc = 1.6 T

ρxx decreases monotonically with field. The field range in Fig. 44(a) is below that

where quantum oscillations become observable [see Fig. 43(e)]. The σAHE
yx (B) curve

is an odd function of field, increasing rapidly for 0 < B < Bc and remaining constant

for B > Bc, consistent with a non-zero anomalous Hall conductivity.

Assuming ∆k ' 0.52 nm−1 from the ab initio results, equation (14) predicts

the anomalous Hall conductance for EuCd2As2 to be σAHE
yx ' 30 Ω−1cm−1, which

is significantly larger than observed. This prediction, however, applies only when

the Weyl nodes lie exactly at EF. In the samples used here the nodes are slightly

shifted from EF, and in this situation other factors are expected to affect the Berry

phase [169]. One such factor is disorder. I have found the AHE in EuCd2As2 to be

reduced by the polishing process used to shape the Hall bar samples. Although it

has been argued that disorder-induced contributions to the AHE are absent when

EF is near the nodes [158], the presence of a tilt in the dispersion makes these

contributions possible in the form of skew scattering [170, 171]. The significant tilt

predicted in the ab initio calculations [Fig. 42(d)] might explain why the AHE is so

reduced.
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4.4 Conclusion

The simple structure of the Weyl nodes in EuCd2As2 makes it an ideal material

with which to study the different contributions to the AHE. This could be achieved

by tuning the position of EF relative to the Weyl nodes by doping or application

of pressure, or by controlling the level of defects by irradiation. The degrading

effects of polishing could be avoided by studying transport phenomena with thin

film samples.

More generally, EuCd2As2 could provide the means to test predictions of other

exotic physics in Weyl semimetals, such as the anomalous Nernst and thermal Hall

effects [160, 172], non-reciprocal effects in light propagation [173], the repulsive

Casimir effect [174], or to probe the effects of the chiral anomaly in the optical

absorption [175] and non-local transport [176].
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Chapter 5

Magnetic structure and
excitations of the topological

semimetal YbMnBi2

In this chapter, I present the magnetic structure and dynamics of YbMnBi2.

These were investigated with elastic and inelastic neutron scattering to shed light

on the topological nature of the charge carriers in the antiferromagnetic phase. I

confirm C-type antiferromagnetic ordering of the Mn spins below TN = 290 K, and

determine that the spins point along the c axis to within about 3◦. The observed

magnon spectrum can be described very well by the same effective Heisenberg spin

Hamiltonian as was used previously to model the magnon spectrum of CaMnBi2.

My results show conclusively that the creation of Weyl nodes in YbMnBi2 by the

time-reversal-symmetry breaking mechanism can be excluded in the bulk.
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5 Magnetic structure and excitations of the topo-

logical semimetal YbMnBi2

5.1 Introduction

Dirac and Weyl materials are semimetals whose valence and conduction bands have

a linear dispersion in the vicinity of the Fermi energy [10, 11]. These gapless band

crossings, which are protected by topology or crystalline symmetries, can give rise to

massless quasiparticle excitations which can be described by the relativistic Dirac or

Weyl equations. Materials that host such fermions possess a range of desirable phys-

ical properties: exceptionally high electrical and thermal conductivities, immunity

to disorder and ballistic electronic transport [124, 125, 126].

Figure 45: (adapted from Ref [74]) The calculated electronic band structure of

YbMnBi2 in, (a) the kx − ky plane, (b) along the Γ −M −X − Γ high symmetry

line and (g) along kx. (c) depicts the energy dispersion within the kx−ky plane. (e)

and (f) show the experimental electronic spectrum measured with ARPES. In (a),

(b) and (e), the Weyl points are depicted by the green points, which are connected

by the purported Fermi arcs in (e). The splitting in the bands (g) is driven by the

canted magnetic structure (d) that gives rise to an in-plane ferromagnetic component

in YbMnBi2.
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Weyl semimetals (WSMs) can occur in crystals with broken spatial inversion

symmetry (IS), broken time-reversal symmetry (TRS), or both. Examples of the

first type (with broken IS only) were found in 2015 [15, 36, 37, 38], but realisations of

WSMs with broken TRS are still rare [11]. Very recently, the layered AFM YbMnBi2

was proposed as a potential candidate [74]. The evidence from ARPES is quite

convincing [74], and there is also some support from optics [75, 76]. The tetragonal

unit cell of YbMnBi2, which can be described by the P4/nmm space group (No. 129),

includes alternating Bi square layers that host the possible Weyl fermions [74, 75,

76, 77, 78, 79, 80], and MnBi4 tetrahedral layers which contain magnetic moments

on the Mn atoms [see Fig. 46(a)]. In the antiferromagnetically ordered phase, below

TN = 290 K, neighbouring Mn spins are reported to be antiparallel within the ab

plane, but crucially, they are ferromagnetically stacked along the c axis [78, 79, 177].

This means that magnetic coupling to the Bi conduction states is allowed at the

mean-field level, which can lead to band splitting.

In Ref. [74], it was argued that creation of Weyl points by TRS breaking in

YbMnBi2 requires a ∼10◦ canting of the Mn moments away from the c axis [See

Fig. 45(d)]. If present, this canting would generate a net ferromagnetic component in

the ab plane of YbMnBi2, and would account for the Weyl nodes and arcs observed

in the ARPES data. Such a small deviation in the moment direction from the c axis

would not have been discernible in the (100) magnetic peak studied in the previous

neutron diffraction measurements [78, 79, 177], so the possibility that YbMnBi2

might be a WSM by this mechanism remains to be tested.

Moreover, if the AFM order of manganese creates Weyl fermions, which then

dominates the electronic transport [78, 79], then these quasiparticle excitations could

be expected to play some role in the exchange coupling between Mn moments which

could in turn influence the magnon spectrum. As the magnetic order is key to

the behaviour of YbMnBi2 as a topological material, measurements of the magnon

spectrum, and the exchange parameters derived from it, could provide additional

information on the presence of Weyl fermions near the Fermi energy.

In light of this, I set out in this study, (i) to search for evidence of a canted

magnetic structure by neutron diffraction, and (ii) to investigate the magnon spec-

trum in the AFM phase of YbMnBi2 through inelastic neutron scattering. To
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Figure 46: (a) The unit cell of YbMnBi2 for the space group P4/nmm (No. 129).

The proposed Weyl fermions are contained in the Bi square net in the center of

the unit cell. The magnetic exchange between the ab plane nearest neighbour (J1),

ab plane next-nearest neighbour (J2), and c axis nearest neighbour (Jc) Mn2+ ions

were used in the linear spin-wave model to describe the magnon spectrum. (b)

The definition of high symmetry lines and planes in the first Brillouin zone of the

tetragonal lattice. The spin-wave spectrum in the (h 0 l) and (h k 0) reciprocal lattice

planes was mapped in this work. Here, the reciprocal lattice vector is defined as,

G = hb1 + kb2 + lb3, where |b1| = |b2| = 2π/a and |b3| = 2π/c.

achieve the required sensitivity to the predicted ferromagnetic component of the

proposed canted magnetic structure, I performed careful measurements of the weak

(0 0 l) nuclear reflections [see Fig. 20]. Furthermore, to identify any anomalies in

the magnetic exchange between Mn moments associated with the presence of Weyl

fermions, I compare the observed magnon spectrum with that of Dirac semimetal

CaMnBi2 [122], which is isostructural to YbMnBi2. I demonstrate that the Mn sub-

lattice in YbMnBi2 has C-type AFM ordering below TN = 290 K, with the moments

aligned along the c axis to within 3◦ (at 95% confidence level). Moreover, I find no

evidence from the magnon spectrum for anomalous magnetic coupling between the

Mn spins. My results rule out the existence of magnetically-induced Weyl fermions

in the bulk of YbMnBi2 , but leave open the possibility that the ∼10◦ canting of the

Mn moments needed to form the Weyl nodes might occur at the surface.
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Figure 47: The experimental setup at beamlines (a) D10 and (b) IN8 in ILL

respectively.

5.2 Experimental details

Single crystalline YbMnBi2 was grown by Hongyuan Wang, Hao Su, Yanfeng Guo,22

Zili Feng and Youguo Shi23 using the self-flux method. The mixture was placed into

an alumina crucible, sealed in a quartz tube, then slowly heated to 900◦C and kept

at this temperature for 10 hours. The assembly was subsequently cooled down at

a rate of 3◦C/hour. It was finally taken out of the furnace at 400◦C and was put

into a centrifuge immediately to remove the excess Bi. The structure and quality of

the single crystals was checked with laboratory X-rays on a 6-circle diffractometer

(Oxford Diffraction) and Laue diffractometer (Photonic Science). A SQUID mag-

netometer (Quantum Design) was used to study the magnetisation of YbMnBi2 as

a function of temperature. These zero-field-cooled (ZFC) magnetometry measure-

ments were performed in the temperature range 10 to 370 K in a field of 1 T applied

parallel to the a- and c-axes of YbMnBi2.

Elastic neutron scattering of a YbMnBi2 single crystal with a mass of 76 mg was

performed on a 4-circle diffractometer (D10) at the Institut Laue-Langevin (ILL)

22School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
23Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese

Academy of Sciences, Beijing 100190, China.
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Figure 48: (a), (b) Reciprocal space maps of the (h 1 l) plane obtained from a

YbMnBi2 single crystal on the 6-circle X-ray (Mo, Kα) diffractometer (Oxford

Diffraction). The positions and relative intensities of the experimental peaks (a)

are in good agreement with that of the calculated plots (b). Moreover, the peaks

display a very narrow mosaic, reflecting the good quality of the crystals. Similarly,

the (c) Laue pattern of a YbMnBi2 crystal agrees strongly with the (d) model.

Here, the incident X-ray was directed along the [0 0 1] direction of the crystal axes.

The pattern also shows the 4-fold symmetry about the YbMnBi2 c axis (out of the

page).

reactor source with Andrew Boothroyd, Henrik Jacobsen24 and Bachir Ouladdiaf,25

the instrument scientist. The intensities of the reflections were studied over the

temperature range of 20 to 400 K. A pyrolytic graphite (PG) monochromator was

used to select the incident neutron wavelength of λ = 2.36 Å. The rocking curve

of each peak was obtained by measuring the number of scattered neutrons at each

24Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1

3PU, UK.
25Institut Laue-Langevin, 6 rue Jules Horowitz, 38042 Grenoble Cedex 9, France.
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rocking angle (ω) with a 80× 80 mm2 area detector.

Inelastic neutron scattering measurements were performed on the triple-axis neu-

tron spectrometer IN8 [178] with the FlatCone detector [179] at the ILL with Henrik

Jacobsen, Tim Tejsner, Alexandre Ivanov and Andrea Piovano.26 A YbMnBi2 single

crystal (mass 1 g) was initially oriented with the a and c crystal axes horizontal to

map the spin-wave spectrum in the (h 0 l) scattering plane (see Fig. 46). The crystal

was subsequently rotated by 90◦ (such that the crystalline a and b axes were in the

scattering plane) to access the (h k 0) plane. Constant-energy maps were measured

at various energies, ∆E = Ei − Ef. The outgoing neutron wavevector was fixed

at kf = 3 Å−1 (Ef = 18.6 meV) by elastically-bent Si (111) analyser crystals, and

the required energy transfers were set by selecting the incident wavevector, ki, with

an incident beam monochromator. For energy transfers ∆E ≥ 40 meV, a PG (002)

double-focusing monochromator was used, and for ∆E < 40 meV an elastically-bent,

perfect Si (111) double-focusing monochromator was used.

The array of 31 detectors on the FlatCone device allows for the simultaneous

acquisition of scattered intensity along arcs in reciprocal space. By rotating the

single crystal about the scattering plane normal, these arcs can sweep out areas in

k-space to give reciprocal space maps [see Fig. 22]. To visualise the area in reciprocal

space that can potentially be mapped by these arcs, I used the software vTAS [180],

which simulates the FlatCone detector in the context of the space constraints at

the IN8 beamline at ILL. This allows me to optimise the experimental geometry to

acquire maps of the magnon spectrum across several Brillouin zones [see Fig. 22].

5.3 Results and analysis

The X-ray diffraction patterns of single crystalline YbMnBi2 obtained from the 6-

circle and Laue diffractometers are fully consistent with the P4/nmm space group,

with cell parameters a = 4.4860(13) Å and c = 10.864(4) Å at T = 300 K (see

Fig. 48).

The temperature dependence of the magnetic susceptibility of YbMnBi2, with

the applied field parallel to the a and c crystal axes, is shown in Fig. 49(a). The

anomaly in the χc data at T = 290 K is associated with the onset of AFM order

26Institut Laue-Langevin, 6 rue Jules Horowitz, 38042 Grenoble Cedex 9, France.
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Figure 49: (a) Temperature dependence of the magnetic susceptibility of YbMnBi2

measured with the field applied along the a and c axes (χa and χc, respectively). The

single crystal was cooled in zero field and measured in an applied field strength of

1 T. (b) Temperature dependence of the integrated intensity of the (001), (002) and

(100) peaks. The red line is a power law fit to the temperature dependence of the

(100) reflection which gives a transition temperature of TN=290(1) K. (c) Measured

intensity of the (001) peak, together with lines calculated for tilt angles of 0◦, 5◦

and 10◦. The inset shows the variation of the χ2 with tilt angle.

in the Mn2+ sub-lattice. This Néel temperature is consistent with those reported

in earlier studies of YbMnBi2 [74, 78, 79] and the elastic neutron scattering data

presented in this work (see later). Below TN, the magnetic susceptibility becomes
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strongly anisotropic with respect to applied field, where χa > χc. This bifurcation

of χ(T ) at TN suggests that the manganese moments, in the ordered phase, are

more susceptible to an in-plane applied field compared to the field along the c axis,

in agreement with earlier reports [74, 78]. At low temperatures (below 50 K), the

susceptibility grows in both field directions. This upturn is likely due to a small

concentration of a Mn-containing paramagnetic impurity phase, and is observed in

other members of the AMnBi2 family (A = Sr, Ca, Ba) [181, 182, 183].

5.3.1 Elastic neutron scattering

Neutron diffraction data in the temperature range 20 to 400 K are presented in

Fig. 49(b). As the sample was cooled below T = 290 K, the (100) peak, which is

otherwise forbidden in the P4/nmm space group, was observed. This reflection is

consistent with a magnetic propagation vector of k = 0. The onset of this purely

magnetic peak at TN reveals the incipient AFM order of the Mn2+ sub-lattice. The

temperature dependence of the integrated peak intensity fits very well to a power

law, Iobs ∝ |TN − T |2β , with exponent β = 0.38(2).

The predicted canting of the Mn2+ moments away from the c axis [74, 75, 76]

should produce a small ab plane ferromagnetic component. Given that magnetic

neutron scattering is sensitive to the component of the ordered moment perpendic-

ular to the scattering vector q [184], I can isolate this small in-plane component

by studying the intensity of reflections with q ‖ c [see Fig. 20]. If there were an

in-plane ferromagnetic component then the intensity of (00l) peaks should increase

on cooling below TN, as was observed in a sister compound SrMnSb2 [84], where a

small in-plane ferromagnetic contribution to the nuclear peak was reported.27

To minimise the reduction of the scattered intensity due to the magnetic form

factor of Mn2+, I studied the reflections with the smallest q, namely the (001) and

(002) peaks, as shown in Fig. 49(b). I observe no discernible change in the integrated

intensity of these peaks apart from the gradual increase with decreasing temperature

which can be attributed to the Debye-Waller factor.

27Note that the a and c axis in Ref. [84] are interchanged with respect to those defined in the

present work. SrMnBi2 suffers from an off stoichiometry and is better described by Sr1−yMn1−zSb2

(y, z < 0.1).
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In Fig. 49(c) I show the intensity of the (001) peak on a magnified scale, together

with lines calculated assuming tilt angles of 0◦, 5◦ and 10◦. The 0◦ curve is a

quadratic fit to the data, and the other two curves are obtained by adding the

calculated magnetic intensity of the (001) peak to the 0◦ curve based on the measured

intensity of the (100) peak. I also calculated the variation of the χ2 goodness-of-fit

statistic as a continuous function of tilt angle, see inset to Fig. 49(c). From the χ2

distribution, I find that the probability of a tilt angle greater than 3◦ is only 5%.

These results imply that the ordered moments in YbMnBi2 are collinear and

aligned along the c axis to within 3◦ at a 95% confidence level. Hence, a 10◦ canting

of Mn2+ moments away from the c axis, as required to create the Weyl nodes, can

be excluded.

5.3.2 Inelastic neutron scattering

The inelastic neutron scattering data were processed in several steps. First, the

spurions were removed from the raw data by hand using the nplot software provided

by Paul Steffans.28 Following which, the powder rings, which appear as concentric

circles around q = (0 0 0), was smoothed out using a mask. Next, the intensity of

the constant energy maps was normalised according to the magnetic form factor

of Mn2+. Finally, a summed average of all the symmetry related planes was made.

Here, each symmetry related plane was obtained by applying the symmetry elements

associated with each scattering plane to the measured spectrum. The processed

constant energy maps in the (h 0 l) and (h k 0) planes at various energy transfers,

∆E, are shown in Figs. 50 and 51 respectively. I discuss the data from the different

scattering planes in turn, starting with the measured (h 0 l) data, which correspond

to the top half of each panel in Fig. 50.

At ∆E= 10 meV, I find the lowest energy spin-wave mode at Γ. To excite this

non-propagating magnon, the incoming neutrons have to overcome the anisotropy

energy associated with the tendency of the ordered Mn2+ moments to point along

the c axis. Hence the magnitude of this energy gap in the spin-wave spectrum gives

a measure of the strength of this easy axis.

28nplot: a toolset for neutron data evaluation in matlab, developed at the Institut Laue Langevin.

Jan (2017). Available at https://github.com/nplot
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Figure 50: Constant-energy maps in the (h 0 l) plane in reciprocal space, illustrated

in Fig. 46(b), at various ∆E, plotted in reduced lattice units (r.l.u.). In each panel,

the top and bottom half correspond to the data and model, respectively.
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At ∆E= 20 meV, I find pinch points29 in the magnon spectrum at the high

symmetry point Z, that is, halfway between Γ points in adjacent Brillouin zones

along l. This correspond to propagating spin-wave modes along the c axis where the

Mn2+ spins are precessing π out of phase.

For energy transfers ∆E ≥ 30 meV, the magnon spectrum loses the kz depen-

dence and becomes progressively linear along l. In other words, at these energies,

the eigenfrequency of the spin-wave modes propagating along a (or b) is independent

of the phase of the spin-waves in adjacent ab-planes. This indicates that the cross-

plane magnetic exchange coupling in the ordered Mn2+ moments is relatively weak

compared to the coupling within the ab plane. Moreover, given the large separation

of the manganese ions along the c axis compared to that within the plane, this also

suggests that the spin-wave spectrum of YbMnBi2, at these energy transfers, can be

described by ordered Mn2+ moments on an isolated 2D square lattice.

The spin-wave spectrum terminates along the R − X − R high symmetry line

at ∆E= 60 meV. This propagating magnon mode along the a axis corresponds to

the case where the ferromagnetically aligned Mn2+ moments are precessing π out

of phase. Given that this is the highest energy excitation suggests that the net

exchange coupling in YbMnBi2 favours the ferromagnetic alignment of next-nearest

neighbour Mn ions.

I now turn to discuss the reciprocal space maps in the (h k 0) scattering plane at

various energy transfers, which correspond to the left half of each panel in Fig. 51.

No propagating spin-wave modes were observed in the reciprocal space maps for

∆E ≤ 10 meV. Just as in the (h 0 l) plane, I observe the lowest energy excitations

at the Γ point in the Brillouin zone at ∆E = 10 meV.

For 10 meV ≤ ∆E ≤ 26.5 meV, the spectrum develops into rings centred at Γ,

which is characteristic of isotropically dispersing 2D plane waves. At these small

wave vectors (|k| = 2π/λ) the in-plane exchange coupling between Mn2+ moments

appear to be isotropic. This arises because the magnon excitations at large wave-

lengths (λ � a) are insensitive to the periodicity of the square lattice. When the

wavelength of the spin-wave becomes the same order of magnitude as the lattice

spacing, that is λ ∼ a, the magnon spectrum becomes progressively less isotropic,

29points where the spin-wave bands meet
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Figure 51: Constant-energy maps in the (h k 0) plane in reciprocal space, illustrated

in Fig. 46(b), at various ∆E. In each panel, the left and right half correspond to

the data and model, respectively.
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as shown in the ∆E ≥ 30 meV data. Here the spin-wave excitations become sensi-

tive to the different exchange coupling strength between the ab plane nearest and

next-nearest neighbour interactions. This breaks the rotational symmetry about Γ

and the spin-wave spectrum adopts the lower 4̄m2 symmetry of the Mn2+ ions in

the ab plane.

At ∆E= 26.5 meV, I observe a saddle in the spin-wave spectrum appearing at

the high symmetry point M . This corresponds to propagating spin wave modes in

which the antiferromagnetically aligned nearest-neighbour Mn2+ moments precess π

out of phase. Similarly, this mode also displays rotational symmetry which becomes

lowered at higher energy transfers.

Eventually, at ∆E = 40 meV, these magnon modes emanating from M and Γ

meet at pinch points in the constant energy maps at ∼ 1/4 and ∼ 3/4 along the

Γ−M − Γ high symmetry line. Here the spectrum develops into a square network

which is relatively linear in h and k.

At larger energy transfers, 44 meV ≤ ∆E ≤ 60 meV, the in-plane spin wave

modes propagating along a eventually terminates at the high symmetry point X, in

agreement with the (h 0 l) data.

To obtain the the energy dispersion curve (∆E–k) for k along the Γ−X − Γ−

M − Γ − Z − Γ path, cuts were made along the Z − Γ − X and M − Γ − X high

symmetry lines, as defined in Fig. 46(b), in the measured constant energy maps

in the (h 0 l) and (h k 0) planes respectively. The scattered intensity along these

high symmetry cuts at various ∆E was fitted with peak functions to identify the

position of the magnons in ∆E–k space. In Fig. 52, I present the measured spin

wave spectrum, which is denoted by the red markers.

In order to model the observed magnon dispersion, I calculated the spin-wave

spectrum with SpinW [185], assuming Heisenberg interactions up to the second

nearest neighbour in the ab plane, nearest neighbour inter-planar coupling and an

easy axis along c. I arrive at the following magnetic Hamiltonian,

Ĥ =
∑
〈i,j〉

JijŜi · Ŝj −
∑
i

D(Ŝzi )2, (15)

where the three exchange parameters used to describe the spin-wave are the ab plane

120



Figure 52: The observed and calculated spin-wave spectrum of the Mn spins in

YbMnBi2 along high symmetry directions, as defined in Fig. 46(b). The calculated

magnon spectrum is in good agreement with the measured spin-wave dispersion (red

markers), which was obtained from constant-energy cuts through the intensity maps

in the (h 0 l) and (h k 0) planes.

nearest neighbour (J1), ab plane next-nearest neighbour (J2) and c axis nearest

neighbour (Jc), defined in Fig. 46(a), and an anisotropy energy (D) along the c axis.

By fitting the linear spin-wave model to the measured dispersion I find values for

the parameters SJ1 = 22.6(5) meV, SJ2 = 7.8(5) meV, SJc = −0.13(5) meV and SD

= 0.37(4) meV, where S is the spin quantum number, which for Mn2+ is S = 5/2.

This is done in three stages:

• Step 1: A global fit of all parameters for the data along the high symmetry line

Γ−X−Γ−M −Γ−Z−Γ, as shown by the red markers in Fig. 52, was made

using the SpinW program [185]. This accounts for the magnetic exchange

between ab plane nearest neighbour (J1), ab plane next nearest neighbour

(J2) and the c axis nearest neighbour (Jc). The c axis anisotropy of the Mn

moments (D) was also accounted for.

• Step 2: Following which, to obtain a better constrain on the estimates of SJ1

and SJ2, I calculated the χ2 values of the least squares fit of the modelled
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Figure 53: (a) depicts the χ2 map of the least squares fit of the linear spin-wave

model to the measurements for the parameter space 0 meV < SJ1 < 30 meV and

0 meV < SJ2 < 10 meV. (b) illustrates the χ2 map for the least squares fit of

the modelled spectrum to the constant-q energy cuts over the range of values of

0 meV< SD < 1 meV and -1 meV< SJc < 0. In both panels, the black solid lines

represent the best-fit values with the margin of error shown by the dashed black

lines. The constant χ2 contours are depicted by the red points for χ2 ' χ2
min.

spectrum to the measured data over the parameters space of values 0 < SJ1 <

30 meV and 0 < SJ2 < 10 meV for fixed values of SJc and SD obtained from

step 1. This χ2 map, which is presented in Fig. 53(a), provides me estimates

of the magnetic exchange SJ1 = 22.6(5) meV and SJ2 = 7.8(5) meV which

correspond to χ2
min. I depict the constant χ2 contour for χ2 ' χ2

min by the red

markers.

• Step 3: Finally, using the newly refined values of SJ1 and SJ2 obtained

from step 2 as constraints, I further refine the estimates of SJc and SD. I

calculated the χ2 values of the least squares fit of the linear spin-wave model

to the constant-q energy cuts from energy transfers ∆E= 5 to ∆E= 25 meV

measured at q = (1, 0, 2) and q = (1, 0, 2.5). In this case, I also include

the resolution properties of the scattered neutrons that is unique to the IN8
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triple-axis spectrometer at ILL. This was estimated by the ray-tracing routine

RESTRAX [186, 187]. I present, in Fig. 53(b), the χ2 map for the range of

values of 0 meV < SD < 1 meV and -1 meV < SJc < 0 meV. From this map

I obtain estimates of SD and SJc.

Based on these parameters, I plot the corresponding calculated energy dispersion

along k in Fig. 52. Furthermore, to compare the modelled spectrum in Fig. 54 with

the measured planes in Fig. 50 and Fig. 51, I used the SpinW program [185] to

generate the constant energy slices in the (h 0 l) and (h k 0) planes. To account for

the fact that the magnetic neutron scattering is proportional to the component of

the magnetic moments that is perpendicular to the scattering vector q, the modelled

maps in the (h 0 l) planes are taken from the same Brillouin zone as that for the

data. This is not required for (h k 0) plane, given that the scattering vector is always

orthogonal to the Mn2+ magnetic moment in this scattering geometry. Moreover,

the same symmetry transformations that was done to the measured spectrum was

also applied to the modelled spectrum. The modelled spectrum for the (h 0 l) and

(h k 0) planes are presented in the bottom- and right-half of each panel Figs. 50 and

51 respectively. Overall, I find that the calculated spectrum agrees very well with

the data.

5.4 Discussion

As neutron diffraction probes the entire volume of the sample, my results rule out

the possibility of magnetically-induced Weyl nodes in the bulk of YbMnBi2. On the

other hand, neutron diffraction would not be sensitive to a canting of the magnetic

moments at the surface of the sample. Such a canting, if present, would reconcile

the results of the present study with the work by Borisenko et al. [74].

In YbMnBi2, the spontaneous magnetic order in the Mn sub-lattice coexists with

massless quasiparticle excitations arising from the Bi square net. Armed with the

best-fit parameters of the linear spin-wave model, we are now in a position to address

whether the magnon spectrum in YbMnBi2 differs in any detectable way compared

with other related systems. For instance, one might expect to see differences in the

inter-layer exchange coupling parameter Jc if the conducting states on the Bi layers

were very unusual in YbMnBi2 .
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Figure 54: (a), (b) The modelled magnon spectrum of YbMnBi2 in the (h 0 l) and

(h k 0) planes respectively in reciprocal space based on the best-fit parameters.

To elucidate this, I compare the fitted spin-wave model parameters obtained in

this work with those of CaMnBi2, which is isostructural to YbMnBi2. CaMnBi2

possesses a near identical Néel temperature to YbMnBi2 of TN = 290 K [181, 122],

and is predicted to be a Dirac semimetal [188, 189, 190]. Using the same Hamiltonian

(15), the three magnetic exchange parameters in CaMnBi2 were found to be SJ1 =

23.4(6) meV, SJ2 = 7.9(5) meV and SJc = −0.10(5) meV [122], which are the same

as those of YbMnBi2 to within experimental error. The anisotropy parameter for

CaMnBi2, SD = 0.18(3) meV, is about half that for YbMnBi2, which reflects that

the energy gap at Γ is slightly smaller in CaMnBi2 than in YbMnBi2. These results

demonstrate that the magnon spectrum of YbMnBi2 does not show any anomalous

behaviour relative to that of CaMnBi2.
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More broadly, this suggests that replacing the divalent alkali-earth metal Ca2+

on the A site of AMnBi2 with the rare-earth Yb2+ ion does not significantly enhance

the coupling between the magnetism in the tetrahedral MnBi4 layers and the charge

carriers in the Bi square net. This is despite the fact that theA atom is situated along

the direct exchange path between the Mn and Bi atoms. In a recent review of the

wider AMnPn2 family of compounds, Klemenz et al. [77] suggested another route to

enhance the coupling between magnetism and the topological charge carriers, namely

to have a magnetic ion on the A site (like Eu2+) rather than non-magnetic ions such

as Ca2+, Sr2+, Ba2+ and Yb2+. This was prompted by the fact that the A site atom

is in closer proximity to the square Bi compared to the Mn2+ ion and might lead to

a greater orbital overlap and thus magnetic exchange interaction. In fact, this was

considered in Refs. [74, 76], where the electronic structure and optical properties of

EuMnBi2 and YbMnBi2 were compared. The divalent rare-earth ions on the A site

of both AMnBi2 compounds have comparable ionic radius and very similar relative

positions to the Bi square layer, but with the difference that Eu2+ has half-filled 4f

orbitals compared to the fully-filled case for Yb2+. This leads to a large pure-spin

magnetic moment of 7µB on the A site of EuMnBi2, and a non-magnetic ion on

the A site of YbMnBi2 . These studies demonstrate a marked increase in coupling

between magnetism and the topological charge carriers in EuMnBi2 compared to

that in YbMnBi2, which is consistent with magnetotransport studies [74, 78, 81, 82,

83]. This suggests that in EuMnBi2, compared to YbMnBi2, a greater coupling of

magnetism to the pnictide square net can be achieved with magnetic species on the

A site which, for the extended AMnPn2 (or 112-pnictide) family, is closer to the

pnictide layer compared to Mn.

Finally, it is instructive to compare the physical properties of YbMnBi2 with that

of YbMnSb2, which is isostructural to YbMnBi2 [87, 191] and also exhibits Mn AFM

order with a similar magnetic ordering temperature of TN = 345 K. A comparison of

the band structures of the two 112-pnictides reveal a greater extent of inversion

in the conduction and valence bands in YbMnBi2, with several band crossings at

EF as shown Refs. [74, 75], compared to that in YbMnSb2 [87]. Moreover, the

Shubnikov–de Haas (SdH) oscillation of the magnetotransport in both compounds

reveals that the effective mass of the charge carriers in YbMnBi2 (m∗c ∼ 0.24me [79])
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is approximately twice that of YbMnSb2 as reported in Refs. [87, 191].

These features can be understood from the relative sizes of the SOC in the

pnictide square conducting layers, which is significantly larger in YbMnBi2 as Bi is

∼ 1.7 times heavier than Sb. Given that the linear band crossing along the Γ–M

high symmetry line is not protected by symmetry, the doubly-degenerate pnictide

(Sb 5p or Bi 6p) bands hybridise and give rise to an avoided Dirac crossing. As

such, the stronger SOC in YbMnBi2 produces a larger energy gap in the electronic

bands, resulting in a heavier effective mass of the charge carriers compared to that in

YbMnSb2. This is consistent with the work in Ref. [192], which explored the effect

of the masses of pnictides on the physical properties of BaMnPn2 (Pn = Sb, Bi). In

that work, Liu et al. also proposed that a more suitable platform to realise massless

Dirac fermions is in replacing Bi with lighter elements in the same group. This

demonstrates that the 112-pnictide family of compounds offers strong tunability of

the effective mass of the charge carriers from the size of the SOC.

5.5 Conclusion

I have presented the magnetic structure and magnon spectrum of the candidate Weyl

semimetal YbMnBi2. The (0 0 l) family of nuclear reflections does not display any

additional magnetic contribution below TN, and this rules out the mechanism for

creation of Weyl nodes via TRS-breaking through canting of the Mn spins. Hence,

I rule out that bulk YbMnBi2 is a Dirac semimetal rather than a host for the WSM

state. I have not ruled out the possibility of spin canting at the surface, which could

reconcile the present results with those of Ref. [74]. The lack of any anomalous

features in the magnon spectrum implies a weak coupling between magnetism and

the topological charge carriers. YbMnBi2 belongs to the wider AMnPn2 family of

compounds which is currently attracting strong interest owing to its strong potential

for spintronic applications. I hope that the understanding of YbMnBi2 achieved here

will contribute to the development of strategies for enhancing the exchange coupling

between charge transport and magnetism, and for reducing the effective mass of the

quasiparticles.
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Chapter 6

Ground state magnetic structure
of Mn3Ge

I have used spherical neutron polarimetry to investigate the magnetic order of

the Mn spins in the hexagonal semimetal Mn3Ge, which exhibits a large intrinsic

anomalous Hall effect. I show that only one of the six non-collinear in-plane spin

configurations permitted by symmetry is consistent with the polarimetric data.

127



6 Ground state magnetic structure of the Mn3Ge

6.1 Introduction

Very recently Mn3Ge was found to display spontaneous large anomalous Hall effect

(AHE) (∼50 Ω−1cm−1) at room temperature [193, 194]. This is very unusual for

an antiferromagnet as the zero-field AHE phenomenon is usually associated with

ferromagnetic metals [169]. Furthermore, these studies found that the spontaneous

AHE in Mn3Ge is strongly anisotropic and can be switched with a small applied

magnetic field (see Fig. 55 and Refs. [193, 194]). From a technological standpoint,

the concept of an antiferromagnetic memory device that can be switched is very

attractive as there is no demagnetisation field, which limits the size of ferromagnetic

materials. This possibility of scaling down the size of magnetic devices has prompted

many studies of thin-film Mn3Ge [195, 196, 197, 198, 199, 200] and the initial results

look very promising.

On the other hand, from a theoretical standpoint, understanding the origin of this

spontaneous large AHE in an antiferromagnet is also intellectually very stimulating

Figure 55: (adapted from Ref. [193]) (a) The temperature dependent measurements

show that the spontaneous AHE in Mn3Ge grows with decreasing temperature. (b)

shows that the AHE is strongly anisotropic and can be switched with a small applied

magnetic field.
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Figure 56: (adapted from [56, 204]) (a) depicts the projection of the position of the

Weyl nodes in Mn3Ge onto the kx − ky plane. Depending on the chirality of the

nodes, it will either be a (b) source or (c) sink of Berry curvature. (d) shows the

calculated constant energy surface, in the kx − ky plane, which depicts the Fermi

arcs that emanate from these predicted Weyl nodes in the Brillouin zone. (e) and (f)

show the Fermi arcs in an energy momentum plot along ky and kx respectively. (g)

depicts the energy-momentum dispersion surface with (h) highlighting one particular

Weyl node in Mn3Ge.

and has led to many theoretical studies [56, 193, 194, 201, 202, 203, 204, 205]. Some

studies have suggested that this could come from the non-vanishing Berry curvature

in momentum space [194, 201, 202] due to the chiral Mn spin structure, an idea which

is inspired by an earlier work [206]. Other studies point to topological Weyl nodes in

Mn3Ge as the source of the large AHE [56, 193, 203, 204, 205]. Furthermore, it has

also led to the prediction of other related phenomena, arising from these sources and

sinks of Berry curvature in Mn3Ge: large anomalous Nernst [201], spin Nernst [201]

and the spin Hall effect [194, 203]. Given that all of these theoretical predictions

depend on the fine details of the magnetic structure, it is important to work with

an unambiguous solution for the zero-field spin structure of Mn3Ge.

The hexagonal unit cell of Mn3Ge can be described by the P63/mmc space group

(No. 194) with Mn and Ge on the 6h and 2c Wyckoff sites respectively. This gives
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rise to a magnetic Mn sub-lattice which can be described by Kagome layers stacked

along the c axis [see Fig. 57].

Initial powder neutron diffraction studies of Mn3Ge revealed that these Mn mo-

ments lie in the ab plane with a magnetic propagation vector of k = 0 and a non-

collinear spin structure [207, 208]. However, the magnetic order within the plane

could not be determined because the measured diffraction pattern could be described

by several different candidate in-plane spin configurations [209]. Although the neu-

tron spin is very sensitive to the magnetic moment direction and distinguishing be-

tween the different magnetic structures should be routinely possible, if unpolarised

neutrons are used, as is the case for these experiments, this rich information is lost

as the various neutron polarisations are spherically averaged [209].

In light of this, subsequent studies were performed on Mn3Ge single crystals with

polarised neutrons [210, 211]. However, the polarisation of the scattered beam, which

contains information essential for a complete magnetic structure determination, was

not analysed in the flipping ratio method employed in these experiments [212, 213,

214, 215]. Moreover, to maintain the beam polarisation, this technique requires the

Figure 57: (a)–(f) Various spin configurations of manganese moments adapted from

Ref. [209]. The red and blue spheres correspond to Mn ions residing at Wyckoff

position 6h with z = 1/4 and 3/4 respectively. Here, the Ge atoms are omitted for

clarity.
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sample to be in an applied field which preferentially orients the Mn moments along

the field direction, undermining the elucidation of the true ground state magnetic

structure [193, 194, 209, 210, 211, 216]. Ideally, what is needed is a zero-field sample

environment where the direction and magnitude of the polarisation of the scattered

neutrons are measured.

This technique, known as spherical neutron polarimetry (SNP), was performed

on Mn3Sn, which is isostructural to Mn3Ge. In that work, Brown et al. considered 6

different symmetry allowed magnetic structures shown in Fig. 57. The true ground

state structure of Mn3Sn, however, still remains an open question as the study found

essentially no difference between models (c) and (f) in the least squares fit between

the calculations and measurements [209]. As this was attributed to the magnetic

domains being equally populated, Brown et al. suggested magnetising the sample

beforehand in future studies, an endeavour that has not yet been undertaken. Since

a similar SNP study for Mn3Ge is still lacking, all of the reports of the magnetic

structure of Mn3Ge thus far are based on ab initio density functional theory (DFT)

calculations [56, 193, 194, 201, 202, 203, 204, 217]. This is done by systematically

studying various spin configurations and selecting the one with the smallest self-

consistent energy.

However, there is little agreement in these DFT studies: Refs. [56, 194, 203, 204,

217] predict that the most stable spin configuration is (f) while Ref. [201] found

that the most stable magnetic structure correspond to (c). Yet another DFT study

suggests that the Mn moments display non-planar order [202] which cannot be de-

scribed by models (a)–(f). Some of these reports even concede that the equilibrium

energies of models (c) and (f) are very similar and the differences are within the

margin of computational uncertainty [193, 201, 202, 204]. This might arise because

the spin configurations of models (c) and (f) are very similar, related by an in-plane

rotation of all the Mn moments by 90◦ about the crystal c axis. Furthermore, there

are discrepancies between the calculated and measured AHE based on these spin

structures [193, 194, 202, 204].

In this work, the AFM structure of Mn3Ge was investigated by SNP to deter-

mine which of the theoretically proposed magnetic structures best describes the

magnetic order of the Mn sub-lattice. I arrive at an unambiguous magnetic struc-
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Figure 58: (a) The experimental set-up of the SNP of Mn3Ge in the horizontal

diffraction geometry. The insert shows single crystals obtained by the flux growth.

(b), (c) depict the crystal orientations with b and c axis vertical, respectively, to

access the (h 0 l) and (h k 0) family of peaks. The reflections that were studied in

this work are labelled with black squares.

ture for Mn3Ge by demonstrating that the measured polarisation matrices can only

be described by model (f).

6.2 Experimental methods

Mn3Ge single crystals were grown by the flux method by Hongyuan Wang30 and

Yanfeng Guo.31 Manganese powder (99.9%), germanium powder (99.99%) and cad-

mium pieces were mixed in a molar ratio of Mn:Ge:Cd = 7:2:48 and placed an

alumina crucible. This was sealed in a quartz tube under vacuum and heated to

950 ◦C in 5 hours. The temperature was maintained for 20 hours before being slowly

reduced to 650 ◦C at a rate of 2 ◦C/h. The quartz tube was subsequently removed

from the furnace to cool to room temperature before being centrifuged to separate

the single crystals from the cadmium flux. I characterised the structure and quality

30School of Physical Science and Technology, ShanghaiTech University and CAS-Shanghai Sci-

ence Research Center, Shanghai 201210, China.
31University of Chinese Academy of Sciences, Beijing 100049, China.
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Figure 59: (a) The crystal alignment was checked on the neutron Laue source

CYCLOPS (CYlindrical Ccd Laue Octagonal Photo Scintillator) at the ILL. The

Laue pattern corresponding to the crystal aligned with the b axis perpendicular to

the scattering plane is shown in (b). (c) The experimental set-up at the D3 beamline

with the CRYOPAD [218].

of the flux-grown single crystals with X-ray diffraction and SQUID magnetometry.

Elastic neutron scattering of Mn3Ge was performed on the D3 diffractometer

at the ILL (Grenoble, France) in the horizontal scattering geometry with Henrik

Jacobsen32 and Na vid Qureshi,33 who is the beamline scientist. The crystal was

initially mounted with the b axis vertical to access the (h 0 l) reflections and was

subsequently rotated by 90◦, with the c axis vertical, to study the (h k 0) family of

peaks [see Fig. 58].

As described earlier, given that the k = 0 magnetic structure is complex, we

have to examine these reflections with SNP. This was performed in the zero-field

polarimeter CRYOPAD [218]. It involves determining the magnitude and direction

of the polarisation of the scattered neutrons for incident neutron polarisations along

the principal directions x, y and z. Here x is along the scattering vector q, z is

32Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1

3PU, UK.
33Institut Laue-Langevin, 6 rue Jules Horowitz, 38042 Grenoble Cedex 9, France.
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Table 6: The full list of reflections studied in this work and the corresponding

incident and scattered polarisation components. Columns 1–3 and 4–6 correspond

to measurements performed in the (h 0 l) and (h k 0) planes respectively. For each of

the listed reflection, I obtain the 9 polarisation matrix elements, Pij. This involves

analysing the polarisation of the scattered neutrons along the 3 principal directions

j(=x, y, z) for incident neutron polarisations along i(= x, y, z). The principal axes

x, y and z are defined in Fig. 58(a). (∗ These reflections were repeated with the

incident and scattered polarisation reversed.)

(h 0 l) i j (h k 0) i j

(1 0 0) x, y, z x, y, z (1 0 0) x, y, z x, y, z

(1 0 1) x, y, z x, y, z (1 0 0)∗ −x,−y,−z −x,−y,−z

(1 0 2) x, y, z x, y, z (-2 1 0) x, y, z x, y, z

(1 0 0)∗ −x,−y,−z −x,−y,−z (-2 1 0)∗ −x,−y,−z −x,−y,−z

(1 0 1)∗ −x,−y,−z −x,−y,−z (1 1 0) x, y, z x, y, z

(1 0 2)∗ −x,−y,−z −x,−y,−z (1 1 0)∗ −x,−y,−z −x,−y,−z

(-1 0 -1) x, y, z x, y, z (-1 0 0) x, y, z x, y, z

(-1 0 -2) x, y, z x, y, z (2 -1 0) x, y, z x, y, z

(1 0 -1) x, y, z x, y, z (-1 -1 0) x, y, z x, y, z

perpendicular to the scattering plane and y orthogonal to both to complete the

right-handed Cartesian set [see Fig 58(a)].

To achieve this, the neutron beam is first polarised and monochromised by the

(1 1 1) Bragg reflection of a ferromagnetic Heusler crystal, Cu2MnAl, with the po-

larisation vector along ki, the incident wave vector. These polarised neutrons are

subsequently oriented along the principal directions34 by means of a nutator field

and precession field before being introduced into the zero-field sample environment,

achieved by cryogenically cooled Meissner shields. This ensures that any change in

polarisation of the neutrons comes from the scattering with the sample.

The polarisation analysis involves decomposing the polarisation of the scattered

neutrons into the three components along the principal axes. This polarisation

34Or more generally, along any direction.
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analyser comprises a beam nutator, precession coil and a 3He spin filter35 which

transmits the selected component and absorbs the other polarisation components.

The intensity of the transmitted polarisation component was estimated by a 3He

detector. This gives us the 9 matrix elements Pij for each Bragg peak which is

defined as the polarisation ratio of scattered neutrons along the j(= x, y, z) direction

to incident neutrons with polarisation vector parallel to the i(= x, y, z) direction.

To limit neutron depolarisation due to magnetic domain boundaries in the sam-

ple, the crystal was cooled to T = 2 K in an applied field of µ0H = 1 T along b from

room temperature before it was mounted in the CRYOPAD. Furthermore, I also

used incident neutrons with a relatively short wavelength of λ = 0.850 Å, which was

readily available at D3, a hot neutron source (T = 2000◦C).

6.3 Results and analysis

The flux growth produced shiny metallic rods [see insert of Fig. 58(a)] with hexag-

onal cross-sections and dimensions of up to 2 × 0.4 × 0.4 mm3 (length along the

crystal c axis). The full polarisation matrices for the various reflections are shown

in Fig. 60. The panels (a) and (c) correspond to measurements performed in the

(h 0 l) and (h k 0) planes respectively. For each reflection, I present the 9 elements

of the measured matrix Pij from left to right, Pxx, Pxy, Pxz, Pyx, Pyy, Pyz, Pzx, Pzy

and Pzz. I find that the neutrons suffer from negligible depolarisation. This is best

exemplified in the matrix elements Pzz for the (1 0 0)∗ reflection in Fig. 60(a) and Pyy

for peaks (1 0 0), (-2 1 0), (1 1 0)∗, (-1 -1 0) in Fig. 60(c) which are all almost unity.

Using the Mag2Pol program [214], Qureshi and I set up the 6 different magnetic

structure models depicted in Fig. 57. Magnetic domains were also incorporated in

each spin configuration model (giving rise to three domains) where all of the in-

plane Mn moments in each domain are rotated by ±120◦ about the c axis relative to

those in the other two domains. For each model (a)–(f), I calculated the associated 9

matrix elements for all of the measured reflections and refined the domain population

in a least-squares fit to the measured polarisation matrices of all the reflections. The

reduced χ2 values (χ2
red) obtained from 6 of the different refined models are tabulated

35The raw data were corrected for the decrease in the efficiency of the 3He spin filter cell based

on the magnitude of the neutron polarisation measured at weak magnetic reflection (3, 0, 4).
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Figure 60: Comparisons between observed and calculated polarisation matrix ele-

ments Pij for the Bragg peaks. Panels (a) and (c) correspond to model (e) for the

(h 0 l) and (h k 0) planes respectively. The corresponding panels for model (f) are

in (b) and (d). For each reflection, the symbol and bar represent Pxx, Pxy, Pxz, Pyx,

Pyy, Pyx, Pzx, Pzy and Pzz from left to right. (∗ These reflections were repeated with

the incident and scattered polarisation reversed.)
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Table 7: χ2 obtained from the refinement of the model to the measured polarisation

matrices.

(a) (b) (c) (d) (e) (f)

(h 0 l) 118434 577 1181 21173 298 365

(h k 0) 16561 9560 9559 9664 4564 113

in Table 7.

Although the SNP technique is generally not sensitive to the length of the mo-

ment [215], in this case, the nuclear and magnetic peaks coincide as the magnetic

propagation vector is k = 0. Hence I was also able to refine the length of the Mn

moments which is possible due to the interference between the magnetic and nuclear

terms [215].

For spin configuration models (a) and (d), I observe large discrepancies between

the observed and calculated matrix elements Pxz and Pyz in the following (h 0 l)

reflections: (1 0 0), (1 0 1), (1 0 2), (-1 0 -1), (-1 0 -2) and (1 0 -1). Moreover, the χ2
red

values obtained from the refinement of these models to the measured matrices are

significantly larger than those from the other models. Notably, the χ2
red for models

(a) and (d), respectively, are about 400 and 70 times larger than that for model (e)

[see Table 7]. Hence I can exclude spin configurations (a) and (d).

Models (b) and (c) also show strong disagreement between the observed and

calculated Pxy and Pzy matrix elements for the (1 0 0), (-2 1 0)∗, (1 1 0), (-1 0 0) and

(2 -1 0) reflections measured in the (h k 0) plane. The χ2
red for both spin configu-

rations are at least 80 times larger than that for model (f) [see Table 7]. These

models, too, can be ruled out.

This leaves me with models (e) and (f) to consider. I present the calculated po-

larisation matrices for both spin configurations in Fig. 60. For the (h 0 l) reflections,

there is strong agreement between the measured and calculated Pij [Figs. 60(a) ,(b)].

Moreover, in terms of the χ2
red values obtained from the refinement of the domain

population and Mn2+ moment length, both models provide a significantly better

description of the measured matrices compared to the other spin configurations

[Table 7]. However, as the calculated matrix elements from both models are very

similar, it is difficult to ascertain, solely based on the measurements in the (h 0 l)

137



plane, which model uniquely describes the magnetic structure of Mn3Ge.

This ambiguity can be resolved by considering the (h k 0) reflections. For in-

stance in model (e), there are disparities between the measured and calculated Pxy

and Pzy matrix elements for the (-2 1 0)∗, (1 1 0) and (2 -1 0) reflections [Fig. 60(c)].

Conversely, this discrepancy is not seen in model (f), which fits the measured ma-

trices very well [Fig. 60(d)] with a χ2 that is at least one order of magnitude smaller

than that of all the other models [Table 7]. This strongly suggests that the Mn2+

moments in Mn3Ge orders with a magnetic structure shown in Fig. 57(f).

For model (f), the estimated moment length is 2.69(2)µB, which larger than

the 1.93µB that was predicted in an earlier study [210]. This discrepancy can arise

from the fact that this previous study did not account for domains, which might

understate the net moment in Mn3Ge. The domain populations that give the best fit

to the data for neutron scattering in the (h 0 l) plane are 65.9%, 12(1)% and 22(6)%,

respectively. The significantly larger population of one domain over the other two

in-plane orientations of Mn spins is consistent with the sample being cooled from

room temperature in a 1 T field along the crystal b axis.

The estimated domain populations for the data obtained in the (h k 0) scattering

plane are 42.3%, 14(2)% and 44(5)%. The domain populations are relatively more

uniform as the sample was not cooled in a field for this scattering geometry.

6.4 Discussion

Since the discovery of the large AHE in Mn3Ge [193, 194], there have been many

theoretical studies attempting to explain the source of this phenomena [56, 193,

194, 201, 202, 203, 204, 205]. As the magnetic structure of Mn3Ge was not known,

it was difficult for these studies to satisfactorily address the discrepancies between

the calculated and measured AHE. In fact, the study in Ref. [193] considered two

different magnetic structures and found that they gave different estimates of AHE.

Some studies even speculated that this AHE arises from the presence of Weyl nodes

in the Brillouin zone [56, 193, 203, 204, 205]. Again, band structure calculations for

different Mn spin configurations were made in these studies as the actual ground

state magnetic structure was not known. For instance, Yang et al. found that

different Mn order gave rise to Weyl points in different locations of the Brillouin
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zone [56, 203]. In fact there is even a study for which there are no Weyl nodes

predicted [202]. Furthermore, it is difficult to ascertain which band structure cal-

culation best describes the electronic bands in Mn3Ge with ARPES as the Mn 3d

states are strongly correlated, giving rise to bands which are smeared out near EF

as seen in the sister compound Mn3Sn [88].

My hope is that the knowledge of this magnetic structure would lead to more

fruitful theoretical studies of the origin of the large AHE in Mn3Ge. To that end, I

sought the help of Fernando de Juan36 to study the spin Hamiltonian describing the

magnetic order in Mn3Ge, to (i) understand the origin of this in-plane anisotropy

and (ii) study how this structure can give rise to the large anomalous Hall effect in

Mn3Ge.

36Donostia International Physics Center, 20018 Donostia-San Sebastian, Spain; IKERBASQUE,

Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain.
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Chapter 7

Conclusion

When I first embarked on my thesis (in 2016), there were many theoretical

studies predicting the existence of quasiparticles that behave like Weyl fermions in

magnetic semimetals. However, as many of these assertions were based on ab initio

calculations, they warranted experimental verifications. The overarching aim of my

work is to address some of those outstanding questions by identifying the magnetic

structure of some of these candidate materials and the implications it poses in terms

of the topology of the electronic band structures.

In my thesis, I have investigated four different crystalline materials37 that display

spontaneous magnetic order and electronic bands that are predicted to be topolog-

ically non-trivial. In this concluding chapter, I outline the ways in which the body

of work presented in my thesis has advanced our current understanding of these

materials.

37These materials have different chemical constituents, magnetic ordering temperatures, crystal

space groups (P63/mmc, P 3̄m1, P4/mmm) and magnetotransport properties.
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7 Conclusion

7.1 EuCd2Sb2

I identified, computationally with DFT ab initio calculations, that the crystalline

C3 symmetry (along the c axis) is crucial for the stabilisation of Dirac nodes in

the electronic spectrum of EuCd2Sb2. I then demonstrated experimentally, with

resonant magnetic X-ray diffraction, how the C3 symmetry is spontaneously broken

below the Néel temperature due to the in-plane orientation of the Eu moments,

giving rise to avoided band crossings near the chemical potential. I augmented these

with magnetotransport and magnetisation measurements, to map out the µ0H − T

phase diagram of EuCd2Sb2.

I also demonstrated that the electronic band calculations presented in Ref. [133],

particularly the position of the Eu 4f bands with respect to energy, is wrong as it

failed to account for the strong correlations in the europium bands. Since then, there

have been two independent ARPES studies which demonstrate that the measured

electronic spectrum in EuCd2Sb2 agrees strongly with my DFT calculations [60,

219].

More significantly, I have identified that EuCd2Sb2 has the potential for realising

non-trival topological bands and how the ground state magnetic structure is crucial

for controlling these exotic quasiparticles. Very recently, Su et al. [60] predicted

that EuCd2Sb2 can harbour Weyl fermions if the Eu moments are fully polarised

along the c axis. This suggests that there is a possibility of creating Weyl fermions

in single crystalline EuCd2Sb2.

There are now efforts to mechanically exfoliate thin layers of EuCd2Sb2 crystal

onto back-gated field effect transistors (FETs) to tune the Fermi energy to the

position of the topological nodes.

7.2 EuCd2As2

A common theme in the concluding remarks of the key review articles concerning

the field of topological materials is the call to search for better Weyl semimetal

candidate materials [3, 9, 11, 12]. The ideal Weyl crystal is one in which there

is a minimum number of Weyl nodes, namely two, in the Brillouin zone, at the
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chemical potential in an energy window free from other bands. I have identified

that crystalline EuCd2As2, in an applied field along the crystal c axis with a field

of B > Bc, fulfills all three criteria – the first example of an ideal WSM. This

prediction was supported with evidence from ARPES, high-field magnetotransport

data and DFT calculations. The exchange-induced ideal Weyl semimetallic phase

in EuCd2As2 can serve as a test bed for fundamental studies of Weyl physics.

In the final stages of preparing the manuscript detailing my work on EuCd2As2,

I became aware of an ab initio study on the same compound, which predicted the

same ideal WSM phase (albeit without any experimental verifications) induced by

magnetic exchange [59]. It is encouraging that Wang’s group (see Ref. [59]), which

is independent of mine, arrived at the same conclusions. Moreover, some time

after the submission of my manuscript, a paper on the ARPES study of EuCd2As2

appeared [219]. Ma et al. mapped the electronic spectrum of EuCd2As2 at three

temperature regimes: (i) T < TN, the AFM phase, (ii) T > 100 K, the true PM

phase, and (iii) TN < T < 100 K, a PM phase with FM correlations. The measured

spectrum in the AFM phase of the study agrees well with our data. Intriguingly,

Ma et al. also reported a transient WSM phase in the temperature regime TN <

T < 100 K, induced by the FM correlation. The average position of the Weyl nodes,

created by the fluctuating Eu moments, agree well with my predictions. This too,

is an encouraging result, as it complements my findings.

Nonetheless, there is a strong impetus to improve the crystal quality such that

the chemical potential is at the position of the induced Weyl nodes. Ideas include,

mechanical exfoliation [220], filling Cd vacancies in an excess of cadmium vapour,

doping the EuCd2As2 crystal with Yb, creating heterostructures with normal metal-

lic layers [221], etc. Several of these efforts are currently underway and are part of

future studies of EuCd2As2.

7.3 YbMnBi2

Weyl semimetals can occur in two types of crystal, one having broken spatial in-

version symmetry, and the other broken time-reversal symmetry. Examples of the

former type were found in 2015, the first being TaAs [15, 36, 37, 38], but for a long

while, there was no confirmed realisation of the latter type [11].

143



This was the case until Borisenko et al. [74] claimed to have found evidence

(from ARPES measurements) for Weyl nodes in crystalline YbMnBi2, the first mag-

netically induced WSM. The study proposed that the Weyl nodes are created via

spontaneous time-reversal symmetry breaking due to a 10◦ degree canting of the Mn

moments away from the crystal c axis. Since then, there have been many studies

citing YbMnBi2 as a WSM (For example, see Refs. [84, 222, 223, 224, 225]). Other

studies were more cautious and cited YbMnBi2 as a candidate WSM instead (see

Refs. [192, 226, 227, 228, 229]). In fact, there is good reason for their expressed cau-

tion: the purported Fermi arcs, observed in the measured electronic spectrum with

ARPES, are difficult to distinguish from the hole pocket that is immediately adja-

cent to the arcs [74]. Furthermore, there was no strong experimental evidence for the

proposed canting of the Mn moments. Subsequent neutron diffraction [78, 79, 177]

and optical [75, 76] studies of YbMnBi2, aimed at verifying the claims of Borisenko et

al. [74], were, however, inconclusive.

I prove definitively, with single crystalline elastic neutron diffraction measure-

ments, that the creation of Weyl nodes in YbMnBi2 by the time-reversal symmetry

breaking mechanism suggested by Borisenko et al. can be excluded. My hope is

that this will stop fuelling the speculation that YbMnBi2 hosts Weyl fermions in

the bulk.

The next natural step in the exploration of the compounds within the 112-

pnictide family is to map the spin-wave excitations of YbMnSb2 and EuMnPn2 (Pn

= Sb, Bi). All three compounds display signatures of a strong coupling between

magnetism and the charge carriers in the pnictide layer [74, 81, 82, 83, 87, 191].

While the magnon spectrum of YbMnSb2 can be measured with inelastic neutron

spectroscopy, resonant inelastic X-ray scattering will be a more suitable probe for

EuMnPn2 as these contain the strongly neutron absorbing ion Eu.

7.4 Mn3Ge

Some theoretical studies have attributed the large anomalous Hall effect observed

in the antiferromagnetic Mn3Ge [193, 194] to the existence of Weyl nodes in the

hexagonal Brillouin zone [56, 193, 203, 204, 205]. Given that the true ground state

magnetic structure has not yet been identified, these theoretical studies are based
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on magnetic structures predicted by DFT. Experimentally, the standard powder

neutron diffraction techniques are insufficient to conclusively determine the complex

spin configuration of the Mn moments.

I performed spherical neutron polarimetry on single crystalline Mn3Ge and

uniquely identified the ground state magnetic structure of the Mn spins. Prior

to this, the prevailing model (since 1990) of the magnetic structure of the Mn3X

(X = Ge, Sn, Si) family of compounds was presented by Brown et al. [209]. It

was based on the SNP of Mn3Sn, which is isostructural to Mn3Ge. However that

study was not conclusive as two different models describe the measured data set. In

my Mn3Ge study, I demonstrated that the set of peaks measured within the (h 0 l)

plane in Ref. [209] (for Mn3Sn) was insufficient to uniquely determine the ground

state structure but additional reflections, which are accessible in the (h k 0) plane,

are sufficient to solve it. I also show that the premagnetisation of the sample prior

to the measurements, suggested by Brown [209], does not help in the elucidation of

the structure.

My hope is that this work will invite more theoretical studies to determine the

origin of the large anomalous Hall effect Mn3Ge and aid in the incorporation of this

material into a viable topological antiferromagnetic spintronic device. To further the

work on Mn3Ge, I propose studying the spin structure with Mn3Ge under pressure,

as was done on a powdered sample of Mn3Ge, where a new magnetic phase – with

all the Mn moments pointing along the crystal c axis – was identified [230]. This

can potentially lead to a pressure-induced shift of the position of the Weyl nodes.

145



146



References

[1] H. Weyl. Elektron und Gravitation. I. Zeitschrift fur Physik, 56:330–352, 1929.

[2] P. A. M. Dirac and R. H. Fowler. The quantum theory of the electron. Proc.

Royal Soc. Ldn. Series A, 117(778):610–624, 1928.

[3] M. Z. Hasan et al. . Discovery of Weyl Fermion Semimetals and Topological

Fermi Arc States. Ann. Rev. Condens. Matter Phys., 8(1):289–309, 2017.

[4] M. Antonello et al. . Measurement of the neutrino velocity with the ICARUS

detector at the CNGS beam. Phys. Lett. B, 713(1):17–22, 2012.

[5] T. Adam et al. . Measurement of the neutrino velocity with the OPERA

detector in the CNGS beam. JHEP, 10:093, 2012.

[6] M. C. Gonzalez-Garcia and M. Maltoni. Phenomenology with massive neutri-

nos. Phys. Rep., 460(1):1–129, 2008.

[7] R. A. Battye and A. Moss. Evidence for Massive Neutrinos from Cosmic Mi-

crowave Background and Lensing Observations. Phys. Rev. Lett., 112:051303,

2014.

[8] C. Herring. Accidental Degeneracy in the Energy Bands of Crystals. Phys.

Rev., 52:365–373, 1937.

[9] A. A. Burkov. Weyl metals. Ann. Rev. Condens. Matter Phys., 9(1):359–378,

2018.

[10] A. A. Burkov. Topological semimetals. Nat. Mater., 15:1145–1148, 2016.

[11] N. P. Armitage, E. J. Mele, and A. Vishwanath. Weyl and Dirac semimetals

in three-dimensional solids. Rev. Mod. Phys., 90:015001, 2018.

[12] B. Yan and C. Felser. Topological Materials: Weyl Semimetals. Ann. Rev.

Condens. Matter Phys., 8(1):337–354, 2017.

[13] W. Shuo et al. . Quantum transport in Dirac and Weyl semimetals: a review.

Adv. Phys.: X, 2(3):518–544, 2017.

147



[14] H. B. Nielsen and M. Ninomiya. The Adler-Bell-Jackiw anomaly and Weyl

fermions in a crystal. Phys. Lett. B, 130(6):389–396, 1983.

[15] S.-M. Huang et al. . A Weyl Fermion semimetal with surface Fermi arcs in

the transition metal monopnictide TaAs class. Nat. Comms., 6:7373, 2015.

[16] S. Rao. Weyl semi-metals: A short review. J. Ind. Inst. Sci., 96:2, 2016.

[17] R. J. Cava et al. . Crystal structure and chemistry of topological insulators.

J. Mater. Chem. C, 1:3176–3189, 2013.

[18] L. M. Schoop, F. Pielnhofer, and B. V. Lotsch. Chemical Principles of Topo-

logical Semimetals. Chem. Mater., 30:3155–3176, 2018.

[19] A. Bansil, H. Lin, and T. Das. Colloquium: Topological band theory. Rev.

Mod. Phys., 88:021004, 2016.

[20] M. G. Vergniory et al. . A complete catalogue of high-quality topological

materials. Nat., 566:480–485, 2019.

[21] M. Z. Hasan and C. L. Kane. Colloquium: Topological insulators. Rev. Mod.

Phys., 82:3045–3067, 2010.

[22] O. Vafek and A. Vishwanath. Dirac Fermions in Solids: From High-Tc

Cuprates and Graphene to Topological Insulators and Weyl Semimetals. Ann.

Rev. Condens. Matter Phys., 5(1):83–112, 2014.

[23] B. Keimer and J. E. Moore. The physics of quantum materials. Nat. Phys.,

13:1045, 2017.

[24] F. Tang et al. . Topological materials discovery by large-order symmetry

indicators. Sci. Adv., 5(3):eaau8725, 2019.

[25] X. Zhou et al. . Topological crystalline insulator states in the Ca2As family.

Phys. Rev. B, 98:241104, 2018.

[26] B. Bradlyn et al. . Topological quantum chemistry. Nat., 547:298, 2017.

[27] K. Hartnett. The Hidden Twist to Making a Möbius Strip. Quanta Mag.,
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8 Appendix

8.1 Derivations for dσ
dΩ

The derivations for the expressions that describe the scattering cross-section in the

soft X-ray resonant scattering in EuCd2Sb2 are based on the work by Hill and

McMorrow [118]. I start with an expression of the scattering cross-section at the

M5 resonant edge which is given by,

dσ

dΩ
=
∑
λλ′

Pλ
∣∣〈λ′ ∣∣MXRES

E1

∣∣λ〉∣∣2
=
∣∣〈MXRES

E1

〉∣∣2
=

∣∣∣∣∣
〈
a

∣∣∣∣∣∑
n

eiQ·rnfXRESnE1

∣∣∣∣∣ a
〉∣∣∣∣∣

2

=

∣∣∣∣∣
〈
a

∣∣∣∣∣∑
n

eiQ·rn
[
(ε̂′ · ε̂)F (0) − i (ε̂′ × ε̂) · ẑnF (1) + (ε̂′ · ẑn)(ε̂ · ẑn)F (2)

]∣∣∣∣∣ a
〉∣∣∣∣∣

2

.

The first term refer to the charge Bragg peaks while the last two terms refer to the

magnetic dipolar interactions, where rn refers to the lattice sites of the magnetic

species, Q is the scattering vector, ẑn is the magnetic moment at site n, |a〉 and 〈a|

is the initial and final state of the crystal respectively. Here ε̂ and ε̂′ refers to the

polarisation of the incident and scattered X-ray respectively with λ and λ’ being the

corresponding wavelengths. It is not necessary, as it will become apparent later on

in the derivation, to compute the dimensionless38 co-efficients F (0), F (1) and F (2).

When the incident radiation is tuned to the resonance of the species, we can assume

that the dipolar terms will dominate to give,

dσ

dΩ
'

∣∣∣∣∣
〈
a

∣∣∣∣∣∑
n

eiQ·rn
[
−i (ε̂′ × ε̂) · ẑnF (1) + (ε̂′ · ẑn)(ε̂ · ẑn)F (2)

]∣∣∣∣∣ a
〉∣∣∣∣∣

2

.

38These co-efficients are the strongly energy dependent resonant strengths for the dipole transi-

tions [115]
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Resolving the magnetic moments along U1, U2, U3, I obtain the expressions for

(ε̂′ × ε̂) · ẑn and (ε̂′ · ẑn)(ε̂ · ẑn) which are given by

(ε̂′ × ε̂) · ẑn =

 0 z1 cos θ + z3 sin θ

z3 sin θ − z1 cos θ −z2 sin 2θ

 ,
(ε̂′ · ẑn)(ε̂ · ẑn) =

 z2
2 −z2(z1 sin θ + z3 sin θ)

z2(z1 sin θ + z3 sin θ) − cos2 θ(z2
1 tan2 θ + z2

3)

 .
Here the matrix elements refer to the scattering from the various channels,

σ → σ′ σ → π′

π → σ′ π → π′

 ,
with U1, U2, U3 defined as,

U1 = −k̂× k̂′/ sin 2θ,

U2 = k̂ + k̂′/2 cos θ,

U3 = k̂− k̂′/2 sin θ. (16)

To elucidate if the magnetic moments are in-plane or perpendicular to the plane, I

rotate the sample about the c axis. In the case of the Γ5 irrep where z3 = 0, we

have dσ/dΩ as,

∣∣∣∣∣∣
〈
a

∣∣∣∣∣∣
∑
n

eiQ·rn

−iF (1)

 0 z1 cos θ

−z1 cos θ −z2 sin 2θ

+ F (2)

 z2
2 −z1z2 sin θ

z1z2 sin θ −z2
1 sin2 θ

∣∣∣∣∣∣ a
〉∣∣∣∣∣∣

2

.

Here, I describe the magnetic moment as,

ẑn = cos(τ · rn)U1 + sin(τ · rn)U2.

When the incident beam is polarised with the σ scattering configuration, the mea-

sured signal intensity is given by the contributions from the σ → σ′ and the σ → π′

channels which is given by,
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dσ

dΩ

∣∣∣∣
σΓ5

=

∣∣∣∣∣
〈
a

∣∣∣∣∣∑
n

eiQ·rn sin2(τ · rn)F (2)

∣∣∣∣∣ a
〉∣∣∣∣∣

2

+

∣∣∣∣∣
〈
a

∣∣∣∣∣∑
n

eiQ·rn
[
i cos(τ · rn) cos θF (1) + sin(τ · rn) cos(τ · rn) sin θF (2)

]∣∣∣∣∣ a
〉∣∣∣∣∣

2

= 1/4F (2)2δ(Q−G)

+ 1/4 cos2 θF (1)2δ(Q−G± τ)

+ 1/16
(
sin2 θ + 1

)
F (2)2δ(Q−G± 2τ).

If the incident polarisations is in the π scattering configuration we obtain contribu-

tions from the π → σ′ and the π → π′ channels which is given by,

dσ

dΩ

∣∣∣∣
πΓ5

=

∣∣∣∣∣
〈
a

∣∣∣∣∣∑
n

eiQ·rn
[
i cos(τ · rn) cos θF (1) + sin(τ · rn) cos(τ · rn) sin θF (2)

]∣∣∣∣∣ a
〉∣∣∣∣∣

2

+

∣∣∣∣∣
〈
a

∣∣∣∣∣∑
n

eiQ·rn
[
i sin(τ · rn) sin 2θF (1))− cos2(τ · rn) sin2 θF (2)

]∣∣∣∣∣ a
〉∣∣∣∣∣

2

= 1/4 sin4 θF (2)2δ(Q−G)

+ 1/4
(
cos2 θ + sin2 2θ

)
F (1)2δ(Q−G± τ)

+ 1/16
(
sin2 θ + sin4 θ

)
F (2)2δ(Q−G± 2τ).

Likewise, I repeat this treatment with the Γ3 irrep where z1 = z2 = 0. Here

dσ/dΩ is given by,

∣∣∣∣∣∣
〈
a

∣∣∣∣∣∣
∑
n

eiQ·rn

−iF (1)

 0 z3 sin θ

z3 sin θ 0

+ F (2)

0 0

0 −z2
3 cos2 θ

∣∣∣∣∣∣ a
〉∣∣∣∣∣∣

2

.

If I take the magnetic moment to be,

ẑn = sin(τ · rn)U3,

the corresponding expression for dσ/dΩ in the σ → σ′ and the σ → π′ channel is

given by,

dσ

dΩ

∣∣∣∣
σΓ3

=

∣∣∣∣∣
〈
a

∣∣∣∣∣∑
n

eiQ·rni sin(τ · rn) sin θF (1)

∣∣∣∣∣ a
〉∣∣∣∣∣

2

= 1/4 sin2 θF (1)2δ(Q−G± τ),
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while the expression for dσ/dΩ in the π → σ′ and the π → π′ channel is given by,

dσ

dΩ

∣∣∣∣
πΓ3

=

∣∣∣∣∣
〈
a

∣∣∣∣∣∑
n

eiQ·rni sin(τ · rn) sin θF (1)

∣∣∣∣∣ a
〉∣∣∣∣∣

2

+

∣∣∣∣∣
〈
a

∣∣∣∣∣∑
n

eiQ·rn sin2(τ · rn) cos2 θF (2)

∣∣∣∣∣ a
〉∣∣∣∣∣

2

= 1/4 sin2 θF (1)2δ(Q−G± τ)

+ 1/16 cos4 θF (2)2δ(Q−G± 2τ).
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