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Abstract

Understanding quantum many-body behaviours such as exotic phases and spectro-
scopic properties in quantum materials and molecular systems is a long-standing
problem of both fundamental and practical interest in quantum physics. This under-
standing provides insights into the true underlying physics of quantum many-body
systems, aids in the prediction of the microscopic and macroscopic properties of those
systems, and also advances the rational design and synthesis of novel materials. How-
ever, our ability to understand quantum many-body behaviours has hitherto been
limited, due to the excessive demands imposed on classical computing by the inher-
ent complexity of describing and analysing those behaviours. While the advent of
quantum computing has opened up new possibilities for examining these questions,
the current generation of quantum technology does not yet present a feasible, stan-
dalone way to solve the above problem. However, a fusion of classical and quantum
approaches could arguably provide a viable way of exploring interesting quantum phe-
nomena. The central objective of this thesis is to achieve such a synthesis in practice,
and to establish a corresponding framework for the study of quantum many-body sys-
tems. One area of particular interest is the intersection between quantum computing
and spectroscopy, specifically in terms of the latter’s potential to greatly assist in the

investigation of quantum many-body phenomena.

Quantum many-body problems in general can be divided into two classes, static and
dynamic problems, which correspond to the estimation of eigenstate properties (such
as eigenenergies and order parameters in different phases), and dynamical properties
(such as response to an external field). In Part II, I present a number of approaches
to solve these static and dynamic problems. I initially establish a quantum comput-
ing framework based on hybrid quantum-classical tensor networks, which incorporate
the inherent advantages of classical tensor networks and quantum computing to rep-
resent the quantum system. I then demonstrate how eigenstate properties can be
estimated by a randomised linear-combination-of-unitary method, termed algorith-
mic cooling, with at most one ancillary qubit; this achieves a logarithmic circuit
complexity O(log(1/¢)) with respect to precision ¢ in eigenstate property estimation,
and reaches the Heisenberg limit in eigenenergy estimation. Turning to dynamic

problems, I present an adaptive product formula approach to construct a low-depth



quantum circuit for quantum dynamics simulation. I further show how to enable
large-scale dynamics simulation based on hybrid tensor networks, followed by a per-

turbative approach to simulating quantum many-body dynamics.

In Part III, I first demonstrate how spectroscopic features of quantum systems can be
probed. Equipped with the framework and methods established and developed in this
thesis, I study quantum many-body phenomena, and excitation spectra in interacting
bosons, fermions, and quantum spins through numerics and experiments. In Part IV,
the quantum resources required for the application of quantum computing to realistic
problems in the near-future are assessed, together with the challenges that accompany
such application. This encompasses a discussion of the estimated resources needed for
estimating eigenstate properties of spins, fermions and molecules, in respect of both
noisy quantum processors and fault-tolerant quantum computers. I then address
some of the inherent challenges of using near-term noisy quantum devices, such as
encountering unavoidable quantum process errors and statistical errors, by applying
error mitigation, and efficient grouping measurement schemes proposed in this thesis.
Finally, I conclude with a few remarks on the development of quantum computing in
solving quantum many-body systems, and I pose outlooks for further research in this
field.
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Chapter 1

Introduction

1.1 Background and motivation

Characterising quantum many-body behaviour such as exotic phases and collective excitations in
quantum materials and molecular systems is a long-standing problem of theoretical and practical
interest in quantum physics. Accurate simulation of quantum many-body systems provides us
with valuable physical insights into their exotic behaviour. It helps us predict the microscopic
and macroscopic properties of quantum many-body systems and unveil the underlying physics. In
addition, it also has the potential to advance the rational design and synthesis of novel materials,
which could in turn accelerate industrial development in many areas. The ability to accurately
understand and further predict properties of quantum many-body systems, including materials
and molecules, is consequently a central topic in quantum physics of both scientific and industrial
interest.

A general quantum many-body system with nontrivial interactions is believed to be hard to
compute classically. In this context, “computing” of a quantum many-body system is a general
term which encompasses a broad range of problems, including the computation of the system’s
eigenstates or dynamic properties. There are substantial challenges involved in the description
and computation of quantum systems. For instance, the Hilbert space of a quantum system grows
exponentially with the system size. This exponential explosion is in general unavoidable, due to
the quantum nature of the system. Unlike classical systems whose evolution can be described by
a single trajectory in phase space, quantum many body systems can be difficult to characterise,
and hence to solve, due to the exponential complexity of the Hilbert space size. Although
approximations are available for specific problems, such as the mean-field approximation, which
renders them classically solvable, these approximations have some limitations, and may not
always be suitable for application to a general quantum many-body problem. Indeed, finding the
ground state energy of a k-local (k > 2) Hamiltonian belongs to the computational complexity

class nondeterministic polynomial (NP) time complete! [2-5]; solving a quantum many-body

! An n-qubit Hamiltonian H = >, Hi is k-local if H; acts nontrivially on at most k qubits. The Ising spin glass,
which is a special case of the 2-local Hamiltonian problem, is NP-hard [1].



problem remains a challenge in general.

A potential solution to this problem is the creation of an entirely new type of computer.
This idea was clearly articulated in a lecture by Richard Feynman in 1982 [6], in which he
set out a generic definition of a machine whose operations are, in principle, quantum. Feynman
postulated that this system, which he termed a quantum computer, would be built out of quantum
mechanical elements. There are various experimental platforms and instruments that can be
regarded as quantum computers [7], including ultracold atoms in optical lattices, trapped ions,
nuclear spins, neutron spectroscopy, superconducting circuits, photonic waveguides, and spins
in semiconductors [8-11]. Depending on its ability to deal with universal problems as opposed
to task-specific problems, this new class of computers is generally divided into two categories:
digital quantum simulators and analogue quantum simulators. Digital quantum simulators can
be regarded as a natural generalisation of digital classical computers [7,12,13]. Digital quantum
simulators allow universal quantum operations on an ensemble of well-defined qubits, and are
usually referred to as universal quantum computers as well. A universal quantum computer offers
a universal simulation capability, and can be programmed to execute various tasks. The other
category of quantum computer is the analogue quantum simulator, which directly emulates the
target system by mapping it to specialised quantum hardware. They sacrifice the universality of
solving general problems, but instead simulate specific systems in an analogue fashion. While its
operations are restricted, analogue quantum simulation enables us to probe certain many-body
phenomena which classical computers are incapable of examining as a result of limitations in
computing power.

Nevertheless, machines capable of carrying out quantum operations were in existence, and
use, prior to the conceptual development of quantum simulation. One example of this can
arguably be found in spectroscopy. Spectroscopy initially began as the study of the interaction
between matter and an external excitation, and was subsequently established as an experimental
means to probe matter through external perturbations, such as electric or magnetic fields. In this
thesis, the definition of spectroscopy also encompasses the characterisation of a generic quantum
system. It is worth noting the differences and similarities between spectroscopy and quantum
simulation. On one hand, quantum simulation relies on the usage of quantum devices to emulate
the behaviour of another quantum system of interest (e.g. Hubbard models). Therefore, quantum
simulation is a virtual rather than a real probe, and consequently differs from spectroscopy. On
the other hand, spectroscopy and analogue quantum simulation share similarities in both their
operation and goals. Intuitively, they both follow the rules of quantum mechanics, and detect
features of quantum systems by measurement. For instance, in inelastic neutron scattering, the
observable is the dynamical structure factor, with the measurement outcome detected by counting
the scattered neutrons with different momenta [14,15]. Analogue quantum simulators are built

out of an ensemble of physical elements (qubits). These qubits evolve under certain driving



Hamiltonians, which are realised by applying external perturbations, and simulation results are
obtained by measuring the qubits, similar to that in spectroscopy experiments. In addition,
we can pursue an engineered approach to spectroscopy [16-21] which can be used to identify
and characterise eigenstate properties of quantum systems through measurements on the time-
evolved states (such as quench spectroscopy [16,19]). This experimental technique of engineered
spectroscopy shares similarities with quantum simulation, from the viewpoint of their goals.

The possible applications of quantum computing have continued to broaden in scope. With
the development of quantum information science and computer science, these include linear alge-
bra, machine learning, principal component analysis, optimisation, finance, drug synthesis, and
many other areas [12,22-25]. This thesis will focus on the applications of quantum comput-
ing in quantum many-body problems, including materials and molecular systems, although the
methods developed in this thesis have potential applicability in other contexts.

Assuming the reality of quantum computers, a central question is whether we can use them
to solve a quantum many-body problem of interest rigorously and efficiently. The answer to
this seemingly straightforward question is not obvious. Finding the ground state of a quantum
many-body system, to take one example, remains problematic: deciding whether the ground
state energy of a 2-local Hamiltonian is greater than a; or smaller than as for a; > ag is quan-
tum Merlin-Arthur (QMA) complete [2], which is the quantum analogue of NP complete in
a probabilistic setting?. This indicates that solving a quantum many-body problem is still a
challenge, even for a quantum computer. Although this outcome for a general problem setting
appears disappointing, quantum computing retains considerable promise in its application to
special quantum many-body systems [12]. First of all, quantum computing could potentially
address the above ground state problem under certain assumptions. In this context, the com-
mon assumptions include a nonvanishing energy gap and a nonvanishing overlap of the initial
state and the target state. With these assumptions, we can use quantum algorithms, such as
quantum phase estimation [27,28], to obtain the ground state energy. There has been consid-
erable progresses in the development of quantum computing methods, including quantum phase
estimation [29, 30], quantum signal processing [31-34], and projection by linear combination of
unitaries (LCU) [29,35-39]. These algorithms are believed to hold significant promise to de-
liver solutions to ground state problems with a theoretical gurantee, given a sufficiently powerful
universal quantum computer. I will discuss the solution to the eigenstate problem, including
eigenstate preparation and eigenenergy estimation, in detail in Section 2.3 and Part II. The
use of quantum computing is also promising in respect to addressing some quantum dynamics
problems. For instance, simulating quantum dynamics for a local Hamiltonian belongs to the
computational complexity class bounded-error quantum polynomial time (BQP), which can be

efficiently simulated on a quantum computer in polynomial time [13,27].

2The name QMA was given to it in Ref. [26]. Problems in this complexity class are not believed to be efficiently
solvable with a quantum computer [4].



An interesting question is whether we are able to design quantum schemes that harness
the power of quantum computing in solving quantum many-body problems. Typical quantum
many-body problems of physical interest include strongly correlated electron systems, molecu-
lar systems, and quantum field theories. The central objective of this thesis is to facilitate the
study of these classically challenging quantum many-body tasks by employing the power of quan-
tum computing along with advanced classical computing approaches. This includes the use of
universal quantum computing methods, hybrid quantum-classical computing methods, quantum
simulation, and spectroscopy. It is an extremely rich research topic which draws on a wide va-
riety of interdisciplinary approaches, ranging from analytic theory and numerical simulation to
experiments with controlled quantum engineering.

In this thesis, I will develop several quantum computing and spectroscopic methods to esti-
mate the properties of correlated quantum systems, such as their energy spectra and dynamics,
which will subsequently enable us to access the exotic behaviour of many-body systems. Before
moving on to further discussion of these topics, I would like to give some comments on aspects
of quantum many-body physics and quantum computing. While quantum computing can be
employed to facilitate our understanding of a quantum system, the success of quantum com-
puting essentially depends on whether we could have a comprehensive, deep understanding of
the quantum nature of the target system. From the perspective of physics, the development of
quantum computing is not only a subject of computing, but also that of how we understand a
quantum many-body system, especially its quantum nature. The development of quantum com-
puting methods will in turn stimulate and advance the understanding of the underlying relation
between different descriptions of the correlation effects in many-body systems at a fundamental
level; it could potentially examine how quantum effects matter in relation to its interesting be-
haviour. From a practical point of view, it will enable a systematic study of quantum many-body
behaviours as well as the prediction of properties in real materials. In this thesis, I establish a
general, useful framework for describing and finding solutions to quantum many-body problems.
I also apply the methods developed in this thesis to explore quantum many-body systems of

interest, such as lattice models, magnetic materials and molecular systems.

1.2 Quantum computing of quantum many-body problems

The central objective of this section is to provide a description of quantum many-body problems
and a general recipe for dealing with them. Quantum many-body problems can be divided
into two general classes: static problems and dynamic problems. The first one corresponds to
estimation of the eigenstate energy or properties (e.g., magnetisation) of a quantum system. The

3

second one corresponds to property estimation for dynamical processes®, such as response to

3Note that this thesis is primarily concerned with simulation of quantum dynamics, in which the quantum state
is evolved under time evolution and the change of an observable is observed. In this context, this problem can also



an external field, quantum quenches, scattering, dissipation, and others. At this juncture it is
worth noting that we can only obtain an estimation of the outcome from a quantum computer
due to the uncertainty principle, as opposed to a definite outcome from a classical computer.
Moreover, the only way that the information from a quantum computer can be accessed is
through carrying out quantum measurements. This is the fundamental reason why problems are
defined in probabilistic, rather than deterministic, terms, through the use of property estimation.

This section builds up a framework for quantum computing of quantum many-body problems,
providing the foundation for the discussion in the thesis. I first formulate the two primary
quantum problems considered in this thesis in Section 1.2.1. In Section 1.2.2, I provide a paradigm
of quantum computing, which consists of four key components towards the solution of a quantum
many-body problem. The introduction to these components will be expanded in Chapter 2. The

methods developed herein will be further discussed in Part II in detail.

1.2.1 Problem description

Before moving on to a specific quantum many-body problem of interest in the real world, I
formulate the problem in a general way. The problem is to find the state |¥) of a quantum
system which is governed by the Hamiltonian H, described by its wave function ¥, and to
compute the expectation value of a physical quantity (\I/]O\\Il>, where O is a Hermitian operator
representing an observable of interest.

The static problems and dynamic problems will be elaborated upon now. The static problems
that are concerned in this thesis include eigenstate preparation and eigenenergy estimation. This
already includes a large variety of problems in condensed matter physics. For instance, we can
infer phase transitions by calculating a well-chosen order parameter?.

Consider an N-qubit system with the Hamiltonian H. The eigenstate |u;) and the corre-

sponding eigenenergy E; of the Hamiltonian satisfy,
H|w) = E;i|lu;), i=0,1,..,2Y —1. (1.1)

The task is to estimate the eigenenergy F;, and the eigenstate property, characterised by an
observable expectation on the target eigenstate <uZ|O|ul>, up to certain precision.

The second type of task is dynamical property estimation of a quantum state under evolution,
such as particle scattering and quench dynamics. The quantum state follows the laws of quantum

mechanics, and its dynamics in a closed system could be described by the Schréodinger equation

O [P(t)) = —iH |9(1)) (1.2)

be referred to as a dynamics problem, with an focus on dynamical property estimation.

4An order parameter is a measure which can be used to distinguish different phases, such as the magnetisation
in a magnetic system. It is usually the expectation value of an observable on the ground state at zero temperature
or an ensemble average at a finite temperature.




with the time derivative defined as 9y := 0/0t. In this thesis, for simplicity, we set & = 1 if there
is no ambiguity. If we further assume the Hamiltonian is time-independent, the quantum state

at time t in the Schrodinger picture is given by

() = e y(t = 0)) (1.3)

where [1(t = 0)) is referred to as the initial quantum state at ¢ = 0.

When U = e~ is an identity operation, i.e., H = 0, and we choose the initial state as an
eigenstate, the first task is reduced to a special case of Eq. (1.3). Therefore, Eq. (1.3) could be
regarded as a unified description of the two tasks. Part II of this thesis discusses the solutions
to these two tasks in detail.

This thesis mainly focuses on quantum dynamics in a closed system, in which quantum dy-
namics is described by unitary operations. These dynamical processes include quench dynamics,
response to external fields, scattering dynamics, etc. If we focus on a subsystem interacting with
another quantum system (bath), the subsystem dynamics is not unitary anymore. Instead of
describing the joint system by a unitary operator, the subsystem dynamics may be described by

the Lindblad master equation

duplt) = —i[H(t), p(t)] + AL [p(1)]. (14)

Here, the density matrix representation of this open system, p, is used, and L[p] = % > x(2Ly pLL—
LZL;C p— pLLLk) is the superoperator that describes inherent coupling with the environment with

dissipation strength A and coupling operator Ly.

1.2.2 A general recipe

There are three primary components in computing the quantum state and the corresponding
expectation value given by Eq. (1.3): the initial-state preparation, unitary evolution U = e,
and the final measurement. To obtain the solution given by Eq. (1.3), the classical computational
resources, such as storage and running time, grow exponentially with the increase in the system
size if the quantum state is treated in a classical state-vector form, and if there is no further
assumption on the quantum state.

Alternatively, a quantum computer could simulate this dynamical process natively. Assume
that the Hamiltonian is sparse and could be decomposed into a sum of local interaction terms
as H = ElL: 1 H;. The sparsity indicates that the number of terms in the Hamiltonian L grows
polynomially with respect to the system size N as L = O(Poly(NN)). This condition usually holds
in realistic applications, such as the Ising model L = O(N), the Hubbard model L = O(N), and
quantum materials and molecular systems L = O(N*) in general (see Section 2.1). Here, we
have the assumption of sparsity to make quantum simulation efficient, since the complexity of

quantum simulation generally depends on the number of terms in the target Hamiltonian L (see



Section 2.4 for more details). On a universal digital quantum computer, introduced in Section 1.1,
we could decompose the unitary evolution into elementary quantum operations up to an additive
error € and sequentially apply these elementary quantum operations to realise the joint evolution
within an error threshold. Here, it should be noted that the initial state preparation could itself
prove a challenge, if, for instance, we aim to prepare the ground state of the system.

To solve a specific problem, we should first encode the target problem into a problem that is
compatible with a quantum computer. That is to say, the original problem, such as a fermionic
or bosonic system, or a spin system, needs to be formulated into a qubit system with a proper
number of qubits. This problem encoding could be challenging in itself. For instance, when it
comes to real materials, the number of electrons in the material is of the order of Avogadro’s
number (O(1023)). It would thus be impossible to process such a huge number of particles on a
quantum computer. To enable quantum simulation on a quantum computer, the first step is to
identify the most relevant degrees of freedom that characterise the interesting behaviour of the
electrons. The description of a quantum system involves, for instance, a proper choice of bases
and the active space where the degrees of freedom at this level contribute dominantly to the
relevant physics. The construction of an effective Hamiltonian is discussed in Section 2.1.1. It is
worth emphasising that the identification of the relevant degrees of freedom of the target system
is not well defined. Usually, we can employ first-principle methods, such as density functional
theory (DFT) [40], to precompute the functional of the material in order to have a rough sense
of its properties, such as energy scale and energy dispersions. This first-principles method, albeit
imprecise, provides an effective description of the system that captures its main features.

To concentrate the discussion on quantum simulation, let us first assume that the Hamiltonian
has been constructed. In condensed matter physics, the behaviour in the free theory, i.e., where
there is no interaction, is usually well known, and serves as a good reference. We attempt to study
the behaviour in the interacting theory when the interaction is turned on. Successful methods
include perturbation theory, adiabatic evolution, etc, which have been widely used in a variety
of cases. These also inspires quantum algorithms for simulating the physics in the interacting
theory. This idea was first proposed in the context of quantum field theories by Jordan, Lee, and
Preskill [41].

The following is an example of quantum simulation of interacting systems at a high level:

1. Problem encoding: identification and construction of the effective Hamiltonian as well as

the encoding of the quantum system in a proper basis.
2. Initial state preparation in the interacting theory.
3. Hamiltonian simulation: time evolution of the initial state under the Hamiltonian.

4. Estimating the physical quantity of interest by quantum measurement.



Below, I elaborate on the implementation of each step. At Step 1, firstly the original problem
should be encoded into a qubit form that is compatible with quantum hardware, which comprises
the representation of the Hamiltonian and the quantum state. The important stage is to identify
the relevant degrees of freedom that captures the interesting physics, and have an effective de-
scription of the system Hamiltonian. Problem encoding depends on the choice of basis, such as
the spin-orbital basis in molecular systems, which should be adapted according to the purpose
of the simulation and the hardware to be used. In the context of bosonic lattice quantum field
theories, there are four common choices [42]: field basis or harmonic oscillator basis in coordinate
space or momentum space, respectively. For a fermionic problem, there are also many choices
of bases, such as plane wave basis, orbital basis, Wannier basis, and band basis, either in first
quantisation or second quantisation [12,43,44].

In Section 2.1.1, I demonstrate how to have an effective description of the Hamiltonian rep-
resented with a proper spin-orbital basis. Then, in Section 2.1.4, I show a general representation
of quantum many-body systems. Based on that, the original problem can be encoded into a
compact qubit form.

At Step 2, the initial state is prepared as the eigenstate of the interacting Hamiltonian. In
general, preparing an eigenstate could be a challenge even for a quantum computer. Therefore,
quantum algorithms need to be appropriately designed to achieve this goal. One solution is
to first prepare the state in the free theory at a mean-field level. In a condensed matter or a
quantum chemistry problem, we may first prepare a Hartree-Fock (mean-field) state as a reference
state, which is usually easy to prepare. In the Gaussian orbital basis in second quantisation
under proper fermionic-to-qubit mapping, for instance, the Hartree-Fock state is simply a tensor
product state in the Pauli basis. For the preparation of a wave packet in the free theory in first
quantisation, we may prepare the Gaussian vacuum state by the Kitaev-Webb algorithm on a
quantum computer [45], as discussed in [41] or the author’s paper [42]. A multi-particle wave
packet states with given momenta could be prepared from the creation operator acting on the
Gaussian vacuum.

The next step of eigenstate preparation is to evolve the initial state (a wave packet) in the free
theory to a state in the interacting theory, by slowly turning on the interaction. The time scale in
adiabatic evolution, for instance, is closely related to the energy gap of the quantum system [41].
There are various schemes for eigenstate preparation, which have been actively developed both
in theory and through experiments over the past few decades. These include adiabatic evolution,
phase estimation, quantum signal processing, linear combinational of unitaries, and variational
state preparation. In this thesis, I will introduce several representative schemes for the state
preparation in Section 2.3 and elaborate in Part II.

At Step 3, the initial state is evolved under the Hamiltonian drive. This is also referred to

as Hamiltonian simulation. I will introduce several typical Hamiltonian simulation schemes in



Section 2.4 and elaborate on them in Part II.

Finally, at Step 4, a physical quantity of interest is accessed by measuring the final quan-
tum state after evolution. Measurement should be implemented in polynomial time to preserve
quantum advantages. Due to statistical fluctuations set by the laws of quantum mechanics, we
require a proper number of measurements Ng to obtain the measurement accuracy to within
an error threshold €. To achieve estimation precision €, the number of measurements scales as
Ny = O(1/€?) [46], known as the standard quantum limit. A typical high-precision measurement
strategy is quantum phase estimation [4,46,47]. The estimation of a physical quantity can be ob-
tained by performing measurements on the ancillary qubits. The number of the ancillary qubits
is dependent on the desired simulation accuracy. In some instance, the scaling of measurement
complexity may be improved to Ny = O(1/¢) [48]. To avoid the cost of the increase in the circuit
depth and qubit number, we can directly measure the observable on the final quantum state.
For instance, we can decompose an arbitrary observable into Pauli bases, and consequently it
can be directly measured on a quantum computer without additional quantum circuits, which is

discussed in Chapter 10.

1.3 Quantum computing, quantum simulation, and spectroscopy

In Section 1.1, I briefly introduced the concept of quantum computing in a broad sense. Quan-
tum computing draws upon the principles of quantum simulation, allowing quantum operations
on carefully designed systems following the laws of quantum mechanics. On the basis of this
description, spectroscopy shares similarities with quantum simulation. From a theoretical point
of view, spectroscopy refers to observation of the energy spectrum of a quantum system, and
reveals its spectral information in either the time or the frequency domain. From a first principle
standpoint, this bears a resemblance to the two types of problems outlined in Section 1.2, static
problems and dynamic problems. I discuss the close relation between the static problem case
and the dynamic problem case from the viewpoint of spectroscopy in Section 1.3.3. From an
experimental point of view, spectroscopy is a well-established approach to probe and study the
properties of quantum matter. To measure the properties of a quantum system, such as elec-
tronic and magnetic structures and excitations, a generic spectroscopy approach is to perturb the
system by an external field, and observe the response to the perturbation. This is also similar
to quantum simulation in both the methodology and the actual allowable operations. Moreover,
spectroscopic methods provide valuable insights in studying both dynamic and static properties,
which are introduced in Section 1.3.3 and Section 7.3 and elaborated upon in Chapter 7 and
Appendix E.

This section extends the discussion in Section 1.1. I review quantum computing, quantum
simulation, and spectroscopy, and detail some aspects of their close relationships in the context

of quantum many-body problems introduced in Section 1.2.1.
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1.3.1 Spectroscopy

In Section 1.1, I introduced concepts of spectroscopy and quantum simulation and the relation
between them. The objective of quantum simulation is to emulate the behaviour of another
quantum system with a controllable quantum device, and therefore it is a virtual, rather than
real, probe. This is in contrast to spectroscopy, which usually refers to an experimental technique
to probe matter through external perturbations, such as electric or magnetic fields. Although
spectroscopy and quantum simulation are distinctive in their approach, they nevertheless have
a similar objective, namely characterising complex systems of interest. They are also currently
the most powerful means we have to achieve this objective, and it could therefore be interesting
to discuss the relation between the two.

Spectroscopy initially began as the theoretical and experimental study of the interaction
between matter and an external excitation, and it is used in this thesis to encompass the char-
acterisation of a generic quantum system, such as eigenstate properties. Experimental spec-
troscopy techniques include angle-resolved photoemission spectroscopy (ARPES), and neutron
or X-ray scattering spectroscopy. For example, in neutron scattering, we explore the properties
of materials by injecting neutrons into the materials and analysing the distribution of scattered
neutrons [15]. An incident neutron has an interaction with the nuclei or electrons (both spin
and orbital degrees of freedom) in the materials and is scattered following the laws of quantum
mechanics. The neutron here acts as both the external perturbation and the probe. Measure-
ment data is collected by counting the scattered neutrons with different energy and momenta,
with the results reflecting the collective behaviour of the target material. In quantum simulation
experiments, quantum operations are applied on an experimental platform, which can be super-
conducting circuits [8,49], trapped ions [9,50-52], Rydberg atoms [53,54], NMR [55-57], optical
lattice [58], etc. In analogue quantum simulation, the initial state is simply evolved under the
system Hamiltonian drive for a certain period of time, after which an observable is measured
and the statistical results are obtained. Observables include, for example, the magnetisation
and the particle number. We observe that spectroscopy and quantum simulation share certain
similarities in their operation: the scattering experiments described above are carried out using
an instrument which follows the rules of quantum mechanics and detects the quantum nature
of observables through measurement, as is also the case with a quantum simulator. However,
spectroscopy has limited degrees of freedom relative to that of analogue quantum simulators.
Conventional spectroscopy experiments are only able to perform restricted operations and the
system cannot be engineered. By contrast, an analogue quantum simulator usually permits an
engineering of quantum systems, such as single-qubit addressing (though not universal quantum
gates, as opposed to a digital quantum computer).

A recent notable development is the creation of spectroscopic techniques for engineered sys-

tems [16-20, 59], which have more controllable degrees of freedom. For example, Ref. [16,19,20]
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introduces quench spectroscopy, which can be used to look for spectral response with periodic
drive or quench dynamics. Spectroscopy also provides insights into quantum computing schemes
designed to obtain eigenstate information. The procedure can be summarised as follows. The
initial state is prepared, and then evolved under the simulator’s Hamiltonian. Following that,
the expectation values of a well-chosen observable O at different times t; are obtained by mea-

surements. By post-processing the expectation values {(O(¢;))} under time evolution, we can

obtain the eigenstate properties of the Hamiltonian (see [18-20] and Chapter 7).

1.3.2 Spectroscopy and Hamiltonian learning

As seen from the above discussion, the spectroscopic features of a system can be accessed by
carrying out spectroscopy experiments. Spectroscopy also serves as a useful tool for quantum
Hamiltonian learning problems. This section discusses the relation between spectroscopy and
Hamiltonian learning.

Recall the main procedure of the spectroscopy experiment. To study the properties of the
quantum material, we firstly precompute core properties of the material. Here, precomputation
refers to employing the available, relatively low-cost methods to calculate material properties
before we perform real experiments or high performance computing, which usually require a
significant allocation of resources. For instance, we can employ first-principle methods, such
as density functional theory (DFT), to precompute the functional of the material and have
an effective description of the system that captures its main features. While the Hamiltonian
may not be very accurate, with this prior knowledge, we can gauge the ground state and the
spectroscopic features that will be further revealed by spectroscopy experiments.

In spectroscopy experiments, the incident neutron interacts with the phonons or electrons in
the material, and the information about the material is then recorded by the scattered neutrons.
By comparing the experimental results obtained by measurements and the predicted results using
the effective Hamiltonian generated by DF'T, we can modify the effective Hamiltonian, determine
its parameters, and hence have a better description of the system. This could be regarded as a
Hamiltonian learning process.

The Hamiltonian generated by DFT can be expressed in a general form as
i

where P is a general operator, which, for instance, could be a spin operator, and h; characterises
its strength. Formally, the measurement outcome can be expressed as S5 = Tr(@p) where
the observable, for instance, could be the dynamical structure factor (see Section 1.3.3 and

Appendix E). With the measurement outcome, the idea of learning the effective Hamiltonian
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is to minimise the distance between the experimental outcome and the expectation value of
observables obtained by theoretical caculation over different parameters {h;},

tmin Tr(Op) — Tr(Opespm)- (1.6)

Here, the state is in thermal equilibrium, p = e—BH / Tr(e_BH ). Note that challenges remain in
connecting the data measured on the experimental apparatus with Hamiltonian learning. Ideally,
one should be able to directly interface the experimental apparatus with other quantum systems.
One proposal for Hamiltonian learning is using the interactive quantum likelihood evaluation
method, which requires interactive quantum operations on two coupled quantum systems, see
[60-62] for reference. This is clearly not the case for spectroscopy.

It is worth noting that given a universal quantum computer, a straightforward choice of learn-
ing a Hamiltonian is via quantum process tomography [27], which gives the complete knowledge
of the Hamiltonian. However, since the dimension of a many-body Hamiltonian grows exponen-
tially with the system size, carrying out a complete tomography of the Hamiltonian is costly
and formidable in real experiments [63]. Recently, a more efficient Hamiltonian learning proto-
col was proposed by the author [64], which requires only single-qubit operations for learning a
Hamiltonian, which can already be realised by most engineered quantum simulators.

Compared to digital quantum simulation, a spectroscopy experiment only permits very re-
stricted operations and measurements, in which only collective behaviour can be observed. In
addition, only classical data can be accessed, while further additional operations are not permit-
ted. Despite the inherent restrictions, spectroscopic approaches, as an alternative, have some
degrees of freedom, which includes temperature, pressure, external fields, etc. Learning effec-
tive physics from spectroscopic experiments would be an interesting future direction. I direct

interested readers to [65-67] for the Hamiltonian learning process in this specific context.

1.3.3 Dynamics, response, and spectral function

In this section I employ a selection of basic quantum mechanics formulae to provide a concrete
demonstration of the relation between dynamics, response and spectral function. This is to
provide the reader with a reference to existing theory, which serves as a basis for the development
of engineered spectroscopy and quantum computing methods outlined in this thesis.

To illustrate the relation between dynamic properties and static properties, I will first give
an illustrative example using the most basic quantum mechanics and spectroscopic analysis.
Suppose that the initial state is decomposed into the eigenbases {|u;)} of the Hamiltonian as
[o) = >, ci|ui). The state under real-time evolution in the Schrédinger picture is given by
[w(t)) = e ™t |ypg) = 3. c;eFit |u;), and we have the observable expectation on the time-

evolved state as

(W ()0l (t) ZC cje" BN (13| Oluy) (1.7)
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This simple toy example indicates that dynamic properties of the state could be accessed given
the eigenenergies of the Hamiltonian.

In a spectroscopy experiment, the system is in its thermal equilibrium [p, H | = 0; the state
is diagonal in the eigenbasis of H, which can be written as p = > o0 P [un) (up|. In thermal
equilibrium, p™ takes the explicit form as p™ = e #Fn/Z where f = T~! is the inverse of
temperature, Z is the partition function Z = Tr(e_fBH ), and the Boltzmann constant is set as
kp = 1 in natural units. The observable in neutron spectroscopy is the dynamical structure
factor, which is related to the unequal time correlator and reflects the dynamic property of the

system. Consider a generic unequal time correlator, which is defined as
C(tt') = (O1()0a(t), (18)

in the Heisenberg picture with O(t) = eftOeilt and O = O(t = 0). Here, the (---) is taken as
the canonical ensemble average. To simplify the notation, the eigenstate is denoted as |n) := |uy,).

Expanded on the eigenbasis of H , we have
C(t,t') = Te[O1(£)O2(') ]
— Z pn’nei(Ent—En/t’)e—iEm(t—t/) % <7’L’01 ’m> <m‘02‘n/>6n7n’

n,n’,m

=3 e En=En) =) 5 (0|04 m) (m| Osln).

n,m

(1.9)

Taking the Fourier transform of an unequal time correlator in the time domain, we have

1 ,
S(w) =g / dte O, 1)

=" " (n|Or[m) (m|Osln) x 8(Ey — By + w).

n,m

(1.10)

S(w) is also commonly referred to as the dynamical structure factor (or dynamic structure factor)
in the literature. For later convenience, the purely dynamic part of S(w) is defined as S (w) =
S(w) — (0102) 6(w). If the spectral weight (n|O;|m)(m|Oa|n) coupled by the two eigenstates
|m) and |n) is nonvannishing, the energy difference of these two coupled eigenstates |m) and |n)
could be revealed by finding the local maximum of the spectral function, which peaks sharply
at resonance, w = FE,, — E,. This discussion holds in the linear response regime where the
perturbation is weak. Otherwise, the eigenstates of the new perturbed Hamiltonian will be
different from the unperturbed eigenstates, as well as the eigenenergies.

The above discussion starts from a time-dependent correlation function as a generic quantity
reflecting the dynamics of the quantum system. Below, I will briefly review how this quantity is
related to the response of the system. It is natural to denote the original unperturbed Hamiltonian

as Hy and the perturbation as V, and the Hamiltonian reads
H=Hy+V. (1.11)
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In the Heisenberg picture, the operators are time-dependent, and to make the discussion more

general, the perturbation is written as
V() = S 0t filt), (1.12)
i

where the observable may be local as O(x,t). The system is initialised as the ground state of
the original Hamiltonian. A perturbation V is then applied at time ¢ = 0, and an observable
O at time t > 0 is measured. The perturbation drives the system out of equilibrium, and the
system shows a dynamical response against the applied perturbation. In the interaction picture,

the time-evolved state is

pr(t) = Ur(t)po1()Uf (1) (1.13)
with U(t) = U(t;tp — —o0) and
Up(t;to) :== T exp(—i ttf/(tl)dtl). (1.14)

Under the perturbation, the time-dependent expectation of an observable can be written as

(04(t)) =Tr pr(t)Oi(t)
)

=Tr po.1 (£)U] (1) O (£)Ur (£) (1.15)

=<Oi(t)>\f:o—i/ dtr([0i(t), V(t2)]) + OV ),

which is restricted to the first-order expansion, and again the expectation is taken as the ensemble
average on the thermal state.

It is common to define a response function
Xij(t, 1) = =if(t — t1)([0i(t), O;(t1)]), (1.16)

and then we have

t

(O0) ~ OO0 =i |t 306,05t} £i(t)

:/Oo dt, sz'j(f,tl)fj(tl)-

—00 j

(1.17)

This is the celebrated Kubo formula, which connects the dissipative quantity on the left-hand
side with the equilibrium average of the correlation function. Taking the Fourier transform of

the response function,
o0

X(w) = lim dte™ T\ (t,0),
n—0+Jo
we further have the relation
Im y(w) = —7(1 — e ) S(w), (1.18)
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at thermal equilibrium, which is known as the fluctuation-dissipation theorem [15].
The response function can also be calculated from the eigenvalues and eigenstates of H.

Denote the thermal probability p, = p™" = e #F» /Z: it can be shown that

X6,0 :_ZZ — Dm) n|02\m><m|01|n/ dtexp(i(w — En + E, +in)t)
(1.19)

—Z n|02|m><m|01|n>
—FE,+ E,+ 117

which is known as the Lehmann representation. In the zero-temperature limit, the response

function in the frequency domain can be expressed as

The imaginary part of the response function is given by

Im x(w) = —WZ — pm)(n|Oa|m) (m|O1 )6 (Ep — Ey, — w), (1.21)

and one can recognise its relation with the dynamical structure factor. This equivalence of the
representation reveals that the information could be accessed either in the time domain or in the
frequency (energy) domain.

In the above discussion, we can find that the spectral function can be obtained by taking
the Fourier transform of the time-dependent correlation function C(¢,t"). This motivates how
eigenenergy differences can be determined using quantum computing. The time-dependent cor-
relation function C(¢,t) can be simulated and measured on a quantum computer: simulate
real-time evolution using the Hamiltonian simulation methods introduced in this thesis, measure
C(t,t") with a Hadamard-test quantum circuit, and finally obtain the spectral properties by ap-
propriate post-processing. Related discussion on engineered spectroscopy methods can be found
in Chapter 7.

From Eq. (1.7) we see that the spectral information is contained in the dynamics of the state.
The inherent relation of static properties and dynamic properties also motivates both classical and
quantum computing methods. As introduced in Section 1.2 and will be elaborated Section 2.4,
quantum computers are able to simulate real-time evolution U = e~iflt of physical sparse
Hamiltonian efficiently. An interesting question is whether we can infer static properties from
dynamic properties. In Section 7.3, two approaches that accomplish this task are demonstrated:
the spectroscopy analysis methods and the quantum subspace expansion method.

In addition, the retarded Green’s function G"(t,t’) is a special case of the response function

with O = 1& and O/ = W, and 1& and zﬁ is the field operator. In equilibrium, the Greens functions

can be related to the spectral function A(w) = —1 Im G"(w), which can be directly measured
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by using spectroscopy techniques, such as neutron scattering, angle-resolved photoemission spec-
troscopy (ARPES). We can also employ spectroscopic methods as an effective means to infer
static properties of materials, discussed in detail in Chapter 7. Simulation results are shown in
Chapter 8.

1.4 Quantum computing and quantum advantage in the near
future

At the beginning of the thesis in Section 1.1, quantum computing, quantum simulation, and
quantum many-body problems were introduced, followed by a general recipe for quantum com-
puting of quantum many-body physics problems in Section 1.2. It seems that for a wide range
class of quantum problems, we are in theory able to immediately use the aforementioned strategy
to deal with the problems at hand, that is, to design quantum computing methods that are com-
patible with quantum devices, implement these on the devices, and ultimately obtain a solution
to problems of interest. However, in reality, the situation is more complex.

From the perspective of quantum computing, it is not always easy to prepare the initial
state, evolve it, and measure it with polynomial resources. The amount of physical resources
(such as number of qubits, number of operations, number of steps, etc.) needed for the quantum
simulation is heavily contingent upon the type of the target problem and the particularities of
the simulator.

In terms of implementation, quantum simulation should be executed on a quantum device.
In the above discussion, it is assumed that the quantum simulation devices are universal and
error-free, in the sense that they allow perfect, universal quantum operations. The limitation of
the quantum devices have not been addressed, and the computational or simulation resources
needed for execution of the problem have only briefly been touched on. However, current hard-
ware is limited in terms of quality (e.g., qubit quality, gate fidelity, and measurement fidelity)
and size (qubit number). In order to run a quantum simulation, we have to confront, and over-
come, the challenges imposed by quantum hardware technology. The primary challenges and the

corresponding restrictions are summarised as follows:
1. Controllable qubit number <+ computational size
2. Circuit depth <> allowed problem complexity
3. Noise rate <+ quality and reliability of the solution

With the development of quantum technology, it is expected that in the long term, we may
overcome all these challenges, allowing for a universal, fault-tolerant quantum computer. With
this fault-tolerant quantum computer, a problem could in theory be programmed on a quantum

computer and solved, if it fell into the BQP class. The computation cost mainly arises from the
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complexity of the problem and the algorithm, which determine run-time; an efficient and fast
implementation of quantum algorithms is unquestionably desirable.

The implementation of fault-tolerant quantum computing requires 10 or more physical qubits
per logical qubit to suppress the physical error [68]. This is far beyond current technological
capabilities. At present in 2022, state-of-the-art programmable quantum hardware is able to
control tens to hundreds of noisy qubits, with the error rate of two-qubit operation above 1073 [69,
70]. It is more pragmatic in the near future to focus on the noisy intermediate-scale quantum
(NISQ) regime, a notion originally proposed by John Preskill [71]. While it is still challenging
to perform error-corrected universal quantum operation, we can utilise the present generation of
quantum computers to perform specific tasks that are already challenging for classical computers.
Currently, we are able to run some quantum algorithms on a shallow noisy circuit without
implementing full error correction [12,25, 72-74], which largely reduces the quantum hardware
requirements in terms of quality. This includes not only algorithms running on gate-based digital
quantum devices, but also analogue quantum simulators, as discussed in previous sections.

The outcome of the landmark quantum supremacy/advantage experiments were initially an-
nounced by Google’s Team in 2019 using superconducting qubits for random circuit sampling
with the qubit number 53 [11]. Subsequently, in 2021 a group led by Pan at USTC demonstrated
random circuit sampling with up to 56 qubits on quantum processor, Zuchongzhi, which is com-
posed of 66 functional qubits in a tunable coupling architecture [75]. In 2022, a team led by
Lukin at Harvard University used arrays of neutral atoms trapped in optical tweezers with 289
qubits to investigate quantum algorithms for solving the maximum independent set problem [76],
although this arguably cannot be seen as a fully functional, programmable quantum computer.

It is worth noting that the question of whether these experiments have demonstrated a con-
crete quantum advantage remains controversial. This is because as classical computing systems
and methods have evolved, these problems may not be as unfeasible or impractical for them as
previously assumed. For instance, Google claimed in [11] that classically sampling a 53-qubit
quantum circuit with a circuit depth of 20 a million times would take approximately 10,000
years, while the Sycamore processor took about 200 seconds to execute the same sampling task.
Subsequently, however, several works proposed efficient classical simulation methods based on
tensor networks, which are able to simulate Google’s quantum supremacy circuits in days ( [77])
and even seconds ( [78]), undermining the assertion of quantum supremacy.

Additionally, the problems tackled in the experiments and solutions advanced, such as random
circuit sampling [11,75] and Gaussian boson sampling [79], may lack relevance in terms of real-
world application. An important question is whether the advantages of quantum computing over
classical computing can be clearly demonstrated through solving classically challenging problems

of physical interest on quantum devices. This thesis considers applications and implementations
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of quantum computing with near-term noisy quantum computers in the noisy intermediate-
scale quantum (NISQ) era, and universal fault-tolerant quantum computers in the fault-tolerant
quantum computing (FTQC) era.

In the near future, we may need to consider quantum computation with shallow noisy quan-
tum circuits, which are only capable of performing a constant number of restricted operations
without full error correction. Hybrid quantum-classical computing, such as variational quantum
algorithms, serves as a promising candidate for being compatible with near-term noisy quantum
computers [25,72,80-83]. At this point, it is worth quoting a definition of hybrid quantum-
classical computing from a recent perspective paper. Hybrid quantum-classical computing is
a computing structure that ”requires nontrivial amounts of both quantum and classical com-
putational resources to run, and which cannot be sensibly described, even abstractly, without
reference to the classical computation” [84]. Intuitively, because a large portion of the computa-
tional burden is processed on a classical computer, deep coherent quantum circuits may not be
required.

One of the most influential and representative developments in the field of NISQ-suitable
quantum algorithms is variational quantum algorithms (VQAs). These algorithms make use of
short-depth parameterised quantum circuits, which are particularly suited to NISQ hardware,
embedded in an otherwise classical variational loop [72,85]. They directly realise the target
quantum state with a controllable quantum device and reduce the requirement of quantum re-
source requirements by leveraging the power of classical optimisation. VQAs have demonstrated
the potential computing power through the co-development of quantum and classical resources
together; hybrid quantum-classical algorithms have been an integral part of quantum algorithms
research ever since.

The success of hybrid quantum-classical computation is contingent on the following (1) suf-
ficiently powerful quantum circuits to express the optimal solution of target problems [86], (2)
efficient sampling and classical optimisation [87,88], and (3) robustness to noise [89]. An im-
portant question is whether a clear and robust quantum advantage persists for such hybrid
quantum-classical algorithms given these challenges. Notwithstanding these challenges, noisy
intermediate-scale quantum processors still hold promise in solving certain problems that are al-
ready posing a challenge to the computational power of classical computers. A natural question
flowing from this is whether quantum computation could address open problems appearing in the
study of quantum many-body problems, where many of them have strong correlations. Part IV
of this thesis addresses this important point.

Another similar question relate to quantum simulation is how far this could be feasibly de-
veloped in the near-future, both for NISQ and early fault-tolerant quantum computers. The
discussion on this topic is concluded in Chapter 9, which provides a quantum resource estima-

tion for eigenenergy estimation and eigenstate property estimation in several typical problems.
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This addresses the question as to what circumstances and conditions are required to solve a
physical problem and hence to achieve a quantum advantage, with the aim of shedding further

light on the identification of the boundary of classical and quantum limits.

1.5 Thesis outline

The four subsections in Chapter 1 have introduced a general recipe for solving a quantum many-
body problem, discussing in broad terms the close relation between quantum computing, quantum
simulation and spectroscopy, as well the realistic application of different approaches in the near
future. Chapter 2 covers the essential concepts introduced in Chapter 1 and further developed
in Part II, Part III, and Part IV. Chapter 2 serves as a preliminary for the following chapters by
providing a self-contained introduction to the techniques and methodologies introduced in this
thesis.

Part II concerns quantum computing of quantum many-body problems, focusing on the issue
of how to estimate static and dynamic properties of quantum systems, as a response to the points
raised in Section 1.2. In Chapter 3, a general quantum computing framework is established for
the static and dynamic problems herein. I introduce a new quantum-classical architecture, the
hybrid tensor network, which serves as a basis for a general representation of quantum system
representation which is applicable to a broad range of problems. In Chapter 4, I focus on
static property estimation, which consists of two tasks (see Section 1.2.1), eigenenergy estimation
and eigenstate property estimation. Motivated by imaginary-time evolution, which provides a
natural way of driving the initial state to the ground state, I introduce quantum algorithmic
cooling which realises a generalised imaginary-time evolution with the best asymptotic scaling
to date in eigenstate energy and property estimation. I explicitly demonstrate how to search
for the eigenenergy, and estimate the eigenstate property. The algorithm is proven to reach the
Heisenberg limit in eigenenergy estimation and achieve an exponential speed-up for the circuit
complexity compared to phase estimation.

In Chapter 5 and Chapter 6, I focus on dynamic problems formalised in Section 1.2.1 and
detailed in Section 2.4. In Chapter 5, I propose adaptive product formulae to estimate dynamic
properties of quantum states under real-time evolution. I further show how to enable large-scale
quantum dynamics simulation by using the methods developed in Chapter 3. In Chapter 6,
I consider a generic interacting quantum system described by H = H ¢ + V" T propose a
perturbative approach for such a problem, which shows advantages over conventional perturbative
expansion and quantum simulation, and has wide applications in probing interacting dynamics.

In Part III, T explore interesting emergent quantum phenomena with the methods developed
in this thesis. I discuss the close relation between quantum simulation and quantum computing,
from both the theoretical, experimental, and operational point of view, as a response to the

discussion in Section 1.3. In Chapter 7, I show how spectroscopy motivates quantum computing
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methods to predict spectroscopic features of generic quantum many-body systems. I introduce a
theoretical framework of engineered spectroscopy and demonstrate how the spectroscopic features
of quantum systems with general and tuneable interactions can be probed. In Chapter 8, several
quantum many-body phenomena in typical physical systems are explored, including interacting
bosons, fermions, and quantum spins, in which the interacting dynamics is simulated using the
perturbative approach.

Part IV discusses the challenges of employing quantum computing towards realistic applica-
tions in the near future, as a response to the discussion in Section 1.4. With the development
of theoretical and experimental methods, the most interesting question is how far away we are
from solving a practical problem. To answer this question, the quantum resources required for
eigenstate property estimation at quantum gate level are estimated using a new methodological
approach developed by the author in Chapter 9. This provides a clear illustration of the resource
requirements for physical systems of interest, such as the Ising model, the Hubbard model, and
molecular systems, with a focus on their application in both the NISQ and FTQC era. In Chap-
ter 10, I discuss the challenges of noisy quantum computers, as errors are unavoidable when
using such hardware. These include device errors (such as process errors® and readout errors)
and statistical errors. Accordingly, I introduce a stochastic error mitigation scheme to mitigate
process errors in NISQ devices, including both analogue quantum simulators and digital quan-
tum simulators, and an efficient quantum state measurement scheme, called overlapped grouping
measurement, to mitigate statistical errors and enable fast quantum processing.

Chapter 11 summarises the works carried out in this thesis, and concludes with some per-
spectives on quantum computing, quantum many-body physics, and quantum materials, as well
as the current outlook for this rapidly growing field.

The contents presented from Chapter 2 to Chapter 10 in this thesis are based on the original
research work of the author and collaborators, unless otherwise specified. The author conceived
the key idea of the works that are presented in this thesis, and was responsible for the derivation
of the analytic results, numerical and experiment verification, and manuscript writing. The
author is the first author and/or the corresponding author of these publications. Chapter 3 is
related to a published work [90] and a manuscript under preparation [91]. Chapter 4 is related
to a manuscript currently under preparation [92] and a preprint [93]. Chapter 5 is related
to a manuscript under preparation [91] and the theoretical analysis in a published work [94].
Chapter 6 is related to a published work [95]. Chapter 7 is related to a manuscript under
preparation [96]. Chapter 8 presents the results for the applications of quantum computing and
spectroscopy methods developed in preceding chapters, and is related to [95,96]. Chapter 9 is
related to Chapter 4 and [92]. Chapter 10 consists of two parts, which are related to [97] and
the theoretical part in [98], respectively.

SQuantum processes include quantum gates in a digital quantum simulator and time evolution in an analogue
quantum simulator.
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Chapter 2

Framework and methods

In this chapter, I introduce the framework and methods for quantum computing of quantum
many-body systems dealt with in this thesis. Recall that a general recipe of quantum computing
of quantum many-body problems was introduced in Section 1.2. This is comprised of four parts:
problem encoding, state preparation, dynamics simulation, and quantum measurement. I will
introduce the essential ingredients of these four parts in Section 2.1, Section 2.3, and Section 2.4.

The role of this chapter is to give an overview of the motivation, framework, and methods
that are introduced and developed in this thesis. This chapter serves as a preliminary for the
following chapters. The contents are self-contained in order for the reader to find all the essential
information from this chapter. It is especially intended for interested readers who wish to learn
more about quantum computing, quantum many-body physics and quantum information, and

to capture the key ideas of the techniques and methods developed in this thesis.

2.1 Problem encoding
2.1.1 Effective Hamiltonian

A time-independent non-relativistic Hamiltonian could be expressed as

N, N, N. N, N, N;
< R? K2 S Zre? 1 < e? 1 < 717 >
H=— — V- — V32— Y — R _ = T
ZQme ! ;2]\4] I ;;471’8%‘1','—R[‘+2;4ﬂ'€g|ri—I‘j’—’—QI;éZJLlT(&‘%‘R[—RJ‘
(2.1)

7

Here, M;, Ry, and Z; denote the mass, position, and atomic number of the Ith nucleus, and
r; is the position of the ith electron. N, and N, are the number of electrons and nuclei. In
this thesis, natural units are used, i = m, = €?/4neg = 1. The first two sums in H are the
kinetic terms of the electrons and nuclei, respectively. The last three sums represent the Coulomb
repulsion between the electrons and nuclei, the electrons themselves, and the nuclei themselves,
respectively.

Since a realistic physical system involves a prohibitively large number of particles, it is impos-

sible to solve the Hamiltonian given by a full description of the material in Eq. (2.1). However, a
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solution to the ”theory of everything” is unnecessary. As discussed in previous sections, interest-
ing phenomena could be captured with much fewer degrees of freedom at a finite scale. In most
cases, we could restrict the energy scale of the problems, and extract an effective Hamiltonian
that models the phenomena of interest.

This thesis is primarily concerned with the behaviour of electrons. From the observation that
the nucleus is much heavier than an electron, we can separate the dynamics of the nuclei and the
dynamics of the electrons using the Born-Oppenheimer approximation. Under the approximation
of fixed R, the Hamiltonian describing the behaviour of the electrons and their interactions with

nuclei is simplified as
= —= E V2+ E Ulattlcez rz § |I' ey ‘ (2,2)
i L

where the Coulomb potential between the electrons and the nucleus ions is denoted as Ulattice,i (T'i)
which is a one-body scalar term, and only the valence electrons are considered here.
The electron Hamiltonian in the position coordinate may be written in the operator form

using the Dirac notation as
Hy = /dr dr’|r) (r| Hg|r') (r'], (2.3)

where Hy = <r|I:Iel|r’>. The kinetic term and the Coulomb potential of the electron and the

nuclear is diagonal in the coordinate basis, and we have
= <I'|@Z2‘I‘/>5(I' - I',), Ulattice,i(ri) = <r|Ulattice,i‘r/>5(r - I'/). (2'4)

The Hamiltonian could be represented with the field operator in second quantisation as
i V o (o)t N0
H= [ dri(r)(—— + U(r))¥ drdry! (r)P" (r)V (Jr — ') (r')¢(r) (2.5)

where 9)(r) is the fermionic field operator defined in the position coordinate basis {|r)}, and ¥1(r)
is its conjugate. In the following discussion, I will use the notation in Ref. [44]

Since the spin degrees of freedom are generally a topic of interest, they have been added
to the formulae in the following discussion. The field operator could be expanded in a basis of

single-particle wave functions as

r) = Zémmr)
Ph(r) = Zcmo( )

A

(2.6)

where o € {7, ]} represents the spin degrees of freedom, A represents the collection of good quan-
tum numbers of the particles, excluding the spin, é (¢') is the fermionic annihilation (creation)
operation acting as

&l vac) = [\, 0),
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with the anti-commutation relation {éAl’Jl,éizm} = 0 M\001,00, and the wave function is

PA(r) = (r|A).

The Hamiltonian in the new basis becomes

- A4 . ) ) R R
H= E t)\l)\2c>\1706)\2,g + Z V)\1)\2)\3>\40;1,010;27UCA3,00A470’- (27)
A1,A2 A1,A2,A3,A4

Here, the hopping term is defined as

. V2
e = [ 863, (= + U6, o) (28)
and the Coulomb interaction term is defined as
1 * *
Vierah = 5 /dr'dr%l(r)qm (X )V(Jr — ')y (r") pa, (r). (2.9)

The matrix is Hermitian, Le., txx, = £}, and Vi xoasn, = Via,), - The Coulomb interaction
matrix has an additional symmetry Vx,xoas0, = Vagrdus-

From the Hamiltonian in Eq. (2.5), one can deduce various model electron Hamiltonians
appropriate for different physical circumstances. The explicit form of the Hamiltonian depends
on the single-particle bases introduced in Eq. (2.6). A representative model Hamiltonian is
illustrated below, following the discussion in [44].

Electrons in a periodic potential conserves translational symmetry. A natural and common
basis is the plane wave basis which is useful to describe assemblies of atoms that are close to free

electrons. The operator takes the form of

Yo (r

1 A

) _ Z ez(k+G)'rék+G7o_’ (210)
VVe k,G

where k is the crystal momentum and G is a reciprocal lattice vector. The Hamiltonian in the

plane wave basis reads

A At . A ) . .
H = E e @l g etorare + E , Volks Gipolirs G —por k4G o CkiGo  (2.11)
k,G,G\o KK p
G,G/,0,0’

where hkg—a' = [(k+ G)*g,e + Ug-c/| and V, = 1/ (2V,) [ dre” PV (|r|) [44]. I refer to

Ref. [44] for other examples in solids and Ref. [43] for molecule Hamiltonians.

2.1.2 Low rank factorisition

The above Hamiltonian in Eq. (2.7) is written in physicist convention, and one could rearrange

the form in chemist convention as

5 _ R R
H = Z T/\1AQC/\1706)\2,U + Z G)\1>\2>\3>\4c)\1’O-ICAQ,O'C)\S’UC)\AL,U/ (212)
AL, A2 A1,A2,A3,A4
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with the ordering ¢fé¢fé rather than éféféé. Using real basis functions, such as molecular orbitals,

the interaction matrix has the symmetry
T/\1/\2 = T/\z/\la (213)
and

Ganorsds = Gadsron = Ganorans = Gaodinsds = Gagdanie = Gagdanod = Gadsaide = Gaudgaie-

(2.14)
The Coulomb interaction matrix is a rank-4 tensor with dimension N/2 along each axis and could
be reshaped to a N2/4 x N?/4 matrix W.

The reason why the interaction term is reordered is to exploit the low rank nature of the
Coulomb interaction matrix through matrix factorisation. As discussed in Ref. [99], the matrix
W by Eq. (2.7) is a full rank matrix with L = N2/4 and no reduction is possible. In the
case of molecular electronic Hamiltonians, the matrix W by Eq. (2.12) is not full rank, and can
be factorised by singular value decomposition with the number of terms L = O(N), which is
much less than the worst case scenario [99]. The total number of distinct terms with different
coefficients in the Hamiltonian is of the order O(N?L), which shows an improvement over the
original representation, which contains O(N%) distinct terms. Recall that in the Hamiltonian
simulation, the cost would be related to the number of terms in the Hamiltonian. Therefore, this
rearrangement would save the resource cost in Hamiltonian simulations. This strategy has been

intensively used in quantum chemistry simulation (see [99-101] for examples).

2.1.3 Fermionic to qubit mapping

The original Hamiltonian is expressed in a fermionic form. To represent fermions on a quantum
computer, one should specify a fermion-to-qubit mapping. There are many choices of mapping,
including Jordan-Wigner mapping, Bravyi-Kitaev mapping, and parity encoding (see [12] for a
review). The choice of mapping will result in different circuit depths and qubit numbers. One of
the commonly used mapping is the Jordan-Wigner mapping, which maps the fermionic operator

¢; on the jth site (or mode) to the qubit Pauli operator as

Jj—
& = (a + i )@ ) (&f—i&f) &7, (2.15)

with Pauli operators 67, o = (z,y, z) acting on the jth qubit. It is straightforward to have the

occupation number operator

and the two-body term



With the mapping, an N-qubit Hamiltonian can be expressed in the Pauli basis as
H=) P, (2.16)
i

where P; € {Z, 6;?,&?,65}69]\7 is a tensor product of single-qubit Pauli operators and h; is the

corresponding strength.

2.1.4 A general representation of quantum systems

A major challenge in studying quantum many-body physics stems from the hardness of efficient
representation of many-body wave functions. To motivate a general description of a quantum
system, I start from a general description of a quantum state in the tensor representation. A gen-
eral rank-n tensor is a multi-dimensional array with n indices denoted as T3, ;,, .. i,. In quantum
mechanics, it represents the wave function of an n-partite quantum state in the computational

basis,

[0) = D Wiron 91 1d2) - L) - (2.17)

J1:525-50n

One can see that directly storing a general quantum state in a classical memory is highly inef-
ficient, with the cost of space resources increasing exponentially with the number of parties. This
thus motivates us to find more efficient ways to represent quantum states. The deep observation
by physicists is that quantum states in nature may only lie in a small subset of the whole Hilbert
space, where the area law scaling may exist; for example, the ground state of certain gapped local
Hamiltonians [102-104]. This enables the possibility of efficient classical representation of these
quantum states. The overall idea is to decompose the rank-n tensor into a network of low-rank
tensors. Take the matrix product state (MPS) ansatz as an example. As shown in Figure 2.1(a),

the rank-n tensor is now decomposed into n low-rank tensors as

= > Tl ad) i) liz) - L) (2.18)
J1.025e050n
Here each ai’“ is a rank-3 tensor (except for a{l and o' whose rank is 2), and the index jj, is the
physical index, with dimension 2 for the qubit case.

The MPS representation compresses the space of an n-partite state from O(2") to O(nx?),
which is reduced from exponential to linear scaling with the particle number n. This enormous
reduction is based on the pre-knowledge of the weakly entangled state under the geometrically
local interactions in a one-dimensional gapped system [103]. Many different classical tensor
networks have been proposed for different problems (see [105] for a review).

Nevertheless, it is likely that certain quantum systems, such as the Fermi-Hubbard model and
molecular systems, which have nonlocal interactions, and 2D lattice problems [5], may not be

efficiently described via classical methods. This motivates the idea of quantum simulation, i.e.,
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Figure 2.1: Illustration of a typical classical tensor network — the matrix product state.

using a controllable quantum system to simulate a target quantum problem. A quantum state
generated from applying a unitary circuit to a certain initial state forms a quantum tensor, which
could be high-rank, and can be naturally stored and manipulated with a quantum computer. In
the literature, classical tensor network theory and quantum simulation are generally used as
separate, distinct techniques in classical and quantum computing. In this thesis, we introduce
quantum tensors to be general n-partite quantum states prepared by a quantum computer and
classical tensors to be low-rank tensors stored in a classical computer. We refer to a combination
of quantum and classical tensors as a hybrid tensor network.

Suppose we generate an n-partite quantum state by applying a unitary Uy to an initial state
|0) as |¢p) = Uy [0). As shown in Eq. (2.17), the quantum state can be regarded as a rank-n
tensor in the computational basis. We can also introduce a classical index to the quantum state

by applying different unitary operators as

W) = U [0 = > % 4o i) d2) - L) (2.19)

J1 7]27 »Jn
where the classical index i relates to U; which is a unitary operator. As a result, it as a whole

forms a rank-(n + 1) tensor w;l 2 We regard all these cases as quantum tensors, and the

e
network connected with quantum tensors and classical tensors as a hybrid tensor network.

We can find that this hybrid quantum-classical tensor network provides the basis for general
representation of many-body wave functions that is applicable to a broad range of problems. In

Chapter 3, I will discuss this hybrid quantum-classical tensor network in detail.

2.2 Framework of hybrid quantum-classical computing

Section 2.1 introduces a framework of quantum state representation. In this section, I discuss

hybrid quantum-classical computing introduced in Section 1.4. In particular, I introduce varia-
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tional approaches to both static and dynamic problems, which provides useful tools throughout

this thesis.

2.2.1 Variational algorithms

The variational method is a powerful classical tool for simulating quantum many-body sys-
tems [106-110]. The core idea is based on the intuition that some physical states with low
energy belong to a small manifold of the whole Hilbert space [103,104], similar to the discus-
sion in Section 2.1. Recently, variational methods have been recently generalised to the quantum
regime [72-74,83,111-126], which employ the power of quantum computing in representing quan-
tum states. The trial state in variational quantum algorithms is prepared with a parameterised
shallow quantum circuit [127-130], which is robust against a certain amount of device noise and
is compatible with near-term noisy intermediate-scale quantum (NISQ) hardware [83,116]. Vari-
ational quantum algorithms can be utilised for finding energy spectra, also known as variational
quantum eigensolvers (VQE) [69,72,73,83,113,121], and simulating real-time Schrédinger evo-
lution [80, 116] of closed systems. It is also worth noting that variational algorithms are not
limited to energy minimisation and the simulation of unitary processes. Variational algorithms
have been developed by the author and collaborators to simulate dissipative quantum dynam-
ics, non-Hermitian dynamics, and imaginary-time evolution, which cannot be straightforwardly
mapped to unitary gates [80,120,121,131].

In Section 2.2.2; I show the basics of variational quantum algorithms, and exemplify their
application in ground state preparation. In Section 2.2.3, I introduce a general framework of
variational dynamics simulation. With this framework, I discuss the solution to two types of
dynamic problems, namely, real-time evolution and imaginary-time evolution, in Section 2.2.3.2

and Section 2.2.3.3, respectively.

2.2.2 Variational state preparation

The variational quantum algorithm starts by preparing a quantum state with a quantum circuit,

which can be written as

L
0) = TTU6)V; o) (220)

where U; and V; € SU(D) represent the parameterised and unparameterised unitary quantum
operations with D = 2", respectively.

The parameterised unitary quantum operation could be expressed by U;(0;) = exp(—i6;G;)
with the Hermitian generator G; € Herm[CP*P]. The Hermitian generator can be decom-
posed into the Pauli operators, and U;(6;) becomes U;(0;) = exp(—ib; >, o rPjr/2), with
Pj € {I,X,Y,Z}*" being a tensor product of single-qubit Pauli operators. The parame-

terised quantum circuit given by Eq. (2.20) is also referred to as an ansatz, which is used
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to approximate the target state. For simplicity, we consider the parameterised operation as
U;j(0;) = exp(—i#;P;/2) with P; being a multi-qubit Pauli operator, which is widely used in
quantum circuit construction. Although the circuit given by Eq. (2.20) is fixed, we can construct
a quantum circuit in an adaptive way to increase its expressivity. This will be discussed in
Chapter 5.

Despite its quantum nature, the original ground state preparation problem is converted into
an optimisation problem over the variational parameters g = {0;}. The target state will be
approximated by some optimised variational parameters 5*, which may be found using the varia-
tional principle [131]. For example, a typical problem in quantum simulation is to find the ground
state. If this is the objective, then we could minimise the energy with respect to the variational

— — —

parameters £(0) := ((0)|H|(0))*. The ground state energy is given by
Ey = mein L(6). (2.21)

Rather than search for the ground state from the whole Hilbert space, with exponentially
increasing computational complexity, we only search from a subset of the whole Hilbert space,
characterised by the parameter 6, to find an approximate solution of the true ground state. This
is also known as the Rayleigh-Ritz method.

At the kth iteration, a general strategy for searching for ground states is by updating the

parameters

— — —

Ok +1) = 0(k) — (k) A~ (0(k)) V7L (0(K)), (2.22)
where g(k) represent parameters that characterises the optimisation dynamics at the kth itera-
tion, and the learning rate is denoted by n(t). Here, we use A(6(k)) to represent an invertible
metric matrix with parameters #(k). When the metric matrix is an identity matrix A = I, it
reduces to conventional gradient descent.

Many classical algorithms have been proposed as a solution to the optimisation problem.
These include the gradient descent, simultaneous perturbation stochastic approximation (SPSA),
quasi-Newton methods, and natural gradient algorithms [132-135]. Subsequently, quantum ver-
sions have been adapted in this context. Among these algorithms, quantum natural gradient
method [135], or equivalently variational imaginary-time evolution [136], is promising, since from
a physics viewpoint, imaginary-time evolution defines a natural way of driving the initial state
to the target state. I show in Section 2.3 that given a nonvanishing energy gap between the
ground state and the first excited state, the state reached under imaginary-time evolution is

exponentially close to the ground state. We shall see how variational imaginary-time evolution

can be implemented in Section 2.2.3.3.

'Here, the Hamiltonian is mapped from an operator form H to a qubit form H. Nevertheless, these two forms
are used interchangeably in this thesis when there is no ambiguity.
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As noted in the literature, optimisation in variational quantum algorithms in general is
hard [88], and one cannot guarantee avoiding local minima during the optimisation process.
More rigorous state preparation methods without relying on variational ansatz will be discussed

in Section 2.3.

2.2.3 Variational quantum dynamics simulation

2.2.3.1 General framework

To begin with, I introduce a generalised framework for variational simulation of quantum dy-

namics. Consider a differential equation
d
B(t)— |v(t)) = |dv(t)). (2.23)

Here,

[do(t)) =Y Dj(t) |vj (1)) ,
j

where D;(t) and B(t) are general time dependent sparse (non-Hermitian) operators, |v(t)) is the
system state, and each of [v}(t)) can be either [v(t)) or any known state that can be efficiently
implemented with quantum hardware. The states |v(t)) and |[v}(t)) can be unnormalised states

as
v(t)) = a(t) [¥(t))
and
|03 (1)) = oj(£) [5(£))

with normalisation factors a(t) and a(t), respectively. In practice, D;(t) (B(t)) is assumed
to be decomposed as a linear combination of Pauli operators D;(t) = ), )\g (t)o; with complex
coefficients A; and a polynomial (with respect to the system size) number of tensor products
of Pauli matrices o; = ®zk o;, with 75 denoting the iyth qubit to be efficiently realised with
quantum hardware.

In variational quantum simulation, instead of directly simulating the dynamics, the state is

approximated by a parameterised quantum state as
[v(6(2))) = a(bo(t)) [#(01(2)))
with the variational parameters 0 = (50,51). The original evolution can be projected to the

evolution of the parameters via McLachlan’s principle [137], which is given by

B(o) 5 10@0) ~ 0,0 55(0) (2:24)
J

min
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where || |¢) || = +/(¢]¢) and the minimisation is over the parameters. By minimising the dis-
tance between the true evolution and the evolution of the parameterised state, the minimisation

problem is mapped to solving a linear equation of parameters as

> Ay j0; = Cy, (2.25)
J
where éj = df;/dt and the coefficients are linear sums of state overlaps that can be efficiently
measured with quantum circuits [138].

The most physically relevant examples are real-time and imaginary-time evolution, which
correspond to B(t) = 1 and |dv(t)) = —iH |v(t)) or |dv(t)) = —(H — (v(t)| H |v(t))) |v(t)),
respectively. The expression of the coefficients A and C are specified in Section 2.2.3.2 and
Section 2.2.3, respectively.

We remark that this method provides a technique for solving more general dynamic problems,
such as dissipative dynamics in an open system. Since dissipative dynamics is not the focus of

this thesis, I direct the interested readers to [80] for further details.

2.2.3.2 Variational simulation of real-time evolution

Real-time evolution governed by a time-independent Hamiltonian H is described by the Schrodinger

equation,

ape)
A ION (2.26)

which is apparently a special case of Eq. (2.23). Instead of directly simulating real-time dynam-
ics with Hamiltonian simulation algorithms [13, 33,38, 139, 140], variational quantum dynamics
methods assume that the quantum state |¢)(t)) is prepared by a parameterised quantum circuit,
lp(6())) = Ry (0N) ... Ri(0k) . .. R1(61) |0) with each gate Ry (6y) controlled by the real param-
eter 0, the reference state |0), and parameters 6= (01,02,...,0N). According to McLachlan’s
variational principle [137], real-time dynamics of |¢)(¢)) can be mapped to the evolution of the

parameters 6(¢) by minimising the distance between the ideal evolution and the evolution induced

by the parameterised trial state,

—

8||(d/dt +iH) |p(0())) || =0, (2.27)
where || |¢) || = /{p|e). The solution is found to be

> Ag by = Cy, (2.28)
i

with the matrix elements of A and C' given by

— — —

g e 2T 5 _ g (o 2120000 ) 2.29)
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2.2.3.3 Variational simulation of imaginary-time evolution

The normalised state at imaginary-time 7 is |1(7)) = \/(w?(;)TeTJIfISOT)\i/;(o» and the Wick-rotated
Schrodinger equation is ()

dly(r

A — (1 - B (o) (2:30)

where E; = (¢(7)|H|y(7)) is the expected energy at imaginary-time 7. It is also easy to check
that it admits a similar form to Eq. (2.23). The ground state can be determined from the long time
limit of the Wick-rotated Schrédinger equation |1)) g = lim;_,o [¢)(7)). Consider a normalised
trial state |o(6(7))) with real parameters 6 representing all the parameters. Imaginary-time

evolution of the Schrédinger equation on the trial state space is given by

—

S AL G, = — (17 - B7) o G- (2.31)

7

Applying McLachlan’s variational principle, which minimises the distance between the evolution

of trial state W and —(H — E,) |(6(7)))), we have

—

S| (d/dr + H — E-) [p(0(7)))|| = 0, (2.32)
which determines the evolution of the parameters

> Apiby = —Cy, (2.33)

J

with the matrix elements of A and C given by

A = Re (6(90;2(:))| 6|w599027))>) Oy = Re (%@HW(Q“(T)») . (2.34)

Therefore, we can effectively simulate imaginary-time evolution by tracking the evolution of the
parameters.

The measurement in the variational schemes for both real-time evolution and imaginary-time
evolution can be implemented using the methods introduced in Section 2.5.1. Compared to
realising imaginary-time evolution directly, variational methods are more efficient in their use of
quantum resources, but may not guarantee an accurate solution since they rely on variational
optimisation. In contrast, methods based on imaginary-time evolution realised by using linear-
combination-of-unitaries formulae can guarantee the simulation accuracy. A comparison between
the two methods be found in Section 2.3. The variational imaginary-time evolution method serves
as a subroutine in variational quantum simulations. I will show its application and numerical

verification in the context of hybrid quantum-classical computing in Chapter 3.
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2.3 Eigenstate preparation

Recall the main objective and the formulation of the static problem in Section 1.2. In this thesis,
we mainly focus on two tasks, which are to estimate the eigenenergy FE;, and to estimate an
observable expectation on the target eigenstate (u;]O|u;) within an error e. A crucial step to
achieving both aims is the effective preparation of the eigenstate®. In this section, I will mainly
discuss eigenstate preparation by applying a spectral projector of the Hamiltonian H to an initial
state. Compared to the hybrid quantum-classical computing methods that were introduced in
Section 2.2, this method is rigorous and universal, with a theoretical guarantee of the simulation
accuracy.

Before I introduce the methods developed in this thesis, I will first review related work on
eigenstate preparation. Section 2.3.1 serves as a reference for a better understanding of and point

of comparison of our work.

2.3.1 Related works

I first provide some comments on the variational algorithms introduced in Section 2.2. In the
variational methods, one attempts to search for the ground state of a Hamiltonian using an ansatz
circuit, which can be characterised by the associated variational parameters. One then adjusts
and optimises the parameters in the quantum circuit based on the measured value of energy.
The quantum approximate optimisation algorithm (QAOA) [111] is another type of variational
method that aims to solve the combinatorial optimisation problems, and is based on a variational
evolution combined with adiabatic evolution. Variational algorithms are suitable for near-term
quantum computers, since they usually require a shallow circuit with very few ancillary qubits.
The weakness of the variational methods is that the effectiveness is contingent on the choice of
the ansatz, the validity of which varies for different Hamiltonian problems.

Adiabatic state preparation [141] is an experimentally-friendly non-variational ground-state
method based on a time-dependent Hamiltonian evolution. In adiabatic state preparation, the
ground state of a simple Hamiltonian Hq is first prepared, and then slowly evolved under a
Hamiltonian that gradually changes from Hj to the target Hamiltonian H. Based on the adiabatic
theorem, the resulting state is then close to the ground state. Unlike variational algorithms, the
adiabatic algorithms are universal and valid without ansatz assumptions. In terms of practical
usage, the adiabatic algorithm has two drawbacks. First, the required evolution time ¢ depends
inverse polynomially on the minimum spectral gap along the entire path from Hy to H. Second,

the required evolution time ¢ is O(1/e), where ¢ is the infidelity of the target state.

2Here, we do not have to prepare the eigenstate state deterministically, since only the expectation value with
respect to the state is required.
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Phase estimation [27,28] is one commonly-used non-variational method, which prepares the
eigenstate of a given unitary U based on controlled-U evolution, and complementary basis mea-
surement on ancillary qubits. In the canonical phase estimation algorithm [27], in order to
prepare the eigenstate of the Hamiltonian H, we introduce w qubits prepared in the state |+),

perform controlled-e 27t

gate sequentially from one ancillary qubit to the original system with
different times {t}, perform inverse Fourier transform on the ancillary qubits, and finally measure
the ancillary qubits. The required number of qubits w is logarithmic in the inverse of the eigenen-
ergy precision. The circuit depth, determined by the total controlled evolution time ¢, is O(1/¢)
with target precision €. The phase estimation can be improved to an iterative version with only
one ancillary qubit [28]. However, similar to adiabatic evolution methods, the required circuit
depth of the phase estimation is fundamentally O(1/¢), which is unfavourable if a high-precision
preparation is required, but the coherent time is relatively short.

To further improve the efficiency of the above two nonvariational methods, linear-combination-
of-unitary (LCU) methods have been proposed [29,142]. In Ref. [29], cos™ (H) is used as a spectral
projector to prepare the ground state of H. The Hamiltonian function cos™ (H) is expressed as
a linear combination of unitary cos™ (H) = >; &;U; with unitary operator U; and coefficient a.
The implementation of LCU formulae relies on some circuit oracles, and I refer to Refs. [36, 38]
for details. The query complexity of the LCU method is O(% log(%) and the number of ancillary
qubits required is (’)(log(% log %)), where A is a known lower bound of the Hamiltonian energy
gap and € is the target precision. The query complexity shows an exponential improvement
when compared to the phase estimation algorithm. At a later stage, Lin and Tong [31] proposed
a more efficient method for ground state preparation. The key idea is to realise a polynomial
approximation of the sign function, which serves as a spectral projector of H, using quantum
signal processing (QSP) based on a block-encoding of H [32] (see Section 2.4.3). This method
will be discussed in detail in Section F.2.

The difficulty of realising either the LCU- or QSP-based methods in the near-term is that
they both require many ancillary qubits and a deep circuit; the oracles for realising a block-
encoding of H in LCU and QSP are difficult to compile. The resource cost for implementing a

block-encoding of H will be discussed in Section 9.3.

2.3.2 Imaginary-time evolution

The key idea in this section is that access to the physical properties of eigenstates can be achieved
through applying a spectral projector to the initial state, which projects out the contributions

from the other eigenstates. A natural way is to consider imaginary-time evolution,
g-(H) := e A7, (2.35)

which drives the system to the ground state in the long-time evolution under imaginary-time.
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—HTt
To expand on this point more concretely, the normalised imaginary-time-evolved state %

can be expressed as e~ (H=E7)7 |W(7)), where | - || is the state vector norm, and we can show that
E. = (U(7)|H|¥(7)). Indeed, the state satisfies the Wick-rotated Schordinger equation

Or |W(7)) = —(H — E;) [¥(7)) (2.36)

Intuitively, the ground state can be determined from the long time limit of the Wick-rotated

Schrédinger equation

uo) = lim_ [4)(7)) .

T—00
In the following, we shall see that under imaginary-time evolution, the spectral weight on the
excited states are exponentially suppressed, and the ground state energy is exponentially close
to Ey. The time-evolved state can be decomposed into the eigenstate basis of the Hamiltonian

as

) = cjluy), (2.37)
J

where we denote energy eigenstates |u;) and eigenenergies F;, and the normalisation condition
holds Zj lcj|> = 1. We assume the eigenstates are non-degenerate and the energy gap Ag; =
E4 — Ej is not exponentially small. Indeed, exponentially small Ag; indicates that these states are
indistinguishable, and we can hence regard these states as degenerate states. The time evolved

state is
() = cjem P BT ;) (2.38)
J

and the distance to the ground state energy is now given by

WOHW) _ g 55l — Boje > 7Eor
AR By =
W) > e Pe o 030
>, lejl?(max E — Eg)e=2(F1=Fo)r O(e-20017
= |CO|2 - <6 )
I also remark that the time-evolved state is exponentially close to the ground state since
(ol (1) W) _ el o .10)

<¢(7—)|¢(7—)> B Zj ’Cj‘Qe_Q(EJ'_EO)T - |CO|2 + (1 — |CO|2)6—2(E1—E0)T'

2.3.3 Generalised imaginary-time evolution

H7 we could consider gener-

alised imaginary-time evolution, such as a Gaussian type function, g,(H) = e~ H % Here, we

In additional to the original imaginary-time evolution g,(H) = e~

define a general matrix function acting on the Hamiltonian, which is expressed as

N-1

g(H) = g(Ei) |us) (uil (2.41)

1=0

35



where g(h) : R — C is a generic continuous-variable function determining the transformation
of the energy spectrum of the Hamiltonian. To realise this eigenstate preparation process, we
require g(h) satisfying strictly non-increasing absolute value, [g(R')| < |g(h)|, VA > h > 0
or h' < h < 0, and vanishing asymptotic value, lim, . |g(Th")/g(Th)| = 0, YK’ > h > 0 or
h' < h < 0 or alternatively lim,_, |g(7h)/g(0)| =0, ¥V|h| > 0.

While the projector® is nonunitary by construction, we can effectively realise it by using a
i

combination of real-time dynamics e~*% with real-time length ¢;, which is given by

g-(H) = Z pie” i, (2.42)

The Fourier transformation provides such a natural and universal decomposition. Therefore,
we can realise this nonunitary operation by a series of unitary operations. These unitary opera-
tions can be implemented using Hamiltonian simulation methods on a digital quantum simulator

or an analogue quantum simulator. For the most commonly used projection operator, we have

1 1 .
G_TH = ; /d.’[)mem—xH, 7>0 (243)
1 .
e T H? = NG /dmeIQ/‘leZ”H. (2.44)

also known as a Hubbard-Stratonavich transformation which is widely used in condensed matter
physics and quantum field theories.
The maximum time complexity max; t;, which determines the circuit complexity required to

achieve an additive error ¢, is logarithmic in the inverse error O(log(e~1)).

2.4 Quantum dynamics simulation

Simulation of quantum dynamics U = e~*t is one of the most natural and promising applica-
tion of quantum computing. As discussed in Section 2.3, dynamics simulation is an essential
component for eigenstate preparation. In addition, it is also an important subroutine for many
other quantum algorithms, like optimisation problems and open-system dynamics [25,143]. In

this section, I briefly review methods for quantum dynamics simulation.

2.4.1 Overview

Quantum dynamics simulation of U = e~ *#* is also called Hamiltonian simulation in the com-

munity of quantum computing. The problem of approximating the unitary operator can be

abstracted as follows.

Problem 1. Given a Hamiltonian H on n qubits, evolution time t, output a unitary approrima-

tion, U, of the ideal unitary Uy = e~ within an error e, such that ||U — Up|| < .

3Herein, a projector is referred to as a spectral projector of H.
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Suppose the Hamiltonian can be decomposed as H = ZZL: 1 H;. It is assumed that the
Hamiltonian is sparse, that is, the number of terms in the Hamiltonian grows polynomially
with respect to the system size, L = O(Poly(N)). The most natural and direct Hamiltonian
simulation method is to apply the Lie-Trotter-Suzuki (Trotter) formulae, which approximate the
real-time evolution operator U(t) by the product of the evolution of the summands, e?*#t, which
are relatively easy to implement. Historically, Lloyd proposed first-order Trotter methods for
universal Hamiltonian simulation [13]; Suzuki extended it to high-order product formula [139];
Berry et al. provided a detailed error analysis [35]; Childs et al. tightened the error analysis
using the commutator information in the Hamiltonian [144]. To improve the dependence on the
Hamiltonian sparsity L, Campbell proposed the gDRIFT algorithm, which randomly sample the
summands to realise the Trotter formula [145]. However, the remainder of a kth-order Trotter
formula (Trotter error) is usually large, which is polynomial in the order k, and the required gate
number is consequently polynomially dependent on the accuracy requirement as O(Poly(1/e).

In recent years, there have been developments in Hamiltonian simulation algorithms by im-
plementing different linear-combination-of-unitary (LCU) formulae [36]. In 2015, Berry et al.
proposed a simulation algorithm using the LCU formula introduced by Taylor series expansion
of U(t) [38]. Low and Chuang subsequently proposed the quantum signal processing (QSP) algo-
rithm [32,33], which achieves optimal Hamiltonian simulation. In the QSP algorithm, H is embed-
ded into a larger unitary operator, usually based on a LCU decomposition of H, H = Zle aUy;
a polynomial of the Hamiltonian (such as Taylor series [38] or Jacobi-Anger expansion [32]) can
be realised through coherent phase iterations and post-selection. These post-Trotter methods
are able to capture dominant terms in the time evolution U(t) with few resources, leading to a
logarithmic gate-number dependence on the accuracy requirement as O(Poly(log(1/¢)).

Nearly optimal simulation by quantum signal processing will be reviewed in Section 2.4.3,
which achieves the scaling

O(Xt +log(1/¢)/loglog(1/e)) (2.45)

where A = 3, |oy| is the sum of absolute values of the Hamiltonian coefficients and ¢ is the target
precision. It is worth noting that the scaling on t and ¢ is separate, which shows advantages
over LCU. This is attributed to the fact that Jacobi-Anger expansion approximates the operator
during a full time period ¢, instead of dividing the time into v segments; the latter unavoidably
results in a coupling of ¢ and ¢, and thus has the multiplicative error dependence in the circuit
complexity as O(Atlog(1/e)/loglog(1/e)). I refer to Section 2.4.3 for a detailed discussion of the
complexity, which will be used in Chapter 9.

These advanced algorithms, however, require the implementation of LCU formulae or block
encoding of Hamiltonians, which often costs many ancillary qubits and multi-controlled Toffoli

gates. Resource analysis at gate level will be discussed in Chapter 9.

37



2.4.2 Product formula

One notable quantum dynamics simulation method is the product formula [144]. Typical product
formulae are the Trotter-Suzuki formulae, which shall be referred to as Trotter formulae or Trotter
methods in this thesis. In the Trotter methods, we first divide the real-time evolution into v
short-time segments,

et = (etHr)" (2.46)
where each time step is defined as x := t/v, and approximates the unitary by a successive product

of short-time evolution. The first-order Trotter formula is
L

Si(z) = [Je " (2.47)
=1
and the second-order Trotter formula is
1 L
Sa(x) = H et @/2)H) H e H@/2H (2.48)
I=L =1
A general (2k)th-order Trotter formula is
Sor(x) = [Sok—2 (Pk)) Sar—2 (1 — 4py) ) [Sak—2 (pr))? (2.49)

with py, := 1/ (4 — 41/(*=1) for k > 1. The zeroth-order Trotter formula is denoted as Sp(z) = I.

Denote the (multiplicative) remainder of the Trotter formulae as
Vo(z) = U(x),
Vi(z) = U(x)Si(2)T, (2.50)
Vai(2) = Koi(—2)U () Kax (@),

with U(x) = e®H . Suzuki proves that,
Si(z) = U(x) + O(zF+1) (2.51)

for k =1 or even positive k. As a result, the remainder Vj(x) will only contain terms of 27 with
q>k+1.

To improve the error dependence of the Trotterisation method, it is crucial to study the
remainder of the Trotter formulae. I will show how the Trotter error can be compensated by

LCU in Chapter 9.

2.4.3 Nearly optimal simulation by quantum signal processing

The quantum signal processing (QSP) algorithm by Low and Chuang [32,33,37] aims to expand
the real-time evolution using some polynomial functions of eigenvalues. To realise this, we first

encode the n-qubit Hamiltonian H = ), oyU; to a (nf, + n)-qubit unitary, select(H )

L
select(H ) := Z 1)(1l] ® Hj, (2.52)
=1
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where ny, = [log(L)] and U; is a unitary operator. Denote

1L
)= 5 3 vail) (2.53)
with A = 37 |ay|, then we have
H = \(G| & I)select(H)(|G) ® I), (2.54)

which indicates that H is block-encoded into select(H).
The eigenvalues of H are related to the ones of select(H). Denote the spectral decomposition

of H as follows,

H = ZEj\ujMuj! = /\Zhj!uj><uj\ (2.55)

where h; = E;/\ is the jth normalised eigenvalue. We have h; € [—1,1] since ||H| < X by the

triangle inequality. For each eigenvalue h; € (—1,1), the following operator
—iQ = —i((2|G)(G| — I) ® I) select(H), (2.56)

has two corresponding eigenvalues h;-—L, which are given by

hji =F /1 _ h? _ ’lh] — :Fe:i:iarcsin(hj) — :Feﬂ:’igj" (257)
with eigenvectors ’h;t> = (\Gj) +1 ‘G]l>) /V/2, where

Gj) : = |G) @ |uy)
‘G4_> . hilGy) —select(H) |G;) (2.58)

’ J1-n2 '

The QSP algorithm aims to construct the Hamiltonian evolution operator using the operator —i@

with a sequence of operations called phase iterates. To realise this, we introduce an additional
ancillary qubit and define the phase iteration operator, following the discussion in [37] rather
closely,

V= (e*i‘f’az/? ® I) ([HNH @ T + =)~ @ (—iQ)) (ei‘i"’z/2 ® I) : (2.59)

Denote the spectral decomposition of —i() to be
—iQ =Y _ " |q) (al, (2.60)
l

where 60; contains the values of +60; = £ arcsin (h;). Then, the phase iteration operator V; can

be rewritten as

Vo= "Ry (0) ® |a) (al (2.61)
l

39



where
Ry(0) := 7@/ 5(¢) := cos(¢)o® + sin(¢)o? (2.62)

As a result, each eigenvalue €% of —iQ is embedded into Vs as a rotation operator Ry (6;) with

a tuneable angle ¢.

M
m=1

The idea of QSP is to concatenate the rotation operators {Ry,, (6;)} with well-designed

angles ¢1, ..., ¢ so that the resulting operator can be realised,

Ry, (0)... Ry () = A cosg I+iB COSQ UZ+iCOSQC sing o® +icos QD sing a?
2 2 2 2 2 2
(2.63)

where the polynomials A(x) and C(x) can be engineered to be some target functions of the
i0,/2

Vs in Eq. (2.61) will be cancelled out by alternating between V}, and Vdf L

eigenvalues ¢; and hence the functions of h;. The unwanted phase e in the phase iteration

V=V VeV Ve (2.64)

The polynomials with only A(x) and C(z) can be extracted by preparing the ancillary qubit in
the state |+), performing the operations in Eq. (2.64), and post-selecting the ancillary qubit to
|[+) (so that the polynomials B(z) and D(x) will be cancelled out). The resulting polynomial is

ps) - 4 s ) 0 (2) € (40 )

In our case, the target is to realise the time evolution operator, which can be written as,

N-1 N-1
e HE =N " e DM ) (uy] = e AN SO ) () (2.66)

j=0 j=0

To realise et using Eq. (2.64), the Jacobi-Anger expansion is used,
.. ©0 .
et sin(0)t _ Z Jk(t)ezke (267)
k=—o00

To approximate e~ M50 we yse the polynomial Poly (6;) constructed from M phase iteration
operators. It is shown in [33] that with proper choices of the angles ¢1,...,¢pr, we can realise

the expansion in Eq. (2.67) at order ¢ := % + 1, giving an approximation with error at most

23] < 5y (2:68)

The detailed classical algorithm to find the angles ¢1,...,¢5 to realise the target polynomials
will not be introduced here.
Remarkably, quantum signal processing achieves nearly optimal scaling in terms of query
complexity as
O(Mt +log(1/¢)/loglog(1/e)), (2.69)
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where A = )7, |ay| is the sum of coefficients of the Hamiltonian and ¢ is the target precision.
Note that a block encoding of H could be difficult to implement, as it requires a huge overhead

in circuit compilation. The resource cost for circuit compilation will be discussed in Section 9.3.

2.4.4 Approximation of time-evolved states

In many applications, we are simply interested in the evolution of a specific quantum state. There-

fore, it is unnecessary to approximate the unitary U = e *H*, This problem is less demanding,

and can be abstracted as follows.

Problem 2. Given an initial state |1(t =0)), a Hamiltonian H on n qubits, evolution time t,
output a state approzimation, |®(t)), of the ideal time-evolved state |1)(t)) = et [)h(t)) within
an error €, such that || |®(t)) — (1)) || < e.

The error of the unitary approximation is the upper bound of the state error as
1T = Toll = max [U'|¢) = Vo [¢) | (2.70)

We see that the resource requirement for state approximation is lower than that for the approxi-
mation of the unitary operation. It is also worth noting the connection to the variational methods
introduced in Section 2.2.3. Variational methods aim to solve such a problem and approximate
the evolution from a specific state, although it cannot guarantee the simulation accuracy. In
Chapter 5, I will introduce a possible approach to Problem 2 with a theoretical guarantee of the
simulation accuracy.

There are also other specific settings, such as a fixed electron or spin number [146], local
observables [147], lattice models [144] and fixed observables [148], where quantum resources can

be further reduced.

2.4.5 Circuit implementation of multi-qubit Pauli rotation e~

In this section, I give a pedagogical explanation of how an operator e~*/* can be implemented
with a quantum circuit. Assume P = P, ® P, ® --- ® P,, where P; € {X,Y,Z}. Notice
that HaXHq = Z (Hgq means the Hadamard gate) and R,(%)YR,(—%) = Z. Define a map
G from a Pauli operator to a gate, such that G(Z) = I,G(X) = Hq,G(Y) = R.(—7%) and
G~Y(P;)P;G(P;) = Z. Then e~ is decomposed as

n

et = exp(—it Q) P;) = exp(~it R) G (P)Z°" R G(F) = R) G~ (Py)e 47" Q) G (P;),
j=1 j=1 j=1 j=1

1=1
(2.71)
where G(P;) can be implemented by simple single-qubit gates. To implement e % ®nt, one can

first apply a series of CNOT gates

CNOTs = CNOTl_)QCNOTQ_>3 cee CNOTn_1_>n
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so that, for any input |Z) from the computational basis, the last qubit will be transformed

into |21 @ z2® -+ @ zp,). Then, we can simply apply e~ % on the last qubit and finally apply

CNOTs™!. An example for the case of n = 4 is shown below.

[4hY
N
oD
Y

N N
N N

T

Through such a construction, one can easily check that for all inputs |z) from the computational
basis, a phase e~ will be applied to it when z; @ 22 ® - - - ® 2, = 1 and all the other inputs will

remain the same. Thus, the effect of the circuit is equivalent to the operator e~ o,

Finally, we can use the circuit for e~ 27" o implement e~*’* which can be realised by
applying single-qubit operations without introducing additional two-qubit gates. In such a con-
struction, 2n — 2 CNOT gates will be used. In practical implementation, the depth of quantum

circuits may be further reduced on a case-by-case basis.

2.5 Quantum operations
2.5.1 Generalised quantum operation

In this section, I introduce the concept of generalised quantum operations and its implementation,
which was initially proposed in [95]. The concept will frequently be used in this thesis, such as

in Section 2.2, and the entirety of Part II. The generalised quantum operation is defined as
®(p) = Trp[U(p @ |0) (0] ) V1], (2.72)

where U and V' could be different unitary operators that apply jointly on p and |0) ;, and |0) ; (0|5
is short-handed as |0) (0| ;. The following shows several properties of the generalised quantum
operation ®(p).

The generalised quantum operation ®(p) has a bounded Schatten norm. Specifically, the

Schatten norm of a matrix is | M||, = Tr[|M|P]*/? for p € [1,00) and we have

12(p)lp < [2(p)llL < 1U(p @ 10) (Ol ) VI = [lo® [0) (Ol l1 = llol1- (2.73)

Here the two inequalities follow from the non-increase of the Schatten norm over p and the non-
increase of the trace norm under a partial trace. Nevertheless, since ®(p) could be complex, it
might not be a quantum channel in general.

The real and imaginary part of ®(p) could be expressed as a linear combination of completely

positive trace non-increasing quantum channels. Specifically, they could be obtained with the
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following circuit.

|+>O X()a}/b
p — - I
U| |vut
0)p L —

The output state before measurement is

pout = [0) (0y Up ® |0) (0] UT +10) (1], Up © [0) (0] 5 VT

(2.74)
+ (1) (0lo Vo @ [0) (0] U + 1) (1] Vo @ [0) (0] p V.
The real and imaginary part of ®(p) can be obtained from the X and Y measurements
Re[®(p)] = TrolpouXol: Tm[®(p)] = Tro[pou Yo)- (2.75)

The measurement of the output state is realised in a similar way. For example, the real and

imaginary parts of Tr[®(p)O] could be realised with the following circuit.

’+>O XUa}/b
o
U vut
o L H

When U =V, it reduces to a quantum channel N with N'(p) = Trg[U(p @ |0) (0| 5)UT] and the

quantum circuit implementation

0 o
U
p — I

When there is no ancillary E, it becomes ®(p) = UpV'T, with the circuit

[+)0
:

which plays a key role in our explicit scheme in Section 6.3.

Given two generalised quantum operations

®1(p) = T, [Ur(p @ 10) (0] 5 ) VA,

(2.76)
®s(p) = Trp, [Us(p @ 10) (0], ) Va4

the concatenated operation

By 0 D1(p) = Tre, 5,[U2U1(p @ [0) (0], o, VAV, (2.77)
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is also a generalised quantum operation. The real and imaginary part of ®3 o ®;(p) could be

obtained from measuring the ancillary qubit on the Xy and Yy basis with the following circuit.

‘+>O X07Yb

p — - -
UuUr | | VaWiUJUS
0) e, 5, — — —

It can be equivalently realised as follows using two ancillary qubits.

|+>O X07Yb )

|+>0/ XOUYZJ’
IO 1 - L | I
Ui | | wul
0)p, - H Uz | | VoUJ
0) &, — —

In particular, the above circuit factorises into two independent circuits when (1) p is a tensor
product of two states p = p1 ® p2 (2) Uy and V; applies on p; and |0) g ; Uz and Vs apply on p2
and |0) g, .

2.5.2 Pauli transfer matrix representation

In this section, I introduce the Pauli transfer matrix representation of states, observables, and
channels as a preliminary. By using Pauli transfer representation, a state, and an observable are

mapped to a real column and row vectors respectively, as follows

=l pe..]
(2.78)
pr = Tr(Pgp),
and
(Ql=1[.Qk...]
(2.79)

Q= STH(QPY),

where Py, € {I,04,0y,0,}®", n is the number of qubits, and d = 2". Furthermore, for a process,

ie., E(p) = >, KipK Z, the Pauli transfer matrix representation is
1
Eyj = STr(PE(F;)), (2.80)
and the measurement in the Pauli transfer representation is

Tr(QE(p)) = (QI E|p))- (2.81)
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2.5.3 A complete basis operation set

Every single-qubit operation can be decomposed into a linear combination of 16 basis operations.
This is because every single-qubit operation (including projective measurements) can be expressed
with square matrices with 4 x 4 = 16 elements by using the Pauli transfer representation in
Section 2.5.2. Therefore, 16 linearly independent operations are sufficient to emulate arbitrary

single-qubit operations. Table 2.1 shows a set of single-qubit basis operations [149].

1 [I] (no operation) 2 [0%]

3 | 7] 4 | [o"]

5 | [R=[5U+i0")] | 6] [R]=[5(I+i0Y)]
T RI= 50 +i09] | 8| Ryl = 150 + 07
9 | (R = | 5(0 4 0] | 10| Byl = [ (7 + o)
] [md=[EU+09]  [12] [m]=[U+0")

13| [m]=[(+0")] 14 | [y = [5(0Y +ic”)]
15| [ = (507 +i09] || 16 | [may] = 10" +i0%)]

Table 2.1:  Sixteen basis operations. These operations are composed of single-qubit rotations
and measurements. [I] denotes an identity operation (no operation), [¢*] (i = x,y, x) corresponds
to operations applying Pauli matrices. [r] corresponds to projective measurements.

Here, the complete set of basis operations is denoted as {8;}. For multiple qubit systems,
a tensor product of single-qubit operations, e.g., B; ® Bj, also forms a complete basis set for

composite systems. Therefore, we can decompose any n-qubit operation into the basis {B;}®"
£=Y B (2.82)
i

Although the decomposition is universal, it may produce a large coefficient A := ", |\;], which

results in a large sampling overhead. More details will be discussed in Chapter 6.

2.6 Quantum error mitigation
2.6.1 Error Model

Noise is inevitable in a quantum device due to interaction with the environment. Effective
quantum error mitigation (QEM) schemes are crucial for suppressing errors in order to guarantee
calculation accuracy. This section provides a review of QEM.

In a digital gate-based quantum computer, the effect of noise is simplified as a quantum
channel appearing either before or after each gate. The output state is different from the ideal

one, which can be described as

pggisy _ NNg oUn, o .. N1 oUi(pin) (2.83)

piﬂﬁ:al — Z/{Ng 0+-+0 Z/ﬁ(pin))
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where po¢ is a noisy output and pld% is a noise-free output from the quantum circuit, Uy,

and N, are k' quantum operation and the noise accompanying it, and N, is the number of
gates. Here, we assume the noise processes are Markovian for the sake of simplicity. Fault-
tolerant error correction based on encoding of qubits can be used to compensate for the effect of
noise and obtain correct computation results. However, in near-term quantum computing, the
number of qubits and gate operations are restricted due to imperfections of quantum devices,
which include physical noise and limited interactions among qubits. Therefore, fault-tolerant
error correction necessitating encoding of qubits could be challenging for near-term quantum
computing. Instead, QEM was introduced for mitigating errors in quantum circuits without
using additional qubits. By using QEM, one cannot restore the quantum state itself, but can
instead obtain an approximation of expectation values of observables corresponding to the ideal
density matrix, i.e.,

Tr [QEM (pgf;ify) 0} ~ Tr [pg{fta‘ } : (2.84)
for any observable O. Here, QEM(p) denotes the process of error mitigation, which may not
satisfy the requirements of a quantum channel. Therefore, we generally need classical post-
processing to realise QEM(p), which may introduce a sampling overhead (cost) when measuring
observables. The cost in general increases exponentially with respect to the error strength, as we

will see below. Therefore, a constant small error strength is generally required in order to make
QEM to work.

2.6.2 Quasi-probability method

Among different QEM schemes via different post-processing, the quasi-probability error mitiga-
tion method is one of the most effective approaches [97,149, 150]. It recovers the ideal unitary
processes by randomly generating noisy operations, with post-processing of measurement results.
Suppose the ideal quantum operation is denoted as U, then the key idea of the quasi-probability

method is to express the ideal evolution U as a linear combination of noisy operations C; as
U qKi=C_ pisgn(q)Ki, (2.85)
i i

where U and K; are superoperators, and » . ¢; = 1, C = Y. |qi|, pi = |¢|/C. As ¢; can be
negative, we refer to ¢; as the quasi-probability, and therefore the overhead coefficient C' > 1 in
general. To obtain the error free expectation value of an observable O, we randomly generate
noisy operation IC; with probability p;, multiply the measured result by the parity factor sgn(g;),

and obtain the expectation value (O).g4 as follows,
(O)eir = Y pisen(g:) Tr[OKi(pin)], (2.86)

Finally, the error-free expectation value of (O) is approximated by C (O).s. The variance is

amplified C? times greater, and thus the number of measurements required to achieve the same
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accuracy as that without QEM will be amplified C? times greater. C? can be interpreted as a
resource cost for QEM.

By way of illustration, we shall take a case in which a single-qubit operation is affected by
depolarising errors as DU. The removal of the error D can be formally done by applying its
inverse channel D~'. Now, the depolarising channel can be expressed as

3
D(p) = <1 - Zp) p+ Z(XpX +YpY + ZpZ), (2.87)

with the inverse channel derived as
D~ (p) = Cp-1lprp — p2(XpX + Y pY + ZpZ)], (2.88)

where Cp-1 = (p+2)/(2—2p) > 1, pr = (4—p)/(2p + 4), and po = p/(2p + 4). Here, it is
assumed that p < 1.

Consequently, the ideal channel I/ can be expressed as
U=D"'DuU

(2.89)
= Cp1[pZDU — po(XDU + YDU + ZDU)],

where Z, X, Y and Z correspond to an identity operation, and the superoperators for Pauli
operators. Note that Eq. (2.89) is written in the same form as Eq. (2.85), and hence the quasi-
probability method can be performed similarly.

To mitigate errors in a quantum circuit consisting of multiple gates, the quasi-probability
operations are applied after each noisy gate. The parity is updated depending on the generated
operations, and the final outcome of the parity is applied to measurement results in the same
way as a single quantum operation, shown in Eq. (2.85). Suppose there are N gates in a circuit;

the total overhead Cn can be expressed as
ey =]]¢c (2.90)

where C; is the overhead for the ith gate. Assume the error ¢; for each gate is small, and thus
the cost C; is close to 1. We assume C; takes the form of C; ~ 1 4+ \;g;, which is the first-order
expansion with respect to ¢;, where \; characterises the error strength. The total overhead Cx

can be approximated by
i
For simplicity, we assume \; = A and &; = € are independent of i. Then we have

L

On = (1+X)NV = (14 he)r?el m AN = ghen, (2.92)

Here ey = €N is denoted as the total error rate of all the N gates. The total cost C increases
exponentially with the total error rate ey. Error mitigation methods are useful when the total

error rate of a quantum circuit is small, ex = O(1).
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2.6.3 Stochastic error mitigation

In the above discussion, the QEM method assumes that the noise appears either before or after
each gate in a digital gate-based quantum computer, but realistic noise occurring in the ex-
perimental apparatus is more complicated. Specifically, every gate in digital circuits or every
process in analogue simulation is physically realised via a continuous real-time evolution of a
Hamiltonian, and thus errors can either inherently mix with the evolution making it strongly
gate- or process-dependent, or act on multiple qubits leading to highly nonlocal correlated effects
(crosstalk). Since conventional quantum error mitigation methods are restricted to gate-based
digital quantum computers and over-simplified noise models, they fail to work when applied to
realistic errors and general continuous quantum processes. In Chapter 10, I extend and apply
the QEM method to a more practical scenario, demonstrating how errors can be mitigated for

inherent dynamics-based and nonlocal noise in practical noisy quantum devices.
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Part 11

Estimating static and dynamic
properties of quantum many-body
systems
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In Part I, I introduced a general recipe for describing and solving a quantum many-body
problem. The first step is to encode the problem, which requires an effective and efficient de-
scription of a quantum many-body system. With this efficient representation in place, we prepare
the initial state, evolve the state under the Hamiltonian, and measure the final state to get the
observation of interest. In this process, the essential components are eigenstate preparation and
dynamics simulation, which correspond to the static problems and dynamic problems introduced
in Section 1.2. In this part, I will show a solution to such a general quantum many-body problem,
covering specifically how to estimate static and dynamic properties of quantum systems.

In Chapter 3, I introduce a new quantum-classical architecture, the hybrid tensor network,
which serves as a basis for a general representation of quantum systems and is applicable to
a broad range of problems. This method incorporates the complementary strength of tensor
networks and quantum computing, and is shown to be capable of unifying many existing classical
and quantum algorithms.

In Chapter 4, I focus on eigenenergy estimation and eigenstate property estimation. A quan-
tum algorithmic cooling scheme is proposed to find the energy spectrum and estimate eigenstate
properties, which achieves exponential speed-up for the circuit complexity with the requirement
of only one ancillary qubit, and shows clear advantages over quantum phase estimation and
variational algorithms.

In Chapter 5 and Chapter 6, I focus on dynamic problems. The central objective is to
approximate a unitary operator or a time-evolved state, formalised in Section 2.4. In Chapter 5,
I propose an adaptive product formula for the latter problem. I further show how to enable large-
scale quantum simulation by using the methods developed in Chapter 3. In Chapter 6, I introduce

a perturbative approach for a generic interacting quantum system described by H = H'¢ 4 V/int,
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Chapter 3

Hybrid quantum-classical tensor
networks: framework and application

The first step of quantum simulation is to develop a general framework for representing a quantum
many-body system in an efficient way. There are several methods of describing a quantum system,
one of which is tensor networks. Tensor network theory, originating from the density matrix
renormalisation group (DMRG) for 1D Hamiltonians [151, 152], describes the quantum state
with a network consisting of low-rank tensors. It has achieved notable success in its application
to a variety of problems, particularly in 1D local gapped systems. However, the tensor network
theory may become inadequate for application to general strongly correlated systems or those
that do not admit an efficient tensor network description.

Drawing on tensor network theories and quantum computation, I introduce a new paradigm
to represent quantum many-body states incorporating the power of quantum computing and
classical tensor networks (overviewed in Section 2.1.4). A framework of the hybrid tensor network
consisting of classical low-rank tensors and many-body quantum states is established. This
method provides a basis for general hybrid quantum-classical representation of a many-body
wave function that is applicable to a broad range of problems with concrete examples, such
as quantum chemistry, quantum spin systems, searching for topological phase transitions, and
quantum field theories.

By leveraging the ability of tensor networks in the efficient classical representation of quantum
states, complex interacting quantum systems can be effectively represented using fewer quantum
resources, which enables medium- or large-scale quantum simulation using small quantum pro-
cessors. More importantly, this method demonstrates the ability to unify some typical algorithms
in quantum simulation, which are commonly used in condensed matter physics and chemistry.

In this chapter, I will introduce the definition of classical and quantum tensors, the definition
of tensor contraction and its meaning, the way to measure local observables, its properties, and

applications in quantum many-body systems. This chapter is relevant to work published in
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collaboration with Xiao Yuan, Junyu Liu, Qi Zhao, and You Zhou [90]. Author contributions

are listed at the end of this chapter. The same format will be used in the following chapters.

3.1 Framework
3.1.1 Classical and quantum tensors

As introduced in Section 2.1.4, a hybrid tensor network consists of classical and quantum tensors,
whose mathematical definition is consistent with that of a conventional tensor network. That is,
tensor contractions are mathematically defined in the same way for classical and quantum tensors.
Nevertheless, it is worth highlighting the difference between them. Operationally, classical tensors
are contracted classically via tensor multiplication, while quantum tensors are contracted via
measuring a quantum state on a quantum computer.

To motivate the establishment of hybrid tensor networks (TN), I begin with classical tensor
network theory. A rank-n tensor, when regarded as a multi-dimensional array, can be represented

as T} with n indices. The amplitude of an n-partite quantum state in the computational

1:J25050n

basis corresponds to a rank-n tensor

[0) = D Wiraria [01) [G2) - L) -

J1:525-50n
A classical TN typically consists of low-rank tensors, which could efficiently describe physical
states that lie in a small subset of the whole Hilbert space.

A typical tensor network is a matrix product state (MPS) [153], which has achieved success
in representing 1D local gapped systems with area law of entanglement. MPS admits the form
of

) = > TY[AM . AP g)
J1n
which consists of rank-3 tensors with a small bond dimension & of each matrix A7, and compresses
the state dimension from O(2") to O(nk?). As discussed in Section 2.1.4, tensor networks may
not be able to represent general quantum many-body systems. This motivates the incorporation
of quantum computing. A quantum state generated from applying a unitary circuit to a certain
initial state generically forms an intrinsic large-rank quantum tensor and can be naturally stored
and manipulated with a quantum computer.

In the literature, classical tensor network theory and quantum simulation are generally used
as separate techniques in classical and quantum computing. Below I introduce quantum tensors
as general n-partite quantum states prepared by a quantum computer, and classical tensors as
low-rank tensors stored in a classical computer; I then demonstrate the combination of quantum
and classical tensors as a hybrid tensor network.

Suppose an n-partite quantum state is generated by applying a unitary Uy, to an initial state

|0) as [¢)) = Uy |0), as shown in Figure 3.1(a). As shown in Eq. (2.17), the quantum state can be
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(b)
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Figure 3.1: Tensor network representation of quantum states and tensor contractions. (a) A
general n-partite quantum state can be regarded as a rank-n tensor (black line, subscript). (b)
A classical index (red line, superscript) is added to an n-partite quantum state to generate a
rank-(n + 1) tensor with n indices representing n quantum systems and 1 classical index. With
a quantum circuit, it is equivalent to preparing different states |1)*) = U®|i) with (b1) different
unitary operations as [¢*) = U?|0) or (b2) simply the same unitary but different initial states
as |[¢%) = U0%). (c, d) Tensor contractions between a quantum tensor and a classical tensor.
The contracted index could be (c¢) classical (red) or (d) quantum (black), which is contracted in
different ways. (e, f, g) Tensor contractions between two quantum tensors. (c, ) The contracted
index of both tensors corresponds to a classical index. (d, f) The contracted index corresponds
to a classical index for one tensor and a quantum index for another tensor. (g) The contracted
index of both tensors corresponds to a quantum index. The tensor II is equivalent to a projective
measurement »_, ., [1) (i| @ |i) (7/|.

regarded as a rank-n tensor in the computational basis. We can also introduce classical index to

the quantum state by applying different unitary gates as

W) =Ugi[0) = D Wy v 1) G2) - Liin) - (3.1)

J1,J25++50n

Alternatively, we can also apply the same unitary but to different initial states as

W) =U0) = > Wy 1) 2) - L) s (3.2)
J1,525e050n
where the classical index 4 indicates the different unitaries or different initial states. As a result,
{|1;)} as a whole forms a rank-(n + 1) tensor. This is illustrated in Figure 3.1(b).

For simplicity, only one classical index is introduced here, but there is no restriction on
introducing more classical indices. All these cases are regarded as quantum tensors, and a
network connecting with quantum tensors and classical tensors is termed as a hybrid tensor
network. Hereafter, we put indices corresponding to classical labels and quantum basis to the
superscript and subscript of the tensor, respectively. This work focuses on qubits, and the results

can be straightforwardly generalised to qudits in higher dimensions.
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3.1.2 Hybrid tensor networks

In this section, I show how to connect quantum and classical tensors to form a hybrid tensor.
When connecting two tensors, being either classical or quantum, we follow the conventional rule
for tensor contraction.

Regarding low-rank tensors as classical tensors (superscript index, coloured red in figures)
and quantum states as quantum tensors (subscript index, coloured black), we define hybrid TNs
as networks constructed by connecting both classical and quantum tensors. For example, the
i
J15J25005
of n-partite quantum states. Two tensors, being either classical or quantum, are connected by

tensor A2 represents a classical tensor with two classical indices and ;,, represents a set
following the conventional contraction rule, i.e., C"+% = > i A2 Bizd3 - Ag an example of this,
the connection of a quantum and a classical tensor is shown in Figure 3.1(c, d).

While the mathematical definition of tensor contraction of a hybrid tensor network is consis-
tent with the conventional definition, its practical meaning can be different. Specifically, classical
and quantum tensors are contracted in two different ways via tensor contraction and quantum
state measurement, respectively. Depending on whether the tensor and the index are quantum
or classical, there are five different cases under contraction, as shown in Figure 3.1(c-g). For ease
of explanation, this chapter considers the contraction of rank-2 classical tensors and rank-(n+1)

b R

quantum tensors without loss of generality. Hereafter, is used to abbreviate the quantum
indices (e.g., j1, j2, .-, jn in Figure 3.1(a)) when they are not contracted.

Case 1: quantum tensor (contracted index: classical) & classical tensor (contracted index:
classical) in Figure 3.1(c).

First, a quantum tensor 1’! is connected with a classical tensor a’*®2 to form a new rank-
(n+ 1) tensor,

PR =) ylat (3.3)
11

where the contracted index from the quantum and classical tensors is a classical label. To
understand the meaning of Eq. (3.3), the quantum tensor ! is regarded as a set of independent

quantum states {|1)")} and the tensor ¥ represents a new set of states,
‘d12> — Z o192 ‘w11> 7 (3.4)
1

where each one is now a superposition of the original states {|1)"*)}. As a special case, when the

classical tensor is rank-1, /!, the output tensor is
) =) ot [ph). (3.5)
1

Therefore, we can connect a classical tensor to the classical index of a quantum tensor to effec-

tively represent a superposition of quantum states.
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Case 2: quantum tensor (contracted index: quantum) & classical tensor (contracted index:
classical) in Figure 3.1(d).
When the contracted index i; of the quantum tensor 1);, .. corresponds to a quantum system,

the tensor contraction is similarly defined as
U= byl (3.6)
i1

When considering quantum states, the contraction transforms an input state |¢)) to a set of

output states {|¢)2)} as

[72) = Za’“‘? (i1ly), (3.7)

which is equivalent to projecting the contracted system onto (i1| to form a set of un-normalised
states [1)") = (i1]y)) and re-combining them with coefficients a'"2. Actually, if we regard o
as a unitary gate with io representing a quantum system, it corresponds to a local unitary
transformation of the state.

Case 3: quantum tensor (contracted index: classical) & quantum tensor (contracted index:
classical) in Figure 3.1(e).

Next, consider the contraction of two quantum tensors, with the contracted index being
classical for both tensors. Suppose the two quantum tensors are 1)’ and ¢’ , the contraction of
index ¢ gives

b= Zw?. ¢ (3.8)

Considering quantum states, the contraction transforms two sets of states {|¢%)} and {|¢)} to

an un-normalised state

[0y =D v @8 (3.9)

By contracting two quantum tensors, we can thus effectively entangle two quantum systems. A
classical tensor can also be added in between so that the amplitude for each |1?) ®|¢?) is different.
Case 4: quantum tensor (contracted index: quantum) & quantum tensor (contracted index:
classical) in Figure 3.1(f).
When one of the contracted indices corresponds to a quantum system, the contraction is

similarly defined as

o= i ¢ (3.10)
i
Considering quantum states, the contraction converts |¢) and {|¢*)} to

[0) = (ilv) @ |¢"). (3.11)

7

Again, this is equivalent to applying a projection to 1) to get a set of states {|¢!) = (i|s))} and

then connecting the classical indices of the two quantum tensors.
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Case 5: quantum tensor (contracted index: quantum) & quantum tensor (contracted index:
quantum) in Figure 3.1(g).
When both contracted indices represent quantum systems, two quantum tensors v; . and

¢;,... are contracted as

=D Vi i (3.12)

It is equivalent to

16) = _(ile) @ (il¢) =D (i,i| [p) @ |¢), (3.13)

(2 (2

which accounts for a Bell state projection on the contracted systems. Note that since it is a joint
measurement on both states, the success probability could be less than 1. If there are multiple
contractions of quantum indices, the overall probability could be exponentially small. Therefore,
we only allow a constant number of contractions of two quantum indices in the hybrid tensor
network.

For a general hybrid tensor network consisting of classical and quantum tensors, its tensor

contraction rule and operational meaning are similar to the above cases.

3.1.3 Calculation of expectation values of local observables

In this section, I show how to measure the expectation values of tensor products of local observ-
ables given a hybrid tensor network representation of a quantum state. The basic rule follows the
same mathematics of tensor contraction. For classical tensors, the expectation value is calculated
in the same way as conventional tensor networks. Conversely, for quantum tensors we can no
longer calculate the expectation value via tensor contraction since it involves matrix multiplica-
tion of a rank-n tensor. Instead, the expectation value is obtained by preparing the state on a
quantum computer and measuring the state.

Figure 3.2(a) shows how to get an expectation value of local observables for the quantum
systems described by a rank-(n + 1) quantum tensor. This tensor can be either an n-partite
quantum state with a classical index ¢ or an (n + 1)-partite quantum state with a quantum basis
index i. By measuring the n parties, it gives a new rank 2 tensor M with two open indices i
and 7/,

M = ("[01© 0y ® - @ O [¢)) (3.14)

where O is a local observable acting on the jth bit. Here the definition is the same if we measure
an (n + 1)-partite quantum state.

The indices of M*" are always put in the superscript, because the observable in Eq. (3.14) is
always a classical low-rank tensor. Note that the matrix M? is always hermitian so that it can
be measured when the indices ¢ and i’ are contracted to another quantum tensor. I now illustrate

how to get M i under different circumstances.
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Figure 3.2: Measuring expectation values of a quantum tensor. (a) Consider a rank-(n + 1)
quantum tensor, which could be either an n-partite quantum state with a classical index ¢ or
an (n + 1)-partite quantum state with a quantum basis index i. The expectation value of the
n quantum systems gives a hermitian observable M*" = (7|0} ® O3 @ --- ® Oy [¢") on the
open indices. Each element M?* can be measured with a quantum circuit of (b), (c), or (d).
(b) Suppose the index i is classical and [¢)") = U"|0), we choose Uy = U, Uy = U” (U%)!, and
Uy to be the unitary that rotates the eigenstates of the observables to the computational basis.
Each M+ is obtained by measuring the ancillary qubit in the X, Y, Z bases and the other
n qubits in the computational Z basis. (c) Suppose the index i is classical and |¢%) = U |0%);
U, is applied to prepare four input states |[0%),]07), (|07) + [07))/+/2, (|0%) + i|07))/v/2. Each
M corresponds to a linear combination of the measurement results. (d) Suppose the index
i is quantum, after applying the unitary U for preparing the state |¢)) = U |0), we measure n
qubits in the computational basis and the qubit with index ¢ in the Pauli X, Y, and Z bases. (e)
Tensor contraction can have different orders. With a rank-(n + 1) quantum tensor connected to
a classical tensor, we can either (el) first calculate the expectation value of the classical tensor
and then measure the (n + 1)-partite quantum state or (e2) first measure the n systems via (d)
and then do classical tensor contraction.

Case 1: The rank-(n 4+ 1) quantum tensor is an n-partite quantum state with a classical

index 7.

e Suppose [¢) = U'|0), U; = U". M+ is measured with the quantum circuit in Fig-
ure 3.2(b). Consider Uy = U? (U and Uy to be the unitary that rotates the eigenstates
of the observable to the computational basis. The output state before the Uj; gate is

~ 1

When the ancillary qubit measures the Pauli X, Y, Z operators, and the n-partite system

(10) [ + 1) [7) ) (3.15)

measures M = 01 ® O, ® --- ® O,, the expectation values are

(GIX © M) = 5 (> + M12),
WY @ M|y = %(iMZl —iM"?), (3.16)
(| Z @ M) = %(Ml’l — M*?).

Note that M2 is the complex conjugate of M?! and we have

(MY + M2, (3.17)

N =

(W1 ® M|J) =

o7



which can be obtained from the measurement of any Pauli basis. Therefore, we can exactly
solve for each term M®/ (i,j = 1,2) and construct the measurement

N Ml’l M1,2
M = {Mz,l Mz,z}-

e Suppose |[¢p") = U [0%). M?? can be measured with the quantum circuit in Figure 3.2(c).
Now we need to input (|07) =[0"))/+v/2 and (]0) £ [0%))/v/2 and the matrix elements can

be similarly obtained.

Case 2: The rank-(n + 1) quantum tensor is an n + 1-partite quantum state with a quantum
index I.

We need to measure
MY = @'Y © 01 @03 @+ @O0y @ (i| 1) = (| () (i]) @01 @ O3 @ -+~ @ O |9h) . (3.18)

Note that the matrix |i') (i| can always be represented as a linear combination of the Pauli
operators, we can thus instead measure the uncontracted qubit in the three X, Y, Z Pauli bases

to equivalently get any M?+ as shown in Figure 3.2(d). Suppose [¢) = U |0), denote
E(0)={@o®@01®0,® @0, 1), (3.19)
and we can reconstruct the measurement M as
M= %(E(I)I +E(X)X —BEY)Y +E(2)Z), (3.20)

where E(X), E(I), E(Y), E(Z) are the obtained expectation values with Pauli measurements
1, XY Z.

Calculating the expectation value of a general hybrid tensor network follows the above basic
rules for classical and quantum tensors. Nevertheless, similar to conventional tensor networks,
different orders of tensor contraction could have different procedures and complexities. For
example, say that we are considering the hybrid tensor shown in Figure 3.2(e), which consists
of a rank-(n + 1) quantum tensor and a classical tensor. We could first contract the right
classical observable Oy with the classical tensor «, and obtain a new observable 06. Then we
measure the n+ 1-partite quantum state to get the final expectation value. Here we need classical
contraction and a single local measurement with repetition samples M. This procedure is shown
in Figure 3.2(el). Alternatively, we can also use the circuit in Figure 3.2(d) to reconstruct
observable M by measuring the n + 1-partite quantum state and then contract the classical
tensors. This procedure requires three local measurement settings (X, Y, and Z on the first

qubit) with total repetition samples of 3M.
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3.1.4 Application in quantum simulation

The hybrid tensor network provides a way to more efficiently represent quantum states with fewer
quantum resources. The hybrid tensor network can be applied in variational quantum simulation
for solving static energy spectra and simulating dynamics of a quantum system.

Consider a many-body Hamiltonian

with coefficients \; and tensor products of Pauli matrices h;. To find the ground state of the
Hamiltonian, consider a parameterised hybrid quantum tensor network, which corresponds to a
possibly un-normalised state |¢(Z)). Here Z denotes the parameters in a hybrid tensor network,
which include the parameterised rotation angles in the quantum circuit and parameters in the
classical tensors. Then we can measure the average energy as

o W@H @) _ XA @) b [0 (&)
PO="0@m@ - w@h@) (3.22)

where each (¢(Z)| h; [¢(Z)) and the normalisation ((Z)[1(Z)) can be obtained by calculating

the expectation value of the hybrid tensor network with the method I discussed in the previous
section. Having measured E(Z) for any &, we can then optimise the parameters via the classical
algorithm to minimise E(Z) to search for the ground state. The whole optimisation procedure
is identical to a conventional approach named variational quantum eigensolver (VQE) which is
introduced in Section 2.2.2. The difference lies in the usage of the hybrid tensor network, which
may enable quantum simulation of large systems with small quantum processors. We can also use
hybrid tensor networks for simulating Hamiltonian dynamics. The circuit for the implementation
of variational Hamiltonian simulation with hybrid tensor networks is slightly more complicated.
I leave the discussion to Chapter 5. In the following sections, we mainly focus on using hybrid

tensor networks for finding the ground state of a Hamiltonian.

3.2 Hybrid tree tensor networks

Calculating a general hybrid tensor network can be costly. Here we expand the discussion of the
main text and focus on hybrid tensor networks with a tree structure. I first consider representa-
tive examples of hybrid tree tensor networks (TTN) and discuss its application in representing
correlations of the multipartite quantum state. I then study the cost of calculating the expecta-
tion values of a general hybrid TTN.

I show several examples of hybrid tree tensor networks in Figure 3.3. Below, I discuss the
application of each tensor network and its connection with existing results. For each n-partite

state, we assume it is an n-qubit parameterised state |1)(6)), obtained by applying a sequence of

local gates as |1(6)) = [1,Uj(6;) |0) with an initial state [0) and parameters 0 ={0;}.
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Figure 3.3: Hybrid quantum-classical tensor network. (a) We can extend the power of a quantum
state by adding a classical tensor as in Eq. (3.23). (b) We can combine a quantum state and a
classical tensor to represent a state in a larger Hilbert space as in Eq. (3.29). (c¢) We can use a
classical tensor to connect two quantum states as in Eq. (3.32). (d) A quantum-classical hybrid
tensor in Eq. (3.34). (e) A classical-quantum hybrid tensor in Eq. (3.37). (f) A quantum-quantum
hybrid tensor in Eq. (3.40). (g) A commonly used classical tensor network MPS.

3.2.1 Extending the power of the quantum state

Suppose we use the quantum state |¢(5)> as a potential solution to an n-qubit problem. We
can regard the quantum state as a pure rank-n quantum tensor. A simple way to extend the

capability of an rank-n quantum tensor is to concatenate a classical tensor o to it,
=S ol (), (3.23)
i

where each |¢%(6 )) can be regarded as different rank-n quantum tensors and ¥ = (a?, ... NI )
are the total parameter setting. Such a concatenation corresponds to the hybrid tensor network

in Figure 3.3(a). To find the ground state of Hamiltonian H, the energy can be obtained as

—

((3)| H [$(F) _ ;@' (@' (6)] H |4 (6))
W@)(@)) S, atad (4(6:) | (65)

and a minimisation over the parameter space could lead to the solution.

E(7) = (3.24)

We can see that such a hybrid tensor network contains the subspace expansion method as a
special case. In particular, suppose we fix the parameters of the quantum tensors \W(G_;)) and
denote |1¢(6;)) = |1(F)), then we can analytically solve the minimisation of E(Z) as follows.

Denote

HY = (i (8)] H 49 (8)) , 59 = (u (B)] (6)) (3.25)
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Suppose we consider the subspace with (¢(Z)[|(Z)) = 1, then it is equivalent to optimising
E(Z) = (¢(Z)| H |(Z)), or the function E'(Z) = E(Z) — X (¢(Z) ] (Z)) with a Lagrangian multi-
plier . Variation of the new function E'(Z) gives
SE'(F) =) (af6a’ + a'sal)HY — X\ (a/da’ + a'da) S, (3.26)
i, i,J

and a local minimum solution requires 0 E'(#) = 0, which is equivalent to
H%al = \S%al, (3.27)
Writing the equation in the matrix form, it is equivalent to
Ha = \Sa, (3.28)

which coincides with the subspace expansion method.

In practice, we can optimise all the parameters in both quantum and classical tensors. We
can simultaneously optimise them by treating E(Z) as a black box cost function. Alternatively,
we can first optimise the parameters of the quantum tensor and fix them, and then optimise
parameters of the classical tensor. Since the parameters are not simultaneously optimised, we

may need to repeat the procedure several times until convergence of energy.

3.2.2 Virtual qubits via classical tensors

In addition to extending the power of the quantum circuits, we can also use the classical ten-
sor to represent physical quantum systems, similar to a classical tensor network. As shown in
Figure 3.3(b), one can connect a rank-(n + 1) quantum tensor to a rank d + 1 classical tensor
network to represent a system of n + d qubits. Here we assume the classical tensor network
consists of low-rank classical tensors and admits efficient contraction, such as the matrix product
state (MPS) as defined in Eq. (2.18). In the remainder of the section, I consider MPS as an
example of the classical tensor network.

Suppose the rank-(n + 1) quantum tensor ‘! represents a set of n-qubit quantum states
{|¥"*)} and the classical tensor is given by q'tJn+1iydntd = Tr[azf’j"“oé"+2 ..o, then the

hybrid tensor of Figure 3.3(b) represents a quantum state

[Py = > @I I [ ) ) - (3.29)

11,0155 Jn+d

For any tensor products of local observables M = O1 ® - - - ® Oj14, We have

(WGIMIP) =" (@101 ® ... Oy M1, (3.30)

T
1,8
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with

il R LA i1yt s y . . .
M = E : Q1Int 1 Ingdgfdnt L dntd <]n+1’0n+1‘3n+1> e <]n+d’0n+d|]n+d> .
j;z+1»-~~jil+d7jn+1w~jn+d

(3.31)
Here each <¢i/1 |01 @ ...0y|1") is obtained with a quantum computer and each element M GR!
is obtained by an efficient tensor contraction of the MPS ansatz. Note that the dimension of iy
can be chosen to be a small number, similar to how we decide the bond dimension of the MPS
ansatz. The definition also holds when the quantum tensor is an (n + 1)-partite state, where we

can assign multiple qubits to the system that the ¢; label represents.

3.2.3 Local quantum correlation and non-local classical correlation

Quantum tensors can be used to represent quantum correlations of local subsystems and classical
tensors to represent correlations between the subsystems!. For example, consider two subsystems
A and B with Hamiltonian H = Hs + Hp 4+ Aha ® hp with a small coupling constant A\. We
can use the hybrid tensor network in Figure 3.3(c) to represent its ground state,

Fap = 30" [0") 4 @ [67)5. (3.32)

i1,i2
Here |p'1) , and [)%2) 5 represent the state of subsystem A and B, respectively, and o’ is the
classical tensor representing the correlation between A and B. If the quantum correlation is
not too strong, we can set the rank of «;; to be a small number. The average energy of the
Hamiltonian is
gy S s (TS5 S )

Jop el _ — o (3.33)
<1/}W}>AB Zil,ig,i’l,ié @11712042171281417 SBL

. R T A% P (A P /¢ PN LA S A0 ) . .
where the matrices H,)"", Sg"°, S4", Hg"", hy'", hg'~ are defined in a general way as in

Eq. (3.25), that is, MZ{B) = <¢i|M|¢j)A(B). We can then obtain the energy by measuring the
matrices with a quantum computer and contracting the classical tensors classically. Suppose that
each system A and B consists of n qubits, so that the total system size is 2n qubits. The energy
can be obtained by only manipulating states of n qubits instead of 2n qubits.

In a similar way, we can extend the hybrid tensor network for two subsystems to & subsystems,
as shown in Figure 3.3(d). The matrix product state a’%2+% = Tr[al'a@...ak] is used as
the description of the correlation between subsystems. Suppose each subsystem is represented
by quantum states {|¢*) }, such that the hybrid tensor network of Figure 3.3(d) represents a
quantum state

[0y = > ek i) @ [yR), . ), (3.34)

i1,82,...1k

1Il’l this context, ’local’ concerns correlations in each subsystem, whilst 'non-local’ concerns correlations between
) )
different subsystems.
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To measure the expectation value of M = O; ® --- ® Oy with each Oy representing a local

observable on the s-th subsystem, we have

@IMIGYy = Y aheikaioe et M (3.35)
i1 il ool
with
Mt = (™0, [y), (3.36)

As a result, we can just use an n-qubit system to represent a kn-qubit system, and the bipartite
version corresponds to k£ = 2. The dimension of each index i1, ... should be a small number,
similar to the bond dimension of MPS. This is a general form of the hybrid quantum-MPS tensor
network, and one can also consider other classical tensor networks (see Appendix A). Indices
involved here in the contraction between the quantum and classical tensors are all classical ones.
Alternatively, one can also make a hybrid contraction, where the index of the quantum tensor is
a quantum one, as shown in Eq. (3.6).

In this instance, the quantum tensors are used to represent the local n-qubit correlation, and
the classical rank-k tensor is used to represent the global correlation among these k clusters of
qubits. This kind of quantum-classical tensor can be used as a heuristic ansatz for representing
systems where local correlation dominates over global correlation, such as weakly coupled cluster
systems. However, it is worth noting at this point that it may still be inadequate for representing

a general quantum system.

3.2.4 Local classical correlation and non-local quantum correlation

Instead of using a quantum processor to represent local correlations within each subsystem, one
can also consider a classical-quantum two-depth tree structure in Figure 3.3(e). In this structure,
classical tensors are used for representing local correlations of each subsystem, and a quantum
tensor is used for representing the non-local correlation between the subsystems.

The idea underpinning this approach is that after the quantum circuit is applied to pre-
pare a k-qubit state [¢), we additionally connect a classical tensor network to each qubit
to transform it to m qubits. Suppose we use the MPS for representing each subsystem as

Qlsidin = Tr[o/f’jf . aﬁfl], the state corresponding to Figure 3.3(e) is

~ TS | . L g -
)= a7 ey i e @), (3.37)
g5
where we denote i = (11, .. 1k), j’s = (§5,...,75), and oy, i, = (W) To measure M —

01 ® - ® O with each Oy representing tensor products of local observables, we have

WIM[) = (|01 @ - @ Oy, (3.38)
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with each observable O, obtained by classical tensor contraction as

Oibis = 37 i g d" 0 7", (3.39)

77
Again, only k£ qubits are used to represent a system of nk qubits. Note that each subsystem may
have a different number of qubits, and we can use multiple qubits to represent each index is to
increase the bond dimension. When n > 1, this kind of hybrid tensor network can be used as a
heuristic ansatz to represent long-range correlation due to the effect of quantum tensor, and it

may be applied to an exotic topological state. When n is a small number, it also represents a

normalisation of local correlations with the classical tensor.

3.2.5 Local and non-local quantum correlations

In the previous two cases, a classical tensor network is used to represent either local or non-local
correlation, and a quantum tensor is used to represent the other part. I will now demonstrate how
quantum tensors can be used to represent both the local and non-local correlations. Considering

a tree structure with depth 2 in Figure 3.3(f), it represents a state

0) = D iy 1) - W) (3.40)
U15eenyTk
where ;, ., = (i1] ... (ix| 1) denotes the quantum tensor of the correlation between the sub-

systems and {|¢%)} denotes the quantum states for each subsystem s. The expectation values of
local observables can be measured using an approach similar to that outlined in the cases above.
To measure M = O1 ® --- ® O with each Oy representing tensor products of local observables

on the subsystem s, we have

WMy = (|01 @ -+ @ Oy, (3.41)

with each observable O, being
Oivs = (i 0sJi) (3.42)

obtained via the method discussed in Section 3.1.3. Here we represent a system of nk qubits
by controlling a quantum device with up to max{n, k} qubits. We can also use multiple qubits
for each index 5 to increase the bond dimension. Suppose the quantum states are generated as
[y = U \0>?k and |l) = Us|is) \O>;®("_1), the hybrid tensor network of Figure 3.3(f) can be

obtained via a quantum circuit

1) = U, ( Uy (U1 (U 10)2* @ |o>;®<"*”) ® \o>§<"*”) ® |o>§<”*1>) , (3.43)

where each U applies to the sth qubit of the first & qubits with subscript 0 and the new n — 1
qubits with subscript s. While such a quantum circuit requires joint control of nk qubits, our

hybrid tensor network allows us to represent the same state by controlling up to max{n, k} qubits.
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Figure 3.4: An example for calculating expectation values of a hybrid TTN. Considering a hybrid
TTN of Figure 3.3(f), the expectation value of local observables ®,’f:1 ®j=1 O; corresponds to

tensor contraction of (a). We first calculate the observable M for each tensor on the second
layer as (d) with quantum circuits shown in Figure 3.2(b,d). Then the tensor contraction of (a)
reduces to the contraction of (b), which corresponds to a quantum circuit representation in (c)
that prepares the state 1)) with |[¢)) = U |0) and measures the observables M; ® - -+ ® Mj,.

The 2-layer MPS structure is used by way of an example; other classical tensor networks such
as projected entangled-pair state (PEPS) can be similarly used to represent the full quantum
state. In the quantum-quantum network, the contracted indices of the second-layer quantum
tensors are classical. Figure 3.4 illustrates a quantum circuit representation of this network. The
expectation values of arbitrary local observables can be efficiently obtained from measurements

using quantum circuits.

3.3 Construction of D-depth tree tensor networks

For quantum systems that have local renormalisation properties, such as a d-dimensional lattice
problem, we can construct a D-depth tree tensor network to represent the many-body quantum

state. The procedure can be summarised as follows.

1. Divide the quantum system into local units (subsystems).

2. Perform a real-space renormalisation group transformation to produce a coarse-grained

system, where a tensor is attached in order to connect the original local units.
3. Repeat procedure 2 until the full quantum system is represented.

4. Contract the D-depth tree tensor network using the contraction rules.

The tensor of the upper layer?, which connects the subsystems in procedure 2, can be con-

structed according to the type of interactions between the subsystems. Recall that we can

*For example, the "upper” tensor in Figure 3.3 refers to i, ... i), -
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introduce a classical index to the quantum state of the subsystem by applying unitary operations
as 1)) = Uyi|0). This indeed forms a representation of the target quantum state in the basis
given by {Uy:|0)}. In the above procedure, each node of the tree can be regarded as a coarse-
grained quantum state and the degree of connections among all the tree nodes can be bounded
by a constant number ¢. Denote C; = max{n;,t} with n; representing the maximum number of
qubits of the subsystems in the jth layer. Even if we construct the tensors of the upper layer
((j-1)th layer) by considering all operators in the interacting Hamiltonian of the subsystems,
the maximum bond dimension of tensors scales as O(poly(n;)) and at most O(logn;) qubits
are required to encode the interactions for the subsystem. The number of controllable qubits
to represent the quantum state with system size O(tP~!) is less than max;(Cjlogn;) qubits,
which in practice can be greatly reduced by considering boundary conditions or renormalisation
properties.

In Section 3.6, I provide an example of 2-layer tree structures for 1D and 2D systems by
using different initial states |0). We can also specify different unitaries depending on the type of
interactions of the target quantum systems. In addition, we may also consider the case where

contracted indices of quantum tensors are quantum.

3.4 Resource estimation

Since conventional tensor network theory is a special case of our hybrid TN framework, contract-
ing an arbitrary hybrid TN is at least a #P-hard problem. In this section, I consider special tree
networks and give a resource estimation for the cost of calculating expectation values of tensor
products of local observables on a hybrid tree tensor network.

Starting from a chosen node referred to as a root in a tree, we separate other vertices into
different layers according to the distance to the root. Each node can be either a classical tensor or
a quantum tensor. In order to efficiently contract the whole tensor network, only classical tensor
networks that can be efficiently contracted are considered, for instance, matrix product states
(MPS), in Figure 3.3(g). Suppose the tree has a maximum of D layers, and each node has at
most g connections, it corresponds to a tree with depth D and maximal degree g, which we call
a (D, g)-tree. The total number of nodes in the tree is upper bounded by O(g”). The D-th layer
has at most g”~! tensors, and each one is at most a g-rank classical tensor network or quantum
tensors, with the open index representing at most g qubits. Thus, a (D, g)-tree represents about
O(g") physical qubits.

Now, suppose our aim is to measure the expectation value of tensor products of local physical
observables. Without loss of generality, consider a node with degree g and denote the cost to be
C, or C, for a quantum or a classical tensor, respectively. In the ith layer, denote n] and n§ to
be the numbers of quantum and classical tensors, respectively, which satisfy n! 4+ nf < g~ 1. The

cost of contracting the ith layer is thus C; = C’qng +Cen§ < gi_l(C’q + C.) and the total cost of
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contracting the whole tree is at most O(g”(C, + C.)) by summing all the layers. Note that the
number of qubits N represented by the (D, g)-hybrid tree tensor network is N = O(g"), so the
cost is also linear in the number of qubits. Here we take the sum of the classical and quantum
cost. The cost for quantum tensors is the measurement of quantum circuits, while the cost for
classical tensors is pure classical computation. We can thus separately use O(NC,) and O(NC.)

to denote the quantum and classical cost. The result can be summarised as follows.

Proposition 1. The cost for evaluating the expectation values of local observables of a (D, g)-
hybrid tree tensor network is at most O(gP”(Cy + C.)) or O(N(Cy + C.)). In particular, we need
O(NC,) quantum circuits and classical cost O(NC.). Here N = O(gP) is the number of qubits
represented by the (D, g)-hybrid tree tensor network.

The proposition focuses on local observables that have a tensor product form, O = 01 ® 02 ®
- ® Oy with Oj; acting locally on the jth qubit. An arbitrary observable can be expressed as a
sum of local observables. For example, it can be decomposed in the Pauli bases as O = Zf\i 1 B
with P; € {I,X,Y,Z}®N being the tensor product of single-qubit Pauli operators. Here, we
require the number of terms M is polynomial in the number of qubits in order to make the
method efficient. In the following, we further discuss the magnitude of C; and C.. The value
of Cy depends on the bond dimension of the index connecting the node to its parent, which
quantifies how many measurement settings one needs to contract the quantum tensor to get the
effective observable, as illustrated in Figure 3.4(a). For each observable element, C, also depends
on the number of samples required for suppressing shot noise to a desired accuracy €. Meanwhile,
the value of C, depends on the choice of classical tensor network and the bond dimension of the
connecting index as well. Suppose the bond dimension of each contracted index is upper bounded
by k, then we have C, = O(k?/£?) and C, = O(gr*) for MPS (the cost could be improved with

more dedicated contraction methods). Therefore, one has the following detailed contraction cost.

Proposition 2. Consider a (D, g)-hybrid tree tensor network with quantum tensors and classical
MPS tensor networks as the building block with bond dimension at most k. The cost for evaluating
the expectation values of local observables is O(N (k?/e®+gk*)). In particular, we need to evaluate

O(Nk2/e?) quantum circuits with O(Ngr*) classical computation cost.

Quantum tensor (Cy) Classical tensor (C,)
O(r?/e2) MPS | (D', ¢')-Tree PEPS
O(gr") | O(grl?) | O(gr®F?) (approx.)

Table 3.1: Contraction cost for g-qubit tensors

There are a few additional remarks worth making at this juncture. It appears that the cost

reduction when using quantum tensors is not very significant when compared to using classical

2

tensors, that is, k2 compared to x*. However, this is not actually the case. The quantum tensor
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in our hybrid TTN can express more complicated quantum correlations. The entanglement
structure of hybrid TTNs is discussed in Appendix A. If one substitutes this quantum tensor
with a classical tensor, say MPS, the new bond dimension of the classical tensor denoted by
k' could be much larger than k, hence leading to a significantly larger cost. This is the major
quantum advantage of our hybrid TN framework. Note that here we regard the cost of classical
and quantum tensor contractions to be the same, and add them together to be the total cost. In
practice, classical and quantum computation are run independently on a classical and a quantum
processor, respectively, and so are totally parallel. If we only focus on the resource cost for the
quantum processor, the cost scales as O(N(k?/e2)), which is linear to the number of qubits and
polynomial in the bound dimension and inverse polynomial in the simulation accuracy.

I summarise the contraction cost for different types of g-qubit tensors in Table 3.1. Hybrid

tensor networks in a generalised tree structure with a small number of loops can be found in [90].

3.5 Applications

Hybrid tensor networks could have a wide array of applications in solving a variety pf physics
problems. The key benefit of a hybrid tensor network is to be capable of representing a mul-
tipartite quantum state efficiently, so that the required quantum resource can be reduced with
the help of classical computers. The hybrid tensor network could extend the power of near-term
quantum computers so that the limitation on the number of controllable qubits and the circuit
depth could be greatly alleviated.

The most promising application of the hybrid TN is for clustered subsystems with weak
subsystem-wise interactions. Consider that the whole quantum system is divided into several
subsystems, where particles in the same subsystem are strongly correlated, and the particles
from different subsystems are weakly correlated. Since each subsystem has strong interaction,
the whole system, in general, could be classically hard to solve. On the contrary, our hybrid
TN wuses a classical TN solely to represent the cluster-wise interactions and a quantum TN to
represent the strongly interacting subsystems. Therefore, hybrid TNs integrate the advantages
of classical tensor networks and quantum computing. Here, each subsystem could have a general
topology structure of interactions.

In this section, I focus on potential applications of the hybrid tensor network in chemistry
problems. Real-world physical systems admit the interaction form considered in our framework.
Several chemical molecules can be described by an interacting Hamiltonian that has a similar
form as that in our simulation, providing a natural application of our method. The examples
include (Cr7Ni)s dimers, consisting of two purple-(Cr;Ni) antiferromagnetic rings. The two Cr7Ni
rings are linked through a pyrazine unit as shown in Figure 3.5, which provides two donor atoms

binding to Ni centres in the nearest-neighbour rings. This leads to a weak exchange coupling
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between the Ni ions [154,155]. The subsystems have strong correlations, and the two subsystems

interact weakly via the boundary spins.

Figure 3.5: Molecular structure of the molecular dimer, consisting of two purple-(Cr7Ni) anti-
ferromagnetic rings. The two CryNi rings are linked through a pyrazine unit, which provides two
N-donor atoms binding to Ni centres in different rings. This leads to a weak exchange coupling
between the Ni ions. The figure is adapted from Ref. [154].

Aside from physical systems featuring these cluster properties, we can use the hybrid TNs
to represent different degrees of freedom. The following is an illustration of their application
in chemistry for finding molecular vibrational spectra. Methods of calculating the vibrational
and electronic structure of a molecule generally assume the Born-Oppenheimer approximation
by treating the electrons and nuclei separately. Here, I show how to go beyond the Born-
Oppenheimer approximation by using the hybrid tensor network method. Consider the molecular

Hamiltonian in atomic units as
N N A s mREPN-=rmRE PIE i 7 CEY
2M] ’I‘ —R[’ ‘I‘ —I‘]’ I#J ’R]
with M7, Ry, and Z; being the mass, position, and charge of the nucleus I, respectively, and r;

being the position of electron i. Given the location of the nuclei, the electronic Hamiltonian is

V? 7 1 1
H.(R;)=— = = 4 Z -
B S R (@4
and the total Hamiltonian can be represented as
ZiZy
Hyol = — E g + H.(Ry). 3.46

Under the Born-Oppenheimer approximation, we assume the electrons and nuclei are in a product

state,
[9) = [¥), [¥)e » (3.47)

and the ground state energy in the Born-Oppenheimer approximation is given by

Ey = Tqrplﬁl I‘ﬁi? <¢\n <¢‘e Hinol |¢>n W>e : (348)
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Because only the electronic Hamiltonian H.(Ry) depends on electronic state |¢),, minimisation
over the electronic state |¢), is equivalent to finding the ground state of the electronic Hamiltonian
H.(Ry). Suppose we solve the electronic structure for any H.(R) by finding

Vo (Rp) = I\%n (V] He(Rr) |1h). (3.49)

then the ground state of Hy,o can be found by solving the ground state of Hy,
ZIZJ
Hy = — E g F(Ry). .
0 QMI | + Vo (Rr) (3.50)

The Born-Oppenheimer approximation enables us to solve the molecular Hamiltonian by sep-
arately solving the electronic Hamiltonian and the nuclei Hamiltonian. We thus only need to
operate a quantum system, either for the electronic Hamiltonian or the nuclei Hamiltonian.
The conventional approach beyond the Born-Oppenheimer approximation is to consider the
electrons and nuclei together as a whole system and directly solve the Hamiltonian H,,,. How-
ever, this requires storing the joint entangled state of electrons and nuclei, making it harder to
simulate with near-term quantum computers. Since the nuclei are much heavier than the elec-
trons, beyond the Born-Oppenheimer approximation breaks, the entanglement between electrons
and nuclei may still be weak. Therefore, we can use the hybrid tree tensor network to represent

the whole state. Suppose the tensor for the electrons and nuclei are {|1(6,))} and {|¢%(6,))},

respectively. Then a hybrid tensor network representation of the joint state is

—

= lwi(00)) |91, (00) (3.51)

and this is used to represent the ground state of the molecule by only controlling states of either
the electrons or the nuclei. We can also apply the hybrid tensor network for representing the
electrons or the nuclei to further reduce the size of the quantum system we need to control.
Our method could also be applied to represent virtual qubits. In Ref. [156], the authors
demonstrated that they could effectively represent the state in the full space® by applying op-
erations on the active space only. They started by preparing the quantum state in the active
space as a reference state |1)gef). They chose a set of expansion operators {O;}, applied it on the
reference, and got O; |1)rer). This forms a representation of {O;} in the basis given by {O; [1Ref) }-
The ground state and low-lying eigenstates can be obtained by solving the generalised eigenvalue

problem in the well-conditioned subspace as

HC = SCE (3.52)

3Here, the full space includes the active space and the virtual space. In quantum computational chemistry, the
active space usually refers to partially occupied spatial orbitals, in which dominant mechanisms of interest lie [44],
while the virtual space usually refers to unoccupied spatial orbitals.
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with the matrix elements of H and S given by
HY = ($et|OTHOjther) S = (thret |0]Oj et ). (3.53)

The subspace expansion method was demonstrated analytically in Section 3.2 to be one special
case in our framework. More specifically, we can choose the quantum tensor as |¢;) = U; |t)Ref),
where U; is generated by a quantum circuit, and it reduces to the original method when U; is
selected as the single and double excitation operators. We can add a classical tensor to further
increase the representation capability in chemistry problems. As the subspace expansion method
could potentially improve the accuracy of the ground state and provide approximations to excited

states, we expect our method to be applicable to these problems.

3.6 Numerical simulation

In this section, I test the effectiveness of hybrid TNs in finding ground states of 1D and 2D spin

lattice systems with nearest-neighbour interactions and external fields.

3.6.1 Model Hamiltonians

I consider the Hamiltonians for 1D and 2D spin systems that admit a general form

k
H=> Hj+ A, (3.54)
j=1

where H; and H;jy; represents the local Hamiltonian of the jth subsystem and their interactions,
with interaction strength of subsystems A. The topology of the spin systems can be found in
Figure 3.6.

For 1D spin clusters, each adjacent n = 8 qubits is taken as a subsystem and consider
k=2,3,...,8subsystems with n x k qubits. Consider the local Hamiltonian of the jth subsystem
s 7 8

Hj =) [ZsjviZsjriv1+ ) (gXSjJri + hZSjJri)
i=1 i=1
and their interactions as -
Hin = Y [ 28 Zsj11-
j=1
Here, the interaction strength is characterised by A, X; and Z; are Pauli operators acting on the
ith qubit.

For the 2D n x k spin lattice, each n = 3 x 3 qubits on a small square lattice are grouped
as a subsystem and consider £ = N, x N, subsystems with N, (IV,) subsystems along the z (y)
direction. The 2D Hamiltonian is

H=Y 22+ <g)2'i + hz}) : (3.55)

(.3 g
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Figure 3.6: Numerical simulation for 1D and 2D quantum systems with hybrid TTN. (a) 1D
spin cluster and 2D spin lattice with interactions (thin lines) on the boundary. The interactions of
subsystems are represented by thick lines. 8 adjacent qubits and 3 x 3 qubits on a square sublattice
are grouped as subsystems for the 1D and 2D systems, respectively. (b) The ansatz circuit
for the quantum tensors in Figure 3.3(f). The circuits of both layers share similar structures,
with d repetitions of circuits in the dashed box. Here, R, (a € {X Y. Z }) represents single-
qubit rotation around a-axis and the two-qubit gate is Rzz(0;) = e~ WiZ®Z The rotation angle
(parameter) for each gate is initialised from a small random value and updated in each variational
cycle. The circuit depths for V' (first layer tensor) and U (second layer tensor) are d(V) = 6
and d(U) = 8. The additional unitary M is inserted at the 1st and [d/2 + 1]th block of the
first layer (b1) and the second layer (b2). (c)-(d) Simulation results of the ground state energy.
For the 1D and 2D cases, we compare E to the reference results Ey = Eyps and Ey = Epgps
obtained from a standard DMRG with bond dimension k = 32 and from PEPS. The relative
error 1 — E/FEy is used to characterise the accuracy. The red dashed line (1D) and blue dash-
dotted line (2D) correspond to the energy using tensor products of the ground state of local
subsystems. The cyan dot (1D) and blue triangle (2D) are results obtained with hybrid TNs.
(c1, d1) Convergence towards the ground state for the 1D 8 x 8 and 2D 9 x 4 systems with A\ = 1,
respectively. (c2, d2) Error versus different subsystem coupling strength A for the 1D 8 x 8 and
2D 9 x 4 systems, respectively. (¢3, d3) Errors with different numbers of local subsystems with
A =1, respectively.

where (i, ) represents all the nearest-neighbour pairs on a square lattice. Consider that the
interactions in each subsystem are identical f = 1, while interactions on the boundary of nearest-
neighbour subsystem { f;} or {f; ;} are generated randomly from [0, 1], as shown in Figure 3.6(a).
The parameters of the external fields for both the 1D and 2D cases are set as h = 1/m = 0.32
and g = 0.5.

The interactions between subsystems {f;} or {f;;} are first generated randomly from [0, 1]
and then fixed. The lattice models, which have local interactions in the subsystems and non-

local interactions between subsystems of random strengths, have been investigated to describe
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the phenomena in high energy physics [157].

3.6.2 Results

Considering the hybrid TTN of Figure 3.3(f), the first layer state and the jth subsystem of the

second layer are generated as

) = V(00)10%) = aiyi lin, - i) (3.56)
and
|45 (6))) = U (6;) 10%) , (3.57)
respectively, with V' and U shown in Figure 3.6(b) and initial states [0%) = |i;)®", i; € {0,1}.
The hybrid TTN represents a quantum state

= D @iy (60) [0 (01) @ - @ |3 (B)) (3.58)
i1k
with § = (50, 51, ... ,6’_}6) representing all the parameters. The state is automatically normalised
since
<1/J |¢“> = 0yt it -

4
For parameters f, we obtain the energy expectation value E(6) = (4(8)|H|4(8)) by following the
contraction rule of Figure 3.4. Specifically, we first measure the observables of the second layer
states and then measure the effective observables of the first layer state.

I choose to use variational imaginary time evolution to minimise the energy E(g), as shown
in Section 2.2.3.3. As demonstrated in Eq. (2.32), we can variationally simulate imaginary time
evolution by tracking the evolution of the parameters with one ancillary qubit. This requires
the calculation of A and C for given parameters by Eq. (2.34). When | (f)) is directly prepared
by a quantum circuit, we can obtain the matrix elements by a modified quantum circuit by
introducing an ancillary qubit [120,131]. When considering trial states represented by a hybrid
tensor network, we can calculate A and C' by making use of a similar method for calculating
the expectation values of hybrid tensor networks. The main idea is to generalise the circuit to
implement the contraction of two quantum tensors.

I then show how to calculate the matrix elements by the finite difference method. For example,

to calculate each A; ;j, we can approximate it as

)

A Re ((W +86,)] — (L (O)]) ([¥(F+ 06,)) — aw)»)
" 06; (59]

= o Re (T + 00) {06 + 06,)) — (@ +605) — (Wl + 36)1(@) + (W) |w(@) )
10Yj
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The last term corresponds to the normalisation of the hybrid tensor, which is 1 for the hybrid
TTN considered in the simulation. The second two terms are the overlaps of two different
hybrid tensor networks. Again, calculating such overlaps requires quantum circuits similar to
calculating expectation values. In our simulation, for simplicity, the overlaps are obtained by
directly contracting the quantum tensors by summing over the state vector array. KEach C;
element can be obtained via the difference of the energy gradient,

(WG + 06;) | H | (0 + 66;)) — ((8)| H ()
200; '

Ci = (3.60)

Therefore, the C' vector can be obtained from the finite difference of energy changes. We can
optimise the total energy by either minimising all the parameters as ming, g, .. g, ((0)|H|4(0))
or minimising local subsystem of each layer as min; mingg,) (D) | H|(6)).

We can readily find that the quantum systems needed for simulating the 8 x k-qubit 1D and
9 X k-qubit 2D systems need 8+ 1 and 9+ 1 qubits, respectively. The calculation is benchmarked
by comparison with open-boundary MPS for 1D systems and imaginary time evolution projected
entangled-pair state (PEPS) for 2D systems. I choose to consider the relative error 1 — E/E)j
with the ground state energy F and the reference energy Ey. For the 1D case, E is compared
to the reference result Fy = Eypg obtained from a standard DMRG implementation with bond
dimension k = 32. For the 2D case, the full quantum state is represented using PEPS. We can
start from a random tensor product state, and use a standard imaginary time evolution scheme
to find the ground state of the 2D Hamiltonian. To reduce the computational cost, I use the
local update method, i.e. the so-called ’simple update’ method [158], and set the bond dimension
k = 5 and the maximum allowed boundary bond dimension, which approximates the original
tensor during the contraction, < = 64.

Figure 3.6(cl, d1) study the convergence of ground state energy of 1D (cl) and 2D (d1)
systems with coupling strength A = 1 on 8 x 8 and 9 x 4 qubits respectively, and show a relative
error below 1073, Next, I examine how the coupling strength or the number of subsystems
affect the efficacy of hybrid TTN. We present the calculation error with respect to different A
for the 8 x 8-qubit 1D and 9 x 4-qubit 2D systems in Figure 3.6(c2) and (d2), respectively. We
can find that although the error fluctuates with different coupling strengths, which might owe to
instability from the optimisation, the error remains consistent around 10~3. In Figure 3.6(c3, d3),
I show the calculation error for the 1D with k subsystems (c3) and 2D with N, x N, subsystems
(d3) for A =1, and we can achieve a desired simulation accuracy.

The simulation results demonstrate that we can decrease the error to a relatively low level,
which indicates the effectiveness of our method in a proof-of-principle way. In practice, we can
use different types of optimisation method and circuit ansatz to further reduce simulation error.

The results with different coupling strengths and numbers of subsystems verify the robustness of
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the hybrid TTN method. The spin lattice problem with uniform nearest-neighbour interactions

on the boundary is shown in Appendix A.

3.7 Discussion

The Hybrid tensor networks established in this chapter provide a natural way of performing qubit-
time trade-off in quantum computing. Quantum resources (such as qubit number and circuit
depth) can be reduced by replacing some of the quantum tensors with their classical counterparts,
at the cost of increasing running time. Our protocol also lends itself to studying the physics of
many-body systems, with an approach that combines quantum and classical computation in an
appropriate form. This is particularly useful when the quantum resource is limited and we have
some prior knowledge of the target problem.

In this chapter, I have chosen to exemplify our hybrid TTN using a quantum-quantum tensor
network, which can be implemented on a near-term quantum computer using variational quantum
algorithms. Other hybrid TTN structures with classical tensors can be implemented in a similar
way. We may also simulate other systems to explore interesting physics behind these models,
such as the models discussed in Chapter 8.

Finally, I would like to discuss the limitations of hybrid TTNs. As described, a hybrid TTN
can be used as a heuristic ansatz for systems, and enables the simulation of large quantum systems
with fewer qubits. However, it may not guarantee simulation accuracy for a general quantum
system. With a very small bond dimension k, hybrid TTNs may be inadequate to represent
a target quantum system. This is similar to classical tensor networks. It is expected that the
representation capability of hybrid TTNs could be increased by increasing the bond dimension. A
rigorous analysis of the representation capability of hybrid TTNs, and its advantage over classical
tensor networks, could be an interesting avenue of future research.

Author contributions. X.Y. and J.S. conceived the idea of the hybrid tensor network
ansatz for representing quantum many-body states. X.Y., J.S., and J.L initiated the project.
X.Y. and J.S developed the theoretical framework of hybrid tensor networks. J.S. conceived the
implementation of hybrid tree tensor networks (TTN) and carried out the numerical simulation.
J.S., J.L., and X.Y. conceived the applications of hybrid TTN. Q.Z. and Y.Z. analysed the
resource cost of hybrid TTN. X.Y. supervised the project.
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Chapter 4

Eigenenergy estimation and
eigenstate property estimation

Estimating properties of the ground state and excited states of a quantum many-body system is a
long-standing problem of fundamental interest in condensed matter physics, quantum chemistry,
and material science. This is a challenging problem for both classical computing and quan-
tum computing, and indeed estimating the ground state energy of a general Hamiltonian is a
QMA-complete problem. Despite this, quantum computing promises to address this problem
under certain assumptions. The common assumptions include a nonvanishing energy gap and
a nonvanishing overlap of the initial state and the target state, as in phase estimation [29] and
qubitisation [31].

The problems considered in this chapter (eigenenergy estimation and eigenstate property
estimation) were initially formalised in Section 1.2.1, followed by a discussion on the intuition
in Section 2.3. In this chapter, I discuss a solution to the two problems by realising generalised
quantum imaginary time evolution with a concrete theoretical guarantee. Gate complexity and
compilation to standard quantum gates will be discussed in Chapter 9.

This chapter is relevant to a preprint in collaboration with Pei Zeng and Xiao Yuan [93] and

a manuscript under preparation [92].

4.1 Motivation

Among the various task-specific classical algorithms — such as perturbation theories [95,159,160],
variational approaches [161,162], self-consistent embedding methods [163, 164], machine learn-
ing [165-167], etc, — imaginary time evolution [168] defines a natural and universal cooling
procedure, which can also be regarded as a projection process. Consider a Hamiltonian H, imag-

TH with a real-valued time 7 monotonically lowers the average energy

inary time evolution e~
and deterministically drives an arbitrary pure state to the lowest eigenstate that has a nonzero
overlap. Despite being mathematically universal, realising imaginary time evolution for an ar-

bitrary Hamiltonian is by no means an easy problem. The notorious sign problem [169,170] in
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the Monte Carlo implementation of imaginary time evolution has limited its usage for solving
general strongly correlated problems [171,172].

As motivated in Section 2.3, a new paradigm is proposed for realising general quantum projec-
tion procedures on a quantum computer. For a general decaying function g(h), such as g = e~ Ihl
or g = e*hz, I demonstrate how to realise a projection procedure g(T7H) for a Hamiltonian
H using solely real-time evolution and proper classical post-processing. The algorithm essen-
tially implements general non-Hermitian dynamics, and can efficiently find energy spectra and
the corresponding eigenstates, with any initial states that have nonvanishing overlaps with the
target state. It is worth pointing out that the term ’'projection’ is commonly referred to as a
low-rank projector in the context of quantum information and quantum computing. However,
g(TH) regarded as a spectral projector of H since it can be applied to prepare the eigenstate
by projecting out the contributions from other eigenstates. Hereafter, we refer to g(7H) as a
projection operator.

Compared to the variational approaches in Section 2.2, this method works deterministically
without any assumption on parameterised circuits. Compared to other universal quantum algo-
rithms, such as quantum phase estimation, our method only needs an exponentially shallower
circuit with only one ancillary qubit, and it reaches the Heisenberg limit of eigenenergy estima-
tion.

Ground state preparation can be understood as a cooling procedure, a deterministic process
that drives any state to the lowest eigenstate. In this process, we do not experimentally cool
down the system, but instead implement the cooling by applying a few basis operations e "¢
with different time lengths. Therefore, in the paper [93], we also term this state preparation
method as algorithmic cooling.

The essential component of the ground state property estimation is to realise a cooling oper-
ation (or projection operation), which projects out the contributions from the other eigenstates.
In Section 4.2, I introduce the basics of cooling operations. I demonstrate how this can be applied
to estimate the eigenstate property and the eigenenergy in Section 4.3. The complexity analysis

is shown in Section 4.4. Finally, numerical tests are presented in Section 4.5.

4.2 Cooling operation and the dual phase representation

First, a general matrix function acting on the Hamiltonian is defined, which is expressed as

N-1

g(H) =Y g(E;) [ui) (wi - (4.1)

i=0
where g(h) : R — C is a generic continuous-variable function determining the transformation of

the spectrum of the Hamiltonian. To realise the cooling process, g(h) is required satisfying the

following property.
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Definition 1. A real-valued function g(h) : R — C is called a cooling function if it satisfies,
1. The value of g(0) is non-zero: g(0) # 0;
2. Strictly non-increasing absolute value: |g(h')| < |g(h)|, VA" > h >0 or b’ < h <0;

3. Vanishing asymptotic value: lim;_,o |g(Th')/g(Th)] = 0, VA > h > 0 or i’ < h < 0 or
alternatively lim, o |g(7h)/g(0)| = 0, V|h| > 0.

A typical example is the exponential decreasing function g(h) = e I", corresponding to
imaginary time evolution g(7H) = e~ for positive H.

Suppose we want to prepare the jth eigenstate |u;) with the eigenenergy E;. With the
definition in Eq. (E.15), a cooling operator is introduced as follows,

N—

g(r(H — Ej)) = Y g(r(E; — Ej)) |ui) (ui]. (4.2)

1=

—_

For an arbitrary input state [1g) = Y. ¢; |u;), the state after the cooling g(7(H — E;)) at a

finite 7 is given by

_ 9r(H = Ej)) o) _ 3 9(7(Ei = Ej))ci [ui)
lg(r(H = Ep) [boy | 32 pig(T(Ei — Ej))?

with p; = |c;|2. Since for the eigenenergies E; # Ej, the function g(7F;) decreases faster with 7,

(7))

(4.3)

the amplitudes of the normalised state |1)(7)) concentrate to the eigenstates with energy F;, and
the evolved state asymptotically approximates the eigenstate |u;) with nonzero | (1g|u;) |* # 0
for sufficiently large 7 as

lim g(7(H — Ej)) [tho) o< [uy) - (4.4)

There are two important parameters, 7 and Ej, in the Hamiltonian function g(h) in the cooling
procedure, in which 7 is a time scaling factor, and FE; indicates a shift of the original function.
In later discussion, we shall see that 7 indicates the timescale for the cooling procedure, in which
larger 7 will cool the state closer to the target eigenstate. The shift £; plays an important role in
searching for the eigenenergies and, additionally, observable estimation on the eigenstate. From
the above equation, readers may wonder if a concentration around the eigenstate |u;) with energy
E; can be obtained if the exact value of £} is not known a priori. It is therefore worth noting that
E; only appears in classical post-processing and will not be involved in quantum measurements.
In the implementation, Ej is tuned as a classical variable to find the true eigenenergy, and thus
does not increase any quantum resource cost.

The next step is to realise the cooling operator, which is nonunitary by construction. I
show how to implement it by using a combination of real-time dynamics. Consider its dual

realisation based on a Fourier transform, g(h) = 5 [*_ f(z)e™"dz. and its inverse form f(z) =
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[ g(h) e~ dh. Given the norm of f(z) defined as || f|| = [°°_|f(z)|dz, consider the normalised
function p(z) = |f(x)|/| f|| and we have

oo . .
g(h) = c/ e p(z)ehdz, (4.5)
where ¢ := || f||/27 and € := f(z)/|f(z)|. Here, the function g(h) is required to be Fouirer-

realisable, which is defined as follows.

Definition 2. A function g(h) in Definition 1 is called Fouirer-realisable if the following require-

ments hold.
1. The Fourier transform of g(h), f(z) = [0 g(h)e™™"dh emists.

2. The norm of the dual function | f|, || = [

o |f(x)|dz, is finite.

3. 3L(e) = O(poly(1)), such that |1 — f_L]ge()a)p(x)dm‘ <e, Ve >0.

The third condition implies that a finite frequency in [—L(¢), L(e)] with L(e) = O(poly(1/¢))
L ix

g(h) fe—[12) pla)e™+oeda] <

e. Table 4.1 gives several examples of g(h). Since our examples have zero phase, for a simpler

is sufficient for approximating the normalised function g(h)/c, i.e.,

presentation, the phase terms are set to be 0 in the following discussion, although the discussion
also naturally generalises to cases with nonzero phases.

I introduce several typical cooling functions g(h) and discuss their properties. The most
important property is the cutoff error L(e) defined in Definition 2 which shows the hardness of
realising g(h) with real-time sampling.

For the exponential function we have L(e) = 2/(me). For the Gaussian function, we have
L(e) = 2/In (¢71). Therefore, the Gaussian function is a realisable cooling function. Note that
unlike the exponential function, the tail of the Gaussian function decays quickly with respect to
ZTm. This implies that Gaussian cooling is more experimentally-friendly. The properties of the

representative cooling functions are summarised in Table 4.1.

Table 4.1: Representative cooling functions g(h). f(z) corresponds to the Fourier transform of
g(h).

Function  g(h) f(z) Ifll/27  L(e)
Exponential e~ 1 o} 1 2/(me)

Gaussian e Ve = /4 1 2¢/In(1/e)
Hyperbolic  sech(h) wsech(mz/2) 1 21In(1/e)

In this thesis, I mainly focus on the analysis of the Gaussian function g(tH) = e~ H? i

the application. It is easy to verify that the three condition hold. We have the dual form of the
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Gaussian function f(z) = \/7e~®"/4, the norm is finite || f|| = 27, and the truncation at the finite

frequency L(e) = 24/In(1/¢) is sufficient to ensure the truncation error,
L(e) ‘
lg(h) —/ p(a:)e”“"hd:c’ <eg,
—L(e)
is less than €.

With the normalised dual phase representation p(z) of g(h), the cooling operator is

g(r(H—E)) =c / dp(z)ef= e (H=F), (4.6)
The quantum state in Eq. (4.3) becomes,

|9 (7)) E)) lto)

‘”/ Ap(z)e =) gar) 0

which is now a superposition of real-time evolved states |¢(x7)) = @™ |3)g) with probability
distribution dp(z) = p(z)dz. In Section 4.3, I will show how to effectively prepare! the quantum
state described by Eq. (4.7) through quantum algorithmic cooling.

4.3 Quantum algorithmic cooling

Suppose we want to estimate the expectation value of an observable O with respect to an eigen-
state |u;), (O) := (u;|O|u;). For a given finite evolution time 7, the estimation value of (O)_ is

given by

where

Dy = (4olg*(7(H — Ej))[¢bo) ,
N,(0) = (olg(r(H — E;)Og(r(H — E;))lto)
are, respectively, the normalisation factor and the unnormalised expectation value.

The basic idea is that the numerator N;(O) can be efficiently obtained by sampling x and z’
from the distribution p(z) and p(z') (defined in Eq. (4.6)), respectively, and then estimating the
mean value E, ,» (¢(2'7)|O|¢(x7)), where each term can be evaluated on a quantum computer
with a Hadamard test circuit. The denominator D, can be similarly obtained by estimating
E, (Yol ™ |4po) with probability dp(y) (see Eq. (4.13) below). A quantum computer is only
required to estimate the expectation values of a state overlap like (¢|U (1)) with U being either
e~ THQglaTH o iymH , and then we can effectively obtain the time-dependent expectation value
of any observable by post-processing the measurement outcomes. In practice, we also need to

consider a cutoff of the integral from [—o00, 00] to [, ] to avoid infinite integration.

!This chapter is focused on eigenenergy estimation and eigenstate property estimation. The latter corresponds
to obtaining the expectation value of an observable measured on the target eigenstate. This task will be less
demanding when compared to directly preparing the target eigenstate.
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I will now demonstrate how to estimate state overlaps by a Hadamard test circuit. The target

observable O can be decomposed by the Pauli operators,

0= al =0l Y Pro()P (4.10)

lePy, lePy,

where P, denotes the n-qubit Pauli group, o; is the coefficient of the Pauli component P;, and
here the coefficients {o;} are all set to be positive. The signs of the coefficients are put into the
corresponding Pauli matrices {P}. In Eq. (4.10), ||O||1 is the l;-norm of the Pauli coefficients of
0,

IO =" o (4.11)

lePn
The probability distribution Prp(l) is defined to be,

o 1
= Ol
ElePn o [0l

Using Eq. (4.6), one can expand the cooling operator ¢g(7(H — E;)) and receive the following

Pro(l) = (4.12)

estimation formulae,

D, = 02/ dyp(y)e T (pole ™ yhy)

N,(0) =20l [ da [~ dtpata’) 3 Pro@e T (pole T R My,
- - IEPn
(4.13)
where p(y) := 35 f (% +y 52 )dz is the self-correlation of the probability p(z). The normali-

sation factor c? can be removed, since it is the same for both D, and N(O), hence, unimportant
for the estimation of (O)._.. In the following discussion, this normalisation factor is ignored during
the estimation procedure.

In the quantum cooling algorithm, the (normalised) evolution time x (or y) is generated based
on the probability p(x) (or p(y)). For the sake of practicality, when the (normalised) evolution
time x (or y) is larger than a cutoff value x,,, we denote the estimation of this round to be 0
without performing a quantum experiment. In this way, the estimation formula of N, (O) and

D, originally given by Eq. (4.13), now becomes

D) = [ dypty)e ™ (ol o).

Tm

NE(0) = HO\ll/ de‘/ da'p(x)p(a’) > Pro(l)e™@=T)Es (y|e i H peima H |y )
—Tm J=Tm 1Py
(4.14)
To estimate the values of NT(z"‘)(O) and DSQC"L) in Eq. (4.14), the core issue is to realise an

unbiased estimation of the following quantities,
(hole™ [0}, (thole™ T H Pl H |ahy) . (4.15)
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These (|U]y) can be estimated using the Hadamard test, shown in Figure 4.1.

To measure (¢|U|y), the state |¢) is first prepared and an extra ancillary qubit is prepared in
the computational basis state |[+). Afterward, a C-U gate from ancillary to [¢) is performed. If
we directly measure the ancillary qubit in the X-basis, the outcome a will be 0 with a probability
of 2(1+Re((¢)|U[4))) and 1 with a probability of 3(1—Re((¢|U]t))). Alternatively, if we perform
an extra S gate before the X-basis measurement, the outcome a will be 0 with a probability of
$(1 4+ Im((¢|U[4))) and 1 with a probability of £(1 — Im({1|U[1))).

N (1 mea

[¥)

Figure 4.1: The diagram of the Hadamard test. If b = 0, Pr(a = 0) = 1(1 + Re((¢'|U4))); if
b=1, Pr(a = 0) = L(1 + Im(($|U|))).

To simplify the theoretical analysis, I now introduce a combined estimation of the real part
and imaginary parts in a single round. In each round of experiments, we first randomly decide
the binary value b uniformly from {0,1} in Figure 4.1. Denote the binary uniform distribution

of b as Pry(b). Based on the measurement outcome a, the following complex-valued estimator is

constructed,
2, (b,a) = (0,0),
—9 =
p=y 7% Ba=01), (4.16)
21, (b,a) = (1,0),
—21, (b,a) = (1,1).

That is, 7 = 2i®(—1)%. In this case, it is easy to verify that # is an unbiased estimator for (1|U|)

as E(7) = (¢|U[y)).
In the estimation of D, and N,(O), the phase term and normalisation factor [|O]; in

Eq. (4.13) can also be put into the estimator. That is to define

d=e mEip,

o (4.17)
i = ||Oye @) B,
As a result, if y is randomly sampled from p(y), based on Eq. (4.13), we have
Eyb.0(d) = D;. (4.18)

On the other hand, if we randomly sample z, 2" from p(z) and [ from Pro(l), based on Eq. (4.13)

we have

Bz 15,a(7) = N-(O). (4.19)

In the experiments, variables x, 2/, a, b and [ are generated independently, randomly in each

round of experiment. After performing single-shot Hadamard test experiments, we will obtain a
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group of unbiased estimators {dp}é\% and {fzq}gﬁ for D; and N.(O), respectively. We then use

the average value of the estimators as an accurate estimate of D, and N, (O), whose tightness
is given by the concentration bound analysed in Section 4.4.2, as well as in Section B.1.3 and
Section B.3.3.

There are two main applications of the universal algorithmic cooling: (1) The estimation of
eigenenergies; (2) The estimation of the properties of the jth eigenstate with or without exact
knowledge of the energy.

This can be divided into three elementary tasks:
1. Estimate the eigenenergy E; of the jth eigenstate given an initial guess interval [EJL , EJU]7
2. Given a known eigenenergy Ej;, estimate the normalisation factor D,;

3. Given a known eigenenergy E; and an observable O, estimate the normalisation factor
N-(0).

The algorithm for these tasks is introduced below.

4.3.1 Estimation of the eigenenergy

To start with, I first show how to estimate the normalisation factor D, based on Eq. (4.14) and
the Hadamard test, when the eigenenergy E; is known. Recall that the unbiased estimator for

the normalisation factor is,
d=e Ei; = 2i0(—1)%eVE (4.20)
If we randomly sample y from p(y), based on Eq. (4.13) we have
Eysa(d) = Ds. (4.21)

I now show how to estimate the eigenenergy using the normalisation factor. Suppose the initial
state [1p) has a constant overlap with the eigenstate |uj). We can then sweep the parameter
E](-e) in a range to maximise D,. The estimation accuracy depends on the finite imaginary time
7, finite truncation x,,, sampling number Nj; and the overlap p;.

To clarify this, consider a simple case where the jth eigenenergy is known to be in a range
E; € [EJL,EJU] Moreover, suppose other eigenenergies lie far beyond this range. Expand the

initial state in the eigenstate basis as

N—-1
o) = ¢ luy), (4.22)

J=0

and denote the square overlap of |¢) and |u;) to be
pi = [ {uily) [P = |ei. (4.23)
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For an energy value E in the range [EJL, EJU |, the ideal normalisation factor D; is calculated

as,

D-(BE) = (Y|g*(1(H — E))[¢)

= QQ(T(EJ - E))pj + ZQQ(T(Ei — E))pi (4.24)
i#]
~ g*(r(E; — E))p;.
The approximation holds when ¢*(7(E; — E))p; > ¢*(7(E; — E))p;. This naturally holds when
the eigenenergies {£;};+; are far from the range [EjL, EJU] From Eq. (4.24) we can see that, the

normalisation factor takes a local maximum value close to p; when the energy value £ = Ej,

E; = argmax D.(E). (4.25)
Ec[E},EY]

Therefore, we can sweep the values of E in a range [EJL , EJU | to search the largest value of
D.(E). Here, a free usage of classical computational resources is assumed, as we mainly focus on
the quantum resources. This may be refined by the introduction of a better classical peak-value

searching algorithm.

4.3.2 Estimation of the unnormalised observable expectation value

In this section, I discuss the estimation N (O) of a given observable,

O=> aP =01 > Pro()P, (4.26)

lEPn lEPn

which is defined in Eq. (4.10).
Recall the unbiased estimator of N-(O) is

7= HOHlef'i‘r(zfx’)Ej?q _ 2HO||lefi‘r(xfa:’)Ejib(_lyL' (427)
If we randomly sample z, 2’ from p(x) and [ from Prp(l), based on Eq. (4.13) we have
Ew,x’,l,b,a(ﬁ) = NT(O) (428)

N;(O) given in Eq. (4.14) can be similarly measured by the Hadamard test. With the above
results, we can solve two problems, namely, eigenstate property estimation with known eigenstate

energy, and eigenstate property estimation with unknown eigenstate energy.

4.4 Complexity analysis

In this section, I show the error and resource requirement for eigenenergy estimation and eigen-

state property estimation in Section 4.4.1 and Section 4.4.2, respectively.
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4.4.1 Error and resource requirement analysis for eigenenergy estimation

In this section, the estimation error of the jth eigenenergy is analysed. Based on the error
dependence, I estimate the resource requirements (i.e., circuit depth and sampling number) of
the energy estimation.

For simplicity, I focus on a case when the following assumptions hold. The eigenvalue
searching range [E]L ,EJU] is a subset of [E; — £, E; + £], where A is a known lower bound
of min{E; — Ej_1,Ej41 — E;}. Under this assumption, the normalisation factor can then be
expressed as,

D7 (E) = pjg(T(E — Ej))*. (4.29)

Here, the approximation holds when the values g(7(E — E;))? contributed by other eigenenergies
E; are negligible. The location of the peak of D,(FE) then indicates the eigenenergy Ej;.

In practice, however, we can only obtain the estimation ﬁiwm)(E) of D, (FE), considering the
finite cutoff time z,,, and finite sample number Njy;. We are going to prove that, the solution of

the following maximisation problem
. A(@m)
E; = AIGMAX pe (L pU) DBy (4.30)
will be close to the real solution Fj.
The sources of error include the finite imaginary time, finite cutoff of real-time evolution,

discretisation error, and statistical error due to a finite sampling number,
DT (E;) — Do(Ej) < &7 + €4 + €. (4.31)

Based on the error dependence, the resource requirement (i.e., circuit depth and sample number)
of the energy estimation can be estimated. The workflow of error analysis is summarised in
Figure 4.2.

As a complete analysis involves many technical details and the proof is lengthy, I will show

the main results here to streamline the discussion.

Theorem 1 (Accuracy of the eigenenergy estimation). Given constant K > 0, error ¢ € (0,1),
finite imaginary time T > g~(ap;/6)/k, cutoff time x, > V2L (ap;/6), and sample number
Ny > 9Kpj_2/042 where o := 1 — g(1), the error between the estimated eigenenergy Ej and the
one ideal Ej is |Ej — Ej| < k, with a failure probability of 26 = 4exp (—K/8).

Since only the imaginary time 7 depends on the inverse accuracy 1/, the total cost 7-x,,- Ny,
which is circuit complexity x sample complexity, also scales as 1/k, indicating Heisenberg’s limit

for eigenenergy estimation.
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finite T

D.(E)) D.(Ej)
finite x,, When x,, = V2 L(&,/2):
D& (B) - D.(B)| < &
pE™ (E) DE™ (E))
finite When Ny~ Eiz:
sample DE™ (E) = DI ()| < &

D¥™ () «———> D™ (E))

compare E; and E;

Figure 4.2: Summary of the error analysis of eigenenergy estimation. First study the effect of
the finite imaginary time 7, finite normalised cutoff time x,, and finite sampling number N,
on the normalisation estimation, and then bound the difference between the estimation value Ej
from true value F;.

4.4.2 Eigenstate property estimation

In this section, I analyse the estimation error of the observable value (O) under a finite circuit
depth and sampling numbers. Based on the error dependence, the resource requirements (i.e.
circuit depth and sample number) of the cooling algorithm are estimated. For simplicity, it is
assumed that we have already obtained a precise eigenenergy estimation E; of the jth eigenstate.
Similar to Section 4.4.1, the sources of error include the finite imaginary time, finite cutoff of

real-time evolution, discretisation error, and statistical error due to a finite sampling number.

(0)
finite T [€0) —(0). |
N:(0)
(0 ==
When x,,, = V2 L(e,/2):
finite x;, [N&™(0) - N (0)] < &0l
(em)
0)yFm) Nr(xm)(o) |DT —Di| < &
( )T - D(xm)
T 1
When NM~E—Z:
o RO finite Ny RE™(0) = NEW(0)] < &4ll0lle
~\(Xm _
O™ =5 DE™ — )| < g,
DT

Figure 4.3: Summary of the error analysis of the observable estimation. Started from the ideal
observation value (O), we sequentially study the effect of finite imaginary time 7, finite cutoff
time x,, and finite sampling number Nj;.
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For the numerator and denominator, we have

(4.32)

In the appendix, the error is shown to have a bound as

H(O)™ 0y < i (0) + 1)(e) + 8 + ) + 97 (€200 + P[0l + £2O11).-
(4.33)
Based on the error dependence, I analyse the resource requirements (i.e., circuit depth and
sample number) of the eigenstate property estimation. The workflow of the error analysis is
summarised in Figure 4.2.
In order to simplify the discussion, I discuss the error of observable estimation with a known
target eigenenergy. Denote the ideal (estimated) measurements with infinite (finite) 7, z,,, and

Ny as (O) ((OA>(T$7")), the effect of the three factors on observable estimation is given as follows.

Theorem 2 (Accuracy of the observable estimation). Given constant K > 0, error ¢ € (0,1),
finite imaginary time T > %971 (epj/12), normalised cutoff time xm, > V2L (ep;/12), and sample
number Nyy > K/(ep;/6)?, the error between the expectation value estimation <O>(TIM) and the
ideal expectation value (O) is bounded by | (O>(Txm) —(0) | < e(||O||l1 + 1) with a failure probability
of 6 = 4exp(—K/8). Here ||O|1 = >, |oi| where {o/}; are the Pauli coefficients O = >, 0, P},
A =min{|E;_1 — Ej|,|Ej11 — Ej|}, and p; is the overlap with the target eigenstate.

Theorem 2 states that the asymptotic time complexity of the cooling algorithm is determined
by g~ 1(e)L(¢) of the cooling function. The valid cooling functions in Table 4.1 all satisfy g~!(¢) =
O(log(1/e)). Therefore, we can choose 7 to be O(log(1/(pje-))A™1), which is logarithmic in
the inverse state overlap 1/p; and inverse error 1/e;, and linear to the inverse gap A, For
the cutoff x,,, it is shown that we have L(¢) = O(poly(1/¢)) for the triangle and exponential
cooling functions, and we can achieve even better results O(y/log(1/¢)) or L(e) = O(log(1/e))
for the Gaussian and secant hyperbolic cooling functions. Taking the Gaussian function as an
example, we have x,, = O(y/log(1/(ep;))). Note that the maximum real-time evolution is given

by ty = Txm,. As a result, we arrive at the following Proposition.

Proposition 3. The time (circuit) t,, and sample Ny complezity for the Gaussian cooling

function is
tm ~ O(A™ log(1/(ep)))), Nar ~ O(1/(ep))?). (4.34)

The time or circuit complexity is logarithmic to 1/(pj;e), which is exponentially better than that
of quantum phase estimation or adiabatic state preparation, which is generally polynomial to
1/(pje). The sample complexity in terms of p; is slightly worse than that of quantum phase
estimation, which is O(1/(p;e?)).
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One can find that from Theorem 2, the efficiency of the cooling algorithm relies on two
assumptions: a nonvanishing initial state overlap and a nonvanishing energy gap. These two

assumptions are formalised in the following.

Assumption 1 (Nonvanishing state overlap assumption [29, 31, 141]). For an n-qubit gapped
Hamiltonian H with the ground state |ug), we assume that it is feasible to prepare an initial state
[vo) satisfying a nonvanishing overlap of the target eigenstate po := | (o|uo) |>. We assume that
the lower bound of the overlap satisfies py > O(Poly(1)).

Assumption 2 (Gapped Hamiltonian assumption [29,31,141]). For an n-qubit gapped Hamilto-
nian H with the ground state energy Ey, we assume that the energy gap E1— Ey is lower-bounded

by a known value A.

Assumption 1 is reasonable in many practical scenarios, since even in many strongly-correlated
quantum systems or chemical molecules Hamiltonians, the mean-field solution, like the Hartree-
Fock state, still has a considerable overlap with the ground state. In practice, people usually
apply the variational methods [130] or adiabatic methods [173] as a heuristic way to prepare an
initial state with a large overlap py with the ground state. Assumption 2 is also of practical
relevance for the study of quantum many-body systems. For example, the ferromagnetic XXZ
Heisenberg chain H = J(}_, 070}, | + 0l0), | + Acjo?, ;) with J < 0 has a finite energy gap if
A >1[174].

4.4.3 Comparison to prior works

Compared to prior works on eigenstate preparation and eigenenergy estimation, our method has

the following advantages.

1. Only one ancillary qubit is needed in the whole algorithm. Furthermore, we do not require
any quantum oracle, such as select-H for LCU or qubitisation methods, which could be

difficult to implement?.
2. The time complexity for ground-state energy estimation reaches the Heisenberg limit.

3. The time complexity for ground-state property estimation is logarithmic in the inverse of

the precision requirement when we adopt the Gaussian cooling function.

To our knowledge, this is the first algorithm that encompasses all of the above advantages.
In Table B.1 and Table B.2, our cooling method is compared with several typical quantum
algorithms in the two primary tasks considered in this thesis, i.e., eigenenergy estimation and

observable estimation. Here, we mainly focus on the algorithms without the usage of oracles

2The implementation of qubitisation is introduced in Section 2.4.3. The resource cost for implementing these
quantum oracles (block encoding of a given Hamiltonian H) is discussed in Section 9.3.
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for the block-encoding of a Hamiltonian. The latter will be discussed in Chapter 9. The Tables
compare the maximal evolution time which characterises the complexity of quantum circuits for
realising Hamiltonian simulation e~*7t, the number of repetitions required to run the quantum
circuit, and the total evolution time needed for estimating the ground state energy to within
error €. The complexity of estimating properties of excited states can be analysed in a similar
fashion. Note that we simply compare with the conventional phase estimation method. Here we
also use asymptotic notations, besides the usual O notation, to denote the complexity up to a
polylogarithmic factors, similarly to that in Ref. [29].

Note that we can generalise Assumption 1 and Assumption 2 to the case of the estimation of
Jjth eigenenergy F; and the properties of jth eigenstate |u;): it is also assumed that the initial
state has a large overlap p; with the jth eigenstate of the target Hamiltonian H; we also assume
a known lower bound A on the energy gap min{|E; — E;_1|,|E; — Ej+1]}. In this case, our

proposed algorithm can then be used for eigenenergy and eigenstate property estimation.

4.5 Numerical simulation

In this section, I show numerical implementation of the algorithmic cooling method for the

anisotropic Heisenberg Hamiltonian,

7

8
H = JZ (0fofy +ofoly, +20707,) + hzaiz7
=1 i=1

where J = 1 is the exchange coupling, o' (a = z,y, z) is the Pauli operator on the ith site, h =1
is the strength of a uniform magnetic field in the z direction, and periodic boundary condition is
imposed. The initial state is in the computation basis as [01010101), which is close to the ground
state and has nonzero overlap with a relatively small number of low-energy eigenstates.

Under the dual phase representation of the unphysical Gaussian function, the eigenenergy E;
maximises the denominator D, (E) if the initial state has a nonvanishing spectral weight |(1o|u;)|?
on the eigenstate |u;). We can thus determine the eigenenergy by searching for the peaks of D, (FE)
with the Gaussian cooling function. Both the imaginary time 7 and the cutoff x,, are consistently
adjusted by the target precision. I elaborate on how to determine the imaginary time 7 and the
cutoff x,,, by taking the Gaussian function as an example. For a certain simulation accuracy ¢, the
imaginary time 7 and the cutoff x,, satisfy 7 « \/m and x,, = 24/log(2/e), respectively.
The reference line is calculated by the error due to a finite imaginary-time 7 plus the theoretical
maximum cutoff error L(e). Using a finite imaginary time 7 = 1.7 and cutoff z,,, = 4.4, and 10°
number of samples for the integral, I show the energy spectra in Figure 4.4. The maximum error
introduced is below 0.01, which aligns with our error analysis.

I then show the spectrum search with different total evolution times T' = 7, with cutoff x,,

and imaginary evolution time 7. Here, 7 and x,, are calculated according to the target precision,
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Figure 4.4: Energy spectra search of the 8-site anisotropic Heisenberg model using the Gaussian
cooling function. The solid line shows the denominator of D, with 7 = 1.7 and cutoff z,,, = 4.4.
The dashed line shows the exact eigenenergy of the Heisenberg model. The figure inset shows
the error of D, with respect to that under the exact cooling. Ny = 10° is set in the Monte Carlo
sampling of the integral. Measurement shot noise is ignored.
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Figure 4.5: The spectrum search of the 8-site anisotropic Heisenberg model using the Gaussian
cooling function with different evolution time. The solid line shows the denominator of D, with
different 7 from 7 = 0.9 to 1.7. The cutoff is calculated according to the target precision. The
sampling number is set as N, = 10° in the Monte Carlo sampling of the integral to keep consistent
with Figure 4.4.

as discussed in the above sections. The maximum imaginary evolution time 7 ranges from 7 = 0.9
to 1.7. As shown in Figure 4.5, with increasing imaginary time, we can distinguish the peaks
that are close to each other, aligning with our theoretical analysis.

Finally, I show the error dependence of the eigenstate preparation, with a particular emphasis
on the time complexity. Suppose we aim to find the second eigenstate |uz), which has the largest
overlap with the initial state. Given the associated eigenenergy Fy found by the above method,
one can analyse the error introduced from finite imaginary time and cutoff. Here, I focus on the

state infidelity of the normalised state after cooling and the target ideal eigenstate, which can be
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Figure 4.6: Error dependence of the total evolution time with (al-a2) Gaussian and (bl-b2)
exponential cooling functions. In (al) and (b1), we study the infidelity versus maximal total time
tym = Txy, and both the imaginary time 7 and the cutoff x,, are adjusted. The measurement
shot noise is ignored in (al, bl). In (a2) and (b2), we further consider measurement shot noise,
which introduces more instability of the infidelity. Nevertheless, we still observe the exponential
and linear inverse decay of the infidelity for the Gaussian and exponential functions, respectively.
The error bar is the standard deviation of D, error over 10 independent repetitions of the entire
setup. 10° samples are used in the Monte Carlo sampling of the integral. Dashed line: theoretical
upper bound of the infidelity assuming infinite samples; Dots with error bar: actual infidelity

with a constant number of samples.

expressed as € = 1 — (O), with O = |ug) (uz|. I illustrate the error dependence on the imaginary
time 7 and the maximal total evolution time t,, = 7x,, with Gaussian and exponential cooling
functions in Figure 4.6(al-a2) and (b1-b2), respectively. I plot the theoretical upper bound of
the infidelity in the dashed line in the figures (assuming finite 7, infinite x,,, and infinite samples
Nyy) and realistic infidelity with constant resources (a finite circuit depth and a finite number
of measurements) using dots. I set the imaginary time 7 and the cutoff according to precision
in the worst case, similar to the spectrum analysis, and the pre-determined precision is plotted
in the dashed line in the figures. In Figure 4.6(al) and (bl), I consider finite 7 and x,, with

10° samples for calculating the integral, but ignore statistical errors due to a finite number of
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Figure 4.7: Simulation error during the cooling process. The error is compared with the ideal
expectation value given by (1o|g(7(H — F2)) Og(7(H — Es))|th). The simulation error is below
0.05 under evolution.

measurements. We can see the exponential scaling with respect to the total evolution time
tm, for the Gaussian cooling function, while it asymptotically becomes 1/e for the exponential
cooling function. Figure 4.6(a2) and (b2) further show the error dependence when considering
the statistical errors, where single-shot measurement outcomes are collected, and 10° samples are
used.

Additionally, the simulation accuracy under the cooling process compared to the ideal cooling
process is shown in Figure 4.7. We can see that the error is kept to a relatively small value
during the cooling process, which verifies the effectiveness of our random sampling scheme. We
can improve the simulation accuracy by increasing the Monte Carlo sampling of the integral.

Author contributions. This chapter is relevant to a preprint [93] and a manuscript un-
der preparation [92]. Z.P., J.S., and X.Y. conceived the project. Z.P. and J.S. developed the
theoretical framework of algorithmic cooling. J.S. carried out numerical simulation and resource

estimation. X.Y. supervised the project.
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Chapter 5

Dynamics simulation by adaptive
product formulae

As discussed in Section 2.4, one major application of quantum computing is to simulate the
time evolution of quantum many-body systems [6]. This is an essential component of quantum
simulation, which not only allows us to study dynamical behaviours of quantum systems [7,
9,12,95,175-178], but also supplements other quantum algorithms as a common subroutine
(e.g. quantum phase estimation [28,179]) for general tasks (e.g. finding energy spectra [80,177,
180-184] or particle scattering [41,42]).

In Section 2.4, I have introduced several solutions to Problem 1, from the initial simple
Trotter-Suzuki product formula [139,185] to the latest advanced approaches [37,38,144,186—189],
such as ones based on Taylor series [38] and quantum signal processing with qubitisation [32,33].
In this chapter, I will focus on Problem 2 introduced in Section 2.4 and show the solution with
adaptive product formula, as an extension to product formula introduced in Problem 2. Moreover,
I will further show how this is built on the hybrid tensor networks established in Chapter 3, which
extends its application to dynamics simulation.

This chapter is relevant to a published paper in collaboration with Zi-Jian Zhang, Xiao Yuan,

and Man-Hong Yung [94] and a manuscript under preparation [91].

5.1 Introduction

Consider a Hamiltonian H = Zle a; P; that is decomposed as a sum of tensor products of Pauli
operators P; with real coefficients a;. The key idea of the product formula (PF) methods is to

—iHét

approximate the time evolution operator e via a sequence of operators selected from the

Hamiltonian evolution operation pool {e~%" j‘st/} such as the first-order Trotter-Suzuki formula

L
e—iH& ~ H e—iaijét + O(5t2)
j=1

Higher-order Trotter-Suzuki formulae are shown in Section 2.4. Theoretically, tighter bounds

have been derived for special types of systems (e.g. lattice Hamiltonians with nearest-neighbour
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interactions) [144,189], verifying the empirical error estimates of the product formula methods.
Numerically, it has been shown that product formula methods require entangling gates and T
gates to orders of magnitude fewer than those more advanced methods (e.g. qubitisation) for a
system of 100 qubits [37]. Since product formula methods are ancilla-free and are much easier to
implement in experiments, they are favoured for simulating dynamics with near-term quantum
devices.

Product formula methods approximate the time evolution operator (quantum channel), which
works for arbitrary input states, and thus they may require an unnecessarily large number of
gates when we only evolve a specific quantum state in practice. Recent numerical and theoretical
studies have shown that product formulae with fixed or random input states only require a
much shorter circuit [147,148,190]. On the one hand, this indicates an even greater degree of
practicality of the product formula methods for fixed input states. On the other hand, since
existing product formula methods do not exploit the input state information, whether we can
further exploit such information to reduce the implementation complexity merits further study.
As near-term quantum hardware has limited gate fidelity [8,11,25,71,74,191-193], it is crucial
to design Hamiltonian simulation algorithms with a shorter circuit, and hence higher calculation
accuracy.

In this chapter, I will discuss a construction-based method to adaptively find the optimal
product formula for evolving an unknown but fixed input quantum state. The task description is
formulated in Problem 2 in Section 2.4. Instead of using the theoretical worst-case error bound
of conventional product formula methods, I will introduce a measurable quantifier to describe
the simulation error. This work considers different evolution operators at different times and
constructs the optimal one by minimising the error quantifier. Since the error quantifier focuses
on the quantum state instead of the entire evolution channel, we can thus adaptively obtain the
state evolution circuit with a significantly reduced circuit depth than conventional approaches
for the unitary evolution.

This chapter is organised as follows. In Section 5.2, I introduce the framework of adaptive
product formulae. To stimulate the discussion, I begin with a single-step adaptive product
formula. Then, I show a jointly-optimised adaptive product formula. In Section 5.3, I show how
dynamics simulations can be scaled up using hybrid tensor networks. In Section 5.4, I discuss
the relation between our work and prior works in this field, and provide some perspectives on

dynamics simulation methods. The error analysis is presented in Section C.1.1.

5.2 Adaptive product formula

This section discusses how to adaptively find a short product formula for the Hamiltonian sim-

ulation from a fixed input quantum state. Consider the above time-independent Hamiltonian
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H = Zle a; P;. Recall in Section 2.4 that conventional product formula approaches approxi-

—iHét

mate the time evolution operator e within a small time step dt as

e = [|emiHO _ He—iojxjat”’ (5.1)
J
as stated in Problem 1. Here, € is the approximation error, O; € {P;} are chosen from Pauli
words in the Hamiltonian, ;s are real coefficients, and || - || is the operator norm. By properly
choosing {O;} with a given order, the approximation error € can be suppressed to higher orders
of 5t (e.g. ¢ = O(6t?)) and we can accordingly simulate the whole evolution operator e "*#7 with
a small error in the order of O(T'0t). The error bound is a pessimistic estimation of the worst-
case scenario, and several numerical and theoretical studies [147,148,190] have further shown
that for Problem 2 the complexity could be much smaller. In the following, I show a solution to

Problem 2 by adaptive product formulae.

5.2.1 Single-step adaptive product formula

In the single-step protocol, the exact time-evolved state e "*#% |W(t)) is approximated by

[W(t+6t)) = [[ e O [w(p) (5.2)
J

where the tuple O = {O;} at each step is chosen from the Hamiltonian and the coefficients
X = {\;} are real. The error for the approximation within each finite time step can be described

by the Euclidean distance between the exact time-evolved state and the approximated state
&= [le” M [w(t)) — [[e N [w()) |, (5.3)
J
where || 1) || = +/(¢¥|1)) represents the state vector norm or Frobenius norm.

Using Taylor expansion

k!
k=0
and .
O > (—i)k6t
He Oj\;6t _ Z Z —r H(Ajkojk),
J k=0 j1,32,--:Jk ' k
the algorithmic error can be expressed by
£ = \/A2512 + O(613) < Adt 4+ O(5t%/?) (5.4)
with the first-order error A being
A2 :<H2> +ZAjj//\j)\j/ —220]')\]' (5'5)
33’ J
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Algorithm 1 Adaptive product formula (single step)
1. Set Ay and n = 1. Input the initial state |¥(t)) and Hamiltonian H = Zle a; Pj;

2. In the n'® iteration, calculate A, C, X and A of the new circuit e~ 0t H;‘;ll e 03X | (1))
for each Pauli word Py in the Hamiltonian;

3. Set P, that gives the lowest A in step 2 to be Oy;

4. If A > Agyt for the new circuit, go to step 2 with n = n + 1. Else, stop and output 6, X for
approximation in Eq. (5.2).

Here, we have defined A;; = Re ((¥(¢)|0;0;:|¥(t))), C; = Re ((¥(t)|HO;|¥(t))) and (H?) =
(U(t)|H?|¥(t)). These values can be evaluated by quantum circuits [116,131].

With a given 6, A? is a quadratic function of X, whose minimum can be obtained at the
stationary point where ai)\jA = 0 for all j. This is equivalent to Zj, Aji Ny = Cj, or AX=C (in
a vector form). Therefore, the coefficients X that give the minimum of A? can be determined by
solving a linear equation, either by applying the inverse matrix A~! or by an iterative algorithm.
The accuracy of time evolution at each time step can be bounded by error O(Adt), and A
(or A?) serves as a handy measurable quantifier to estimate the quality of the time evolution
with a choice of O. Therefore, to construct a circuit (which could be represented by O) that
approximates the exact evolution with better quality, we can just add a new Pauli word to O
and see how A will change. In the single-step strategy, we iterate over all the Pauli words in the
Hamiltonian and add the Pauli word that gives the lowest A to O. As the total error can be
bounded by etota) < T'max A when dt is small enough, we can set a threshold Acyy = €totar /T,
and if A > Ay for the new circuit, we repeat the addition of new operators until A < Acyg.
This adaptive circuit construction process can suppress the effect of the algorithmic error in the
time evolution to any given e, With proper Acye and 6t. The above method is summarised in
Algorithm 1.

The performance of adaptive product formulae is guaranteed by Theorem 3

Theorem 3. Algorithm 1 satisfies the following properties.
(1) The error A strictly decreases at each iteration;
(2) Each Pauli word only needs to appear once;

(8) We can achieve an error A < Ay in at most L iterations for any Acyy > 0.

The first property indicates that the strategy is always effective; The second property indicates
that the strategy only requires applying each Pauli word once '; The third property states that
Algorithm 1 will terminate in a finite number of steps. The above theorem thus guarantees the
effectiveness and efficiency of the adaptive approach in the approximation of the time-evolved
state in Eq. (5.2).

The proof of Theorem 3 was mainly carried out by my collaborator Zi-Jian Zhang. Here, 1

will merely give a rough idea of the proof and refer to a complete proof in [94]. The proof is

!This property only holds when we consider the first-order error A, which may fail for higher-order errors.
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based on analysing the tangent space of product formulas. The first-order error is found to be
the distance from the objective evolution direction to the tangent space of the current product
formula. The next step is to find the condition for the error A to decrease when adding the new

Pauli word to the product formula. The condition is proven to be fulfilled in our method.

5.2.2 Jointly optimised adaptive product formula

I first overview the jointly optimised adaptive product formula before moving on to the technical
details. To evolve an initial state |¥q) to e *#7 |Wy) = |¥(T)), we can sequentially apply the
single-step adaptive strategy, in a similar vein to conventional product formula methods. How-
ever, this might not be optimal since the circuit constructed independently at each step may still
be redundant for the state evolution. To further reduce the circuit depth, a jointly-optimised
adaptive strategy is introduced to produce a more compact quantum circuit.

Using an iterative description, it is assumed that the approximation of the time-evolved state
at time ¢ to be |¥(t)) = G(O, A) |¥y), where G(O, A) = [1; e~03Ai is the circuit that has been
constructed at time ¢. Let us represent the list of Pauli words by O = {O;} and the adjustable
real coefficients (parameters) by A = {A;}. The single-step adaptive strategy considers the
approximation of Eq. (5.2) as G(O', X'6t)G(0, ) |¥p), in which the original circuit block G(O, A)
is fixed and only the new added circuit block G(0', X'6t) (specifically O’ and the associated X') is
optimised. However, since our objective is to obtain the time-evolved state from |¥), rather than
a general unitary for the time evolution, we may only need a much shorter circuit to effectively
implement the state evolution to any time ¢. In this section, I demonstrate how to optimise the
parameters jointly and implement the state evolution up to a given simulation error.

A refined strategy (Algorithm 2) is to jointly optimise G(O', X'6t) and G(O, A). That is to

consider the approximation
e MW (1)) = GO, N6t)G(O, A + Xot) [¥o), (5.6)

where we also X, which corresponds to the variation of the parameters found in the previous steps.
Specifically, consider the simulation error & = [|e=#1% | W (¢t)) — G(O', N'6t)G(O, A + Xot) [¥g) |
The first-order error A = limg_,0 &/t has a similar form of Eq. (5.5). Given 6’,6 and K,
the optimal X and X that minimise A could then be analytically obtained by solving a linear
equation, and hence A can also be obtained. Below, I will show the analytical formula of A and
detailed calculation of the optimal X and X').

Methods.— I will now expand on the methods employed in detail. In the jointly-optimised

strategy, the exact time-evolved state e~*#9'G(Oy, A;) |Wo) at time ¢ is approximated by

G (O}, Ni6t)G(Or, Ky + Aidt) [Wo)) = G(Oy ® O, (Ky + Xedt) @ (N,6t)) [Wo) . (5.7)
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After this step at ¢, we will have Oy 5 = 6t@62 and Ay = (Kt+X5t)@():15t). The total error at
time t + &t for the approximation can be described by the Euclidean distance of the exact time-
evolved state and the approximated state as eopa = D(e™7 (t+61) | W) ,G(O_),'f,)zét)G(O_’t,Kt +
Xot) [¥o)) where D(p,0) = ||p — o| represents the Euclidean distance. Using the triangle in-
equality, the total error is upper bounded by
Etotal SD(e_iH(tMt) o) >€_iH6tG(6t> Kt) [Wo))
+ D(e NG (O, Ky) |Wo) , G(O4, Xot)G (O, Ay + Nedt) W)

< > DGOy, Ay) [Wo) , G(O}, Niot) G (O, Ay + Xidt) [Wo)).

(5.8)

tetime steps
Here, we used the invariance of distances under unitary transformation and the summation in
the second line is made over all the ¢ at which a time step is made. Denote the approximation
error as
& = D(e "G(Oy, Ay) |Wo) , G(O}, Nit)G(Oy, Ay + Xet) | Wo)), (5.9)

=,

which characterises the error with the circuit G ((52, 0)G(Oy, A) at each time step.
In order to give a first-order approximation of the error € defined above, I will derive an

equation for
g =D(e %G (0,K) |¥o),G(O, A + Xt) [¥g)), (5.10)

which will become &; by setting O+ Oy O_z, A+ A, @0 and ot < ):;55t &) ):i&.

The approximation error can be expanded as

&= \JA252 + ABSE 4+ O(5tt) < Adt + AgdtY? + O(61%). (5.11)
The total error can thus be bounded by
Croal < Y & < AT L AP /FT, (5.12)

tetime steps

Proposition 4 shows the explicit form of the first-order error. An upper bound of As is shown

in the Section C.1.1.

Proposition 4 (First-order approximation error by adaptive product formula). The first-order
approzimation error of &€ = D(e *HOG(O, K) [¥o) , G(O, A+ X6t) |¥)) is characterised by A, and

we have
A = (i) = (H?) + D Ajpdiry =2 Cihj, (5.13)
Jg’ J

where we denote

Ajjr = Re (o] 8,G1(0, )9, G(0,K) 1)), C; = Tm ((Wo|,G1(O, H)HG(O, K)|wo))

and
(H?) = (Uo|GT (O, K)H?G(O, K)|¥y) . (5.15)
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To minimise A, the coefficients X can be determined by solving the linear equation as
Zj, Ajp Ny = Cj, similarly to that in the single-step strategy. Each term in Eq. (5.13) can
be measured on a quantum circuit, as discussed in Section 2.2.3. In practice, due to a finite
number of measurements or hardware noise, the estimates of A and C' may deviate from the true
values, which results in an error in the estimation of A. In this thesis, it is assumed that the
true values of A;; and C; can be obtained. I refer to [94] for discussions on the shot noise due
to a finite number of measurements.

One difference between the jointly-optimised strategy and the single-step strategy is that when
old parameters are permitted to change, the A of the circuit may be lower than the cutoff Acyt
by merely using the old circuit itself. In this case, adding new operators becomes unnecessary.
Therefore, in the new jointly-optimised strategy, we only add new operators when A > Ay,
which largely reduces the quantum gates required for certain simulation accuracy.

Similar to the single-step strategy, the jointly-optimised strategy also constructs its circuit by
iterating over all the Pauli words in the Hamiltonian. We calculate A for each Pauli word and
add the Pauli word that gives the lowest A, O™ to the previous circuit. A is calculated by
optimising over X @ N associated with the circuit O @ O/ , instead of merely optimising over N,
@ denotes the concatenation of the two vectors. This procedure is repeated until the first-order
error A is less than a threshold.

A major advantage of the new strategy is that when the old parameters are allowed to change,
we may only need to add much fewer new operators to ensure A is below the threshold. This
is because we only add gates when A > A.y; in the extreme case in which optimising over
the existing parameters X directly makes A < Ay, no additional gates are needed to proceed
the evolution. In addition, we arrange that every time the circuit is constructed, we add new
operators until A < Agy4/2, so that we do not necessarily have to add new operators in a few
following evolution steps until A > Acyt. The refined algorithm is summarised in Algorithm 2

and Figure 5.1.

Algorithm 2 Adaptive product formula

1. Set Acys. Input the initial state |¥g) and Hamiltonian H = Z]I-’ZI a; P;;
2. (Joint parameter optimisation) Calculate optimal X and A of the current circuit G(O, A +
X(St) |[o) at time ¢. If A > Acye, go to the step 3. Otherwise, set K — A + X6t and continue step
2 with ¢t — t + 6t; Terminate when t = T}

3. (Add new operators)

(a) For every Pauli word P in H, calculate A of the circuit G(O @ Py, (A 4 Xot) & Xdt) [¥p).

(b) With O™ being the Pauli word giving the smallest A in step (3a), add O®™™ to the end
of the product formula as O — O & O™ and A — A @ 0;

(c) If we have A < Acyt/2, stop adding operators and go to step 2. Otherwise, go to step (3a).
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Figure 5.1:  Scheme of the adaptive product formula (PF) method described in Algorithm 2.
We adaptively construct the time evolution circuit of quantum states by learning the quantum
gates and parameters that minimise the first-order error A at each step.

It is proven that the “Add new operator” procedure of Algorithm 2 also satisfies the same
properties in Theorem 3. Compared to conventional product formula methods, which apply a
deterministic sequence of gates, our method provides a circuit-growth strategy that optimises

quantum circuits with a shallow depth.

5.3 Large-scale dynamics simulation with hybrid tensor networks

Simulation of quantum dynamical processes based on classical perturbative approaches or tensor
networks in general scales exponentially with evolution time. Quantum computing provides
an alternative solution, but the simulation task requires a number of physical or logical qubits
no smaller than the problem size and a relatively deeper circuit. In this section, I propose
a quantum dynamics simulation method with hybrid tensor networks that address these two

challenges, making it compatible with the near-term quantum technology.

5.3.1 Stage setting

Consider a quantum many-body Hamiltonian
H = H"¢ 4 yint, (5.16)

where H!°¢ = >, H; corresponds to a strong but local interaction with each H; acting on the [th

subsystem and V'™ corresponds to a weak perturbation. In practice, one can always divide the
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whole system into L subsystems, which will be discussed in Chapter 6 in detail. We can thus
consider

vint =3 ;1) (5.17)

J

as the weak perturbation interaction between the subsystems with different interactions Vg(j )
acting on the /th subsystem and the corresponding coefficients c;. The local Hamiltonians and
the perturbation interaction depend on the partitioning strategy of the subsystems. A time-
independent Hamiltonian is assumed in the following discussion. However, our results also apply
to general time-dependent Hamiltonians. Without loss of generality, we assume that every H;
could be decomposed as a linear combination of tensor product of Pauli operators and each Vji“t

is a tensor product of Pauli operators.

The quantum state at time ¢ is approximated by

(B() = > iy W) @ @ [ (L) (5.18)

i1eil,

where «;, .. ;, denotes the generalised tensor that characterises the correlation between the sub-
systems and {]wl”>} denotes the quantum states for each subsystem [. Each subsystem is repre-
sented by quantum states {|wli’>}, and we may use either a quantum or classical tensor a/1%2+L to
describe the correlation between subsystems. If the entanglement of subsystems is not large, we
can set the rank of ‘2L to be a small number. For example, we can use the matrix product
state o2l = Tr[o/i1 a? e aiLL]. Alternatively, we can use a quantum tensor to represent the
correlation between subsystems as v, ;, = (i1]... (ir| @

The time-evolved state from |¥(¢)) based on the above hybrid quantum-classical tensor net-

work can be approximated by

Wi +a0) = e T u) = S ay L @) @ o (o) (519)
il
The evolution of state is thus mapped to the evolution of the tensors o and ¢lil.
To measure the expectation value of M = O1 ® --- ® O, with each O; representing a local

observable on the [th subsystem, we have
@IMIG)y = S aeiai i et e (5.20)
i1enip i i,
with
M = (i O]o (1) (5.21)
The dimension of each index i1, ...77, should be a small number similar to the bond dimension
of MPS.

Here, quantum tensors are used to represent the local n-qubit correlation, and the classical

rank-L tensor is used for global correlation among these L clusters of qubits. Consequently,
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this kind of quantum-classical tensor could be suitable for systems, in which local correlation
dominates over global correlation. Again, it is worth pointing out that the ansatz in Eq. (5.19)

may not guarantee simulation accuracy for a general quantum system.

5.3.2 Results

In this section, I demonstrate how to update the parameters in the tensor networks to achieve
certain simulation accuracy € under time evolution. I further show a joint optimisation method

that may avoid the exponential increase of the bond dimension.

5.3.3 Tensor evolution—single step

As a starting point, I first discuss the approximation error at single step with time step &t.

Consider the evolution of a local subsystem by Trotterisation as
@)= S e @I O) = WG ). (5
117 77/L
The error for the approximation of
_iH§ i
e W) ~ W+ 6t) = > ag | Y)Y @ @ | (1)) (529)
it
within each finite time step can be described by the Euclidean distance of the exact time-evolved

state and the approximated state as

e = [le”VO Wt + 6t)) — [W(t + 6t)) |2,

(5.24)
where || [¢)) |2 = \/{(1[{)) represents the state vector norm.
The algorithmic error in a finite time step can be similarly expressed as
b = /A25t2 + O(613) < Adt 4+ O(5t%/?) (5.25)
with
A% = (301 (t+ )01 (t + 5t)), |00 (t + ot)) = —(iV + Z G 8;) [WO°(t + ot)) . (5.26)

Here, the parameter set is denoted as & = {ay,,. i, }, the jth component of & as «;, and the
differential operator on the jth component of & as 0; = 0/0a; in short. The variation of
the tensor is represented by da;, .. i, = Zj é;ot. Note that this mathematically holds for the
quantum tensor «. . I remark that we can adaptively adjust the parameters in the tensors at
each time t. For instance, the parameters can be adjusted as @ < @ @ @ from ¢t to t + dt.
The first-order error A can be expressed as
A= (V2) 4+ Ajpcyay -2 Cjdy, (5.27)
33’ J
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where we denote (V2) = (Ulo°(t + 6t)| V2 |¥lo¢(t 4 1)), A;;r = Re (0; (W°°(t + 6t)| 0j0 [WO°(t + 6t))),
and Cj = Im (8; (U1°°(¢ + 6t)| H [U°°(t + 6t))).
Note that the first-order algorithmic error is a quadratic function with respect to the derivative
of the parameters ¢;, whose minimum is obtained at A(@®d) = C, and thus the coefficients can
be similarly determined by solving the linear equation ) | j Ajjray = Cj. Each term in Eq. (5.27)

can be measured on a quantum circuit.

5.3.4 Tensor evolution—full dynamics

I will now discuss a jointly optimisation method that circumvents the exponential increase of
bond dimension. I show how a circuit that realises the evolution from a given quantum state can
be adaptively determined.

To initiate the discussion, I first revisit the single-step evolution from time ¢ to ¢t + dt. We

—iHot

find that the evolution under the non-local interaction operator e is able to be realised by

the evolution of the tensors. Mathematically, the evolution can be represented by

e () = D ey, () Q) (1)
!

et , 5.28
~ Z g t+6t)\1/1 Wt 46t) @ - ® [ (¢ + 6t)) . (5:28)

it

Note that compared to directly mimicking the local operator e *Hit, the state is approximated
by updating the tensors of the local quantum tensors w;i (t + ) « wlil (t) and the upper layer
quantum tensors o v (t+0t) <= oy, .., (1) instead. Now, the evolution of the state is mapped
to the evolution of the parameters in the tensors. Denote the total parameters as A, the variation
of parameters as §A = \t, and represent the state as |U(t)) = T'(A(t)) |Wo). Note that we could
adjust the tensors at each time and this could be described by A(t + 6t) < A(t) & A'(t) where
we add the additional tensors with parameters A’ at time ¢.

The error for the approximation during the evolution can be described by the Euclidean

distance of the exact time-evolved state and the approximated state as

e=lle”™ | W0) = D iy WT () ® - ® [ () |1 (5.29)

Ui,

where, || [¢) |2 = \/(¥[1) represents the Frobenius norm. The exact time-evolved state e =% |¥(¢))
is approximated by T(A(t+6t)) |Wo). The total error at time ¢+ &t for the approximation can be
described by the Euclidean distance of the exact time-evolved state and the approximated state
as & = D(e ™0 |W(¢)) , T(A(t 4 6t)) |Wo)) where D(p,o) = ||p — ol|2 represents the Euclidean
distance defined above. Using the triangle inequality, the total error is upper bounded by

g< ZD e T (K(#)) [Wo) , T(A(t + 61)) [ W) (5.30)
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Here distance invariance under the unitary transformation is used and the summation is made
over all the time steps.

Denote 6e = D(e T (X(t)) [¥o) , T(A(t+6t)) |¥o)), which characterises the approximation
error with the tensor T at a time step. Denote the jth component in A& A as A; and denote
the differential operator on the jth component of A® N as 0; = 0/0A;. The algorithmic error

in a finite time step can be thus expressed as

be = \/A2512 + N353 + O(5t1) < At + Agdt3/? + O(5t) (5.31)
with
A2 = (53, (0, N)[8¥1 (0, X)), A2 = 2Re ((5\1:2(6, N[6w (O, X))) : (5.32)
and L
1691 (0, X)) zH+Z)\ 0,)T(R) [Wo)
.o . (5.33)
|65 (0, X)) = H2 +Z)\ Ay 07 )T(A) [T) .
Ji’

The first-order order error A can be expressed as
2 2
A% = (H?)+)  Ajphry —2)  Ci, (5.30)
33’ J

where we denote Aj; = Re ((Vo| 0,770, T |o)),C; = Im ((¥o|0;TTHT|¥g)), and (H?) =
(Uo|TTH?T|Wg). Note that first-order algorithmic errors is a quadratic function with respect
to X & X, whose minimum obtains at A(X e N ) = C, and thus the coefficients can be similarly
determined by solving the linear equation as 5 Aji Xy = Cj.

We can first choose the tensors o’ that give the minimal A2, and adaptively adjust the
tensors by adding the corresponding tensor o’ under evolution. The procedure is very similar to
Algorithm 2.

With our method, one can represent a Ln-qubit system by using an O(n)-qubit system, and
emulate large-system dynamics by carrying out operations on a small quantum processor. The
success of this method relies on the fact that the entanglement of the system does not grow

drastically under time evolution.

5.4 Discussion
5.4.1 Comparison to other works

Compared to the first-order Trotter method, where O; and A; are set as the corresponding
Pauli word P; and weight a; in the Hamiltonian, respectively, our method provides a systematic
circuit-growth strategy that optimises the quantum circuits with much smaller gate counts. In
the original paper [94], the adaptive product formula (PF) method is numerically benchmarked

for molecular systems and spin systems in both the dynamic and static problems. Our numerical
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simulation shows a significant improvement of the gate count saving in practical computation.
Specifically, the number of CNOT gates are significantly reduced by two orders compared to the
first-order Trotter-Suzuki product formula. I am indebted to my collaborator Zi-Jian Zhang for
performing the numerical simulation, and I refer the reader to [94] for the numerical simulation
results.

Meanwhile, variational methods (see Section 2.2.3) have been widely used to simulate quan-
tum dynamics, which use a shallow quantum circuit than that in conventional Trotterisation
algorithms. One major challenge in variational quantum simulation is to design an appropriate
circuit ansatz to represent the manifold that the target states live in, and in general it is difficult
to ensure simulation accuracy. In contrast to a pre-determined and fixed circuit ansatz in varia-
tional quantum simulation, the circuit under time evolution is optimised by tracking the accuracy
of the circuit at each time, which in turn enables an adaptive circuit construction with guaran-
tees on the simulation errors in the time evolution. In this chapter, I mainly focus on real-time
dynamics, and it is left to future work on the subject to extend the results to imaginary-time
evolution, which could potentially be used to find energy spectra of quantum many-body sys-
tems, similarly to Refs. [177,178]. Several adaptive variational quantum algorithms have been
proposed for finding the energy spectra of the quantum many-body problems [194,195], and our
results using the quantum Krylov algorithm can be compared against these (see [94]).

It is also worth comparing our results with a parallel work, termed AVQDS, proposed by Yao
et al. [196]. AVQDS is a work of considerable interest, with points of commonality between the
authors’ approach and our own. AVQDS shares a similar idea to Algorithm 2 in this chapter,
i.e., the jointly-optimised algorithm, which adaptively constructs a quantum circuit for real-time
evolution. The approach outlined in this chapter is, however, based on the theory of product
formula and has guaranteed simulation accuracy as its primary consideration. A direct result
of this difference is that AVQDS permits a wider choice of operator pools, whereas our work
only allows the use of operators from the decomposition of the Hamiltonian. This feature of our
method guarantees that the circuit construction in adaptive PF is valid, i.e., A can be reduced
to any Acys > 0 and thus objective simulation accuracy can be achieved. This is an important
distinction as improper pools may result in errors that cannot be reduced by circuit constructions.
It can be shown that when the length of the longest Pauli word in the pool is smaller than % of
the length of the longest Pauli word in the Hamiltonian, the algorithm cannot always suppress
simulation error below an arbitrarily low level. Intuitively, this is because the short Pauli words
cannot cover the evolution generated by long Pauli words. More rigorous and detailed discussions
can be found in a future work [197].

Finally, T would like to remark that while two algorithms - the ’single-step’ and ’jointly-

optimised’ algorithms - are introduced in order to help the readers comprehend the spirit of our
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methods in a more natural way, the single-step adaptive PF has its own advantage. The single-
step adaptive PF does not require computing the coefficient shift in the product formula that
has been added to the circuit. This makes the number of circuits that are needed to evaluate
in the single-step algorithm independent of the number of steps that have been completed. It
is expected that in the long-term when applying quantum gates is both relatively easy and fast,

the single-step adaptive PF may be more desirable than the jointly-optimised one.

5.4.2 Resource cost

Compared to variational quantum algorithms, our adaptive strategy requires measuring an ad-
ditional expectation value of the operator H?, which can be taken as the resource cost for the
adaptive method. Our method could be inefficient when simulating arbitrary many-body dynam-
ics. Nonetheless, our method may be practical in quantum systems with short-range interactions,
such as the Ising or Heisenberg model. Moreover, recent works [74,87,98,198-201] have proposed
methodologies to efficiently measure Hamiltonians and their higher-order moments, such as clas-
sical shadows, Pauli group approaches, etc, which can be directly incorporated into our method.
More specifically, we find tensor product basis sets, and the elements in each set qubit-wisely
commute. The number of measurements can be reduced significantly by exploiting the measure-
ment compatibility of the Pauli terms of the observables. In the extreme case, we only need
to measure once if all the Pauli terms of the observable are compatible. While finding the op-
timal Pauli sets is equivalent to the minimum clique cover problem, which is NP-hard, several
heuristic methods have been put forward to solve the problem, such as largest degree first (LDF)
grouping [74,198]. An efficient measurement strategy will be discussed in detail in Chapter 10.
Moreover, the measurements and the optimisations at each iteration are fully parallelable and
hence our method could have further speedup with the addition of more quantum devices.

Author contributions. Section 5.2 is relevant to a published work [94]. In this work,
7.7., and J.S. initiated the project of adaptive product formulae. X.Y. and M.Y. supervised
the project. J.S. and X.Y. conceived the idea of adaptive product formulae. J.S. developed the
framework of single-step and jointly-optimised adaptive product formulae with input from Z.Z.
and X.Y.. Z.Z. carried out numerical simulation and verification of our algorithms. Z.Z. proved
the main theorem in [94] with input from J.S.. J.S. and Z.Z. analysed the effect of shot noise
in [94].

Section 5.3 is relevant to a manuscript under preparation [91]. J.S. is responsible for the

results in Section 5.3.
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Chapter 6

A perturbative approach to
simulating interacting dynamics

In previous chapters, I initially demonstrated how the static and dynamic problems posed in Sec-
tion 1.2 can be formulated in a general framework, and then show the solutions in the Chapter 4
and Chapter 5. In this chapter, I will focus on a generic interacting system, which can be divided

by the local part and the interacting part as
H = H'"°¢ 4 yint, (6.1)

Here H'°° corresponds to the strong but local interaction and V™ corresponds to weak pertur-
bations. In this chapter, I introduce a perturbative approach to simulating quantum many-body
dynamics, with a generic system Hamiltonian characterised by Eq. (6.1).

This chapter is relevant to a work published in collaboration with Suguru Endo, Huiping Lin,

Patrick Hayden, Xiao Yuan, and Vlatko Vedral [95].

6.1 Motivation

I start the discussion with a generic quantum many-body Hamiltonian characterised by Eq. (6.1).
In practice, we can always divide the full quantum system into L subsystems, according to their
topological structures or degrees of freedom. For instance, a lattice Hamiltonian and a molecular
system with virtual and active orbitals or in a clustered structure (see [154,202,203]) provide
natural partitioning strategies for the subsystems, similarly to that in perturbation theory. As

such, we could consider

H" =) "H, (6.2)
l
as the local Hamiltonians with each H; acting on the [th subsystem, and

Vint _ Z /\j‘/jint (63)
J
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as the weak perturbation interaction between the subsystems with different interactions Vji’[1t
and real coefficients );. Without loss of generality, Vjint may be taken to be a product of Pauli
operators for efficient implementation on a quantum computer. It is worth mentioning that
the local Hamiltonians and the perturbation interactions depend on the partitioning strategy
of the subsystems. Partitioning strategies for several typical physical systems can be found in
Section 8.1.

To simulate the dynamics of U(t) = e ", one possible solution is to leverage classical
methods that have been developed to solve quantum many-body problems, wherein the most
successful one is perturbation theory. This method divides the Hamiltonian into a major but
easily solved component and a weak but potentially complicated counterpart, so that the full
dynamics can be expressed as a series expansion [159,202, 204-207].

A representative perturbation treatment via Dyson series expansion is expressed as

t
Ut)=1—i / dty e (i —to) yint =il (i —to) (6.4)
t

0

The time evolution becomes a linear combination of different trajectories, where each one un-
dergoes local Hamiltonian evolution et with interactions V™ uniformly inserted during the
evolution time. When the local Hamiltonians { H;} are solvable, one can further represent the
expansion graphically, such as via Feynman diagrams, and compute expectation values of the
time evolved state with different graphs corresponding to different expansion terms.

A major limitation of classical perturbation theory is the assumption of the simple, and hence
solvable, local Hamiltonians, which fails when the local Hamiltonians {H;} become strongly
correlated, as can occur in some realistic systems. In this case, it becomes hard to realise the
local evolution e*i*, A suggested solution to this could be to consider a different partition,
where the complex part of local Hamiltonians is assigned to the interaction. However, this in
turn may result in strong interactions, causing the expansion to become inefficient or divergent.
Additionally, computing the higher-order expansions of general quantum many-body problems
could be challenging, which further limits the use of perturbation theory. Regardless, even when
there is no interaction under certain partitioning strategy with V™ = 0, no classical methods
exist that can efficiently simulate the dynamics of general Hamiltonian H'¢ = > Hi, otherwise
the computational class of bounded-error quantum polynomial time collapses.

To circumvent this conundrum, the leveraging of quantum computing power to simulate the
local Hamiltonians is proposed. We have termed this method perturbative quantum simula-
tion (PQS), which uses a quantum computer to directly simulate the major component while
perturbatively approximates the weak interaction component. Since there is no assumption on
the size or interactions of the major component, PQS potentially goes beyond the conventional
perturbative approach, conceivably being able to simulate classically intractable systems, such

as large systems with weak inter-subsystem interactions or intermediate systems with general
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interactions. An explicit algorithm mimicking Dyson series expansion is proposed. Its optimality
in relative to more general theories is proven. Although PQS may not be applicable to arbitrary
problems, it possesses a major advantage over conventional quantum simulation algorithms, in
that its perturbative treatment of the weak component reduces quantum resources. Remarkably,
PQS runs a shallow circuit on a smaller number of qubits, making it more noise-robust and thus

useful in benchmarking large quantum devices with smaller ones.

6.2 Perturbative quantum simulation
6.2.1 Method description — discrete time

A time-independent Hamiltonian is assumed in the following discussion; however, our results
apply to general time-dependent Hamiltonians. Without loss of generality, I assume that every
H; could be decomposed as a linear combination of tensor product of Pauli operators and each
Vjint is a tensor product of Pauli operators.

To do so, I first introduce the concept of local generalised quantum operations,
®(p) = Trp [U(p@10) (0]) V'], (6.5)

where we denote ancillary qubits [0) (0[5 = |0) (0|, ® --- ® [0) (0|5, and unitary operators
U=Uig, ® --®Urg, and V = Vi, ® ---® Vg, . The notation UjEj and VjEj indicates that
the operators act only on subsystem j and the j* ancillary qubits. While the operation ®(p) is
non-physical in general, it can be realised effectively using local operations and post-processing
as shown in Figure 6.1(b). Note that ®(p) reduces to local quantum channels when U = V|, as
illustrated in Figure 6.1(b1). The properties of this generalised quantum operation were shown
in Section 2.5.1.

The key idea of PQS is to decompose the joint evolution into a set of generalised quantum
operations, which separately act on each subsystem. I first describe the algorithm assuming
discretised time, and then demonstrate how to take the limit of infinitesimal time steps. We aim

to simulate the time evolution governed by the Hamiltonian H with time ¢,
U(T)[p) = U(T)pU(T)T, (6.6)

where U(t) = e~1t. Considering discrete time 0t, we have

T/6t T/t
u(T) =Juet =] [vim(&) o @ul(at)] + O(T4t), (6.7)
=1 =1 =1

where Uj(t) = Uj(t)pU(t)T with Uj(t) = e it and VIU'(t) = V(1) pVint(4)T with VInt(¢) =
e=V™t Here O(T6t) corresponds to the Trotter error, which vanishes when taking the limit of
ot — 0. Note that the evolution consists of local evolution U;(dt) on the Ith subsystem term and
the joint evolution V™(5t).
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(a) Decomposition (c) The Operation Sequences
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Figure 6.1: Schematic diagram of the perturbative quantum simulation algorithm. (a) The
decomposition of interactions into local generalised quantum operations. (b) The implementation
of a generalised quantum operation ®(p) = Trg[U(p®10) (0| ;) V] using quantum circuits, which
reduces to a quantum channel when U = V in (bl) and unitary operations ®(p) = UpVT when
there is no ancilla in (b2). (c) We can equivalently realise the discretised scheme with §t — 0.
The operation sequences for Ny samples are predetermined provided the decomposition. We
either continuously apply the local time evolution or randomly apply a generalised quantum
operation. The time to apply the operations is determined by the probability P[Jump| and the kth
operation is applied with probability P[®%]. The scheme in (c) does not assume time discretisation
and the number of generalised quantum operations that applies during the evolution scales as
O3 ) lak|T). (d) Schematic of the simulation process for a single sample as an example. For
the Ith subsystem, we evolve the state under local operations i) and apply operations ®; ;, and
®; ., at time t1 7 and ¢q 2, respectively. We measure the output states with a product observable
O and obtain the outcomes O;; for the jth sample. The process is repeated for Ny times. For
any product input state, the expectation value of observable O under the joint evolution i in (e)
can be unbiasedly approximated by (O); ~ N% Zj\;sl P; I1, 0;, with the overhead C' and phase
P; determined by the decomposition.

The next step is to decompose the joint non-local operation V"*(§t) into local operations that
separately act on the subsystems. In particular, we can consider a set of generalised quantum
operations as

®4(p) = Tre [Uk (p® [0) (0] ) Vi (6.8)

where we denote Uy, = Uyt ® Uiy ® -+ © Urpp s Vie = Vg, © Vilg, - ® Vil o, and
|0) (0] z = [0) (O 5, ®10) (O], - - ®0) (O] 5, , and each Uy, 1 and Vi, & is applied jointly on the
Ith subsystem and the ancilla Ej. Denoting ®;;(p;) = Trg, [UlEl’ (pl ® |0) <O\El) 1B, k} to be

the generalised quantum operation acting on the [th subsystem, we thus have

Op =01, P ®--- QP g, (6.9)
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which applies separately on each subsystem. When we choose a sufficient number of ®j, we can

always decompose the instant joint evolution V"' (¢) as a linear combination of local operations,

VUG =T+ 6tY ap®h =T +0tY apPrp®@Prp®@-- @ Ppy, (6.10)
k k

where Z corresponds to the identity channel Z(p) = p and oy are complex coefficients. For
example, we can choose {®;} to be a complete basis for all quantum channels. When the set of
{®} is chosen, we can find the coefficients oy, via linear programming.

Now we can express the joint evolution as

T/t

uT =] [<I+5t2ak®k> o®ul(6t)] + O(T6t). (6.11)
k =1

i=1
Denote ®g = Z, ¢(6t) = 14+ . |ax|dt, po(dt) = 1/c(6t), pr(dt) = | |0t/c(0t), O = —iln(a/|ow]),

we can re-express the above equation as

UT) = jﬁ: [c(&t) < zk: % py.(5t) cpk) ®u, ot) } + O(T6t),

T/t

=c(@)™ > ] [el%pk (6t) Dy, o®ul 54 + O(T'6t),

k1,k2,...kr st 1=1 (6.12)
T/6t ’

= (St T/(Stz ’LekpkH |:®(Plk O®Ul 5t:|+0 T(St)
=1 =

T/t

= c(ot)"°1> " ePepy (X) [ 11 (@m o Z/{l(ét))] + O(T6t).
k =1 =1

Here k = (k1,...,k7/st); Pk = Dy Pk - - Physer O = Ok, + Ok, -+ + Ok 5, The phase is denoted
as Py = ek,

Under the expansion in Eq. (6.12), the joint evolution U(T) becomes a series of different
trajectories. Here, each trajectory is defined by which operations act at each time, including
the local time evolution U;(6t) of each subsystem and one of the generalised quantum operation
®;,(p) that on average emulates the effect of Vit = ¢=#V"™*  The whole evolution ¢(T) is now
decomposed as a linear combination of operations that act locally on each subsystem. The joint
evolution can thus be effectively realised using only local operations, which is the central idea of

PQS.

I next discuss the measurement of non-local observable. Suppose the initial state p(0) is

= Z Ak ® Plko (6.13)
ko =1

decomposed as

and measure an observable like

0= Z Ak H Ol ko - (6.14)
ko =1

111



where we have abused the notation of o. The expectation value of O with respect to the time-

evolved state can be expressed as

T/t
Tr [Z/{(T) [,0(0)]0] = c(6t)T/% Z ko e €75 Pl H Tr[ H <<I>l7kiolxll(5t)) [plka]Ol,ko)} +0O(Tot).
ko ,kok =1 i=1

(6.15)
Here each term Tr[H;TF/ft <‘I>l,ki o L{l(ét)> [pl,ko]Ol,ko)} can be obtained from operations only
on the [th subsystem. Consequently, the expectation value of observables with respect to an

arbitrary joint state is now a linear combination of products of local measurement results.

6.2.2 Monte Carlo implementation and continuous time

6.2.2.1 Discrete time Monte Carlo method

The above discretised scheme assumes a small discrete time step and requires applying the
operations at each time step Jt, which is unnecessary since the effect of the weak interacting
operation V(6t) in a short time is close to the identity operation. I address this problem by
stochastically applying the operations ®; depending on the amplitude of its associated coeflicient
| |-

More specifically, the number of expanded terms is proportional to N{‘C/ 5t, with Ny being the
number of terms in the expansion of Eq. (6.10). Although Ng/ % increases exponentially, we do
not need to measure all the expanded terms and the Monte Carlo method could more efficiently
obtain the measurement outcome.

In particular, the decomposition of Eq. (6.15) can be written in a general form of

(0) => a [ [T [@i(p1)0uk) = C > e py [ ] Tr [@4(p1.4) O] + O(Tt), (6.16)
PR P 1=1

with & = (ko, ko, k), g = c(6t)7%ap,ar,ePpy, C = S, qp = c(dt)7/% > ko [0] Do, |0l

0, = —iln(gx/|qx|), pr = lak|/C, and &; = HiT:/ft <¢‘l,ki oZ/{l((St)). To obtain the measurement

(O), we can use the following Monte Carlo random sampling method,

1. Generate random numbers k according to the probability {px};

2. For the lth subsystem, prepare state p; ., apply the operation ®;, and measure the observ-
able Oy 1, to get <Ol,k>-

3. Multiply all the outcomes (O ) = Tr[®;(p; )0y k] of different subsystems, as well as the

phase €% and C.

4. Repeat steps 1-3 N, time and output Oest = ) ;. Cetx IL (Oik)-
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Ignoring the effect of Trotter error with a finite time step, the expansion guarantees that the
output is an unbiased estimation of the exact measurement outcome. Suppose each Oy is a

Pauli measurement, then with failure probability d, the estimation error scales as

- o(cy[lm1lt) o

Since the coefficient C' boosts the error, it quantifies the cost of the random sampling process.
Suppose the input state is a product state, then the additional cost that the perturbative expan-
sion introduces is C' = ¢(6t)7/%. A detailed analysis of the resource cost is shown in Section 6.2.3.

A major caveat to the above scheme is that it assumes a small discrete time step and requires
continuously interchanging the subsystem evolution U; and ®; with a sufficiently small time step
0t. In practice, it could be challenging to ‘continuously’ interchange the subsystem evolution
within a sufficiently small time step dt. I show in the next subsection that an equivalent Monte
Carlo method can be applied, which stochastically implements the joint evolution. As such, a
general Hamiltonian simulation method other than Trotterisation could be applied to reduce the

algorithmic error.

6.2.2.2 Stochastic implementation

First rewrite Eq. (6.11) as follows

T/6t
u(T) = c(ot)"" [ (poI - pzlé) o Rty (p(0)), (6.18)
=1 =1

where p>1 = > ;51 Pk, d = > ok>1 Pr/d oy [ak|. At each time step, we always evolve each
subsystem according to ;, and with a small probability p>i, we evolve under ®. Since the
probability p>1 o< dt is negligible when taking the limit of ¢t — 0, we can equivalently realise it
with a continuous decaying or jump process. Specifically, we can realise the evolution U(T") with

the following stochastic process

1. Generate a uniformly distributed random number pj, € [0, 1].

2. Determine tj, by solving pj, = Q(t) with Q(t) = e T, T(t) = t> k>1 Pk, and Py =

limg;—0 pr/0t = |ag|.
3. Evolve each subsystem state with U, to time ¢ and update t =t + t;p,.

4. Generate another random number ¢, € [0,1] to determine ®; and apply ®;; to the lth

subsystem.

5. Repeat Step 1 — 4 until t = T.
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The average of different trajectories reproduces the evolution under the joint channel U(T).
We can therefore stochastically realise the decomposition without assuming a discrete time.

Note that the number of generalised quantum operations required to realise the joint evolution
scales proportionally to the interaction strength as O(>, |a|T), and on average the stochastic
implementation is proven to be equivalent to the discretised scheme in Figure 6.1(a). The equiv-
alence is proven in Section D.1. Meanwhile, other advanced Hamiltonian simulation algorithms
such as qubitisation introduced in Section F.2 could be used for each time evolution at step 3. 1
also note that the jump time ¢, as well as the evolution could be predetermined, which renders
its implementation similar to conventional Hamiltonian simulation.

I illustrate the procedure in Figure 6.1 and summarise the key steps of PQS in Algorithm 3.

Algorithm 3 Perturbative quantum simulation

1: Given a set of generalised quantum operations, find the decomposition Eq. (6.10).

2: Generate a sequence of trajectories where each subsystem evolves and experiences random
local generalised quantum operations.

3: Sample from the trajectories. The average behaviour reproduces the joint evolution.

In quantum simulation, we usually prepare a simple initial state, such as a product state,
evolve it under a joint Hamiltonian H, and measure an observable that could be decomposed as
a linear combination of local ones, i.e., the input state p(0) = ), p1(0) and product measurement
O = @, O;. When the input state or the measurement is not in a product form, we can similarly
decompose them as we discuss above.

By applying our algorithm, the whole simulation process is now decomposed into the average
of different ones, each of which only involves operations on the subsystems. If each subsystem
consists of n qubits, then we can effectively simulate nL qubits with operations on only O(n)
qubits. Although the aforementioned analysis assumes Trotterisation, the local time evolution
U;(t) could be implemented with any Hamiltonian simulation methods, such as product formulae
discussed in Chapter 5 and Refs. [37,144], and quantum signal processing [32, 33| discussed in
Chapter 2. Our algorithm is compatible with both near-term devices and fault-tolerant quantum

computers.

6.2.3 Cost analysis

The above perturbative quantum simulation (PQS) method introduces a sampling overhead
which is quantified by

T/t T/t

C = lim [] ¢(0t) = lim J](1+ adt) =™, (6.19)
ot—0 paie 6t—0 i1

where o = ), |oy|. Since the simulation accuracy is now C' times larger, we need to have

C = O(1) and hence oT = O(1) in order to get an accurate result. This could be satisfied
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when 7" and « are not too large, i.e., when the product of the simulation time and the total
interaction strength is constant. While a roughly measures the interaction strength, its analytical
relationship to the interaction Hamiltonian V™ is not obvious. This is because the value of «
depends on the choice of generalised quantum operations and the decomposition. We can thus
define the minimal value of o by optimising over all possible decompositions,

Qmin = g)ikn al{ag, Pr}), (6.20)
where a({ay, Pr}) is written as a function of the generalised quantum operations and the min-
imisation is over all possible decomposition strategies.

Below, I provide an analytical lower bound to ami, as a function of the interaction V™.
In the next section, I demonstrate an explicit decomposition strategy that achieves this lower
bound.

To do so, I consider the Choi state of the instant evolution V™(6t) by inputting tensor
products of the maximally entangled states. Specifically, inputting |¢) = > j i)/ Vd to the

int

Ith subsystem with d being the dimension, the output state ¢1"}, ; ;, is the Choi state,
a0 = V00| @ | (6.21)
1

Suppose that VI"(§t) is decomposed as

VR (SE) =D apPrp @ Pog @ - @ Prg, (6.22)
k

where we have put Z into the summation and denote &y as the new coefficient incorporating dt.
The relation between o and & = ), |ay,| is

a—1

(6.23)

a = lim
st—0 Ot

Since a depends linearly on &, we can equivalently minimise a.

Define isomorphisms S and 7" of a general matrix M =}, , M; ; [i) (j] as

ZM,H 17)
ZM,J

Several useful properties of the matrices S and T are

(6.24)

e The definitions of S(M) and T(M) are basis dependent.

e When applying matrices U and V to M, we have
SUMV)=UV"Y M;li)|j) =UeVT'S(M),
" (6.25)
T(UMV) ZMH GlUT @V =T(MUT V.
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e S(M) and T'(M) are related as follows,
S(M) = [T(M*)]T. (6.26)
This is true because [T’ [ |} =2 Mijli)|5) = S(M). Suppose we
denote |M) = S(M) then T(M) = S )]Jr (M.
e The norms of S and T are the same,
SN S(M) =T (M) - T(M)" = Te[M'M] = || M|, (6.27)
which corresponds to Schatten-2 norm of M. This is because

S(M)T-S(M) = M (i ]|ZM,J| 1) Z Mij = Te[MM].

i/’j/
The proof is similar for T'(M).

By applying S to the [,1’ systems and T' to the rest systems, we get a matrix
vl =Swo @ Ty (@i, ) (6.28)
JEL AV
Using, the above property, we can thus lower bound & as follows.
Theorem 4. Given a decomposition of Eq. (6.22) with generalised quantum operations {®;},
we have

> mo o],

(6.29)
where ||A||; = Tr[V AAT] is the trace norm.

I leave the technical proof of Theorem 4 in Appendix D. Consider the specific form of
Vit (5t)[p] = p + 6t(—iV™p 4+ ipV™m) and define the interaction part as

th[ ] thp + vamt (6.30)

We can then similarly define the Choi state of Vit ag

= [@ ¢] (631)
l
and the matrices

by V=S o° ® Tj,j((z_)illﬁ’,...,L,L’)' (6.32)
ALGA
Then consider the decomposition Eq. (6.10), we have
Corollary 1. Given a decomposition of Eq. (6.10) with generalised quantum operations {®;},

we have

[0 > maX le 2 (633)
where ||A||; = Tr[V AAT] is the trace norm.
In the following section, a specific decomposition strategy will be introduced and we shall see

how to use the analytical lower bound to prove its optimality.
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6.2.3.1 Optimising the decomposition

Here, in order to minimise the simulation cost, we could consider an over-complete basis with
generalised quantum operations and then find an optimised decomposition through linear pro-
gramming.

Specifically, consider a set of over-complete basis {®;} which includes the identity channel.

Our target is to solve the following problem.

minC; = Zaz — Za,;,,
k K’
such that Vint((gt) = Z Ofki_‘l)k — Z a,;,q)k/, (634)
k k'

a:, a, > 0.

There are a few problems evident here. First, the optimisation becomes exponentially costly
when the channel acts on a large number of qubits. Second, basis operations also contain mea-
surement and state preparation, which might be challenging in an experiment. In the next
section, we give another explicit decomposition strategy to resolve these problems. The explicit
decomposition could be optimal under mild conditions, and only requires unitary operations

without measurements or state preparation.

6.3 An explicit decomposition method

While the decomposition of Eq. (6.10) holds in general for a complete set of {®}, it may
involve some operations that render experimental implementation challenging. Here, I address
this problem by developing an explicit decomposition with only local unitary operations. Its

optimality over other expansions under a mild condition is demonstrated in Section 6.3.2.

6.3.1 Method description

Suppose Vot = Zj /\jVjint with each V;-int being a tensor product of Pauli operators. Consider
an expansion of V" which is given by
VI (6) [p] = Z(p) — i6t(V™pI — pV™) + O(512)
— I(p) — ot Z )\j(v}intp _ vajint) + O(5t2), (635)
J

where both Vjint p and ijint are generalised quantum operations. Suppose Vji“t =) Vf?t and the
input state is a product state p = &), p; the above decomposition could be expressed generally

as

Vint(5t) {@ pl} =c(dt) Y _epp () [Ul,kplﬁ,k} +0(6t%). (6.36)

l k l
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Here each Uy, and Vi could be I and Vll?t, c(6t) = 1+ 26t3; [A;], pr and 6y are defined
correspondingly. Denoting the unitary evolution of the [th subsystem as U;(dt) and following the

notation of the above discussion, the joint evolution of all the subsystems is

UT) [@Pl] =CY " p(X) {Ul,kT/MUl(ét) O Uit U] (58) Vg, - - U (66) Vi, | -
. K 1
(6.37)

where C = ¢(0t)7/% = T with A = 3 ;|1Ajl. Now we have decoupled the joint evolution as a
linear combination of independent evolution of each subsystem. When we further implement the

stochastic Monte Carlo method, the evolution of each subsystem looks like

Pk = Ul,kij Ui(tng,) - - U Ur(t) U] (81) Vi - - - UIT(thp)Vl,kij, (6.38)

where Njp, is the number of jumps (decay events), and t; +to + -+ + tn;, = 1. Here, each Ul,ki

is either I or one of {Vl‘?t} When we measure O;, it becomes
Tr[kaOl] = Tl“[ULkij Ul(thp) . 01’]“ Ul(t1)plUlT(t1)‘72,kl ... UZT(thp)Vl,kij O], (6.39)

which could be implemented with the following circuit

|+) X,Y
o) | Oy Vi, U0t ) [ O, Vi, 0D

The measurement result of the whole evolution state is
un)| @n| - @o
l l

Therefore, after measuring each Tr[p; kO], we can obtain the exact measurement result.

Tr

=C Z ewkpk H Tr[pl,kOl]. (640)
k l

The perturbative quantum simulation method with explicit decomposition is proven to be
equivalent to the infinite-order Dyson series. I would direct the interested reader to Appendix D
for a description of the Dyson series, its implementation on a quantum computer, and Theorem 10

for a rigorous proof.

6.3.2 Cost analysis

According to the above discussion, the cost associated with the explicit expansion is
C = e (6.41)

with A =) y |Aj|. I demonstrate that the expansion is optimal, i.e., with the smallest cost, when

Vint satisfies the following condition.
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Condition 1. Suppose V™ acts nontrivially on the set of subsystems S. Given V't = Zj )\jVjint
with each th X, Vlmt and Vlmt being a tensor product of Pauli operators, we have
T.r [Vl??t] =0, Vj,VL €S, (6.42)
Tr [ViFVI] =0,V) # j,Vl € S.
The first condition requires that each Vl‘?t is non-identity and the second condition requires two
interaction terms of the same system are orthogonal. When we say V™ acts nontrivially on
subsystems S, it means that for any [ € S, at least one of Vjint has non-identity Pauli operators

on subsystem [. The result is shown in Theorem 5.

Theorem 5. Suppose the interaction V™ satisfies Condition 1. The explicit expansion of

Eq. (6.35) has a minimal cost over all possible decomposition strategies.

Proof. We assume that V™ acts nontrivially on all the systems. The proof is similar to the

general case. The Choi state of the interaction part V"[p] = —iVittp 4+ ipV/int ig

® ¢l7l’] =t Z Aj [® Vllzlt ‘¢>l,l’ <¢|z,l' - ® ‘¢>l,l’ <¢|z,l/ Vlt?t} . (6.43)
! j l !

Jint _ yoint
¢1,1’,...,L,L’ =V

Taking mt as an example, we have
”f}% = ZZA [ 10010 @ 10010 @) (@l (ViEHT @ (@l — 16)10
=22 (6.44)
VI 16110 @ (ol @ (ol |
l
Denoting
W15a) = Vi 101,00 @ [9)1 10 4
|¢1,j, > = |¢>1 1/ ( f,r;t) |¢>1 1 (6.45)

(1j.al = (Pl V" @ (4], 'z
Wrgpl = (Bl p @ (Pl Vl,j )

Wwe can express wlln{ as

by = —iZ/\jC[\¢1,j,a> Q) (Wrjal = I15) ) (Wl ] (6.46)
J

1>2 1>2

When {V; ;} satisfies Condition 1, elements in {[11 ) ,|¥1,s)} are mutually orthogonal, i.e.,

<¢1,j,x’w1,j’,y> = O,V] 7é j/ or r 7é Y, T,y € {a7 b} (647)

Similarly elements in { (¢ jq|, (41|} are mutually orthogonal. Therefore, Eq. (6.46) is a singular

value decomposition of Mnt and we have
Il =2 Al (6.48)
J
The above proof holds for all other 1%‘}? O
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The following provides several examples of V1" that satisfy the condition. First, the condition

is satisfied when there is only one interaction term Vj™.

Corollary 2. The decomposition is optimal when V™ only has one term (a tensor product of

Pauli matrices).

Condition 1 could also hold when the interaction V™ has multiple terms. For example,
consider three subsystems and denote (I,m) to be the mth qubit of the Ith subsystem. The

following examples of different interactions satisfy Condition 1.
Vit =X 1 - Xo1 - X371 +b0X12- Xoo- Xzo+cX13- Xo3- X33,
VI —q X1 Xog - X31+bY11-Ya1 Y31 +cZi1-Zoy- Za,
VI =0 X1 Y10 Xo1Z00 - Y3130 +bX1 1212 Z21722 - X31Y31
+cZ11 Y12 Xo1Yao - Z31Ys0+dZ11 212 Zo1 Yoo - X3123 1.

(6.49)

Since Condition 1 requires that the interaction terms of each subsystem are mutually orthog-

onal, the number of interaction terms is limited.

Proposition 5. When Vint = Z;V:"‘f X Vll;‘t satisfies Condition 1 with Niy being the number of
terms and n being the minimal number of qubits of each subsystem. Suppose the minimal weight

of each V?;lt is k, and we have
Nipg < 3% (Z) (6.50)

In particular, when k = 1, i.e., the interaction on each subsystem only act on one qubit, Condi-
tion 1 requires V'™ to have at most 3n terms. We leave a more detailed exploration of conditions

for the optimal decomposition to future work on the subject.

6.4 Limitations and applications

In this section, I discuss the potential applications and limitations of the PQS algorithm. Since
PQ@QS is a hybrid method that combines quantum computing and classical perturbation theory, it
inherits both their advantages and limitations. The major constraint on the use of PQS comes
from the limitation of classical perturbation theories, which generally only work for weakly cor-
related systems. For PQS, since we simulate the coupling of subsystems using the perturbation
theory, it is only efficient if the coupling strength is weak. In comparison to a universal quantum
simulation algorithm using a fault-tolerant quantum computer, the systems that our method is
capable of simulating are limited. Specifically, our method cannot work for large systems with
general arbitrary two-body interactions, such as strongly correlated electrons, high-dimensional
strongly interacting lattice Hamiltonians, or scenarios when the simulation time is very long. Nev-
ertheless, note that similar limitations prevail in almost all modern classical computing methods

apart from perturbation theory, such as density functional theory (DFT), quantum Monte Carlo

120



(QMC), tensor and neural network methods, etc. As I discuss below, these limitations do not
prevent wide applications of PQS to realistic problems.

While our method is restricted in scope compared to a universal quantum simulation al-
gorithm, it is worth pointing out that these universal quantum algorithms generally rely on a
fault-tolerant quantum computer, which is still challenging to realise using current technology.
This simple fact explains why many contemporary works in quantum computing focus on applica-
tion in the NISQ era or the early stage of fault-tolerant quantum computing, where both the size
(number of qubits) and (circuit) depth of the quantum hardware could be limited. Therefore,
as we elaborate below, our method does indeed have broad application from simulating intri-
cate quantum many-body systems and probing interesting physics phenomena, to benchmarking
larger quantum processors for NISQ devices and early stage fault-tolerant quantum computers.

Theoretically, our method combines the complementary strengths of quantum computing and
perturbation theory, to respectively simulate the subsystem and the inter-subsystem interactions.
PQS would be most powerful in investigating large systems with weak inter-subsystem interac-
tions or intermediate systems with general interactions. Since there is no assumption regarding
the subsystem interactions, locality of the inter-subsystem interactions, or the initial state of the
subsystems, the method is widely applicable.

The most promising and exciting application of perturbative quantum simulation concerns
clustered subsystems with weak subsystem-wise interactions. Since all subsystems could have
arbitrarily strong interactions, the whole system might not be efficiently solvable using classical
approaches, in general. In contrast, our methods are significantly more resource efficient, making
the study of system dynamics a viable proposition. One prominent example of a suitable appli-
cation of our approach is the simulation of 1D systems, where we could easily divide the systems
into clustered subsystems and have weak subsystem-wise interactions. It could be argued that
under certain assumptions (local and gapped Hamiltonians), the ground state of a 1D system
could be efficiently solvable using matrix product states, hence the ability of our approach to
simulate 1D systems is unsurprising. By way of response, it is worth pointing out that simulating
the dynamics of general 1D systems is actually a very challenging task using classical methods.
Indeed, as shown in Ref. [208], one can use a 1D system to simulate a 2D system, which indicates
classically simulating an arbitrary 1D systems could be hard. In contrast, our method could be
applied to study exotic properties of 1D system dynamics with strong subsystem interactions.

In addition, many real-world physical systems also admit clustered interaction forms. Many
types of realistic Hamiltonians, such as molecules (the dimer system or functionalised compound),
lattice models for materials, or toy models for high energy physics, admit a similar form as that
in our simulation, indicating a natural application of our method. Specific examples include the
molecular rings, such as the (Cr7Ni)y dimer, in which the subsystem has strong correlations and

the two subsystems are weakly interacting via spins on the boundary.
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Aside from physical systems featuring these geometrical cluster properties, PQS is also appli-
cable for systems with multiple degrees of freedom. Indeed, quantum many-body systems that
consist of both weak and strong correlations in different levels of the system could be suitable
for our methods. Taking the Hamiltonian of molecules as an example, we can divide the system
into electrons and nuclei. We can then separately simulate the two subsystems of the electrons
and process their correlation classically to surpass the Born-Oppenheimer approximation. We
may use the PQS method to investigate dynamic correlations beyond the Born-Oppenheimer
approximation.

The method is also applicable to electronic structure. When considering a relatively large
bond distance, we could divide the spin-orbitals from different atoms or molecules into different
subsystems. Similarly, we could divide the spin-orbitals into active and virtual ones and represent
them with quantum and classical means, respectively. Our method can consequently be employed
to construct an effective Hamiltonian for solving large molecules or molecules with more basis
states using a small quantum computer. Other examples in condensed matter physics include
dynamics simulation of electron-phonon coupling. Many interesting phenomena emerge due to
the dynamic coupling of electrons and phonons. Our method could be directly applied to these
problems.

Practically, our method could be applied for probing interesting physics phenomena. As will
be demonstrated in Chapter 8, PQS can be applied to study the quantum walk of bosons, dy-
namical phase transition, the propagation of correlations, and spin-charge separation of bosons,
fermions, or spins. Apart from these applications, our method could also be used to examine
other more general dynamic behaviours, such as molecular reactions of the dimer and electron-
phonon interactions in superconducting models. Following a recent study of cluster simulation
schemes [209], our method could also be applicable to variational quantum simulation for molecu-
lar Hamiltonians. With proper embedding methods [210-212], such as DFT [40,211,213], dynami-
cal mean-field theory (DMFT) [214,215], or density matrix embedding theory (DMET) [216-218],
PQS might also be used to probe larger physics problems. These include, for example, ones in
the thermodynamic limit.

Furthermore, PQS would be helpful for studying general strongly interacting problems with
short time and benchmarking near-term quantum computation. Using the PQS method, a larger
problem with N - L qubits could be processed by a N 4+ 1 qubit quantum device. Since a
smaller quantum device is generally much more accurate than a larger quantum processor due
to crosstalks or other types of errors when controlling large quantum systems, our method could
serve as a benchmark of the computing result for larger problems. This advantage was also
clearly demonstrated using the IBM quantum devices in Section 8.2. Consequently, when we

construct larger quantum hardware or aim to use it to demonstrate quantum advantages for
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solving a larger problem, we can first run PQS with a smaller device to test the performance of

hardware and the feasibility for faithfully implementing the algorithm.

6.5 Discussion

The PQS algorithm leverages the power of quantum computing to simulate the major component
of the Hamiltonian, alleviating the constraints of classical perturbation methods. It uses classical
perturbation to approximate the interaction, reducing the requirements for qubit numbers, which
is favourable for both NISQ devices and early-stage fault-tolerant quantum computers. While
the algorithm cannot efficiently simulate arbitrary systems, especially large 2D or 3D systems, it
is applicable to ones with an intermediate size, such as a square lattice with tens to hundreds of
qubits, and is particularly useful for simulating large systems with weak inter-subsystem inter-
actions, such as (quasi) one-dimensional systems and clustered subsystems. PQS methods can
be applied to study various many-body physical phenomena, and has demonstrated potential in
benchmarking large quantum processors with small ones, corresponding to an emerging demand
in the NISQ and early FTQC era. Numerical and experimental results will be presented in
Chapter 8.

Our work set out the potential of hybrid quantum-classical algorithms which combine clas-
sical physics methods with quantum computing, clearing a path for studying large many-body
quantum systems with near-future quantum hardware. There are, additionally, other classical
perturbation treatments of the interaction, such as one which expands according to the in-
teraction strength; integrating it with quantum computing may provide a more efficient PQS.
Furthermore, perturbation theories have also been applied in analogue quantum simulation for
synthesising effective Hamiltonians (see [219]), and analogue simulation has already been suc-
cessfully used to discover novel phenomena such as quantum many-body scars [220]. Whether
our PQS method could be generalised to analogue quantum simulation is an interesting future
direction of research.

Author contributions. This chapter is relevant to a published work [95]. S.E., X.Y., and
J.S. conceived the idea. X.Y. and V.V. supervised the project. J.S. and X.Y. developed the
theoretical aspect of the work. J.S. and X.Y. wrote the manuscript with input from S.E., V.V.,
and H.P..
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Part 111

Exploring emergent quantum
phenomena by quantum simulation
and spectroscopy
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We are generally interested in the eigenstate properties (such as the magnetic ordering of the
ground state), dynamic properties, and spectral features of a quantum many-body system. The
central aim of Part III is to explore interesting quantum phenomena using the methods developed
in this thesis.

Spectroscopy and quantum computing arguably provide a natural and complementary solu-
tion to these problems. As discussed in Section 1.3, spectroscopy techniques have a close relation
with quantum simulation, from both a theoretical and operational perspective. Spectroscopy
stimulates the development of quantum computing methods in predicting excited state proper-
ties of quantum many-body systems with general and tuneable interaction.

In Chapter 7, I introduce an engineered spectroscopy method for probing the spectroscopic
features of quantum many-body systems on a quantum simulator. This is a continuation of the
discussion in Section 1.3, in which I set out the basics of quantum simulation and spectroscopy,
illustrating their relation, and drawing some notation comparisons. In Chapter 8, I show how
to study eigenstate and dynamic properties using the quantum simulation techniques developed
in Chapter 6 and Chapter 7. In particular, I show how to explore many-body phenomena, and
probe excitation spectra of quantum many-body systems, including interacting bosons, fermions,

and quantum spins.
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Chapter 7

Probing spectroscopic features of
quantum many-body systems

Spectroscopy techniques provide a powerful tool for exploring many-body phenomena and have
achieved great success in probing the excited states of materials, such as vibrational and magnetic
structures. In this chapter, motivated by spectroscopy techniques introduced in Section 1.3.3, I
introduce a framework that considers engineered quantum dynamics induced by a local or global
perturbation to estimate transition energies between the eigenstates of a quantum system. After
applying a local perturbation to an initial state which is prepared by an engineered quantum
system, the spectral function of the target quantum system can be obtained by looking at the
Fourier transform of time-evolved operator correlation functions. I demonstrate a close relation
between our engineered spectroscopy method and the quantum algorithmic cooling method intro-
duced in Chapter 4. I further discuss the algorithmic error, and quantum resource requirements
for our method, and show that the quantum circuit complexity has a logarithmic dependence on
the desired simulation accuracy.

This chapter is relevant to a manuscript under preparation in collaboration with Lucia Vilchez

Estevez, Vlatko Vedral, and Andrew Boothroyd [96].

7.1 Motivation

Spectroscopy has been used extensively to facilitate our understanding of many-body phenomena,
such as magnetism and superconductivity. In magnetic neutron scattering, for example, neutrons
interact with spins of electrons, and the intensity of the scattered neutrons reflect the magnetic
response of electrons in the materials. This in turn carries certain information about the magnetic
interaction in the materials being probed. To motivate the discussion on engineered spectroscopy,
I will briefly recall the basics of spectroscopy introduced in Section 1.3 with the main focus being
a discussion of inelastic neutron scattering.

The observable in inelastic neutron scattering [14, 15] is the dynamical structure factor

S(Q,w), also known as the magnetic response function. As discussed in Section 1.3.3, it is
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related to a two-point unequal time correlator

C(t, 1) = (S1(H)S2(t')) , (7.1)
by the Fourier transform, where Sisa spin operator. This can be regarded as a special case of
Eq. (1.8), and thus the discussion in Section 1.3.3 flows naturally from this observation.

The two-point unequal time correlator contains spectral information on the spin dynamics
of a many-body system. In a translationally invariant system, the dynamical structure factor
S(Q,w) reaches its local maximum when the energy selection rule, as well as the momentum
selection rule, are both satisfied, as indicated by Eq. (1.10). In a spectroscopic experiment,
consequently, we usually track the peak of intensities in the neutron scattering spectrum, from
which we can infer the energy dispersion.

Nevertheless, we should note that there are several constraints to conventional spectroscopy
experiments. As discussed in some detail in Chapter 1, the allowed degrees of freedom in con-
ventional spectroscopy experiments are limited, so that we can only access the intrinsic property
of materials, instead of an engineered system with general interactions. It is worth reiterating
that some degrees of freedom in engineering the system are possible in spectroscopy experiments,
such as through the application of an external electric or magnetic field. However, these external
fields usually contribute only single-body local terms, instead of many-body interactions, to the
Hamiltonian of the system being probed. In addition, the conclusion reached in the discussion in
Section 1.3.3 holds under two conditions: (1) the perturbation is weak, and the linear response
theory holds, (2) the perturbed system is in an equilibrium state. The second condition indicates
that there is no coherence of the initial state, as p is diagonal in the eigenbases of the Hamilto-
nian, ,0""' = 0 for n # n/, and thus we can only probe the properties in the equilibrium phase.
This raises the following questions: (1) can we explore the spectroscopic properties of a general
quantum many-body system, and (2) can we explore the properties in the out-of-equilibrium
phase. To be more specific in relation to the tasks, spectroscopic properties are referred to as
transition energies between eigenstates of the Hamiltonian and the excitation spectrum from the
ground state, which are the central objectives in this chapter.

Readers may find that this problem rests within a subset of the problem that was posed
in Section 1.2.1. Although it is an out-of-equilibrium problem, the key component of the task
considered here is to obtain the eigenstates and the corresponding eigenenergies, which can be
achieved through using the quantum algorithmic cooling method developed in Chapter 4 or other
eigenstate preparation methods introduced in Chapter 2. The dynamical behaviours can subse-
quently be obtained by applying the dynamics simulation methods developed in this thesis. A
combination of these methods would consequently provide us with a result. Nevertheless, apply-
ing the above methods to the study of realistic materials with current quantum hardware could

be challenging. Capturing the collective behaviour in a realistic material presents a significant
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challenge given the many degrees of freedom involved in the problem description, as detailed in
previous sections. More importantly, simply in terms of efficiency, having an experiment-friendly
method to access the behaviours of materials, without requiring too many experimental resources,
is always desirable. This is even more crucial in the noisy intermediate-scale quantum era, in
which available quantum hardware has limited practicality, a point which was underscored in
Section 1.4.

Spectroscopic techniques [16,17,19-21,221] provide valuable insights for us to design resource-
efficient methods. Motivated by spectroscopy, I demonstrate how to probe spectroscopic features
of a quantum many-body system in an efficient way. Our method only requires the realisation of
time evolution e *H* without reliance on any ancillary qubits. This is in contrast to many algo-
rithms, such as algorithmic cooling developed in Chapter 4 and variational dynamics simulation
outlined in Section 2.2.3, which usually require controlled-unitary operations. Our method is
therefore compatible with an analogue quantum simulator, and has the advantage of potentially
being more robust against noise. The quantum circuit complexity of our method for transition

energy estimation is shown to be logarithmic in precision, which shows a clear advantage over

existing works in this estimation task.

7.2 Methods
7.2.1 Framework

In this section, I discuss how to estimate transition energies between the eigenstates of a quantum
many-body system using engineered spectroscopic methods. I first formulate this problem in a
similar fashion to that in Chapter 4. To begin with, let us consider a quantum channel
Glp.w) =Y ') (0| p|n) (n| pr(Ew — En —w), (7.2)
n,n/=0

where |n) is the eigenbasis of the Hamiltonian satisfying H |n) = E, |n). The function p,(-) that
selects the energy difference between |n’) and |n) is introduced. For instance, we may choose the
Gaussian function p, (w) = exp(—72w?) which decays exponentially fast with respect to 7 or w.
Here, we arrange that p;(w) = p(Tw), such that 7 is coupled with w.

With a properly selected observable O, we can obtain the measurement outcome G (p,w) =
Tr[G(p,w)O]. Denote Ty, := p™(n|O|n’) which represents the state-and-observable dependent
coherence, yet is time-independent. We have

Glp,w)= Y TO) (0| pln) (n p(r(Ew — En — w))]

n,n’'=0

= Y Twap(r(Ew — En —w)).

n,n'=0

(7.3)

We can find that the quantity G(p,w) contains the information on transition energies. Specifically,

given a proper p(-), G(p,w) takes its local maximum when w approaches to E,; — E,,, from which
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we can see that p(-) plays a role as a spectral filter that filters E,, — E,, out from the other
transition energies.

Next, I show how to estimate G(p,w) in Eq. (7.3). The key idea is to consider a Fourier
transform of G(p,w). Let us consider the dual form of p via its Fourier transform

g(t) = /Oo p(w)e ™ d(Tw), (7.4)

o0

and its inverse form
1 > .
p(rw) / G(t)emtdt. (7.5)

e % ,
Consider the normalised function g(t) = |§(t)|/[|g(¢)|| with [|g(®)]| :== [ |§(t)|dt, and we have
1 [ ,
o0) = [ p)emd(rw), (76)
and its inverse form

p(Tw) = < /Oog(t)ew‘e_imtdt. (7.7)

27 Jo
with ¢ := ||§(t)|| and the phase e := §(t)/|g(t)|.
Plugging the Fourier transform of p into Eq. (7.3), we find that

2
n,n’=0
C A o , : . .
=5 2. Mo / ™ T n) (n| p|n') ('] € TE g (t)e et (7.8)
n,'n/:O —0o0
c [ A 0, i c [ o
= _/ Tr[Op(Tt)]g(t)ewte”“)tdt _ _/ G(Tt)g(t)ezetez‘rwtdt
2m —00 2T —c0

where we denote
G(t) = TOp(1)), (7.9)

in the Schrédinger picture. The above equation indicates that we can first obtain Tr[O(7t)p] by
measuring O on the time-evolved quantum state at time 7¢, and then use Eq. (7.8) to obtain
G(p,w). Since g(t) is normalised and hence can be regarded a probability distribution, we can

estimate G(p,w) by
N,
. 1 o=
G(p,(,c)) = ﬁ Zgi(p’w)a (710)
5 i=1

where N; is the total number of samples, and g; is a single-shot estimator, which takes the form
of

gi(p,w) = 2£6(Tti)ei9ti el (7.11)
7r

where ¢; is sampled from the probability distribution ¢(¢) and 6(7t;) is an unbiased estimate of

Tr[O(t)p]. G(p,w) is an unbiased estimator of G(p,w),

G(p,w) = EG(p,w),

13:(p,w) is also an unbiased estimator of G(p,w).
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where the average is over the probability distribution g(t).

It is worth noting that in Eq. (7.8), we choose to treat 7w as a whole when we perform the
Fourier transform. As such, g(-) is a probability distribution that is independent of 7, and the
time length? for evaluating G(p,w) is 7t, which is extended by a factor 7. Alternatively, we
can treat 7 as a separate parameter that is independent of w, and hence will not be Fourier-
transformed. One can show that these two ways are equivalent, which will not be elaborated on
in this thesis for the sake of conciseness.

Eq. (7.3) indicates that to be able to infer the transition energy A, ,, := E,» — E,, there are
two necessary requirements: (1) a sufficiently large coherence I'y/ ,,, and (2) a proper function
p(Tw) (or equivalently its dual form g(t)) that ensures that A, , can be distinguished from other
transition energies.

The coherence I/ 5, is time-independent yet dependent on the state and the chosen observable.
We can consider the following strategy in order to satisfy the first condition. We first prepare the
initial state p as the ground state of the noninteracting system governed by Hy. The interaction
H, at t = 0 is then suddenly turned on. The state will be evolved under the Hamiltonian
H=Hy+H,. Ina weakly coupled regime, where the initial state p is close to the ground state

|0) of H , the initial state can be expanded using the first-order perturbation as

p = 0210)(0] + 3 ™10y ] + 5l 0. (7.12)
n#£0
The state coherence p™ is nonzero, which indicates that it allows a transition between the
eigenstate |n) and the ground state |0), and consequently we can in principle detect the energy
difference F,, — Ey.

It can be observed that the task of detecting transition energies is very similar to the problem
of searching for eigenenergies which was discussed in Chapter 4. However, there are several
differences between the method developed in this chapter and the algorithmic cooling which was
introduced in Chapter 4. In terms of implementation, this spectroscopic method does not require
controlled unitary operations and is thus free of ancillary qubits. It only requires the realisation of
real-time dynamics el ¢ a basic and most promising application of quantum computing [13,37].
It is also therefore applicable to most analogue quantum simulators and could be more robust
against noise.

It is also worth noting the relation between our method and conventional spectroscopy tech-
niques, since both are capable of obtaining the energy spectrum of a quantum system. The
essential component of our method is to obtain the expectation value of a properly chosen O on
a time-evolved state, and it relies on the realisation of real-time dynamics e~ with different

times t;, which will be implemented on a quantum simulator. As we will find in Section 7.2.2,

one advantage of our method is that it only requires evolution with a short time length which

2The maximal time length determines the time complexity of the algorithm.
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is logarithmic in the target precision €. In addition, since the Hamiltonian is capable of being
engineered, we can engineer quantum simulators to detect the energy excitation spectra of many

different types of quantum many-body systems.

7.2.2 Error analysis and resource requirement

In this section, I discuss the computational complexity of our method. I focus on the above weakly
coupled case, in which the initial state is populated by a collection of low-lying excited states,
and it is assumed that I', ¢ is nonvanishing while I', ,»>; = 0. In this context, 'nonvanishing’
indicates that the coherence I',/,, of the eigenstates is a constant or can be lower-bounded by a
polynomial of the inverse of the system size N as

1

(7.13)

The objective is to estimate the transition energy Aj;g = E; — Ey within an error e, i.e.,
|Aj70 — Ajo| < e. For the sake of convenience, we shift the full energy spectra by a constant Ep,
such that the shifted ground state energy is zero, Ey = 0. As such, finding the transition energy

is converted to an eigenenergy problem, and Eq. (7.3) is simplified as
Gp,w) =D Tnop(t(Ep —w)). (7.14)

Generally speaking, the eigenenergy E; can be determined by searching peaks of G(p,w) over

the frequency domain w. Under the assumption,
Ljop(T(Ej —w)) > Tiop(1(E; — w)), Vi # j (7.15)
the eigenenergy could be determined by
E; = argmaxwe[E];’Eng]G(p,w). (7.16)

This assumption, which is suggested in relation to the discussion in Chapter 4, holds when the
target precision is sufficiently small ¢ < A; with A; := min{FE; — E;_1,Ej11 — E;}, and 7 is
sufficiently large. For example, we can consider the Gaussian function p(Tw) = 6*72“’2, and set
7 > e~ L. Using the results detailed in Chapter 4, the maximal time complexity is @(5_1), where
polylogarithmic dependence is hidden within the big-O notation.

Although the total circuit complexity (maximal evolution time x sampling numbers) reaches
the Heisenberg limit for eigenenergy estimation, which is still @(5*1) as proven in Chapter 4, it
is sub-optimal for the maximal time complexity which is more important for practical implemen-
tation with near-term devices due to a relatively short decoherence time. In this chapter, I will
demonstrate that in a situation where the required simulation accuracy is sufficiently small, i.e.,

1

e < Aj, such alarge 7 ~ 7" is unnecessary. Indeed, a relatively small 7 that is of the order of

A suffices to estimate the eigenenergy.
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To see this point, let us rewrite G(p,w) as

G(p,w) =Tj0p(r(Ej — w)) + > _Tiop(r(E;i — w)). (7.17)
i
Given a large 7, the first term will be dominant to G(p,w). The crucial step is to show that
T = @(A;l) suffices to guarantee that G(p,w) is close to the peak value I'; o only if w is close to
E;. In addition, in the vicinity of E}, 8*G(p,w)/0?w < 0. The eigenenergy can thus be estimated
by finding the peak of the estimate G(p,w)

E; = argmaxwe[Ef’Eg]é(p,w). (7.18)

Intuitively, a time length of 7 = O(A;l) is sufficient to suppress contributions from the
other eigenstates. As a complete proof would entail the inclusion of many technical details,
here I only show an intermediate result. For 7 = (’)(Aj_l) and ¢ < Aj, one can show that (1)
|Dr(w) — pj| < e172e?, V|w — E;| < 0.5¢; (2) |Dr(w) — pj| > eam?e? | V|w — Ej| € (e,0(A))).
This indicates that the distance d = |I'j o — G(p,w)| can be modulated by the estimation error
|w— E;|, and consequently, the eigenenergy E; can be distinguished from the other eigenenergies.
Here, c; and ¢y are some constants that are irrelevant of 7 and € yet are dependent on I';o. It is
assumed that I'j g is nonvanishing, otherwise we cannot see the peak when w approaches Ej;. In
the following discussion, I'j g is assumed to be a constant and will thus not be explicitly shown
in the complexity analysis.

Given the theoretical guarantees, we first get an estimate of G(p,w) by Eq. (7.10), and E; is
then determined by finding the peak of G (p,w) over the frequency domain w. Here, it is worth
noting that since we only need to measure Tr[Op(7t)] in Eq. (7.10), calculating G(p,w) as a
function of w is a task involving purely classical computing, and does not cost any quantum
resources. Therefore, we can locate the position of eigenenergy E;, which corresponds to a local
maximum of G(p,w) and is distinguishable from other eigenenergies.

The algorithmic complexity concerning a finite 7, a finite cutoff for the integral, and a finite

number of measurements is shown below.

Proposition 6. Suppose that a system is weakly coupled, in which the initial state is close to
the ground state, and that there is a sufficiently large coherence between the excited state |j) and
the ground state |0). To guarantee that an estimation Aj,O of the transition energy Ajo is close
to the true value within an error €, we require that the mazimum time is O(A~1Polylog(1/¢)),
and the total running time is O(A3e~*log(1/e)), where A is a chosen lower bound of the gap
A <Aj:=min{Ej1 — Ej, E; — Ej_1}.

Proposition 6 indicates that when the required simulation accuracy ¢ is much less than A, the
circuit complexity is exponentially improved with respect to €. Nevertheless, the total running

time scales as O(e~*), in contrast to that established in Chapter 4 which is O(¢~!). The cost
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of a large total running time can be understood as follows. Recall that the target is to estimate

Ajo with accuracy ¢, i.e., |Aj,0 — Ajo| < e. By the Taylor expansion, we have

1G(p.Ajo) — Glp. Ajo)] = Ty (r2%6%) + O((re)"). (7.19)

)

A~

Due to a finite sampling number, we can only have an estimate of G(p, Ajo) and G(p, Ajo).
The sampling number required to achieve accuracy & scales as O(£72). Here, we choose to set
€ = (7¢)? to ensure that the energy estimation error is up to e. Consequently, the sampling
number scales as O(A*~%), and the total running time is O(A3s™4).

A remaining issue is the error from a finite cutoff when evaluating the integral in Eq. (7.8)
with the integral range from (—oo,+00) to [=T,+7]. One can show that a finite cutoff only
contributes to a logarithmic factor to the circuit complexity. This analysis is very similar to that
in the algorithmic cooling method in Chapter 4, and I direct the interested reader to Section B.1.2
for details.

Proposition 6 also indicates when we choose to set A = ¢, our result is reduced to algorithmic
cooling (Theorem 1), of which the total running time reaches O(¢~1), the so-called the Heisenberg
limit. Recently, Wang it al. proposed quantum algorithms for ground state energy estimation
which achieves a similar result [222]. More specifically, they proposed using a Gaussian derivative
function in the form of p,(z) = —\/ﬁx exp(—%) as a filter to estimate the ground state
energy, where o plays a similar role to 77'. They achieved a maximal time complexity which is
logarithmic in e and a total running rime O(¢~2). However, this method can only be used to
estimate the ground state energy instead of transition energies because the convolution function
used in [222], which can be regarded as a modified G(p, w), will be close to zero instead of reaching

its maximum when w approaches Ej.

7.2.3 Engineered spectroscopy

The above result rests upon the assumption that the coherence between the two eigenstates |n)
and |n') with respect to an observable O is large. The choice of the initial state and observable
is therefore crucial for observing the transitions. Thus far, several works have discussed how
to probe excitation spectra of a quantum many-body system by engineering the system and
monitoring the dynamics of observables [16,17,19-21,221]. These works provide insights into the
selection of the initial state and observables. In particular, it has been shown that nonequilibrium
dynamics after a global quench [16,19] or a local quench [20] is sufficient to unveil the excitation
spectrum, which has been termed quench spectroscopy. The basic idea is that quench will drive
the initial stationary state out of equilibrium and generate low-lying quasiparticle excitations,

the dispersion relation of which can be obtained by measuring a properly chosen observable. For
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instance, the basic protocol of local quench spectroscopy® for a lattice model with translation
invariance is that we first initialise the system in its ground state, then apply a local operation
L to a single lattice site, and measure the dynamics of a local observable, as discussed in [20].
At the basis of these spectroscopic method is that the initial state is populated by a branch
of low-lying excited states, which can be expressed as |¢9) = >_; ¢; |j) where [j) is an eigenstate
of H. The initial state, either generated by quench or local operations, can be formally expressed

o) = L 10), (7.20)

where |0) is the ground state of H. The ground state can be expressed as
0) =L~  [wo) = L7"¢;14) - (7.21)
J
The observation in relation to the excited state and the ground state can thus be expressed as

(0|O|n) = Zc] GILYHTOln) . (7.22)

In a simple case where Lisa unitary, one natural choice is L = O, which provides a guarantee
of nonzero observation, since (0|0|n) = c,.

In the case of a solid system, translation invariance is usually conserved, where the system
Hamiltonian satisfies [H,P] = 0, where P is the total momentum operator, and hence each
eigenstate |n) has a well-defined momentum of P,,, P, |n) = p,|n). Suppose we choose the

observable at a given position x, which can be expressed as

O(x) = e Pz tPx (7.23)
where we abbreviate O := O(O) for the sake of simplicity. Assume that translation invariance of
the initial state? is broken. Taking a space Fourier transform of G, (p,t) in Eq. (7.3) with the

observable O(x), we have

/dxe kG (p,w) =27 Z Ly (T —E, —w))d(ppy —pPn— k). (7.24)

n,n’'=0
This indicates translation invariance imposes selection rules of both energy and momentum for
transition between eigenstates. This is the key element in spectroscopy experiments, where ele-
mentary excitations between eigenstates emerge when the selection rule of energy and momentum

is satisfied.

3Note that the ’local quench’ in the original paper may stretch the conventional meaning of quench. Quench
usually refers to a process where parameters in the Hamiltonian are changed in time, and usually the time-scale
for the change of parameters is very fast. For example, a system is prepared as an eigenstate of a Hamiltonian
f]o at t < to, while at time %o, the system is evolved dynamically under a different Hamiltonian ro + I—?h. A more
accurate description of 'local quench’ in the protocol in [20] could be ’local perturbation’.

4For instance, translation invariance of the state after applying a local operation to a single site is broken.
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In a weakly coupled system, the particle excitations induced by perturbations are restricted to
a manifold of single-particle excitation. Therefore, an excited state can be understood as a single
quasiparticle excitation above a vacuum state, |n) = % |0), carrying on momentum q, where |0),
is the vacuum state, and 'ﬂl is a creation operator of a quasiparticle with momentum q. The

observable can be chosen as

O => " Apil + Ardp, (7.25)
P
and we have
(0[O|n) = Aqs. (7.26)

This indicates that the choice of O in Eq. (7.25) enables a nonzero observation, and the excitation
spectrum can thus be observed.

We can use a similar fashion to probe the transition energy between the excited states |n) and
|n'). The transition can be expressed as (n|O|n’) = (q|O|q + k) where the momentum selection
rule is imposed. If the excitations are restricted to a single quasiparticle manifold, we can choose

an observable that conserves the quasiparticle number

0= Appiip. (7.27)
p.p’
In this case, we can ensure that the observation is nonzero since (n|O[n’) = Aqqik.

It is worth noting that a priori knowledge of the system is still required to prepare the initial
state which is composed of the desired excitations. Nonetheless, several spectroscopy protocols
have been demonstrated that can successfully create excitations in many quantum systems, such
as Bose-Hubbard models [19], spin chains [16-18], and disordered systems [221]. Below, I briefly
discuss several representative spectroscopy protocols [16-18].

Let us consider a one-dimensional transverse field Ising model with,

H= ) Jy;6{67+BY o, (7.28)

i<j<N J<N
where 6§ (o = x,y, z) is a Pauli operator on the ith site, J;; is the strength of spin-spin coupling
between the ith and jth site. Ref. [16] considered a strong field case B > max J;;, in which the
energy spectrum of H is split into N + 1 decoupled subspaces spanned by different excitation

numbers®

. They proposed observation of quasiparticle spectroscopy by engineering the initial
state consisting of the particular quasiparticle excitations. More specifically, by rotating the
spins on each site |6;) = cos(6;) |0); +sin(6;) [1) where |0); represents a spin-up state, the initial

state |¢g) = ®§-V:1 |6;) could be a good approximation of a superposition of the ground state and

®The Hamiltonian H conserves the total excitations numbers 7 = ;65 +1)/2.
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the eigenstate of H in the single-excitation subspace. To probe the single quasiparticle excitations

FE;, the initial state is prepared as

o) ~ [0) +v[k) (7.29)

where 7 is a small constant, |0) is the ground state and |k) is the eigenstate with a momentum
kS Tt is easy to verify that the state coherence (0|1g) (o|k) = 7. For probing transitions between
|k) and |k’), the authors prepared the state as

[Y0) ~ 10) +(Ik) + [K)) , (7.30)

in which the state coherence (k[tg) (vo|k’) = ~2. Transitions between quasiparticles in higher-
order excitation sectors can be obtained by preparing the state in a similar fashion.

Yoshimura et al. considered a time-dependent field B = B(t), which is decreased from a
large polarising field to a constant, to create excitations, a method termed diabatic-ramping
spectroscopy [18]. The transition energies can be obtained by taking the Fourier transform
of the observable dynamics. Senko et al. considered a similar time-dependent field B(t) =
By + By sin(2mvpt) for probing the energy spectrum of a weakly coupled system. At the basis of
this method is the emergence of an energy resonance between |n) and |n') when the frequency of
the external field, v,, matches the transition energies |A,/ | [17]. The emergence of resonance
at vy = |Ay »| could be understood by time-dependent perturbation theory.

Finally, it is worth noting how our method differs from those of spectroscopy experiments.
In spectroscopy experiments, the external injected neutrons act as a weak perturbation and the
system remains in equilibrium; it probes the intrinsic properties of materials in the equilibrium
state. In global or local quench spectroscopy, the eigenstates are assumed to be nearly unchanged
after quench, which is similar to that in spectroscopy experiments, although the state will be out
of equilibrium. However, our framework holds for solving a more general quantum many-body
problem. In our method, the eigenstates are not assumed to be unchanged after applying the
perturbation, as long as the coherence is sufficiently large. Although in general a large coherence
cannot be guaranteed, in certain cases discussed above, we could engineer the system to probe

the desired transitions.

7.3 Comments on spectroscopic methods and relations between
static and dynamic problems

At the heart of engineered spectroscopy is the extraction of eigenenergy information from real-

time dynamics e #t. This relates to the central topic of this thesis, that is, the relation between

5As shown in [16], the eigenstates can be written as |k) = Zivzl Ak |1); ®ix; |0); where for nearest-neighbour
couplings A;‘ = /2/(N + 1)sin(kjn /(N + 1)). By setting 6; = tan_l(wfi?), we have a tensor product state that
is a good approximation of Eq. (7.29).
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static and dynamic problems, which have been intensively discussed in Chapter 1 and Chapter 2.
Based on the observation in Eq. (1.7), all the spectral information is contained in the dynamics
of the state, which indicates eigenstate properties and dynamical properties are closely related
to each other, and thus one can be inferred from the other. An important question arises as to
how to extract the spectral information from (4(t)|O(t)), which was introduced in Eq. (7.9),
and serves as an essential element in our spectroscopic protocol. In this section, I discuss how to
infer static properties from (1 (t)|O]t(t)), and provide some comments on the relation between
static and dynamic problems.

A key element in this chapter is the generation of a time-evolved state
@) = e~ W)
evolving from an initial state [¥g) = > ¢, |n) with time length ¢;. Consider a matrix element
Sjj = (@y|f(H)|®;), (7.31)

and from the expansion of the initial state, the matrix element can be expressed by

Sj,j’ = Z CnC:L/e_i(E"tj_E"/tj/) (’I’L,‘f(H) |n> (732)

Here, we have introduced a general matrix function f(H) acting on the Hamiltonian, which is
defined as f(H) := >_,_ f(E;) |u;) (ui| . where f(h) : R — C is a generic continuous-variable
function determining the transformation of the spectrum of the Hamiltonian. We should note
that if Trotterisation is used to implement real-time evolution, it will break the translational
symmetry in the time domain, and this becomes an approximation of the element.

f(H) can be regarded as the observable in engineered spectroscopy. A simple choice could
be f(H) = H*,k € N. Note that the quantity S;jr can be efficiently measured by the Hadamard
test on a quantum computer, or using the quantum signal processing methods [33]. Consider the
kth moment of H, f(H) = H*, Eq. (7.31) becomes

Sy =D lea|*Efe=Pnltimtin), (7.33)
n
For a fixed k, the dual form of SJI-C j Vvia a discrete Fourier transform is given by

ok _ kK _ k 2 —i(ti—t. ) (En—w
g <w>—§f(w>sj,j/—;En|cn| Z (taty)En =), (7.34)

with F(w) = ), exp(+iAt;yw) and At;jr = t; —t;. If the time interval is selected as At;; = ™m

with m = —M,—M + 1, ..., M, the matrix can now be represented as

Sk(w) — ZEmcnPTZe—iAtjj/(En—w)
n 7'

M
= Z E¥|c,|*r Z e~ iTm(En—w) (7.35)
n m=—M

sin((Ey, — w)T/Q))
sin(E, —w)71/2)

=" Eflea|*r (1 +2cos((Ep —w)(T+7)/2)
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with T'= M. At 7 — 0, it becomes

Sk N Flo |2 sin((En —w)T/2)
S (w)—zn:Enl al ( E o)/ ) (7.36)

Each term in this expression takes a maximal value at E,, = w. Several constraints may be

imposed as
(Emax — Emin) At ~ 27, AFEtynax ~ 27. (7.37)

The eigenenergies in principle could be extracted from Eq. (7.36) with proper classical post-
processing.

In addition to spectroscopic methods, the time-evolved state can be used to construct a
reference basis and one can use it to estimate the eigenvalues. The basic idea is to represent the
original problem in a new subspace in the span of non-orthogonal states {|®;)}, where |®;) is
the basis state generated by time evolution with time length t;, |®;) = e "% [¥g), also known
as the subspace expansion method. We can decompose any state in the subspace @, |®;) (®;|
spanned by the basis states. The eigenstate of the Hamiltonian can be decomposed as a linear

combination of these basis states as
ug) ~ Y aj|). (7.38)
J

Recall that the original eigenvalue problem H|uy) = Ej|ux) has, by exact diagonalisation, an
exponential complexity in respect of the system size. Alternatively, we can solve it in a subspace
in the span of non-orthogonal states {|®;)}. The original eigenvalue problem is then converted
to

F(H)a = E;Sa, (7.39)

where « is the column vector of expansion coefficients, and the matrix element of F and S
are defined as F(H);; := (®;|H|®;) and S;; := (®;|®;), respectively. We may use different
reference states in practice; for example, time-evolved states with different time lengths or states
generated by hybrid tensor networks detailed in Chapter 3.

As discussed above, the spectroscopy analysis methods and subspace expansion methods
provide insights for quantum computing of spectral properties using real-time dynamics, and

both can be efficiently implemented on quantum hardware.

7.4 Discussion

In this chapter, I introduce an engineered spectroscopy protocol to probe spectroscopic features
of quantum many-body systems. The key element of the protocol is the realisation of real-time
dynamics on a quantum simulator, and the time length is proven to be logarithmic in precision,

which is near-optimal for eigenenergy estimation. In terms of practical implementation, since
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our protocol is ancilla-free, it could be more experimentally friendly to be implemented using
the current generation of quantum simulators. The result in this chapter shows that eigenstate
properties can be estimated by dynamic properties of the quantum systems. In addition, it
reveals an inherent relation between the two primary classes of quantum many-body problems,
i.e., static problems and dynamic problems introduced in this thesis.

To further understand why the engineered spectroscopy methods could be used to select the
eigenvalues, one can show that the method established in the chapter is closely related to the
cooling or projection operations introduced in Chapter 4, which effectively realises the imaginary
time evolution and can thus obtain the eigenstates and the eigenvalues. The derivation and
discussion can be found in Section E.2 in Appendix E. I will further show how to use our method
for probing the spectroscopic features of spin Hamiltonians (a transverse-field Ising model and
a Ji-Jo model) in Chapter 8, and refer to [96] for other examples, such as the Bose-Hubbard
Hamiltonian and fermionic Hamiltonians without particle conservation.

Before ending this section, I propose an interesting future direction for the exploration
of unconventional superconducting phases and understanding the pairing mechanism of high-
temperature superconductivity. The spin resonance mode is one important feature in uncon-
ventional superconductors, such as cuprates and iron-based superconductors. Spin resonance
occurs in superconductors with different signs of energy gap, and it can be used to distinguish
different pairing mechanism, such as spin-fluctuation-mediated and orbital-fluctuation-mediated
pairing. This has been intensively explored both theoretically and through experiments. I refer
the interested reader to Refs. [223,224] for a review on this subject.

A key observation is the dynamical spin susceptibility xs, which can be calculated by
) 1 /B . .
(i) =5 [ dre (3. m)8(-0.0)) (7.40)
0

with 7 being the imaginary time and w a Matsubara frequency. Here, S is the spin operator
S(q) = %Zk,aﬁ cla(k + q)Gapcsp(k). The above quantity is obtained from the Matsubara spin-
spin correlation function, while it could also be calculated in the real-time domain. The spin
susceptibility can be calculated using the methods developed in this thesis, and can thus be used
to study the spin resonance mode in unconventional superconductors. However, it is worth not-
ing that this generally involves many bands in practice and 2D simulation is hard, and I leave a
detailed discussion and simulation for spin resonance in unconventional superconducting phases
to future works.

Author contributions. This chapter is relevant to the theoretical part of a manuscript

under preparation [96]. J.S. initiated the project. J.S. developed the theoretical aspects of this
project with input from L.E., V.V., and A.B..
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Chapter 8

Exploration of interacting physics

In this chapter, I demonstrate how the methods developed in this thesis can be applied to explore
interesting quantum many-body phenomena. In Section 8.1, I first show the simulation results for
interacting bosons, fermions, and quantum spin systems using the perturbative method developed
in Chapter 6. I then demonstrate this method experimentally on the IBM quantum cloud and
show the experimental results in Section 8.2. In Section 8.3, I show the simulation of interacting
spectroscopy of representative quantum systems using the spectroscopic technique developed in
Chapter 7. Section 8.1 and Section 8.2 is relevant to a published work [95] and Section 8.3 is

relevant to a manuscript under preparation [96].

8.1 Probing interacting dynamics by perturbative quantum sim-
ulation

In this section, I demonstrate the concrete applications of our perturbative approach in simu-
lating quantum dynamics of quantum many-body physics problems with operations on a small
quantum simulator. I focus on the algorithm with the explicit decomposition method introduced
in Section 6.3. I numerically test the perturbative quantum simulation (PQS) method through
simulating several interacting physics with different topologies as examples.

Specifically, I investigate (a) the quantum walk of bosons on a one-dimensional lattice, (b) the
separation of charge and spin excitations of fermions with two-dimensional topology, and (c)
the correlation propagation of quantum spin systems of two clusters. Appropriate partitioning
strategies are designed, in which the whole system consists of two subsystems and each subsystem
consists of 8 qubits. Figure 8.1 illustrates four different topological structures and the explicit
partitioning strategies considered in this thesis. In each example, the corresponding task-specific
partitioning strategy of the quantum systems is presented.

I use the perturbative quantum simulation method, in particular, the explicit decomposition

1

method introduced in Section 6.3, for dynamics simulation'. 8 + 1 qubits are used to simulate

!'Note that ’explicit decomposition method’ refers to a specific perturbative method that is developed in Sec-
tion 6.3, which considers a specific and explicit decomposition of a joint evolution channel. It is worth clarifying
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each subsystem. By post-processing the results of the subsystems, we can obtain the simulation
results of the whole quantum system. All unique features are detected just as the whole system
is simulated directly; the numerical results using PQS align with those of the exact simulation
as shown in the figures below, thus verifying the reliability of the method.

These numerical tests are restricted to 16 qubits at most, since exact simulation of larger
quantum systems becomes exponentially costly. To benchmark our method for larger systems,
I investigated a 1D 48-site spin chain with nearest-neighbour couplings, using the time-evolving
block decimation (TEBD) method with matrix product states as the reference. As shown in
Figure 8.6, our simulation results coincide with those of TEBD, again confirming the reliability
of PQS for simulating multiple subsystems. Intriguingly, our method only needs to manipulate
8 4+ 1 qubits to recover the joint evolution dynamics of the 48 qubits.

In this section, I only consider real-time evolution of small and classically tractable quantum
systems for benchmarking our method. However, for all the examples considered here, since
the simulation cost is independent of the interaction and initial state of the subsystems, the
PQS algorithm would also work when tackling much larger subsystems with more complicated
subsystem interactions. In practice, when the subsystem size is increased to around n = 50
qubits and general strong interaction is considered, PQS could outstrip the capabilities of classical
simulation and reliably probe properties of quantum systems many times the size of the quantum
processor.

In the following subsections, I show dynamics simulation of different interacting systems using

maximally 8 + 1 qubits.

(a) Bose Hubbard Model

(b) Fermi Hubbard Model

(b1) Y A . W4 (d) Correlated Spin Cluster

| i 1
! 1
|

e A A e A A

Figure 8.1: Four different topological geometries and the partitioning strategies corresponding to
the Bose Hubbard model, the Fermi Hubbard model, the long-range spin chain and the correlated
spin cluster considered in this work. The explicit decomposition strategy for the examples (a,b,d)
(except (d)) are proven to be optimal over other perturbative expansions according to Theorem 5.

(b2)

15

that it is irrelevant to partitioning strategies.
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8.1.1 Interacting bosons

Let us first consider the physics of interacting spinless bosons on a lattice [225], which could be

described by the extended Bose-Hubbard Hamiltonian
—Ztiji)zgj-f— an —1 —i—Zh N, (81)
1,

where b; and ZA)I are the bosonic annihilation and creation operators, n; = lA)IlA)l gives the number of
particles on the site 7, ¢;; describes the hopping strength, U describes the on-site interaction, and
h; is the on-site chemical potential that can be tuned in various quantum systems. The model
reduces to the Bose-Hubbard model Hgyy when only nearest-neighbour hopping is allowed, i.e.,
tij = 0i—jjat. In the large U limit U/t — +o0, this model reduces to the Tomonaga-Luttinger
gas Hamiltonian, which describes the collective behaviour of hard-core bosons [225]. Using the
Holstein and Primakoff transformation, the Bose-Hubbard model in the large U limit is mapped

onto the XX spin chain model
Hyy = JZ (656741 +0Y5%,) + Z hi (- o7) (8.2)

with ; representing the Pauli operator on the jth site and the effective interaction J = —2t.
Hard-core bosons can also be related to one-dimensional free spinless fermions under the Jordan-
Wigner transformation.

Quantum walks of the 1D translationally invariant bosons were experimentally demonstrated
in Ref. [226]. The device system, a 12-qubit superconducting processor, can be well described by
the hard-core boson Hamiltonian in Eq. (8.2). In our numerical simulation, I consider a situation
in which translation invariance is broken. Specially, I consider two clusters of the interacting
bosons with tuneable hopping strength ¢;; = ' on the boundary of subsystems and investigate
the density distribution and correlations of bosons under time evolution.

The Hamiltonian can be expressed as H = H; + Hy + V™ with the local Hamiltonian and

interactions on the boundary as

1 s
Hlloc = JZ (UJU]+1 + g; j+1> + §Zh2 (Ij _U;)’
J

int
Vit =J' (01,N02,1 +0{ yo3 1)

(8.3)

Here, 0;; represents Pauli operators acting on the ith site of /th subsystem, and the interactions
at the boundary is J = —2t/. This Hamiltonian reduces to the Bose-Hubbard model when ¢ = ¢'.

Next, I divide the whole system into two parts and simulate the dynamics of interacting bosons
using our perturbative approach with the explicit decomposition introduced in Section 6.3. Our
method enables the simulation of the 16-qubit problem with only 8 + 1 qubits. It is worth

noting that the explicit decomposition is optimal with respect to all possible decomposition
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Figure 8.2: Dynamics of 16 interacting bosons on a 1D array in the large on-site repulsion limit
U/t — oo. (a) Quantum walk after single particle excitation at the centre |¢g) = I;g |0). The
interaction strengths are set as J = 0.5 and J' = 0.8J. (al) and (a2) show the simulation results
and exact results by exact diagonalisation (ED) for time-evolved density evolution n; = (ZA);rZA)J),
respectively. (a3) The density distribution n; at different sites Qg to Q13 under time evolution.
The nearest-neighbour Lieb-Robinson bounds (dashed line) capture the maximum propagation
speed of density spreading. (a4) and (a5) show the evolution of the averaged two-body correlation
functions Cq(t) = Z;V:_ld Cj,j+d(t), which exhibit similar light cone propagation. The inset
figure in (a3) shows the errors for the density and the averaged two-body correlation functions.
(b) Quantum walk after two particle excitations at the centre |¢g) = lA)glA);g |0). The interaction
strengths are set as J = 0.5 and J' = 0.5J. (bl) and (b2) show the simulated results and exact
results for time-evolved density evolution n; = (j);r lA)j), respectively. (b3) The density distribution
n; at different sites Q9 to (13 under time evolution. The nearest-neighbour Lieb-Robinson
bounds are shown by the dashed line. The inset figure in (b3) shows the errors for the density
and the two-body density-density correlation functions p;; = <IA)IIA);IA)JA)J> (c) Spatial anti-bunching
and fermionisation in the quantum walk of two indistinguishable bosons. The two bosons are
excited at the centre. The normalised density-density correlation functions p;;/ pij at several
time T. The off-diagonal correlations appear under evolution, which shows the anti-bunching
and fermionisation of strongly correlated bosons. This phenomenon is well captured by the
non-interacting spinless fermions. In this numerical simulation, the sampling number is set as

5 x 105,

strategies, as proven in Theorem 5. I first demonstrate the dynamics after local perturbation

under the interacting Hamiltonian. Previous works have extensively studied the propagation
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speed of quantum information in quantum many-body systems with finite range interactions,
which is limited by a maximal group speed, known as the Lieb-Robinson velocity v, [59,227].
Information that propagates faster than v, is exponentially suppressed, which exhibits a light-
cone-like information propagation analogous to the relativistic theory. One can consider a local
perturbation to the initial state |g) as [0(t =0)) = O4|1p) in the region A. As proven in
Ref. [227], the change of the expectation of the observable Op in the region B under time

evolution can be bounded by

(W8O8 1(2)) = (ol Onlvo)| = (1O} [05 (1), Oall¥)| < [05(t), 04l (8.4)

where Op(t) represents the operator in the Heisenberg picture. This establishes how local oper-
ations O 4 affect the observables Op under time evolution. If the interactions decrease exponen-

tially with distance, one can bound the unequal time commutator by

105 (®).04lll < ClOAlOs]| exp [— %’”] (8.5)

where d is the distance in between the region A and B (shortest path connecting A and B),
and ¢, vy, and & are positive constants depending on g = max; ; |.J;;|. For the nearest-neighbour
interaction, one can have a tighter bound by [()(t)|Op|y(t)) — (¢o|OB|1o)| < I4(4Jt), where d is
the distance in between the site A and B, ¢ and v are the velocity constant, and I is the modified
Bessel function of the first kind [59]. In our simulation, the particle number is conserved, and I
consider the observable as the occupation number operator O = 17; and local perturbation as
Op = HjeB C}f |¢0>-

I now show the propagation of density distribution and non-local two-body correlations after
local excitations. One boson is first excited at the centre by |¢g) = B; |0), where |0) is the vacuum.
The density spreading of the boson under the interacting Hamiltonian with interaction strength
J =0.5and J = 0.8J is shown. In Figure 8.2(al), the evolution of density n; = <I;IIA)J> indicates
a light-cone-like propagation. The propagation is well captured by the nearest-neighbour Lieb-
Robinson bound (dashed line), as shown in Figure 8.2(a3). Next, I study the distribution of

correlations after the single-particle excitation. I consider the averaged non-local correlations as

- 1 N—-d
Ca(t) = N _d Z Cjj+a(t) (8.6)
j=1
with the two-body correlation function Cj;(t) = (of0%) — (07) (03). We see the correlation

grows nonlocally under evolution, and also exhibits a clear light cone propagation, as shown in
Figure 8.2(a4). The exact dynamics are shown in Figure 8.2(a2, a5) for comparison.

Next, I show the strong correlation effects with two bosons excitations. The two adjacent
bosons display spatial bunching effects in the non-interacting case while it gradually trans-

forms to spatial anti-bunching in the large U case, which is similar to non-interacting spinless
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fermions [228]. The fermionisation phenomenon of the 1D translationally invariant bosons in
the large U limit was experimentally demonstrated in Ref. [226]. Here, I consider the correlated
Hamiltonian in Eq. (8.3) with reduced interaction strength J' = 0.5J on the boundary. At ¢ =0,
two adjacent indistinguishable particles are excited at the centre |¢y) = B;Bg |0). I show the
density spreading in Figure 8.2(b1,b3), which exhibits similar propagation as the single particle
excitation case. The dynamics of two particle excitation can be sensitive to the particle statistics
due to interference. As proposed in Ref. [228], the fermionisation or bosonisation of the particle

statistics can be distinguished by measuring the two-body density-density correlators
5ij = (bIblbb; 8.7
pij = ( 5V ) (8.7)

In Figure 8.2(c), I show the time evolution of the density operator 7; and density-density corre-
lators of two bosons placed at the adjacent centre. The long-range anti-correlations appearing in
the off-diagonal pattern reveal the fermionisation of strongly correlated bosons with reduced in-
teraction strength. We can also see the interference pattern in Figure 8.2(c) during the evolution

as an indication of interactions between the bosons.

8.1.2 Interacting fermions

In this section, I consider one-dimensional interacting fermions with spin degrees of freedom,
which is described by the Fermi-Hubbard Hamiltonian as

H= =13 (&80 +0e) + U N iy + 3 hioitio (.8)

Jo J Jo

where ¢; (é; ) is the fermionic annihilation (creation) operators on the jth site with the spin
state o € {1,]}, and n; = é;éj is the particle density operator. One-dimensional interacting
fermions can be well captured by the Luttinger liquid theory, which indicates that the spin
and charge of the electrons disintegrate into two separate collective excitations, spinon (holon)
excitations with only spin (charge) degrees of freedom. To understand the separation of spin and
charge excitations in a 1D fermionic system, I briefly review the theory of bosonisation [204] for
the convenience of readers in the quantum information science community.

The Fermi surface of interacting electrons in 1D only has two points, and therefore it could
be reduced to the effective Hamiltonian describing the excitation from one point to the other.
The effective Hamiltonian ignoring spins can be expressed as H = Hy + V.. where Hy =
Z(: Y 4 quéZqécq and V. = % Zkk’q Vee(q)éL_ qé,];, +qék/ék, which describes the allowed scat-
tering near the Fermi surface. Here, ( = +1 represents the left or the right side of the Fermi
surface, and vp is the Fermi velocity. For one-dimensional electrons, density modulation is the

elementary excitation, and thus it is natural to introduce the bosonic operator,

- 27
P Sel 0
bcq = L_q C<7k+qCC7k, (89)
k
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in order to map the interacting fermions to the free bosons, where L is a normalisation constant,
which is the length of the system. The creation and annihilation operations of bosons satisfy the

commutation relation as
N I
[me bg’q’] = 0¢¢r0qq'- (8.10)
Therefore, the full interacting Hamiltonian can be mapped to a non-interacting Hamiltonian

in terms of the bosonic operators as

H= Y [quaaU,i)}qaz}ng 192 (bzqabicqa, + ngol}_cqo) 494 b}qabcqal] . (8.11)
¢>0,0,0'¢C==+1

where go and g4 measure the strength of the interaction in the vicinity of the Fermi points as

conventionally used in the literature, and o denotes the spin degrees of freedom. We can write the

above Hamiltonian with the bosonic operators of charges and spins bC o = % (équ + I;E a ¢> and

bz s = \/— (bz gt bzq i) with ¢ (s) denoting charge (spin). Since the Hamiltonian is quadratic,

we can diagonalise the Hamiltonian by a Bogoliubov transformation,

A 1 .
H= Y [vc (dzchgqc + 5) +vyd] qsdcqs] : (8.12)

q¢>0,(==+1

9_2)2

which is represented in a new basis of bosons d and df with the velocities v, = Q\/ (v F+ Qg—jr) 2 (27r

and vs = qup. This clearly shows that the spin and charge densities have a different velocity
near the Fermi surface, as predicted by the theory of Luttinger liquids. This observation has
been numerically and experimentally investigated [225,229,230], and Arute et al. reported a
simulation of this model using a programmable superconducting quantum processor with high
gate accuracy [230].

To simulate the dynamics of interacting fermions carrying spins on a quantum computer, one
can use the Jordan-Wigner transformation to map the fermionic operators ¢; on each site to the

qubit Pauli operators as
& = (0 + i ) ® (8.13)

with Pauli operators 6§, a = (z,y, 2) acting on the jth site, as introduced in Section 2.1. 1
consider an 8-site interacting 1D Fermi-Hubbard model, which requires N = 16 qubits to encode
the spin state (spin up and spin down) at each site. The qubit layout is shown in Figure 8.1(b).
According to the topology of the interactions, we have two partitioning strategies, by regarding
either the nearest hopping or on-site Coulomb interactions as the V™. Therefore, depending on
the relative strength of ¢ and U, we can cut the full interacting systems along either transverse
or longitudinal directions, which are shown in Figure 8.1(b1) and (b2), respectively. I will then
show how to apply our perturbative quantum simulation method to use 8 + 1 qubits to simulate

the dynamics of the 16 qubit system.
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The initial state is prepared as the ground state of a non-interacting Hamiltonian. In the non-
interacting limit, the Hamiltonian commutes with the total number operators [H,}; 7j,| = 0.
For a one-dimensional chain, one finds that the Hamiltonian in the one-particle sector simply
moves the occupied site to the left or right site, and thus can be expanded on the one-particle
basis as a tridiagonal matrix. The Hamiltonian has the elements H;; = (i|H|j) with |j) = A} |0)
and |0) representing the vacuum. We can use a unitary transformation U = [u];; to diagonalise
the Hamiltonian. This process is also known as a basis rotation. The Hamiltonian after a basis
rotation is expressed in a new basis of fermionic operators a; and d;r-, which are referred to as

rotated bases. The rotated basis is related to the original basis by the unitary transformation,
it =" ugeh. (8.14)
J

In the two-particle sector, there are (1;/ ) basis states, and we can similarly diagonalise the matrix
of Hamiltonian to obtain the eigenstates and eigenenergies. For the system with a general
occupation number Ny (relatively small Ny < N), we first identify the basis states of Ny particle
number, based on which we have the matrix representation of the Hamiltonian. We can then get
the transformation from the original basis é;r to the rotated basis &;r-. Refs. [231,232] showed that
a linear-depth circuit can be used to prepare the ground state of a non-interacting Hamiltonian.
I briefly review the procedure to prepare the initial state using a linear-depth circuit. Denote
the operators in the rotated basis that diagonalise the non-interacting Hamiltonian as @ and af.
We can apply a particle-conserving rotation U of the single particle basis to the rotated basis
as U é} Ut = &;. Then we obtain the ground state of the non-interacting Hamiltonian from the
easy-to-prepare state as

@) = Uél -y o), (8.15)

where |0) is the vacuum. The two bases are related by a unitary transformation that transforms
the original operators ¢ (¢f) of the interacting Hamiltonian to the new operators @ (a!) of non-
interacting Hamiltonian, &ZT =5 j uwé; where u is a N x N matrix. The basis-change unitary
is given by U(u) = exp (Zw [log u]w(é;ré] — éjéﬂ) which can be implemented by O(N) depth
circuits using Givens rotations in parallel [232]. In the numerical simulation, the hopping strength
is set as J = 0.5, and the on-site interaction U = 0.5J or U = J. The local potential for spin
up is set to be a Gaussian distribution h;4+ = —Ayexp (—%) with L = 8, Ay = 4 and
v =1 while h; | = 0 for spin down, which is the same as in Ref. [230] for comparison. The state
is initialised with quarter filling N4+ = N4 = 2, in which the charge and spin density are generated
in the middle of the chain at ¢ = 0 in Figure 8.3.

Next, the two-particle system is evolved under the Fermi-Hubbard Hamiltonian with different

strengths of on-site interaction U. The charge and spin densities characterise the collective
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Figure 8.3: Separation of charge and spin density under the one-dimensional Fermi Hubbard
model. The quantum state is initialised as the ground state of the non-interacting Hamiltonian
with local potential h; ,, as specified in Section 8.1.2. I consider the dynamics with two-particle
excitations, i.e. Ny = Ny = 2, which are generated at the middle of the chain at ¢t = 0. (al) and
(b1). The time evolution of separation speed x for charge (square and blue) and spin (diamond
and red) with the interaction U = J/2 (al) and U = J (bl), respectively. Solid lines represent
the ideal results by exact diagonalisation for comparison. The figure inset shows the errors of
x compared with the exact results over time. (a2) and (b2). The difference of charge and spin
densities p§(t) — pj(t) — const at each site with the interaction U = J/2 (a2) and U = J (b2,
respectively. The separation are offset by a constant as 0 at t = 0, i.e. const = pj(0) — p3(0). (c)
and (d) show the time evolution of density spreading of both charge and spin at different 7" for
U = J to T = 2.0. The sampling number is set as 5 x 10°.

excitations, which are defined as the sum and difference of the spin-up and -down particle densities

over all sites, respectively,
(8.16)

where 7 = ¢ or s represents charge or spin degrees of freedom. I show the density spreading
of both charge and spin in Figure 8.3(c) and (d) at different ¢. The difference of charge and
spin density is plotted in Figure 8.3(a2) and (a4) for U = J/2 and U = J, respectively. Here,
the separation of charge density and spin density is offset as 0 at t = 0 to make the difference
comparable.

The excitations spreading from the middle can be quantitatively distinguished by introducing

the separation speed

L
k=Y |j—(L+1)/2]pl. (8.17)

J=1
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Under time evolution, we observe a clear separation of spin density and charge density as shown
in Figure 8.3(al) and (bl). As U increases to U = J, the separation of spin density and charge
density becomes much faster. The error for the separation speed &, (1 = c¢/s) are shown in the
figure inset. In the large interaction regime, the initial state is a mixture of excited states, and
therefore the effective physics are unable to be well captured by the Luttinger liquid theory [204].

While this effective model for Luttinger liquids is only able to capture the low-energy exci-
tations in a weakly coupled regime, our method can simulate the dynamics in the highly excited
regime with a medium or large interaction. The Hamiltonians for these 1D interacting fermions
have two parts: (1) kinetic terms due to the nearest-neighbour hopping ¢, and (2) on-site spin
interaction U. According to the topology of interactions, we have two strategies, by regarding
either on-site spin interactions (Figure 8.1(b1)) or the nearest hopping (Figure 8.1(b2)) as V¢,
Therefore, depending on the relative strength of ¢ and U, we can cut the full interacting systems
along either transverse (Figure 8.1(b1)) or longitudinal (Figure 8.1(b2)) directions. This enables
the simulation in both regimes. To prepare the general entangled state, we can decompose it
into a linear combination of local states, which might introduce an additional sampling cost for
the state preparation.

It is worth noting that this strategy enables quantum simulation for the two opposite regimes,
which aligns with the view from the perturbation theory which applies to the weakly-interacting
and strongly-interacting limit. Our method could be used to simulate the dynamics of interacting
phenomena with quasi-1D or 2D geometry. In the case of the Fermi-Hubbard model considered
above, the explicit decomposition strategy in PQS for both geometric layout of qubits are optimal
over other perturbative expansions in terms of the resource cost for the simulation of non-local

interactions, as proven by Theorem 5.

8.1.3 Quantum spin systems

8.1.3.1 Dynamical quantum phase transitions

Quantum spin models have been investigated to capture some typical emergent quantum phe-
nomena in condensed matter, such as phase transitions and collective transitions. While many
theoretical and numerical methods have been proposed to solve the effective spin models in exact
or approximate solutions, a long-range spin chain with general interaction strength could be hard

to solve classically. In this section, I consider a long-range spin chain, which is described by
H=Y J;6i6;+h>» & (8.18)
ij J

with the interactions obeying the power law decay rule J;; = Jo|i — j|~. In this section, I study
the dynamical quantum phase transitions (DQPT) [52,233] in a long-range spin chain.
The partitioning strategy of a fully connected spin chain is shown in Figure 8.1(c). Dynamical

properties of such a spin chain will be characterised by the local order parameters and the
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Loschmidt amplitude. The state is first initialised as the eigenstate |1>®" of the non-interacting
Hamiltonian with h = 0. The system is quenched by suddenly adding the transverse field h along
x direction. In the limit of o = 0, the Hamiltonian in Eq. (8.18) reduces to the Lipkin-Meshkov-
Glick (LMG) model. The LMG model has an analytical solution, as it can be regarded as a
classical model, in which dynamical behaviour can be predicted by a semiclassical limit. In this
limit, the Hamiltonian H preserves the magnitude of the total spin and has the spin flip symmetry,
ie., [H,S?] = 0 and [H,][,67] = 0. We can write the Hamiltonian as H = £(%*)? 4 hX?
using collective spin operators ¥¢ = ). of* with a = x,y,2. The spin can be represented in
a mean-field approach as a classical spin vector (X%, %Y 3%) = N(cos#,sin 6 sin ¢, sin 0 cos ¢)
that can be determined by the equation of motion. In Ref. [234], the authors considered a spin
Hamiltonian with an external field B, along the z direction, and showed analytically that the
spatially averaged two-point correlation shows a DQPT when B,./Jy crosses unity. One can
similarly use this analytical method to analyse the dynamical behaviour of Eq. (8.18) with small
« near to zero.

Refs. [234,235] experimentally demonstrated a DQPT and various dynamical results for the
long-range spin model with « close to zero on a trapped ion platform [234] and a superconducting
processor [235]. Here, I focus on the weakly coupled regime, i.e. large «, as a complementary
result for comparison. In the numerical simulation, I set Jy = 1, and the decay rate a = 3 in
the Hamiltonian Eq. (8.18). The full system is partitioned into 2 or 3 subsystems with each
subsystem consisting of at most 8 qubits. The explicit decomposition is used to simulate the
large system. Note that the explicit decomposition in this example may not be optimal, as it
involves too many Pauli terms at each site. Other decomposition methods within the framework
of generalised quantum operations could be numerically searched to obtain a minimal resource
cost.

I first show the evolution of order parameters of a 16-site quantum spin chain. Figure 8.4(b1)
and (b2) shows the magnetisation M, (t) (bl) and M, (t) (b2). We can find that M,(t) rapidly
oscillate across 0 when the external field is large, while the magnetisation oscillates slowly in the
low field. The motion of spin can be illustrated in a Bloch sphere in Figure 8.4(a). The order
parameters of M,(t) and M, (t) provide an evidence for two phases: the ferromagnetic phase and
the paramagnetic phase.

The dynamical quantum phase transitions could be observed by the Loschmidt amplitude
|2

G(t) = [{gole™" " |) (8.19)

as an indicator to characterise the dynamical echo back to the initial state [52,233,235]. A DQPT

occurs with the non-analytical behaviour of a rate function

7(t) = —N""log (G(1)) (8.20)
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Figure 8.4: Dynamical quantum phase transition of a long-range spin chain with full connectivity
and the decay rate a = 3. The qubit layout and partitioning strategy are shown in Figure 8.1(c).
The system is initialised to the eigenstate of the Hamiltonian with a zero field as |1g) = [1)®,
and then the external field along x axis is suddenly turned on at time ¢ > 0. (a) The numerical
(al) and ideal (a2) time evolution of the average spin magnetisation shown in the Bloch sphere
for different strengths of the transverse fields h, = 1,2,3. (b) Time evolution of the averaged
magnetisation M, = % > (03 (1)) (b1) and M, = + > (o7 (t)) (b2) for different strengths of the
transverse fields h, = 1,2, 3,4. The magnetisation M, and M, oscillate rapidly at a large field.
The external field drives the system from the dynamical ferromagnetic phase to the dynamical
paramagnetic phase. (¢) The Loschmidt amplitude G(t) = }<7/10|6_th|¢0>’2, as an indicator to
characterise the dynamical echo back to the initial state for different transverse field strengths h,.
(d) System size dependence of the Loschmidt amplitude. The phase transition appears earlier
with larger system size [234,235]. Solid lines represent the exact results.

in the thermodynamic limit N — oo, which can be regarded as a dynamic counterpart to a free
energy density up to a normalisation N. In the LMG model, the system undergoes DQPT in the
thermodynamic limit N — oo. I consider the weakly-coupled regime and present the dynamical
behaviour of Loschmidt amplitude G(t) for different external field h in Figure 8.4(a). We clearly
see that the Loschmidt amplitude rapidly decays to zero when the external field h is above the
critical field. The non-analytical behaviour of the rate function v(t) for a large external field
h reveals a dynamical phase transition to the paramagnetic phases. The minimal of Loschmidt
amplitude is above zero for small h, which indicates the system persists a ferromagnetic phase
under evolution. Figure 8.4(d) shows the system size dependence of minimal Loschmidt amplitude
for various h,. We can see that the minimal Loschmidt amplitude appears much earlier with an
increasing system size. It is worth noting that the decay rate a of the trapped ions quantum
simulator can be tuned in the region of 0 < o < 3 due to the physical interaction, while the PQS

method could be leveraged to go beyond these limitations.
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8.1.3.2 Propagation of correlations

The elementary excitations usually emerge from interactions, and in some cases they could be
described in a quasiparticle picture. In quantum systems with finite range interactions, the quan-
tum dynamics exhibits a light-cone-like information propagation, and the speed of information
propagation is governed by the interactions of the systems. With nearest-neighbour couplings,
like the results presented in Section 8.1.1, the propagation of information has a finite maximal
velocity vy, the so-called Lieb-Robinson velocity. If the interactions exponentially decay with an
increasing distance, from Eq. (8.5), we know that the change of the expectation of an observable
(Op) under time evolution is exponentially decreased with the distance d, which indicates that
information propagating faster than v, is exponentially suppressed with the distance d. This
light-cone-like information propagation is somewhat analogous to the relativistic theory. The
speed of information propagation for power law decay interactions has been experimentally in-
vestigated in Ref. [59], which is beyond the light-cone picture. Understanding the effective model
to describe quasiparticle excitations and the propagation of information for general interactions
is an interesting direction of investigation. In this section, I show the quasiparticle excitations of
correlated spin clusters with various interaction strengths using our algorithms.

Now, let us consider the out-of-equilibrium dynamics of a one-dimensional interacting spin
system with the Hamiltonian H = H'°¢ 4+ V" with the local Hamiltonian and interactions on
the boundary as

H° =" Jij67,67,+h> 675 V™= Jo67 yo3,. (8.21)

i<j J
Here, 0;; represents Pauli operators acting on the ith site of /th subsystem, and the interactions
obey the power law decay rule as J;; = Jo|i — j| ™. In the regime of a sufficiently large field h >
max(|J;;]), the Hamiltonian conserves the total magnetisation along the z direction Mz = ). 67.

One can show that it could be reduced to the XX model H =}, Ji<; (&j&; + h.c.) [59]. This

spin model can also be mapped to a model of hard-core bosons, H = >, . Jz-j(d;r&j + h.c.)
which conserves the total particle numbers as well. For the system with continuous translational
symmetry, we can Fourier transform the real-space operator into the operators that are diagonal
in momentum space, written as H = ) wkd,t&_k where the modes with energies wy have well-
defined quasi-momentum k. Here, the operator d; creates an excitation with momentum k£ in the
momentum space, and it is related to the original operator by dL = Zl i dj. In our simulation, I
consider a spin-cluster system and first excite the system by local perturbation, which creates a
magnon quasiparticle. For the system with nearest-neighbour interactions, the energy spectrum
has a well-known quadratic dispersion wj, o< k? in the low energy excitation regime. For a spin
cluster system, the mode does not have a well-defined momentum, but one can determine the

energy dispersion wy, provided the boundary condition and the interaction J;;.

152



Qs
i Q
i Qu
i Qll
I Qu

2 4

Distance Distance

| s

i <ﬁ])
t Cu

1 2 3
Time

Figure 8.5: Simulation results of a correlated spin cluster (Figure 8.1(d)) with interactions on
the boundary and different power law decay interactions « in the subsystems. The systems are
initially perturbed at the 8th site at ¢t = 0, |1)o) = 6§ |10), and suddenly the interactions between
each spin with the interaction strength J;; = Jp|i — j|~* are turned on where Jy = 1. (a), (b)
and (c) show o = 0.5, 1, 2, respectively. (al), (bl) and (cl) show the dynamics of magnon
quasiparticle excitations (f;), related to the local magnetic moment by (7;) = (1 — (53))/2.
(a2)-(c2) and (a3)-(c3) show the signal of the magnetisation distribution at 4th-7th sites and
8th-12th sites respectively. The nearest-neighbour Lieb-Robinson bounds (dashed lines) do not
capture all the signals for this propagation. (a4)-(c4) show the averaged two-body correlation
functions Cy from the 8th site. (a5)-(c5) show the errors for magnetisations and the correlation
functions.

Below, I will show the simulation dynamics results of a spin cluster system. The geometry
of such a spin cluster system and the partitioning strategy are shown in Figure 8.1(d). In our

numerical simulation, I consider an intermediate regime where the external field is much larger
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than the maximum interaction strength Jy, while being comparable to the total interaction
strength J = 3
field effects cannot be fully ignored. In our numerical simulation, I set Jy = 1, while the external

field is set as h = 2NJy with NV = 16 being the total sites in the full system. The system

i<j Jij. In this case, the total magnetisation is nearly conserved; however, the

is first initialised as the eigenstate |1h) = [0)®Y of a non-interacting H with J;; = 0. The
system is initially perturbed (at ¢ = 0) at the centre (8th site) of the spin chain, with the state
[to) = 6§ |1o). Then, the system is suddenly quenched by turning on the interactions between
each spins with the interaction strength J;;. I show the information propagation with different
decay rate & = 0.5, « = 1, and a = 2 in Figure 8.5(a), (b) and (c), respectively. In our numerical
experiments, I consider the magnetic moment of each spin, and set the sampling number to be
2 x 10°.

The magnetic moment distributions over each site are shown in Figure 8.5(al)-(cl), and the
distribution of several neighbour sites Q4 to @7 in (a2)-(c2) with three interaction strengths.
We clearly see that the quasiparticle excitations in the first subsystem propagate much faster as
the interaction strength increases (« decreases). This is similar to the phenomena of a 1D long
range spin chain with the Hamiltonian described by Eq. (8.18), in which the maximum group
velocity is predicted to show a divergent behaviour when the decay rate a approaches to zero,
as has been reported in [59,236]. From Figure 8.5, we can compare the maximum group velocity
within the two clusters. The quasiparticle excitations for small « (strongly coupled) appear to
be much more localised when compared to that of the weakly coupled regime. In addition, the
propagation speed violates the Lieb-Robinson bounds, when considering the nearest-neighbour
interaction max J;j; or renormalised interaction Zij Jij, which indicates that long-range physics
cannot be well described by light-cone propagation with a finite group velocity. Nevertheless, for
the other subsystem, which was unperturbed at the beginning, we observe a different propagation
under time evolution, as shown in Figure 8.5(a3), (b3) and (c3). This shows an intermediate
behaviour of short- and long-range physics in the spin cluster system, which might be captured
by the model of nearest-neighbour interactions max.J;;. In addition, we can also study the
dynamical phase transition from the quasiparticle distribution?.

I next present the two-body correlation functions Cy with the spin at the centre, which is

expressed as
Ca = (6365 00) — (69) (01a) (8.22)
with j = 8 at the centre in Figure 8.5(a4), (b4) and (c4), showing a quasiparticle picture explained

above. Refs. [59,236] discussed the long-range physics and short-range physics in a 1D long

range spin chain with the Hamiltonian described by Eq. (8.18). Discussions on the quasiparticle

2Specifically, the Loschmidt amplitude can be inferred from the dynamics on the Sth site (lines of Qs in
Figure 8.5), under the assumption of the conservation of quasiparticle numbers
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propagation in a spin cluster could be complementary to that in a 1D long range spin chain (with
the Hamiltonian Eq. (8.18)).

Here, we mainly focus on the regime in which the magnetisation is conserved, but we can
similarly simulate the highly excited regime using the same method. In the highly excited
regime, i.e., h ~ Jy, the quasiparticle picture does not hold, and the collective excitations could
consequently be different. The investigation of the interacting physics of the spin clusters is an

interesting direction.
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Figure 8.6: Numerical simulation of dynamics of 1D 48-site spin chains with nearest-neighbour
couplings. The couplings within each cluster are identical as J = 1 while interactions on the
boundary are randomly generated from [0, J/2]. (a) The partitioning sketch. We group 8 adjacent
qubits within each cluster as a subsystem. (b) The averaged magnetisation % >; 07, nearest-
neighbour correlation functions 5 =, (6767, ;) and Loschmidt echo G(t), compared with TEBD
based on the matrix product state representation as a benchmark. (c) shows the errors for the
averaged magnetisation and correlation. (d) and (e) shows the simulated and exact results for
the long-range correlation functions C; = (6767) from 2th-48th site, respectively.

8.1.4 Multiple subsystems

Finally, I will demonstrate that our method could be extended to simulate systems consisting of
multiple clusters. I consider the out-of-equilibrium dynamics of one-dimensional interacting spin
clusters with the Hamiltonian H = H'¢ + V" with the local Hamiltonian and interactions on

the boundary as
loc __ AT AT Az int __ AT AT
H™ =Ji Zol,ial,H—I + hzol,b Vit = flUl,NUl+1,1- (8.23)
i i

Here, 6;; represents Pauli operators acting on the ith site of /th subsystem. The interactions in

each subsystem are identical J; = Jy = 1, while interactions between subsystems f; are generated
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randomly from [0,0.5]. The external field is set as h = 1. The geometry of the spin system
and the partitioning strategy are shown in Figure 8.6(a). In the numerical simulation, I consider
a spin cluster model consisting of 6 clusters, and there are 8 spins within each cluster. Again,
8 adjacent qubits in each cluster are grouped as a subsystem, and the explicit decomposition
strategy is used to simulate up to 48 qubits with operations only on 8 4+ 1 qubits. Note that
that according to Corollary 2, the explicit decomposition strategy for the example of Eq. (8.23)
is optimal.

I show the averaged time-evolved magnetisation M, = . (67) and the nearest-neighbour
correlation function Cy = m > i (0767, 1) and long-range correlations with the first site Co =
1 >, (6%67) and the Loschmidt echo G(t) in Figure 8.6(b). To benchmark our algorithms,
I compare our results using the time-evolving block decimation (TEBD) method, which is a
numerical method commonly employed to simulate the dynamics of quantum many-body systems

based on the matrix product states formalism. Figure 8.6(c) shows that the simulation error can

be achieved below 1072 at an intermediate time scale.

8.2 Experimental Implementation on the IBM quantum devices

Our perturbative quantum simulation algorithm is experimentally implemented on the IBM
quantum cloud. Remarkably, in contrast to direct simulation, PQS could be more robust to
noise attributed to the reduction of quantum sources. In order to verify such an advantage, 1

used the IBM quantum cloud hardware to experimentally implement PQS, as discussed below.

8.2.1 Experimental results

Let us consider an 8-qubit one-dimensional Ising Hamiltonians

Z G741 +h Z (8.24)

-3

with nearest-neighbour interaction and a transverse magnetic field with different strength h.
Starting from an eigenstate of H with h = 0, we evolve the state, [1(0)) = |0)®®, with » = 0.5
from time 7" = 0 to 1 and observe the dynamical quantum phase transition. At time ¢ € [0,1], I
=10 6% /8 and the Loschmidt amplitude
G(t) = | (4(0)]e*H[+)(0)) |?, which is equivalent to evaluating the state overlap between |¢(0))
and [ip(t)) = e~ [(0)).

To get the exact time-evolved state, I consider the Trotterisation with four time-steps. Specif-

focus on the expectation value of the spin operator M, Z

ically, we have
t/6t
8 7

H —ihoté?y H —6t676% 4 , (8.25)

: ]:]_
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Figure 8.7: Implementing perturbative quantum simulation on the IBM quantum cloud. The
DQPT of 8 interacting spins with nearest-neighbour interactions are considered. The initial
state |0)®® is evolved under the Hamiltonian H = 20565, +h>2;67. (a) Quantum circuit
implementation for 8-qubit simulation based on Trotterisation. (b) An example for the imple-
mentation of PQS to simulate 8-qubit system with operations on 4 + 1-qubits. (c¢) The circuit
block for single-step evolution. (d) The topological geometry for the spin system and the parti-
tioning strategy. (el-e4) The magnetisation along the z direction with h = 0.5,1,1.5,2.5. (f1-f4)
The Loschmidt amplitude with h = 0.5, 1, 1.5, 2.5. The comparison of results of exact simulation
(dashed line), PQS (numerics, circle), PQS using IBMQ (5 qubits in (c), upper triangle) and the
direct simulation using IBMQ (8 qubits in (a), lower triangle). The results using measurement
error mitigation are shown, both for PQS (solid square) and direct simulation (solid diamond).
10 samples (8192 counts for each sample) are used.

with ¢ € {0.25,0.5,0.75,1} and 6t = 0.25. Each term e %%+ = CNOT, 4 1R.(20t,7 +
1)CNOT; j 41 could be realised with a single qubit rotation gate R.(20t,j + 1) = e 9741 sand-
wiched by two controlled-X gates CNOT} ;11 and each e~ 9T — R, (2hét, j) is a single qubit
gate. As shown in Figure 8.7(c), for each step, all the single qubits gates are implemented in
parallel and the two-qubit gates are realised with depth d = 2. The Trotter error could be
negligible, which is much less than 1072,

With PQS, we only need to apply operations on 4 + 1 qubits with the partitioning strategy

shown in Figure 8.7(d). Each subsystem will evolve under the corresponding subsystem Hamil-
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tonian, and at some time, a local operation, which is determined by the interaction between
subsystems®, is applied, which we refer to as a decay event. The maximal number of decay
events is truncated to four, and the truncation error is found to be small. When a decay event
happens at time ¢, say t = 0.1, we further divide the Trotter step from 0 to 0.25 into two steps,
i.e., [0,0.1] and [0.1,0.25]. Then we insert a controlled-Z operation, with the control qubit being
the ancilla and the target being the first (last) qubit. As shown in Figure 8.7(b), we design the
circuit in a similar way if we have multiple decay events. While the quantum circuit could be
further optimised with fewer gates, it is nevertheless sufficient in this form to demonstrate the

power of our PQS method.
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Figure 8.8: Implementing perturbative quantum simulation on the IBM quantum cloud with
fewer samples and less optimised quantum circuit. We run 10 samples for PQS and collect
128 counts each samples. The quantum circuit for each time evolution block is different from
Figure 8.7(c), where we apply the two-qubit gates sequentially with depth 7. (al-a4) The mag-
netisation along the z direction with h = 0.5,1,1.5,2.5. (b1-b4) The Loschmidt amplitude with
h =0.5,1,1.5,2.5. I compare the results of exact simulation (dashed line), PQS (numerics, cir-
cle), PQS using IBMQ (5 qubits in (c), upper triangle). We also show the results using error
mitigation for measurement both for PQS (solid square).

The direct 8-qubit simulation and our PQS method with 5 qubits were implemented on the
IBM quantum cloud. The processor employed to conduct the direct 8-qubit simulation was
‘ibmq_16_melbourne’, which has 16 qubits with 75 time ranging from 18 ~ 105us, CNOT gate
error 3.3x 1072 and read-out error 4.7x10~2. The processor employed to conduct the 5-qubit PQS
method was ‘ibmq_santiago’, which has 5 qubits with 7, time ranging from 66.9 ~ 143us, CNOT
gate error 7.1 x 1073 and read-out error 1.7 x 1072, The circuits were implemented through

Qiskit [237], a python-based software development kit for working with OpenQASM and the

3Specifically, this local operation is ® in Eq. (6.18).
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IBMQ processors. The IBM cloud admits multiple job submissions, with each job consisting of
a maximal of 72 circuits, where each circuit is fixed and allows 8192 single-shot measurements.

The experimental results are shown in Figure 8.7(e,f). The external field is applied along the
x direction with h = 0.5,1, 1.5,2.5. The results of exact simulation (dashed line), PQS (numerics,
circle), PQS using IBMQ (5 qubits in Figure 8.7(b), upper triangle) and the direct simulation
using IBMQ (8 qubits in Figure 8.7(a), lower triangle) are compared. For each data point of
the direct simulation, 16 circuits are run with 8192 x 16 single-shot measurements. For the
PQS method, 1024 trajectories are considered, with each trajectory corresponding to a circuit
measured 8192 times. Even though the number of samples of the PQS method is much larger
than the number of samples for the direction simulation method, the shot noise is substantially
smaller than the error caused by device imperfections. We could also use a smaller number of
samples (128 samples) for each trajectory of the PQS method, and similar results are observed as
shown in Figure 8.8. The simulation results are not identical, as we ran a less optimised circuit
on the IBM quantum processor.

Measurement error mitigation is applied to increase the simulation accuracy. The measure-
ment error mitigation is implemented by running a set of circuits with different computational-
basis input states and computational basis measurements. We can obtain the readout noise
matrix from the measurement results. The measurement read errors can be mitigated by apply-
ing the inverse of the readout noise matrix to the noisy measurement outcomes. I refer to [238]
and [69] for detailed discussion on the theory and implementations, respectively. From our sim-
ulation results, we observe that the PQS method outperforms the direct simulation. This is
because the five-qubit ‘ibmq_santiago’ processor is able to carry out more accurate operations
than the ‘ibmq_16_melbourne’ processor. Since our PQS method only requires a small quantum
computer with a relatively low circuit depth on which to run, it could be applied to benchmarking

large-scale quantum devices, which may have more errors than a small-scale one.

8.2.2 Analysis of noise robustness

An explanation as to why PQS is more robust to noise in the simulation of general systems
is pertinent at this point. Suppose we aim to simulate time evolution of an Ising Hamiltonian
with Ln qubits. Conventional approaches require 2Ln — 2 two-qubit gates for each Trotter step,
whereas PQS only need 2n—2 two-qubit gates if L number of n-qubit clusters is being considered.
Suppose the fidelity of each two-qubit gate is 1—¢, then the infidelities of the conventional method
and PQS are 1 — (1 —¢)?2"=2 and 1 — (1 — £)?"~2, respectively. In the regime of small ¢ and
ne and relatively large n, the state infidelity using PQS is approximately ne, which is L times
smaller than Lne using conventional quantum simulation methods. For example, when L = 2,

the infidelity will be half of that obtained from conventional quantum simulation. Therefore,
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PQS not only allows for the simulation of larger systems, but also effectively increases simulation

accuracy.

8.3 Spectroscopic features
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