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Abstract

Understanding quantum many-body behaviours such as exotic phases and spectro-

scopic properties in quantum materials and molecular systems is a long-standing

problem of both fundamental and practical interest in quantum physics. This under-

standing provides insights into the true underlying physics of quantum many-body

systems, aids in the prediction of the microscopic and macroscopic properties of those

systems, and also advances the rational design and synthesis of novel materials. How-

ever, our ability to understand quantum many-body behaviours has hitherto been

limited, due to the excessive demands imposed on classical computing by the inher-

ent complexity of describing and analysing those behaviours. While the advent of

quantum computing has opened up new possibilities for examining these questions,

the current generation of quantum technology does not yet present a feasible, stan-

dalone way to solve the above problem. However, a fusion of classical and quantum

approaches could arguably provide a viable way of exploring interesting quantum phe-

nomena. The central objective of this thesis is to achieve such a synthesis in practice,

and to establish a corresponding framework for the study of quantum many-body sys-

tems. One area of particular interest is the intersection between quantum computing

and spectroscopy, specifically in terms of the latter’s potential to greatly assist in the

investigation of quantum many-body phenomena.

Quantum many-body problems in general can be divided into two classes, static and

dynamic problems, which correspond to the estimation of eigenstate properties (such

as eigenenergies and order parameters in different phases), and dynamical properties

(such as response to an external field). In Part II, I present a number of approaches

to solve these static and dynamic problems. I initially establish a quantum comput-

ing framework based on hybrid quantum-classical tensor networks, which incorporate

the inherent advantages of classical tensor networks and quantum computing to rep-

resent the quantum system. I then demonstrate how eigenstate properties can be

estimated by a randomised linear-combination-of-unitary method, termed algorith-

mic cooling, with at most one ancillary qubit; this achieves a logarithmic circuit

complexity O(log(1/ε)) with respect to precision ε in eigenstate property estimation,

and reaches the Heisenberg limit in eigenenergy estimation. Turning to dynamic

problems, I present an adaptive product formula approach to construct a low-depth



quantum circuit for quantum dynamics simulation. I further show how to enable

large-scale dynamics simulation based on hybrid tensor networks, followed by a per-

turbative approach to simulating quantum many-body dynamics.

In Part III, I first demonstrate how spectroscopic features of quantum systems can be

probed. Equipped with the framework and methods established and developed in this

thesis, I study quantum many-body phenomena, and excitation spectra in interacting

bosons, fermions, and quantum spins through numerics and experiments. In Part IV,

the quantum resources required for the application of quantum computing to realistic

problems in the near-future are assessed, together with the challenges that accompany

such application. This encompasses a discussion of the estimated resources needed for

estimating eigenstate properties of spins, fermions and molecules, in respect of both

noisy quantum processors and fault-tolerant quantum computers. I then address

some of the inherent challenges of using near-term noisy quantum devices, such as

encountering unavoidable quantum process errors and statistical errors, by applying

error mitigation, and efficient grouping measurement schemes proposed in this thesis.

Finally, I conclude with a few remarks on the development of quantum computing in

solving quantum many-body systems, and I pose outlooks for further research in this

field.
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Chapter 1

Introduction

1.1 Background and motivation

Characterising quantum many-body behaviour such as exotic phases and collective excitations in

quantum materials and molecular systems is a long-standing problem of theoretical and practical

interest in quantum physics. Accurate simulation of quantum many-body systems provides us

with valuable physical insights into their exotic behaviour. It helps us predict the microscopic

and macroscopic properties of quantum many-body systems and unveil the underlying physics. In

addition, it also has the potential to advance the rational design and synthesis of novel materials,

which could in turn accelerate industrial development in many areas. The ability to accurately

understand and further predict properties of quantum many-body systems, including materials

and molecules, is consequently a central topic in quantum physics of both scientific and industrial

interest.

A general quantum many-body system with nontrivial interactions is believed to be hard to

compute classically. In this context, “computing” of a quantum many-body system is a general

term which encompasses a broad range of problems, including the computation of the system’s

eigenstates or dynamic properties. There are substantial challenges involved in the description

and computation of quantum systems. For instance, the Hilbert space of a quantum system grows

exponentially with the system size. This exponential explosion is in general unavoidable, due to

the quantum nature of the system. Unlike classical systems whose evolution can be described by

a single trajectory in phase space, quantum many body systems can be difficult to characterise,

and hence to solve, due to the exponential complexity of the Hilbert space size. Although

approximations are available for specific problems, such as the mean-field approximation, which

renders them classically solvable, these approximations have some limitations, and may not

always be suitable for application to a general quantum many-body problem. Indeed, finding the

ground state energy of a k-local (k ≥ 2) Hamiltonian belongs to the computational complexity

class nondeterministic polynomial (NP) time complete1 [2–5]; solving a quantum many-body

1An n-qubit Hamiltonian H =
󰁓

l Hl is k-local if Hl acts nontrivially on at most k qubits. The Ising spin glass,
which is a special case of the 2-local Hamiltonian problem, is NP-hard [1].
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problem remains a challenge in general.

A potential solution to this problem is the creation of an entirely new type of computer.

This idea was clearly articulated in a lecture by Richard Feynman in 1982 [6], in which he

set out a generic definition of a machine whose operations are, in principle, quantum. Feynman

postulated that this system, which he termed a quantum computer, would be built out of quantum

mechanical elements. There are various experimental platforms and instruments that can be

regarded as quantum computers [7], including ultracold atoms in optical lattices, trapped ions,

nuclear spins, neutron spectroscopy, superconducting circuits, photonic waveguides, and spins

in semiconductors [8–11]. Depending on its ability to deal with universal problems as opposed

to task-specific problems, this new class of computers is generally divided into two categories:

digital quantum simulators and analogue quantum simulators. Digital quantum simulators can

be regarded as a natural generalisation of digital classical computers [7,12,13]. Digital quantum

simulators allow universal quantum operations on an ensemble of well-defined qubits, and are

usually referred to as universal quantum computers as well. A universal quantum computer offers

a universal simulation capability, and can be programmed to execute various tasks. The other

category of quantum computer is the analogue quantum simulator, which directly emulates the

target system by mapping it to specialised quantum hardware. They sacrifice the universality of

solving general problems, but instead simulate specific systems in an analogue fashion. While its

operations are restricted, analogue quantum simulation enables us to probe certain many-body

phenomena which classical computers are incapable of examining as a result of limitations in

computing power.

Nevertheless, machines capable of carrying out quantum operations were in existence, and

use, prior to the conceptual development of quantum simulation. One example of this can

arguably be found in spectroscopy. Spectroscopy initially began as the study of the interaction

between matter and an external excitation, and was subsequently established as an experimental

means to probe matter through external perturbations, such as electric or magnetic fields. In this

thesis, the definition of spectroscopy also encompasses the characterisation of a generic quantum

system. It is worth noting the differences and similarities between spectroscopy and quantum

simulation. On one hand, quantum simulation relies on the usage of quantum devices to emulate

the behaviour of another quantum system of interest (e.g. Hubbard models). Therefore, quantum

simulation is a virtual rather than a real probe, and consequently differs from spectroscopy. On

the other hand, spectroscopy and analogue quantum simulation share similarities in both their

operation and goals. Intuitively, they both follow the rules of quantum mechanics, and detect

features of quantum systems by measurement. For instance, in inelastic neutron scattering, the

observable is the dynamical structure factor, with the measurement outcome detected by counting

the scattered neutrons with different momenta [14, 15]. Analogue quantum simulators are built

out of an ensemble of physical elements (qubits). These qubits evolve under certain driving
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Hamiltonians, which are realised by applying external perturbations, and simulation results are

obtained by measuring the qubits, similar to that in spectroscopy experiments. In addition,

we can pursue an engineered approach to spectroscopy [16–21] which can be used to identify

and characterise eigenstate properties of quantum systems through measurements on the time-

evolved states (such as quench spectroscopy [16,19]). This experimental technique of engineered

spectroscopy shares similarities with quantum simulation, from the viewpoint of their goals.

The possible applications of quantum computing have continued to broaden in scope. With

the development of quantum information science and computer science, these include linear alge-

bra, machine learning, principal component analysis, optimisation, finance, drug synthesis, and

many other areas [12, 22–25]. This thesis will focus on the applications of quantum comput-

ing in quantum many-body problems, including materials and molecular systems, although the

methods developed in this thesis have potential applicability in other contexts.

Assuming the reality of quantum computers, a central question is whether we can use them

to solve a quantum many-body problem of interest rigorously and efficiently. The answer to

this seemingly straightforward question is not obvious. Finding the ground state of a quantum

many-body system, to take one example, remains problematic: deciding whether the ground

state energy of a 2-local Hamiltonian is greater than a1 or smaller than a2 for a1 > a2 is quan-

tum Merlin-Arthur (QMA) complete [2], which is the quantum analogue of NP complete in

a probabilistic setting2. This indicates that solving a quantum many-body problem is still a

challenge, even for a quantum computer. Although this outcome for a general problem setting

appears disappointing, quantum computing retains considerable promise in its application to

special quantum many-body systems [12]. First of all, quantum computing could potentially

address the above ground state problem under certain assumptions. In this context, the com-

mon assumptions include a nonvanishing energy gap and a nonvanishing overlap of the initial

state and the target state. With these assumptions, we can use quantum algorithms, such as

quantum phase estimation [27, 28], to obtain the ground state energy. There has been consid-

erable progresses in the development of quantum computing methods, including quantum phase

estimation [29, 30], quantum signal processing [31–34], and projection by linear combination of

unitaries (LCU) [29, 35–39]. These algorithms are believed to hold significant promise to de-

liver solutions to ground state problems with a theoretical gurantee, given a sufficiently powerful

universal quantum computer. I will discuss the solution to the eigenstate problem, including

eigenstate preparation and eigenenergy estimation, in detail in Section 2.3 and Part II. The

use of quantum computing is also promising in respect to addressing some quantum dynamics

problems. For instance, simulating quantum dynamics for a local Hamiltonian belongs to the

computational complexity class bounded-error quantum polynomial time (BQP), which can be

efficiently simulated on a quantum computer in polynomial time [13,27].

2The name QMA was given to it in Ref. [26]. Problems in this complexity class are not believed to be efficiently
solvable with a quantum computer [4].
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An interesting question is whether we are able to design quantum schemes that harness

the power of quantum computing in solving quantum many-body problems. Typical quantum

many-body problems of physical interest include strongly correlated electron systems, molecu-

lar systems, and quantum field theories. The central objective of this thesis is to facilitate the

study of these classically challenging quantum many-body tasks by employing the power of quan-

tum computing along with advanced classical computing approaches. This includes the use of

universal quantum computing methods, hybrid quantum-classical computing methods, quantum

simulation, and spectroscopy. It is an extremely rich research topic which draws on a wide va-

riety of interdisciplinary approaches, ranging from analytic theory and numerical simulation to

experiments with controlled quantum engineering.

In this thesis, I will develop several quantum computing and spectroscopic methods to esti-

mate the properties of correlated quantum systems, such as their energy spectra and dynamics,

which will subsequently enable us to access the exotic behaviour of many-body systems. Before

moving on to further discussion of these topics, I would like to give some comments on aspects

of quantum many-body physics and quantum computing. While quantum computing can be

employed to facilitate our understanding of a quantum system, the success of quantum com-

puting essentially depends on whether we could have a comprehensive, deep understanding of

the quantum nature of the target system. From the perspective of physics, the development of

quantum computing is not only a subject of computing, but also that of how we understand a

quantum many-body system, especially its quantum nature. The development of quantum com-

puting methods will in turn stimulate and advance the understanding of the underlying relation

between different descriptions of the correlation effects in many-body systems at a fundamental

level; it could potentially examine how quantum effects matter in relation to its interesting be-

haviour. From a practical point of view, it will enable a systematic study of quantum many-body

behaviours as well as the prediction of properties in real materials. In this thesis, I establish a

general, useful framework for describing and finding solutions to quantum many-body problems.

I also apply the methods developed in this thesis to explore quantum many-body systems of

interest, such as lattice models, magnetic materials and molecular systems.

1.2 Quantum computing of quantum many-body problems

The central objective of this section is to provide a description of quantum many-body problems

and a general recipe for dealing with them. Quantum many-body problems can be divided

into two general classes: static problems and dynamic problems. The first one corresponds to

estimation of the eigenstate energy or properties (e.g., magnetisation) of a quantum system. The

second one corresponds to property estimation for dynamical processes3, such as response to

3Note that this thesis is primarily concerned with simulation of quantum dynamics, in which the quantum state
is evolved under time evolution and the change of an observable is observed. In this context, this problem can also
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an external field, quantum quenches, scattering, dissipation, and others. At this juncture it is

worth noting that we can only obtain an estimation of the outcome from a quantum computer

due to the uncertainty principle, as opposed to a definite outcome from a classical computer.

Moreover, the only way that the information from a quantum computer can be accessed is

through carrying out quantum measurements. This is the fundamental reason why problems are

defined in probabilistic, rather than deterministic, terms, through the use of property estimation.

This section builds up a framework for quantum computing of quantum many-body problems,

providing the foundation for the discussion in the thesis. I first formulate the two primary

quantum problems considered in this thesis in Section 1.2.1. In Section 1.2.2, I provide a paradigm

of quantum computing, which consists of four key components towards the solution of a quantum

many-body problem. The introduction to these components will be expanded in Chapter 2. The

methods developed herein will be further discussed in Part II in detail.

1.2.1 Problem description

Before moving on to a specific quantum many-body problem of interest in the real world, I

formulate the problem in a general way. The problem is to find the state |Ψ〉 of a quantum

system which is governed by the Hamiltonian H, described by its wave function Ψ, and to

compute the expectation value of a physical quantity 〈Ψ|Ô|Ψ〉, where Ô is a Hermitian operator

representing an observable of interest.

The static problems and dynamic problems will be elaborated upon now. The static problems

that are concerned in this thesis include eigenstate preparation and eigenenergy estimation. This

already includes a large variety of problems in condensed matter physics. For instance, we can

infer phase transitions by calculating a well-chosen order parameter4.

Consider an N -qubit system with the Hamiltonian H. The eigenstate |ui〉 and the corre-

sponding eigenenergy Ei of the Hamiltonian satisfy,

H |ui〉 = Ei |ui〉 , i = 0, 1, ..., 2N − 1. (1.1)

The task is to estimate the eigenenergy Ei, and the eigenstate property, characterised by an

observable expectation on the target eigenstate 〈ui|Ô|ui〉, up to certain precision.

The second type of task is dynamical property estimation of a quantum state under evolution,

such as particle scattering and quench dynamics. The quantum state follows the laws of quantum

mechanics, and its dynamics in a closed system could be described by the Schrödinger equation

∂t |ψ(t)〉 = −iH |ψ(t)〉 (1.2)

be referred to as a dynamics problem, with an focus on dynamical property estimation.
4An order parameter is a measure which can be used to distinguish different phases, such as the magnetisation

in a magnetic system. It is usually the expectation value of an observable on the ground state at zero temperature
or an ensemble average at a finite temperature.
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with the time derivative defined as ∂t := ∂/∂t. In this thesis, for simplicity, we set 󰄁 = 1 if there

is no ambiguity. If we further assume the Hamiltonian is time-independent, the quantum state

at time t in the Schrödinger picture is given by

|ψ(t)〉 = e−iHt |ψ(t = 0)〉 (1.3)

where |ψ(t = 0)〉 is referred to as the initial quantum state at t = 0.

When U = e−iHt is an identity operation, i.e., H = 0, and we choose the initial state as an

eigenstate, the first task is reduced to a special case of Eq. (1.3). Therefore, Eq. (1.3) could be

regarded as a unified description of the two tasks. Part II of this thesis discusses the solutions

to these two tasks in detail.

This thesis mainly focuses on quantum dynamics in a closed system, in which quantum dy-

namics is described by unitary operations. These dynamical processes include quench dynamics,

response to external fields, scattering dynamics, etc. If we focus on a subsystem interacting with

another quantum system (bath), the subsystem dynamics is not unitary anymore. Instead of

describing the joint system by a unitary operator, the subsystem dynamics may be described by

the Lindblad master equation

∂tρ(t) = −i[H(t), ρ(t)] + λL
󰀅
ρ(t)

󰀆
. (1.4)

Here, the density matrix representation of this open system, ρ, is used, and L[ρ] = 1
2

󰁓
k(2LkρL

†
k−

L†
kLkρ−ρL†

kLk) is the superoperator that describes inherent coupling with the environment with

dissipation strength λ and coupling operator Lk.

1.2.2 A general recipe

There are three primary components in computing the quantum state and the corresponding

expectation value given by Eq. (1.3): the initial-state preparation, unitary evolution U = e−iHt,

and the final measurement. To obtain the solution given by Eq. (1.3), the classical computational

resources, such as storage and running time, grow exponentially with the increase in the system

size if the quantum state is treated in a classical state-vector form, and if there is no further

assumption on the quantum state.

Alternatively, a quantum computer could simulate this dynamical process natively. Assume

that the Hamiltonian is sparse and could be decomposed into a sum of local interaction terms

as H =
󰁓L

l=1Hl. The sparsity indicates that the number of terms in the Hamiltonian L grows

polynomially with respect to the system size N as L = O(Poly(N)). This condition usually holds

in realistic applications, such as the Ising model L = O(N), the Hubbard model L = O(N), and

quantum materials and molecular systems L = O(N4) in general (see Section 2.1). Here, we

have the assumption of sparsity to make quantum simulation efficient, since the complexity of

quantum simulation generally depends on the number of terms in the target Hamiltonian L (see
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Section 2.4 for more details). On a universal digital quantum computer, introduced in Section 1.1,

we could decompose the unitary evolution into elementary quantum operations up to an additive

error ε and sequentially apply these elementary quantum operations to realise the joint evolution

within an error threshold. Here, it should be noted that the initial state preparation could itself

prove a challenge, if, for instance, we aim to prepare the ground state of the system.

To solve a specific problem, we should first encode the target problem into a problem that is

compatible with a quantum computer. That is to say, the original problem, such as a fermionic

or bosonic system, or a spin system, needs to be formulated into a qubit system with a proper

number of qubits. This problem encoding could be challenging in itself. For instance, when it

comes to real materials, the number of electrons in the material is of the order of Avogadro’s

number (O(1023)). It would thus be impossible to process such a huge number of particles on a

quantum computer. To enable quantum simulation on a quantum computer, the first step is to

identify the most relevant degrees of freedom that characterise the interesting behaviour of the

electrons. The description of a quantum system involves, for instance, a proper choice of bases

and the active space where the degrees of freedom at this level contribute dominantly to the

relevant physics. The construction of an effective Hamiltonian is discussed in Section 2.1.1. It is

worth emphasising that the identification of the relevant degrees of freedom of the target system

is not well defined. Usually, we can employ first-principle methods, such as density functional

theory (DFT) [40], to precompute the functional of the material in order to have a rough sense

of its properties, such as energy scale and energy dispersions. This first-principles method, albeit

imprecise, provides an effective description of the system that captures its main features.

To concentrate the discussion on quantum simulation, let us first assume that the Hamiltonian

has been constructed. In condensed matter physics, the behaviour in the free theory, i.e., where

there is no interaction, is usually well known, and serves as a good reference. We attempt to study

the behaviour in the interacting theory when the interaction is turned on. Successful methods

include perturbation theory, adiabatic evolution, etc, which have been widely used in a variety

of cases. These also inspires quantum algorithms for simulating the physics in the interacting

theory. This idea was first proposed in the context of quantum field theories by Jordan, Lee, and

Preskill [41].

The following is an example of quantum simulation of interacting systems at a high level:

1. Problem encoding: identification and construction of the effective Hamiltonian as well as

the encoding of the quantum system in a proper basis.

2. Initial state preparation in the interacting theory.

3. Hamiltonian simulation: time evolution of the initial state under the Hamiltonian.

4. Estimating the physical quantity of interest by quantum measurement.
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Below, I elaborate on the implementation of each step. At Step 1, firstly the original problem

should be encoded into a qubit form that is compatible with quantum hardware, which comprises

the representation of the Hamiltonian and the quantum state. The important stage is to identify

the relevant degrees of freedom that captures the interesting physics, and have an effective de-

scription of the system Hamiltonian. Problem encoding depends on the choice of basis, such as

the spin-orbital basis in molecular systems, which should be adapted according to the purpose

of the simulation and the hardware to be used. In the context of bosonic lattice quantum field

theories, there are four common choices [42]: field basis or harmonic oscillator basis in coordinate

space or momentum space, respectively. For a fermionic problem, there are also many choices

of bases, such as plane wave basis, orbital basis, Wannier basis, and band basis, either in first

quantisation or second quantisation [12,43,44].

In Section 2.1.1, I demonstrate how to have an effective description of the Hamiltonian rep-

resented with a proper spin-orbital basis. Then, in Section 2.1.4, I show a general representation

of quantum many-body systems. Based on that, the original problem can be encoded into a

compact qubit form.

At Step 2, the initial state is prepared as the eigenstate of the interacting Hamiltonian. In

general, preparing an eigenstate could be a challenge even for a quantum computer. Therefore,

quantum algorithms need to be appropriately designed to achieve this goal. One solution is

to first prepare the state in the free theory at a mean-field level. In a condensed matter or a

quantum chemistry problem, we may first prepare a Hartree-Fock (mean-field) state as a reference

state, which is usually easy to prepare. In the Gaussian orbital basis in second quantisation

under proper fermionic-to-qubit mapping, for instance, the Hartree-Fock state is simply a tensor

product state in the Pauli basis. For the preparation of a wave packet in the free theory in first

quantisation, we may prepare the Gaussian vacuum state by the Kitaev-Webb algorithm on a

quantum computer [45], as discussed in [41] or the author’s paper [42]. A multi-particle wave

packet states with given momenta could be prepared from the creation operator acting on the

Gaussian vacuum.

The next step of eigenstate preparation is to evolve the initial state (a wave packet) in the free

theory to a state in the interacting theory, by slowly turning on the interaction. The time scale in

adiabatic evolution, for instance, is closely related to the energy gap of the quantum system [41].

There are various schemes for eigenstate preparation, which have been actively developed both

in theory and through experiments over the past few decades. These include adiabatic evolution,

phase estimation, quantum signal processing, linear combinational of unitaries, and variational

state preparation. In this thesis, I will introduce several representative schemes for the state

preparation in Section 2.3 and elaborate in Part II.

At Step 3, the initial state is evolved under the Hamiltonian drive. This is also referred to

as Hamiltonian simulation. I will introduce several typical Hamiltonian simulation schemes in
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Section 2.4 and elaborate on them in Part II.

Finally, at Step 4, a physical quantity of interest is accessed by measuring the final quan-

tum state after evolution. Measurement should be implemented in polynomial time to preserve

quantum advantages. Due to statistical fluctuations set by the laws of quantum mechanics, we

require a proper number of measurements Ns to obtain the measurement accuracy to within

an error threshold ε. To achieve estimation precision ε, the number of measurements scales as

Ns = O(1/ε2) [46], known as the standard quantum limit. A typical high-precision measurement

strategy is quantum phase estimation [4,46,47]. The estimation of a physical quantity can be ob-

tained by performing measurements on the ancillary qubits. The number of the ancillary qubits

is dependent on the desired simulation accuracy. In some instance, the scaling of measurement

complexity may be improved to Ns = O(1/ε) [48]. To avoid the cost of the increase in the circuit

depth and qubit number, we can directly measure the observable on the final quantum state.

For instance, we can decompose an arbitrary observable into Pauli bases, and consequently it

can be directly measured on a quantum computer without additional quantum circuits, which is

discussed in Chapter 10.

1.3 Quantum computing, quantum simulation, and spectroscopy

In Section 1.1, I briefly introduced the concept of quantum computing in a broad sense. Quan-

tum computing draws upon the principles of quantum simulation, allowing quantum operations

on carefully designed systems following the laws of quantum mechanics. On the basis of this

description, spectroscopy shares similarities with quantum simulation. From a theoretical point

of view, spectroscopy refers to observation of the energy spectrum of a quantum system, and

reveals its spectral information in either the time or the frequency domain. From a first principle

standpoint, this bears a resemblance to the two types of problems outlined in Section 1.2, static

problems and dynamic problems. I discuss the close relation between the static problem case

and the dynamic problem case from the viewpoint of spectroscopy in Section 1.3.3. From an

experimental point of view, spectroscopy is a well-established approach to probe and study the

properties of quantum matter. To measure the properties of a quantum system, such as elec-

tronic and magnetic structures and excitations, a generic spectroscopy approach is to perturb the

system by an external field, and observe the response to the perturbation. This is also similar

to quantum simulation in both the methodology and the actual allowable operations. Moreover,

spectroscopic methods provide valuable insights in studying both dynamic and static properties,

which are introduced in Section 1.3.3 and Section 7.3 and elaborated upon in Chapter 7 and

Appendix E.

This section extends the discussion in Section 1.1. I review quantum computing, quantum

simulation, and spectroscopy, and detail some aspects of their close relationships in the context

of quantum many-body problems introduced in Section 1.2.1.
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1.3.1 Spectroscopy

In Section 1.1, I introduced concepts of spectroscopy and quantum simulation and the relation

between them. The objective of quantum simulation is to emulate the behaviour of another

quantum system with a controllable quantum device, and therefore it is a virtual, rather than

real, probe. This is in contrast to spectroscopy, which usually refers to an experimental technique

to probe matter through external perturbations, such as electric or magnetic fields. Although

spectroscopy and quantum simulation are distinctive in their approach, they nevertheless have

a similar objective, namely characterising complex systems of interest. They are also currently

the most powerful means we have to achieve this objective, and it could therefore be interesting

to discuss the relation between the two.

Spectroscopy initially began as the theoretical and experimental study of the interaction

between matter and an external excitation, and it is used in this thesis to encompass the char-

acterisation of a generic quantum system, such as eigenstate properties. Experimental spec-

troscopy techniques include angle-resolved photoemission spectroscopy (ARPES), and neutron

or X-ray scattering spectroscopy. For example, in neutron scattering, we explore the properties

of materials by injecting neutrons into the materials and analysing the distribution of scattered

neutrons [15]. An incident neutron has an interaction with the nuclei or electrons (both spin

and orbital degrees of freedom) in the materials and is scattered following the laws of quantum

mechanics. The neutron here acts as both the external perturbation and the probe. Measure-

ment data is collected by counting the scattered neutrons with different energy and momenta,

with the results reflecting the collective behaviour of the target material. In quantum simulation

experiments, quantum operations are applied on an experimental platform, which can be super-

conducting circuits [8,49], trapped ions [9,50–52], Rydberg atoms [53,54], NMR [55–57], optical

lattice [58], etc. In analogue quantum simulation, the initial state is simply evolved under the

system Hamiltonian drive for a certain period of time, after which an observable is measured

and the statistical results are obtained. Observables include, for example, the magnetisation

and the particle number. We observe that spectroscopy and quantum simulation share certain

similarities in their operation: the scattering experiments described above are carried out using

an instrument which follows the rules of quantum mechanics and detects the quantum nature

of observables through measurement, as is also the case with a quantum simulator. However,

spectroscopy has limited degrees of freedom relative to that of analogue quantum simulators.

Conventional spectroscopy experiments are only able to perform restricted operations and the

system cannot be engineered. By contrast, an analogue quantum simulator usually permits an

engineering of quantum systems, such as single-qubit addressing (though not universal quantum

gates, as opposed to a digital quantum computer).

A recent notable development is the creation of spectroscopic techniques for engineered sys-

tems [16–20,59], which have more controllable degrees of freedom. For example, Ref. [16, 19, 20]
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introduces quench spectroscopy, which can be used to look for spectral response with periodic

drive or quench dynamics. Spectroscopy also provides insights into quantum computing schemes

designed to obtain eigenstate information. The procedure can be summarised as follows. The

initial state is prepared, and then evolved under the simulator’s Hamiltonian. Following that,

the expectation values of a well-chosen observable Ô at different times ti are obtained by mea-

surements. By post-processing the expectation values {〈Ô(ti)〉} under time evolution, we can

obtain the eigenstate properties of the Hamiltonian (see [18–20] and Chapter 7).

1.3.2 Spectroscopy and Hamiltonian learning

As seen from the above discussion, the spectroscopic features of a system can be accessed by

carrying out spectroscopy experiments. Spectroscopy also serves as a useful tool for quantum

Hamiltonian learning problems. This section discusses the relation between spectroscopy and

Hamiltonian learning.

Recall the main procedure of the spectroscopy experiment. To study the properties of the

quantum material, we firstly precompute core properties of the material. Here, precomputation

refers to employing the available, relatively low-cost methods to calculate material properties

before we perform real experiments or high performance computing, which usually require a

significant allocation of resources. For instance, we can employ first-principle methods, such

as density functional theory (DFT), to precompute the functional of the material and have

an effective description of the system that captures its main features. While the Hamiltonian

may not be very accurate, with this prior knowledge, we can gauge the ground state and the

spectroscopic features that will be further revealed by spectroscopy experiments.

In spectroscopy experiments, the incident neutron interacts with the phonons or electrons in

the material, and the information about the material is then recorded by the scattered neutrons.

By comparing the experimental results obtained by measurements and the predicted results using

the effective Hamiltonian generated by DFT, we can modify the effective Hamiltonian, determine

its parameters, and hence have a better description of the system. This could be regarded as a

Hamiltonian learning process.

The Hamiltonian generated by DFT can be expressed in a general form as

Ĥ =
󰁛

i

hiP̂i, (1.5)

where P̂i is a general operator, which, for instance, could be a spin operator, and hi characterises

its strength. Formally, the measurement outcome can be expressed as SÔ = Tr(Ôρ) where

the observable, for instance, could be the dynamical structure factor (see Section 1.3.3 and

Appendix E). With the measurement outcome, the idea of learning the effective Hamiltonian
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is to minimise the distance between the experimental outcome and the expectation value of

observables obtained by theoretical caculation over different parameters {hi},

min
{hi}

Tr(Ôρ)− Tr(Ôρexpm). (1.6)

Here, the state is in thermal equilibrium, ρ = e−βĤ/Tr(e−βĤ). Note that challenges remain in

connecting the data measured on the experimental apparatus with Hamiltonian learning. Ideally,

one should be able to directly interface the experimental apparatus with other quantum systems.

One proposal for Hamiltonian learning is using the interactive quantum likelihood evaluation

method, which requires interactive quantum operations on two coupled quantum systems, see

[60–62] for reference. This is clearly not the case for spectroscopy.

It is worth noting that given a universal quantum computer, a straightforward choice of learn-

ing a Hamiltonian is via quantum process tomography [27], which gives the complete knowledge

of the Hamiltonian. However, since the dimension of a many-body Hamiltonian grows exponen-

tially with the system size, carrying out a complete tomography of the Hamiltonian is costly

and formidable in real experiments [63]. Recently, a more efficient Hamiltonian learning proto-

col was proposed by the author [64], which requires only single-qubit operations for learning a

Hamiltonian, which can already be realised by most engineered quantum simulators.

Compared to digital quantum simulation, a spectroscopy experiment only permits very re-

stricted operations and measurements, in which only collective behaviour can be observed. In

addition, only classical data can be accessed, while further additional operations are not permit-

ted. Despite the inherent restrictions, spectroscopic approaches, as an alternative, have some

degrees of freedom, which includes temperature, pressure, external fields, etc. Learning effec-

tive physics from spectroscopic experiments would be an interesting future direction. I direct

interested readers to [65–67] for the Hamiltonian learning process in this specific context.

1.3.3 Dynamics, response, and spectral function

In this section I employ a selection of basic quantum mechanics formulae to provide a concrete

demonstration of the relation between dynamics, response and spectral function. This is to

provide the reader with a reference to existing theory, which serves as a basis for the development

of engineered spectroscopy and quantum computing methods outlined in this thesis.

To illustrate the relation between dynamic properties and static properties, I will first give

an illustrative example using the most basic quantum mechanics and spectroscopic analysis.

Suppose that the initial state is decomposed into the eigenbases {|ui〉} of the Hamiltonian as

|ψ0〉 =
󰁓

i ci |ui〉. The state under real-time evolution in the Schrödinger picture is given by

|ψ(t)〉 = e−iHt |ψ0〉 =
󰁓

i cie
−iEit |ui〉, and we have the observable expectation on the time-

evolved state as

〈ψ(t)|Ô|ψ(t)〉 =
󰁛

ij

c∗i cje
i(Ei−Ej)t 〈ui|Ô|uj〉 . (1.7)

13



This simple toy example indicates that dynamic properties of the state could be accessed given

the eigenenergies of the Hamiltonian.

In a spectroscopy experiment, the system is in its thermal equilibrium [ρ, Ĥ] = 0; the state

is diagonal in the eigenbasis of Ĥ, which can be written as ρ =
󰁓

n ρ
nn |un〉 〈un|. In thermal

equilibrium, ρnn takes the explicit form as ρnn = e−βEn/Z where β = T−1 is the inverse of

temperature, Z is the partition function Z = Tr(e−βĤ), and the Boltzmann constant is set as

kB = 1 in natural units. The observable in neutron spectroscopy is the dynamical structure

factor, which is related to the unequal time correlator and reflects the dynamic property of the

system. Consider a generic unequal time correlator, which is defined as

C(t, t′) = 〈Ô1(t)Ô2(t
′)〉, (1.8)

in the Heisenberg picture with Ô(t) = eiĤtÔe−iĤt and Ô := Ô(t = 0). Here, the 〈· · ·〉 is taken as

the canonical ensemble average. To simplify the notation, the eigenstate is denoted as |n〉 := |un〉.
Expanded on the eigenbasis of Ĥ, we have

C(t, t′) = Tr[Ô1(t)Ô2(t
′)ρ̂]

=
󰁛

n,n′,m

ρn
′nei(Ent−En′ t′)e−iEm(t−t′) × 〈n|Ô1|m〉〈m|Ô2|n′〉δn,n′

=
󰁛

n,m

ρnnei(En−Em)(t−t′) × 〈n|Ô1|m〉〈m|Ô2|n〉.

(1.9)

Taking the Fourier transform of an unequal time correlator in the time domain, we have

S(ω) :=
1

2π

󰁝
dteiωtC(t, t′)

=
󰁛

n,m

ρnn〈n|Ô1|m〉〈m|Ô2|n〉 × δ(En − Em + ω).
(1.10)

S(ω) is also commonly referred to as the dynamical structure factor (or dynamic structure factor)

in the literature. For later convenience, the purely dynamic part of S(ω) is defined as S̃(ω) =

S(ω) − 〈Ô1Ô2〉 δ(ω). If the spectral weight 〈n|Ô1|m〉〈m|Ô2|n〉 coupled by the two eigenstates

|m〉 and |n〉 is nonvannishing, the energy difference of these two coupled eigenstates |m〉 and |n〉
could be revealed by finding the local maximum of the spectral function, which peaks sharply

at resonance, ω = Em − En. This discussion holds in the linear response regime where the

perturbation is weak. Otherwise, the eigenstates of the new perturbed Hamiltonian will be

different from the unperturbed eigenstates, as well as the eigenenergies.

The above discussion starts from a time-dependent correlation function as a generic quantity

reflecting the dynamics of the quantum system. Below, I will briefly review how this quantity is

related to the response of the system. It is natural to denote the original unperturbed Hamiltonian

as Ĥ0 and the perturbation as V̂ , and the Hamiltonian reads

Ĥ = Ĥ0 + V̂ . (1.11)
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In the Heisenberg picture, the operators are time-dependent, and to make the discussion more

general, the perturbation is written as

V̂ (t) =
󰁛

i

Ôi(t)fi(t), (1.12)

where the observable may be local as Ô(x, t). The system is initialised as the ground state of

the original Hamiltonian. A perturbation V̂ is then applied at time t = 0, and an observable

Ô at time t > 0 is measured. The perturbation drives the system out of equilibrium, and the

system shows a dynamical response against the applied perturbation. In the interaction picture,

the time-evolved state is

ρI(t) = UI(t)ρ0,I(t)U
†
I (t) (1.13)

with U(t) = U(t; t0 → −∞) and

UI(t; t0) := T exp(−i

󰁝 t

t0

V̂ (t1)dt1). (1.14)

Under the perturbation, the time-dependent expectation of an observable can be written as

〈Ôi(t)〉 =Tr ρI(t)Ôi(t)

=Tr ρ0,I(t)U
†
I (t)Ôi(t)UI(t)

=〈Ôi(t)〉|f=0 − i

󰁝 t

−∞
dt1〈[Ôi(t), V̂ (t1)]〉+O(󰀂V̂ 󰀂2),

(1.15)

which is restricted to the first-order expansion, and again the expectation is taken as the ensemble

average on the thermal state.

It is common to define a response function

χij(t, t1) = −iθ(t− t1)〈[Ôi(t), Ôj(t1)]〉, (1.16)

and then we have

〈Ôi(t)〉 − 〈Ôi(t)〉|f=0 =− i

󰁝 t

−∞
dt1

󰁛

j

〈[Ôi(t), Ôj(t1)]〉fj(t1)

=

󰁝 ∞

−∞
dt1

󰁛

j

χij(t, t1)fj(t1).

(1.17)

This is the celebrated Kubo formula, which connects the dissipative quantity on the left-hand

side with the equilibrium average of the correlation function. Taking the Fourier transform of

the response function,

χ(ω) = lim
η→0+

󰁝 ∞

0
dteiωt+ηtχ(t, 0),

we further have the relation

Imχ(ω) = −π(1− e−βω)S̃(ω), (1.18)
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at thermal equilibrium, which is known as the fluctuation-dissipation theorem [15].

The response function can also be calculated from the eigenvalues and eigenstates of H.

Denote the thermal probability pn = ρnn = e−βEn/Z; it can be shown that

χÔ1Ô2
(ω) =− i

󰁛

n,m

(pn − pm)〈n|Ô2|m〉〈m|Ô1|n〉
󰁝 ∞

0
dt exp(i(ω − Em + En + iη)t)

=
󰁛

n,m

(pn − pm)
〈n|Ô2|m〉〈m|Ô1|n〉
ω − Em + En + iη

,

(1.19)

which is known as the Lehmann representation. In the zero-temperature limit, the response

function in the frequency domain can be expressed as

χÔ1Ô2
(ω) =

󰁛

n

〈u0|Ô1|un〉 〈un|Ô2|u0〉
ω − (En − E0) + iη

+
󰁛

n

〈u0|Ô2|un〉 〈un|Ô1|u0〉
ω + (En − E0) + iη

. (1.20)

The imaginary part of the response function is given by

Imχ(ω) = −π
󰁛

n,m

(pn − pm)〈n|Ô2|m〉〈m|Ô1|n〉δ(Em − En − ω), (1.21)

and one can recognise its relation with the dynamical structure factor. This equivalence of the

representation reveals that the information could be accessed either in the time domain or in the

frequency (energy) domain.

In the above discussion, we can find that the spectral function can be obtained by taking

the Fourier transform of the time-dependent correlation function C(t, t′). This motivates how

eigenenergy differences can be determined using quantum computing. The time-dependent cor-

relation function C(t, t′) can be simulated and measured on a quantum computer: simulate

real-time evolution using the Hamiltonian simulation methods introduced in this thesis, measure

C(t, t′) with a Hadamard-test quantum circuit, and finally obtain the spectral properties by ap-

propriate post-processing. Related discussion on engineered spectroscopy methods can be found

in Chapter 7.

From Eq. (1.7) we see that the spectral information is contained in the dynamics of the state.

The inherent relation of static properties and dynamic properties also motivates both classical and

quantum computing methods. As introduced in Section 1.2 and will be elaborated Section 2.4,

quantum computers are able to simulate real-time evolution U = e−iĤt of a physical sparse

Hamiltonian efficiently. An interesting question is whether we can infer static properties from

dynamic properties. In Section 7.3, two approaches that accomplish this task are demonstrated:

the spectroscopy analysis methods and the quantum subspace expansion method.

In addition, the retarded Green’s function Gr(t, t′) is a special case of the response function

with Ô = ψ̂ and Ô′ = ψ̂†, and ψ̂ and ψ̂† is the field operator. In equilibrium, the Greens functions

can be related to the spectral function A(ω) = − 1
π ImGr(ω), which can be directly measured
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by using spectroscopy techniques, such as neutron scattering, angle-resolved photoemission spec-

troscopy (ARPES). We can also employ spectroscopic methods as an effective means to infer

static properties of materials, discussed in detail in Chapter 7. Simulation results are shown in

Chapter 8.

1.4 Quantum computing and quantum advantage in the near
future

At the beginning of the thesis in Section 1.1, quantum computing, quantum simulation, and

quantum many-body problems were introduced, followed by a general recipe for quantum com-

puting of quantum many-body physics problems in Section 1.2. It seems that for a wide range

class of quantum problems, we are in theory able to immediately use the aforementioned strategy

to deal with the problems at hand, that is, to design quantum computing methods that are com-

patible with quantum devices, implement these on the devices, and ultimately obtain a solution

to problems of interest. However, in reality, the situation is more complex.

From the perspective of quantum computing, it is not always easy to prepare the initial

state, evolve it, and measure it with polynomial resources. The amount of physical resources

(such as number of qubits, number of operations, number of steps, etc.) needed for the quantum

simulation is heavily contingent upon the type of the target problem and the particularities of

the simulator.

In terms of implementation, quantum simulation should be executed on a quantum device.

In the above discussion, it is assumed that the quantum simulation devices are universal and

error-free, in the sense that they allow perfect, universal quantum operations. The limitation of

the quantum devices have not been addressed, and the computational or simulation resources

needed for execution of the problem have only briefly been touched on. However, current hard-

ware is limited in terms of quality (e.g., qubit quality, gate fidelity, and measurement fidelity)

and size (qubit number). In order to run a quantum simulation, we have to confront, and over-

come, the challenges imposed by quantum hardware technology. The primary challenges and the

corresponding restrictions are summarised as follows:

1. Controllable qubit number ↔ computational size

2. Circuit depth ↔ allowed problem complexity

3. Noise rate ↔ quality and reliability of the solution

With the development of quantum technology, it is expected that in the long term, we may

overcome all these challenges, allowing for a universal, fault-tolerant quantum computer. With

this fault-tolerant quantum computer, a problem could in theory be programmed on a quantum

computer and solved, if it fell into the BQP class. The computation cost mainly arises from the
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complexity of the problem and the algorithm, which determine run-time; an efficient and fast

implementation of quantum algorithms is unquestionably desirable.

The implementation of fault-tolerant quantum computing requires 103 or more physical qubits

per logical qubit to suppress the physical error [68]. This is far beyond current technological

capabilities. At present in 2022, state-of-the-art programmable quantum hardware is able to

control tens to hundreds of noisy qubits, with the error rate of two-qubit operation above 10−3 [69,

70]. It is more pragmatic in the near future to focus on the noisy intermediate-scale quantum

(NISQ) regime, a notion originally proposed by John Preskill [71]. While it is still challenging

to perform error-corrected universal quantum operation, we can utilise the present generation of

quantum computers to perform specific tasks that are already challenging for classical computers.

Currently, we are able to run some quantum algorithms on a shallow noisy circuit without

implementing full error correction [12, 25, 72–74], which largely reduces the quantum hardware

requirements in terms of quality. This includes not only algorithms running on gate-based digital

quantum devices, but also analogue quantum simulators, as discussed in previous sections.

The outcome of the landmark quantum supremacy/advantage experiments were initially an-

nounced by Google’s Team in 2019 using superconducting qubits for random circuit sampling

with the qubit number 53 [11]. Subsequently, in 2021 a group led by Pan at USTC demonstrated

random circuit sampling with up to 56 qubits on quantum processor, Zuchongzhi, which is com-

posed of 66 functional qubits in a tunable coupling architecture [75]. In 2022, a team led by

Lukin at Harvard University used arrays of neutral atoms trapped in optical tweezers with 289

qubits to investigate quantum algorithms for solving the maximum independent set problem [76],

although this arguably cannot be seen as a fully functional, programmable quantum computer.

It is worth noting that the question of whether these experiments have demonstrated a con-

crete quantum advantage remains controversial. This is because as classical computing systems

and methods have evolved, these problems may not be as unfeasible or impractical for them as

previously assumed. For instance, Google claimed in [11] that classically sampling a 53-qubit

quantum circuit with a circuit depth of 20 a million times would take approximately 10,000

years, while the Sycamore processor took about 200 seconds to execute the same sampling task.

Subsequently, however, several works proposed efficient classical simulation methods based on

tensor networks, which are able to simulate Google’s quantum supremacy circuits in days ( [77])

and even seconds ( [78]), undermining the assertion of quantum supremacy.

Additionally, the problems tackled in the experiments and solutions advanced, such as random

circuit sampling [11, 75] and Gaussian boson sampling [79], may lack relevance in terms of real-

world application. An important question is whether the advantages of quantum computing over

classical computing can be clearly demonstrated through solving classically challenging problems

of physical interest on quantum devices. This thesis considers applications and implementations

18



of quantum computing with near-term noisy quantum computers in the noisy intermediate-

scale quantum (NISQ) era, and universal fault-tolerant quantum computers in the fault-tolerant

quantum computing (FTQC) era.

In the near future, we may need to consider quantum computation with shallow noisy quan-

tum circuits, which are only capable of performing a constant number of restricted operations

without full error correction. Hybrid quantum-classical computing, such as variational quantum

algorithms, serves as a promising candidate for being compatible with near-term noisy quantum

computers [25, 72, 80–83]. At this point, it is worth quoting a definition of hybrid quantum-

classical computing from a recent perspective paper. Hybrid quantum-classical computing is

a computing structure that ”requires nontrivial amounts of both quantum and classical com-

putational resources to run, and which cannot be sensibly described, even abstractly, without

reference to the classical computation” [84]. Intuitively, because a large portion of the computa-

tional burden is processed on a classical computer, deep coherent quantum circuits may not be

required.

One of the most influential and representative developments in the field of NISQ-suitable

quantum algorithms is variational quantum algorithms (VQAs). These algorithms make use of

short-depth parameterised quantum circuits, which are particularly suited to NISQ hardware,

embedded in an otherwise classical variational loop [72, 85]. They directly realise the target

quantum state with a controllable quantum device and reduce the requirement of quantum re-

source requirements by leveraging the power of classical optimisation. VQAs have demonstrated

the potential computing power through the co-development of quantum and classical resources

together; hybrid quantum-classical algorithms have been an integral part of quantum algorithms

research ever since.

The success of hybrid quantum-classical computation is contingent on the following (1) suf-

ficiently powerful quantum circuits to express the optimal solution of target problems [86], (2)

efficient sampling and classical optimisation [87, 88], and (3) robustness to noise [89]. An im-

portant question is whether a clear and robust quantum advantage persists for such hybrid

quantum-classical algorithms given these challenges. Notwithstanding these challenges, noisy

intermediate-scale quantum processors still hold promise in solving certain problems that are al-

ready posing a challenge to the computational power of classical computers. A natural question

flowing from this is whether quantum computation could address open problems appearing in the

study of quantum many-body problems, where many of them have strong correlations. Part IV

of this thesis addresses this important point.

Another similar question relate to quantum simulation is how far this could be feasibly de-

veloped in the near-future, both for NISQ and early fault-tolerant quantum computers. The

discussion on this topic is concluded in Chapter 9, which provides a quantum resource estima-

tion for eigenenergy estimation and eigenstate property estimation in several typical problems.
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This addresses the question as to what circumstances and conditions are required to solve a

physical problem and hence to achieve a quantum advantage, with the aim of shedding further

light on the identification of the boundary of classical and quantum limits.

1.5 Thesis outline

The four subsections in Chapter 1 have introduced a general recipe for solving a quantum many-

body problem, discussing in broad terms the close relation between quantum computing, quantum

simulation and spectroscopy, as well the realistic application of different approaches in the near

future. Chapter 2 covers the essential concepts introduced in Chapter 1 and further developed

in Part II, Part III, and Part IV. Chapter 2 serves as a preliminary for the following chapters by

providing a self-contained introduction to the techniques and methodologies introduced in this

thesis.

Part II concerns quantum computing of quantum many-body problems, focusing on the issue

of how to estimate static and dynamic properties of quantum systems, as a response to the points

raised in Section 1.2. In Chapter 3, a general quantum computing framework is established for

the static and dynamic problems herein. I introduce a new quantum-classical architecture, the

hybrid tensor network, which serves as a basis for a general representation of quantum system

representation which is applicable to a broad range of problems. In Chapter 4, I focus on

static property estimation, which consists of two tasks (see Section 1.2.1), eigenenergy estimation

and eigenstate property estimation. Motivated by imaginary-time evolution, which provides a

natural way of driving the initial state to the ground state, I introduce quantum algorithmic

cooling which realises a generalised imaginary-time evolution with the best asymptotic scaling

to date in eigenstate energy and property estimation. I explicitly demonstrate how to search

for the eigenenergy, and estimate the eigenstate property. The algorithm is proven to reach the

Heisenberg limit in eigenenergy estimation and achieve an exponential speed-up for the circuit

complexity compared to phase estimation.

In Chapter 5 and Chapter 6, I focus on dynamic problems formalised in Section 1.2.1 and

detailed in Section 2.4. In Chapter 5, I propose adaptive product formulae to estimate dynamic

properties of quantum states under real-time evolution. I further show how to enable large-scale

quantum dynamics simulation by using the methods developed in Chapter 3. In Chapter 6,

I consider a generic interacting quantum system described by H = H loc + V int. I propose a

perturbative approach for such a problem, which shows advantages over conventional perturbative

expansion and quantum simulation, and has wide applications in probing interacting dynamics.

In Part III, I explore interesting emergent quantum phenomena with the methods developed

in this thesis. I discuss the close relation between quantum simulation and quantum computing,

from both the theoretical, experimental, and operational point of view, as a response to the

discussion in Section 1.3. In Chapter 7, I show how spectroscopy motivates quantum computing
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methods to predict spectroscopic features of generic quantum many-body systems. I introduce a

theoretical framework of engineered spectroscopy and demonstrate how the spectroscopic features

of quantum systems with general and tuneable interactions can be probed. In Chapter 8, several

quantum many-body phenomena in typical physical systems are explored, including interacting

bosons, fermions, and quantum spins, in which the interacting dynamics is simulated using the

perturbative approach.

Part IV discusses the challenges of employing quantum computing towards realistic applica-

tions in the near future, as a response to the discussion in Section 1.4. With the development

of theoretical and experimental methods, the most interesting question is how far away we are

from solving a practical problem. To answer this question, the quantum resources required for

eigenstate property estimation at quantum gate level are estimated using a new methodological

approach developed by the author in Chapter 9. This provides a clear illustration of the resource

requirements for physical systems of interest, such as the Ising model, the Hubbard model, and

molecular systems, with a focus on their application in both the NISQ and FTQC era. In Chap-

ter 10, I discuss the challenges of noisy quantum computers, as errors are unavoidable when

using such hardware. These include device errors (such as process errors5 and readout errors)

and statistical errors. Accordingly, I introduce a stochastic error mitigation scheme to mitigate

process errors in NISQ devices, including both analogue quantum simulators and digital quan-

tum simulators, and an efficient quantum state measurement scheme, called overlapped grouping

measurement, to mitigate statistical errors and enable fast quantum processing.

Chapter 11 summarises the works carried out in this thesis, and concludes with some per-

spectives on quantum computing, quantum many-body physics, and quantum materials, as well

as the current outlook for this rapidly growing field.

The contents presented from Chapter 2 to Chapter 10 in this thesis are based on the original

research work of the author and collaborators, unless otherwise specified. The author conceived

the key idea of the works that are presented in this thesis, and was responsible for the derivation

of the analytic results, numerical and experiment verification, and manuscript writing. The

author is the first author and/or the corresponding author of these publications. Chapter 3 is

related to a published work [90] and a manuscript under preparation [91]. Chapter 4 is related

to a manuscript currently under preparation [92] and a preprint [93]. Chapter 5 is related

to a manuscript under preparation [91] and the theoretical analysis in a published work [94].

Chapter 6 is related to a published work [95]. Chapter 7 is related to a manuscript under

preparation [96]. Chapter 8 presents the results for the applications of quantum computing and

spectroscopy methods developed in preceding chapters, and is related to [95, 96]. Chapter 9 is

related to Chapter 4 and [92]. Chapter 10 consists of two parts, which are related to [97] and

the theoretical part in [98], respectively.

5Quantum processes include quantum gates in a digital quantum simulator and time evolution in an analogue
quantum simulator.
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Chapter 2

Framework and methods

In this chapter, I introduce the framework and methods for quantum computing of quantum

many-body systems dealt with in this thesis. Recall that a general recipe of quantum computing

of quantum many-body problems was introduced in Section 1.2. This is comprised of four parts:

problem encoding, state preparation, dynamics simulation, and quantum measurement. I will

introduce the essential ingredients of these four parts in Section 2.1, Section 2.3, and Section 2.4.

The role of this chapter is to give an overview of the motivation, framework, and methods

that are introduced and developed in this thesis. This chapter serves as a preliminary for the

following chapters. The contents are self-contained in order for the reader to find all the essential

information from this chapter. It is especially intended for interested readers who wish to learn

more about quantum computing, quantum many-body physics and quantum information, and

to capture the key ideas of the techniques and methods developed in this thesis.

2.1 Problem encoding

2.1.1 Effective Hamiltonian

A time-independent non-relativistic Hamiltonian could be expressed as

H = −
Ne󰁛

i

󰄁2

2me
∇2

i−
Nn󰁛

I

󰄁2

2MI
∇2

I−
Ne󰁛

i

Nn󰁛

I

ZIe
2

4πε20|ri −RI |
+
1

2

Ne󰁛

i ∕=j

e2

4πε20|ri − rj |
+
1

2

Nj󰁛

I ∕=J

ZIZJe
2

4πε20|RI −RJ |
.

(2.1)

Here, MI , RI , and ZI denote the mass, position, and atomic number of the Ith nucleus, and

ri is the position of the ith electron. Ne and Nn are the number of electrons and nuclei. In

this thesis, natural units are used, 󰄁 = me = e2/4πε0 = 1. The first two sums in H are the

kinetic terms of the electrons and nuclei, respectively. The last three sums represent the Coulomb

repulsion between the electrons and nuclei, the electrons themselves, and the nuclei themselves,

respectively.

Since a realistic physical system involves a prohibitively large number of particles, it is impos-

sible to solve the Hamiltonian given by a full description of the material in Eq. (2.1). However, a
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solution to the ”theory of everything” is unnecessary. As discussed in previous sections, interest-

ing phenomena could be captured with much fewer degrees of freedom at a finite scale. In most

cases, we could restrict the energy scale of the problems, and extract an effective Hamiltonian

that models the phenomena of interest.

This thesis is primarily concerned with the behaviour of electrons. From the observation that

the nucleus is much heavier than an electron, we can separate the dynamics of the nuclei and the

dynamics of the electrons using the Born-Oppenheimer approximation. Under the approximation

of fixed R, the Hamiltonian describing the behaviour of the electrons and their interactions with

nuclei is simplified as

Hel = −1

2

󰁛

i

∇2
i +

󰁛

i

Ulattice,i(ri) +
1

2

󰁛

i ∕=j

1

|ri − rj |
, (2.2)

where the Coulomb potential between the electrons and the nucleus ions is denoted as Ulattice,i(ri)

which is a one-body scalar term, and only the valence electrons are considered here.

The electron Hamiltonian in the position coordinate may be written in the operator form

using the Dirac notation as

Ĥel =

󰁝
dr dr′|r〉〈r|Ĥel|r′〉〈r′|, (2.3)

where Hel = 〈r|Ĥel|r′〉. The kinetic term and the Coulomb potential of the electron and the

nuclear is diagonal in the coordinate basis, and we have

∇2
i = 〈r|∇̂2

i |r′〉δ(r− r′), Ulattice,i(ri) = 〈r|Ûlattice,i|r′〉δ(r− r′). (2.4)

The Hamiltonian could be represented with the field operator in second quantisation as

Ĥ =

󰁝
drψ̂†(r)(−∇2

2
+ U(r))ψ̂(r) +

1

2

󰁝
drdrψ̂†(r)ψ̂†(r′)V (|r− r′|)ψ̂(r′)ψ̂(r) (2.5)

where ψ̂(r) is the fermionic field operator defined in the position coordinate basis {|r〉}, and ψ̂†(r)

is its conjugate. In the following discussion, I will use the notation in Ref. [44]

Since the spin degrees of freedom are generally a topic of interest, they have been added

to the formulae in the following discussion. The field operator could be expanded in a basis of

single-particle wave functions as

ψ̂σ(r) ≡
󰁛

λ

ĉλ,σφλ(r)

ψ̂†
σ(r) ≡

󰁛

λ

ĉ†λφ
∗
λ,σ(r)

(2.6)

where σ ∈ {↑, ↓} represents the spin degrees of freedom, λ represents the collection of good quan-

tum numbers of the particles, excluding the spin, ĉ (ĉ†) is the fermionic annihilation (creation)

operation acting as

ĉ†λ,σ |vac〉 = |λ,σ〉 ,
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with the anti-commutation relation {ĉλ1,σ1 , ĉ
†
λ2,σ2

} = δλ1,λ2δσ1,σ2 , and the wave function is

φλ(r) = 〈r|λ〉.
The Hamiltonian in the new basis becomes

Ĥ =
󰁛

λ1,λ2

tλ1λ2 ĉ
†
λ1,σ

ĉλ2,σ +
󰁛

λ1,λ2,λ3,λ4

Vλ1λ2λ3λ4 ĉ
†
λ1,σ′ ĉ

†
λ2,σ

ĉλ3,σ ĉλ4,σ′ . (2.7)

Here, the hopping term is defined as

tλ1λ2 =

󰁝
drφ∗

λ1
(r)(−∇2

2
+ U(r))φλ2(r) (2.8)

and the Coulomb interaction term is defined as

Vλ1λ2λ3λ4 =
1

2

󰁝
dr′drφ∗

λ1
(r)φ∗

λ2
(r′)V (|r− r′|)φλ3(r

′)φλ4(r). (2.9)

The matrix is Hermitian, i.e., tλ1λ2 = t∗λ1λ2
, and Vλ1λ2λ3λ4 = V ∗

λ4λ3λ2λ1
. The Coulomb interaction

matrix has an additional symmetry Vλ1λ2λ3λ4 = Vλ2λ1λ4λ3 .

From the Hamiltonian in Eq. (2.5), one can deduce various model electron Hamiltonians

appropriate for different physical circumstances. The explicit form of the Hamiltonian depends

on the single-particle bases introduced in Eq. (2.6). A representative model Hamiltonian is

illustrated below, following the discussion in [44].

Electrons in a periodic potential conserves translational symmetry. A natural and common

basis is the plane wave basis which is useful to describe assemblies of atoms that are close to free

electrons. The operator takes the form of

ψ̂σ(r) =
1√
Vc

󰁛

k,G

ei(k+G)·rĉk+G,σ, (2.10)

where k is the crystal momentum and G is a reciprocal lattice vector. The Hamiltonian in the

plane wave basis reads

Ĥ =
󰁛

k,G,G′,σ

hk,G−G′ ĉ†k+G,σ ĉk+G′,σ +
󰁛

k,k′,p
G,G′,σ,σ′

Vpĉ
†
k+G+p,σ ĉ

†
k′+G′−p,σ′ ĉk′+G′,σ′ ĉk+G,σ (2.11)

where hk,G−G′ =
󰀅
(k+G)2δG,G′ + UG−G′

󰀆
and Vp = 1/ (2Vc)

󰁕
dre−ip·rV (|r|) [44]. I refer to

Ref. [44] for other examples in solids and Ref. [43] for molecule Hamiltonians.

2.1.2 Low rank factorisition

The above Hamiltonian in Eq. (2.7) is written in physicist convention, and one could rearrange

the form in chemist convention as

Ĥ =
󰁛

λ1,λ2

Tλ1λ2 ĉ
†
λ1,σ

ĉλ2,σ +
󰁛

λ1,λ2,λ3,λ4

Gλ1λ2λ3λ4 ĉ
†
λ1,σ′ ĉλ2,σ ĉ

†
λ3,σ

ĉλ4,σ′ (2.12)

24



with the ordering ĉ†ĉĉ†ĉ rather than ĉ†ĉ†ĉĉ. Using real basis functions, such as molecular orbitals,

the interaction matrix has the symmetry

Tλ1λ2 = Tλ2λ1 , (2.13)

and

Gλ1λ2λ3λ4 = Gλ4λ3λ2λ1 = Gλ1λ2λ4λ3 = Gλ2λ1λ3λ4 = Gλ3λ4λ1λ2 = Gλ3λ4λ2λ1 = Gλ4λ3λ1λ2 = Gλ4λ3λ1λ2 .

(2.14)

The Coulomb interaction matrix is a rank-4 tensor with dimension N/2 along each axis and could

be reshaped to a N2/4×N2/4 matrix W .

The reason why the interaction term is reordered is to exploit the low rank nature of the

Coulomb interaction matrix through matrix factorisation. As discussed in Ref. [99], the matrix

W by Eq. (2.7) is a full rank matrix with L = N2/4 and no reduction is possible. In the

case of molecular electronic Hamiltonians, the matrix W by Eq. (2.12) is not full rank, and can

be factorised by singular value decomposition with the number of terms L = O(N), which is

much less than the worst case scenario [99]. The total number of distinct terms with different

coefficients in the Hamiltonian is of the order O(N2L), which shows an improvement over the

original representation, which contains O(N4) distinct terms. Recall that in the Hamiltonian

simulation, the cost would be related to the number of terms in the Hamiltonian. Therefore, this

rearrangement would save the resource cost in Hamiltonian simulations. This strategy has been

intensively used in quantum chemistry simulation (see [99–101] for examples).

2.1.3 Fermionic to qubit mapping

The original Hamiltonian is expressed in a fermionic form. To represent fermions on a quantum

computer, one should specify a fermion-to-qubit mapping. There are many choices of mapping,

including Jordan-Wigner mapping, Bravyi-Kitaev mapping, and parity encoding (see [12] for a

review). The choice of mapping will result in different circuit depths and qubit numbers. One of

the commonly used mapping is the Jordan-Wigner mapping, which maps the fermionic operator

ĉj on the jth site (or mode) to the qubit Pauli operator as

ĉj 󰀁→
1

2

󰀓
σ̂x
j + iσ̂y

j

󰀔 j−1󰁒

i=1

σ̂z
i , ĉ†j 󰀁→

1

2

󰀓
σ̂x
j − iσ̂y

j

󰀔 j−1󰁒

i=1

σ̂z
i . (2.15)

with Pauli operators σ̂α
j , α = (x, y, z) acting on the jth qubit. It is straightforward to have the

occupation number operator

n̂j = ĉ†j ĉj 󰀁→
1

2

󰀓
Î − σ̂z

j

󰀔
,

and the two-body term

n̂jn̂k 󰀁→ 1

4

󰀓
Î + σ̂z

j σ̂
z
k − σ̂z

j − σ̂z
k

󰀔
.
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With the mapping, an N -qubit Hamiltonian can be expressed in the Pauli basis as

Ĥ =
󰁛

i

hiPi, (2.16)

where Pi ∈ {Î, σ̂x
j , σ̂

y
j , σ̂

z
j }⊗N is a tensor product of single-qubit Pauli operators and hi is the

corresponding strength.

2.1.4 A general representation of quantum systems

A major challenge in studying quantum many-body physics stems from the hardness of efficient

representation of many-body wave functions. To motivate a general description of a quantum

system, I start from a general description of a quantum state in the tensor representation. A gen-

eral rank-n tensor is a multi-dimensional array with n indices denoted as Ti1,i2,...,in . In quantum

mechanics, it represents the wave function of an n-partite quantum state in the computational

basis,

|ψ〉 =
󰁛

j1,j2,...,jn

ψj1,j2,...,jn |j1〉 |j2〉 . . . |jn〉 . (2.17)

One can see that directly storing a general quantum state in a classical memory is highly inef-

ficient, with the cost of space resources increasing exponentially with the number of parties. This

thus motivates us to find more efficient ways to represent quantum states. The deep observation

by physicists is that quantum states in nature may only lie in a small subset of the whole Hilbert

space, where the area law scaling may exist; for example, the ground state of certain gapped local

Hamiltonians [102–104]. This enables the possibility of efficient classical representation of these

quantum states. The overall idea is to decompose the rank-n tensor into a network of low-rank

tensors. Take the matrix product state (MPS) ansatz as an example. As shown in Figure 2.1(a),

the rank-n tensor is now decomposed into n low-rank tensors as

|ψ〉 =
󰁛

j1,j2,...,jn

Tr[αj1
1 . . .αjn

n ] |j1〉 |j2〉 . . . |jn〉 . (2.18)

Here each αjk
k is a rank-3 tensor (except for αj1

1 and αjn
n whose rank is 2), and the index jk is the

physical index, with dimension 2 for the qubit case.

The MPS representation compresses the space of an n-partite state from O(2n) to O(nκ2),

which is reduced from exponential to linear scaling with the particle number n. This enormous

reduction is based on the pre-knowledge of the weakly entangled state under the geometrically

local interactions in a one-dimensional gapped system [103]. Many different classical tensor

networks have been proposed for different problems (see [105] for a review).

Nevertheless, it is likely that certain quantum systems, such as the Fermi-Hubbard model and

molecular systems, which have nonlocal interactions, and 2D lattice problems [5], may not be

efficiently described via classical methods. This motivates the idea of quantum simulation, i.e.,
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Figure 2.1: Illustration of a typical classical tensor network — the matrix product state.

using a controllable quantum system to simulate a target quantum problem. A quantum state

generated from applying a unitary circuit to a certain initial state forms a quantum tensor, which

could be high-rank, and can be naturally stored and manipulated with a quantum computer. In

the literature, classical tensor network theory and quantum simulation are generally used as

separate, distinct techniques in classical and quantum computing. In this thesis, we introduce

quantum tensors to be general n-partite quantum states prepared by a quantum computer and

classical tensors to be low-rank tensors stored in a classical computer. We refer to a combination

of quantum and classical tensors as a hybrid tensor network.

Suppose we generate an n-partite quantum state by applying a unitary Uψ to an initial state

|0̄〉 as |ψ〉 = Uψ |0̄〉. As shown in Eq. (2.17), the quantum state can be regarded as a rank-n

tensor in the computational basis. We can also introduce a classical index to the quantum state

by applying different unitary operators as

|ψi〉 = Uψi |0̄〉 =
󰁛

j1,j2,...,jn

ψi
j1,j2,...,jn |j1〉 |j2〉 . . . |jn〉 , (2.19)

where the classical index i relates to Ui which is a unitary operator. As a result, it as a whole

forms a rank-(n + 1) tensor ψi
j1,j2,...,jn

. We regard all these cases as quantum tensors, and the

network connected with quantum tensors and classical tensors as a hybrid tensor network.

We can find that this hybrid quantum-classical tensor network provides the basis for general

representation of many-body wave functions that is applicable to a broad range of problems. In

Chapter 3, I will discuss this hybrid quantum-classical tensor network in detail.

2.2 Framework of hybrid quantum-classical computing

Section 2.1 introduces a framework of quantum state representation. In this section, I discuss

hybrid quantum-classical computing introduced in Section 1.4. In particular, I introduce varia-
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tional approaches to both static and dynamic problems, which provides useful tools throughout

this thesis.

2.2.1 Variational algorithms

The variational method is a powerful classical tool for simulating quantum many-body sys-

tems [106–110]. The core idea is based on the intuition that some physical states with low

energy belong to a small manifold of the whole Hilbert space [103, 104], similar to the discus-

sion in Section 2.1. Recently, variational methods have been recently generalised to the quantum

regime [72–74,83,111–126], which employ the power of quantum computing in representing quan-

tum states. The trial state in variational quantum algorithms is prepared with a parameterised

shallow quantum circuit [127–130], which is robust against a certain amount of device noise and

is compatible with near-term noisy intermediate-scale quantum (NISQ) hardware [83,116]. Vari-

ational quantum algorithms can be utilised for finding energy spectra, also known as variational

quantum eigensolvers (VQE) [69, 72, 73, 83, 113, 121], and simulating real-time Schrödinger evo-

lution [80, 116] of closed systems. It is also worth noting that variational algorithms are not

limited to energy minimisation and the simulation of unitary processes. Variational algorithms

have been developed by the author and collaborators to simulate dissipative quantum dynam-

ics, non-Hermitian dynamics, and imaginary-time evolution, which cannot be straightforwardly

mapped to unitary gates [80, 120,121,131].

In Section 2.2.2, I show the basics of variational quantum algorithms, and exemplify their

application in ground state preparation. In Section 2.2.3, I introduce a general framework of

variational dynamics simulation. With this framework, I discuss the solution to two types of

dynamic problems, namely, real-time evolution and imaginary-time evolution, in Section 2.2.3.2

and Section 2.2.3.3, respectively.

2.2.2 Variational state preparation

The variational quantum algorithm starts by preparing a quantum state with a quantum circuit,

which can be written as

|ψ〉 =
L󰁜

j=1

Uj(θj)Vj |ψ0〉 (2.20)

where Uj and Vj ∈ SU(D) represent the parameterised and unparameterised unitary quantum

operations with D = 2n, respectively.

The parameterised unitary quantum operation could be expressed by Uj(θj) = exp(−iθjGj)

with the Hermitian generator Gj ∈ Herm[CD×D]. The Hermitian generator can be decom-

posed into the Pauli operators, and Uj(θj) becomes Uj(θj) = exp(−iθj
󰁓

k αj,kPj,k/2), with

Pj,k ∈ {I,X, Y, Z}⊗n being a tensor product of single-qubit Pauli operators. The parame-

terised quantum circuit given by Eq. (2.20) is also referred to as an ansatz, which is used
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to approximate the target state. For simplicity, we consider the parameterised operation as

Uj(θj) = exp(−iθjPj/2) with Pj being a multi-qubit Pauli operator, which is widely used in

quantum circuit construction. Although the circuit given by Eq. (2.20) is fixed, we can construct

a quantum circuit in an adaptive way to increase its expressivity. This will be discussed in

Chapter 5.

Despite its quantum nature, the original ground state preparation problem is converted into

an optimisation problem over the variational parameters 󰂓θ = {θj}. The target state will be

approximated by some optimised variational parameters 󰂓θ∗, which may be found using the varia-

tional principle [131]. For example, a typical problem in quantum simulation is to find the ground

state. If this is the objective, then we could minimise the energy with respect to the variational

parameters L(󰂓θ) := 〈ψ(󰂓θ)|H|ψ(󰂓θ)〉1. The ground state energy is given by

E0 = min
θ

L(󰂓θ). (2.21)

Rather than search for the ground state from the whole Hilbert space, with exponentially

increasing computational complexity, we only search from a subset of the whole Hilbert space,

characterised by the parameter θ, to find an approximate solution of the true ground state. This

is also known as the Rayleigh-Ritz method.

At the kth iteration, a general strategy for searching for ground states is by updating the

parameters

󰂓θ(k + 1) = 󰂓θ(k)− η(k)A−1(󰂓θ(k))∇󰂓θ
L(󰂓θ(k)), (2.22)

where 󰂓θ(k) represent parameters that characterises the optimisation dynamics at the kth itera-

tion, and the learning rate is denoted by η(t). Here, we use A(󰂓θ(k)) to represent an invertible

metric matrix with parameters θ(k). When the metric matrix is an identity matrix A = I, it

reduces to conventional gradient descent.

Many classical algorithms have been proposed as a solution to the optimisation problem.

These include the gradient descent, simultaneous perturbation stochastic approximation (SPSA),

quasi-Newton methods, and natural gradient algorithms [132–135]. Subsequently, quantum ver-

sions have been adapted in this context. Among these algorithms, quantum natural gradient

method [135], or equivalently variational imaginary-time evolution [136], is promising, since from

a physics viewpoint, imaginary-time evolution defines a natural way of driving the initial state

to the target state. I show in Section 2.3 that given a nonvanishing energy gap between the

ground state and the first excited state, the state reached under imaginary-time evolution is

exponentially close to the ground state. We shall see how variational imaginary-time evolution

can be implemented in Section 2.2.3.3.

1Here, the Hamiltonian is mapped from an operator form Ĥ to a qubit form H. Nevertheless, these two forms
are used interchangeably in this thesis when there is no ambiguity.
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As noted in the literature, optimisation in variational quantum algorithms in general is

hard [88], and one cannot guarantee avoiding local minima during the optimisation process.

More rigorous state preparation methods without relying on variational ansatz will be discussed

in Section 2.3.

2.2.3 Variational quantum dynamics simulation

2.2.3.1 General framework

To begin with, I introduce a generalised framework for variational simulation of quantum dy-

namics. Consider a differential equation

B(t)
d

dt
|v(t)〉 = |dv(t)〉. (2.23)

Here,

|dv(t)〉 :=
󰁛

j

Dj(t) |v′j(t)〉 ,

where Dj(t) and B(t) are general time dependent sparse (non-Hermitian) operators, |v(t)〉 is the
system state, and each of |v′j(t)〉 can be either |v(t)〉 or any known state that can be efficiently

implemented with quantum hardware. The states |v(t)〉 and |v′j(t)〉 can be unnormalised states

as

|v(t)〉 = α(t) |ψ(t)〉

and

|v′j(t)〉 = α′
j(t) |ψ′

j(t)〉

with normalisation factors α(t) and α′
j(t), respectively. In practice, Dj(t) (B(t)) is assumed

to be decomposed as a linear combination of Pauli operators Dj(t) =
󰁓

i λ
j
i (t)σi with complex

coefficients λi and a polynomial (with respect to the system size) number of tensor products

of Pauli matrices σi =
󰁑

ik
σik with ik denoting the ikth qubit to be efficiently realised with

quantum hardware.

In variational quantum simulation, instead of directly simulating the dynamics, the state is

approximated by a parameterised quantum state as

|v(󰂓θ(t))〉 = α(󰂓θ0(t)) |ϕ(󰂓θ1(t))〉

with the variational parameters 󰂓θ := (󰂓θ0, 󰂓θ1). The original evolution can be projected to the

evolution of the parameters via McLachlan’s principle [137], which is given by

min

󰀐󰀐󰀐󰀐B(t)
d

dt
|v(󰂓θ(t))〉 −

󰁛

j

Dj(t) |v′j(t)〉
󰀐󰀐󰀐󰀐, (2.24)
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where 󰀂 |ψ〉 󰀂 =
󰁳

〈ψ|ψ〉 and the minimisation is over the parameters. By minimising the dis-

tance between the true evolution and the evolution of the parameterised state, the minimisation

problem is mapped to solving a linear equation of parameters as

󰁛

j

Ak,j θ̇j = Ck, (2.25)

where θ̇j = dθj/dt and the coefficients are linear sums of state overlaps that can be efficiently

measured with quantum circuits [138].

The most physically relevant examples are real-time and imaginary-time evolution, which

correspond to B(t) = 1 and |dv(t)〉 = −iH |v(t)〉 or |dv(t)〉 = −(H − 〈v(t)|H |v(t)〉) |v(t)〉,
respectively. The expression of the coefficients A and C are specified in Section 2.2.3.2 and

Section 2.2.3, respectively.

We remark that this method provides a technique for solving more general dynamic problems,

such as dissipative dynamics in an open system. Since dissipative dynamics is not the focus of

this thesis, I direct the interested readers to [80] for further details.

2.2.3.2 Variational simulation of real-time evolution

Real-time evolution governed by a time-independent HamiltonianH is described by the Schrödinger

equation,

d |ψ(t)〉
dt

= −iH |ψ(t)〉 , (2.26)

which is apparently a special case of Eq. (2.23). Instead of directly simulating real-time dynam-

ics with Hamiltonian simulation algorithms [13, 33, 38, 139, 140], variational quantum dynamics

methods assume that the quantum state |ψ(t)〉 is prepared by a parameterised quantum circuit,

|ϕ(󰂓θ(t))〉 = RN (θN ) . . . Rk(θk) . . . R1(θ1) |0̄〉 with each gate Rk(θk) controlled by the real param-

eter θk, the reference state |0̄〉, and parameters 󰂓θ = (θ1, θ2, . . . , θN ). According to McLachlan’s

variational principle [137], real-time dynamics of |ψ(t)〉 can be mapped to the evolution of the

parameters 󰂓θ(t) by minimising the distance between the ideal evolution and the evolution induced

by the parameterised trial state,

δ󰀂(d/dt+ iH) |ϕ(󰂓θ(t))〉 󰀂 = 0, (2.27)

where 󰀂 |ϕ〉 󰀂 =
󰁳

〈ϕ|ϕ〉. The solution is found to be

󰁛

j

Ak,j θ̇j = Ck, (2.28)

with the matrix elements of A and C given by

Ak,j = Re

󰀕
∂ 〈ϕ(󰂓θ(t))|

∂θk

∂ |ϕ(󰂓θ(t))〉
∂θj

󰀖
, Ck = Im

󰀕
〈ϕ(󰂓θ(t))|H ∂ |ϕ(󰂓θ(t))〉

∂θk

󰀖
. (2.29)
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2.2.3.3 Variational simulation of imaginary-time evolution

The normalised state at imaginary-time τ is |ψ(τ)〉 = e−Hτ |ψ(0)〉√
〈ψ(0)|e−2Hτ |ψ(0)〉

and the Wick-rotated

Schrödinger equation is
d|ψ(τ)〉

dτ
= − (H − Eτ ) |ψ(τ)〉 (2.30)

where Eτ = 〈ψ(τ)|H|ψ(τ)〉 is the expected energy at imaginary-time τ . It is also easy to check

that it admits a similar form to Eq. (2.23). The ground state can be determined from the long time

limit of the Wick-rotated Schrödinger equation |ψ〉GS = limτ→∞ |ψ(τ)〉. Consider a normalised

trial state |ϕ(󰂓θ(τ))〉 with real parameters 󰂓θ representing all the parameters. Imaginary-time

evolution of the Schrödinger equation on the trial state space is given by

󰁛

i

∂|ϕ(󰂓θ(τ))〉
∂θi

θ̇i = − (H − Eτ ) |ϕ(󰂓θ(τ))〉. (2.31)

Applying McLachlan’s variational principle, which minimises the distance between the evolution

of trial state ∂|ϕ(󰂓θ(τ))〉
∂τ and −(H − Eτ ) |ϕ(󰂓θ(τ))〉〉, we have

δ󰀂 (d/dτ +H − Eτ ) |ϕ(󰂓θ(τ))〉󰀂 = 0, (2.32)

which determines the evolution of the parameters

󰁛

j

Ak,j θ̇j = −Ck, (2.33)

with the matrix elements of A and C given by

Ak,j = Re

󰀣
∂〈ϕ(󰂓θ(τ))|

∂θk

∂|ϕ(󰂓θ(τ))〉
∂θj

󰀤
, Ck = Re

󰀣
∂〈ϕ(󰂓θ(τ))|

∂θk
H|ϕ(󰂓θ(τ))〉

󰀤
. (2.34)

Therefore, we can effectively simulate imaginary-time evolution by tracking the evolution of the

parameters.

The measurement in the variational schemes for both real-time evolution and imaginary-time

evolution can be implemented using the methods introduced in Section 2.5.1. Compared to

realising imaginary-time evolution directly, variational methods are more efficient in their use of

quantum resources, but may not guarantee an accurate solution since they rely on variational

optimisation. In contrast, methods based on imaginary-time evolution realised by using linear-

combination-of-unitaries formulae can guarantee the simulation accuracy. A comparison between

the two methods be found in Section 2.3. The variational imaginary-time evolution method serves

as a subroutine in variational quantum simulations. I will show its application and numerical

verification in the context of hybrid quantum-classical computing in Chapter 3.
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2.3 Eigenstate preparation

Recall the main objective and the formulation of the static problem in Section 1.2. In this thesis,

we mainly focus on two tasks, which are to estimate the eigenenergy Ei, and to estimate an

observable expectation on the target eigenstate 〈ui|Ô|ui〉 within an error ε. A crucial step to

achieving both aims is the effective preparation of the eigenstate2. In this section, I will mainly

discuss eigenstate preparation by applying a spectral projector of the Hamiltonian H to an initial

state. Compared to the hybrid quantum-classical computing methods that were introduced in

Section 2.2, this method is rigorous and universal, with a theoretical guarantee of the simulation

accuracy.

Before I introduce the methods developed in this thesis, I will first review related work on

eigenstate preparation. Section 2.3.1 serves as a reference for a better understanding of and point

of comparison of our work.

2.3.1 Related works

I first provide some comments on the variational algorithms introduced in Section 2.2. In the

variational methods, one attempts to search for the ground state of a Hamiltonian using an ansatz

circuit, which can be characterised by the associated variational parameters. One then adjusts

and optimises the parameters in the quantum circuit based on the measured value of energy.

The quantum approximate optimisation algorithm (QAOA) [111] is another type of variational

method that aims to solve the combinatorial optimisation problems, and is based on a variational

evolution combined with adiabatic evolution. Variational algorithms are suitable for near-term

quantum computers, since they usually require a shallow circuit with very few ancillary qubits.

The weakness of the variational methods is that the effectiveness is contingent on the choice of

the ansatz, the validity of which varies for different Hamiltonian problems.

Adiabatic state preparation [141] is an experimentally-friendly non-variational ground-state

method based on a time-dependent Hamiltonian evolution. In adiabatic state preparation, the

ground state of a simple Hamiltonian H0 is first prepared, and then slowly evolved under a

Hamiltonian that gradually changes fromH0 to the target HamiltonianH. Based on the adiabatic

theorem, the resulting state is then close to the ground state. Unlike variational algorithms, the

adiabatic algorithms are universal and valid without ansatz assumptions. In terms of practical

usage, the adiabatic algorithm has two drawbacks. First, the required evolution time t depends

inverse polynomially on the minimum spectral gap along the entire path from H0 to H. Second,

the required evolution time t is O(1/ε), where ε is the infidelity of the target state.

2Here, we do not have to prepare the eigenstate state deterministically, since only the expectation value with
respect to the state is required.
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Phase estimation [27, 28] is one commonly-used non-variational method, which prepares the

eigenstate of a given unitary U based on controlled-U evolution, and complementary basis mea-

surement on ancillary qubits. In the canonical phase estimation algorithm [27], in order to

prepare the eigenstate of the Hamiltonian H, we introduce ω qubits prepared in the state |+〉,
perform controlled-e−2πiHt gate sequentially from one ancillary qubit to the original system with

different times {t}, perform inverse Fourier transform on the ancillary qubits, and finally measure

the ancillary qubits. The required number of qubits ω is logarithmic in the inverse of the eigenen-

ergy precision. The circuit depth, determined by the total controlled evolution time t, is O(1/ε)

with target precision ε. The phase estimation can be improved to an iterative version with only

one ancillary qubit [28]. However, similar to adiabatic evolution methods, the required circuit

depth of the phase estimation is fundamentally O(1/ε), which is unfavourable if a high-precision

preparation is required, but the coherent time is relatively short.

To further improve the efficiency of the above two nonvariational methods, linear-combination-

of-unitary (LCU) methods have been proposed [29,142]. In Ref. [29], cosM (H) is used as a spectral

projector to prepare the ground state of H. The Hamiltonian function cosM (H) is expressed as

a linear combination of unitary cosM (H) =
󰁓

i αiUi with unitary operator Ui and coefficient αi.

The implementation of LCU formulae relies on some circuit oracles, and I refer to Refs. [36, 38]

for details. The query complexity of the LCU method is O( 1
∆ log(1ε ) and the number of ancillary

qubits required is O(log( 1
∆ log 1

ε )), where ∆ is a known lower bound of the Hamiltonian energy

gap and ε is the target precision. The query complexity shows an exponential improvement

when compared to the phase estimation algorithm. At a later stage, Lin and Tong [31] proposed

a more efficient method for ground state preparation. The key idea is to realise a polynomial

approximation of the sign function, which serves as a spectral projector of H, using quantum

signal processing (QSP) based on a block-encoding of H [32] (see Section 2.4.3). This method

will be discussed in detail in Section F.2.

The difficulty of realising either the LCU- or QSP-based methods in the near-term is that

they both require many ancillary qubits and a deep circuit; the oracles for realising a block-

encoding of H in LCU and QSP are difficult to compile. The resource cost for implementing a

block-encoding of H will be discussed in Section 9.3.

2.3.2 Imaginary-time evolution

The key idea in this section is that access to the physical properties of eigenstates can be achieved

through applying a spectral projector to the initial state, which projects out the contributions

from the other eigenstates. A natural way is to consider imaginary-time evolution,

gτ (H) := e−Hτ , (2.35)

which drives the system to the ground state in the long-time evolution under imaginary-time.
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To expand on this point more concretely, the normalised imaginary-time-evolved state e−Hτ |Ψ(τ)〉
󰀂e−Hτ |Ψ(τ)〉󰀂

can be expressed as e−(H−Eτ )τ |Ψ(τ)〉, where 󰀂 · 󰀂 is the state vector norm, and we can show that

Eτ = 〈Ψ(τ)|H|Ψ(τ)〉. Indeed, the state satisfies the Wick-rotated Schördinger equation

∂τ |Ψ(τ)〉 = −(H − Eτ ) |Ψ(τ)〉 (2.36)

Intuitively, the ground state can be determined from the long time limit of the Wick-rotated

Schrödinger equation

|u0〉 = lim
τ→∞

|ψ(τ)〉 .

In the following, we shall see that under imaginary-time evolution, the spectral weight on the

excited states are exponentially suppressed, and the ground state energy is exponentially close

to E0. The time-evolved state can be decomposed into the eigenstate basis of the Hamiltonian

as

|ψ〉 =
󰁛

j

cj |uj〉 , (2.37)

where we denote energy eigenstates |uj〉 and eigenenergies Ej , and the normalisation condition

holds
󰁓

j |cj |2 = 1. We assume the eigenstates are non-degenerate and the energy gap ∆01 :=

E1−E0 is not exponentially small. Indeed, exponentially small ∆01 indicates that these states are

indistinguishable, and we can hence regard these states as degenerate states. The time evolved

state is

|ψ(τ)〉 =
󰁛

j

cje
−(Ej−E0)τ |uj〉 , (2.38)

and the distance to the ground state energy is now given by

〈ψ(τ)|H|ψ(τ)〉
〈ψ(τ)|ψ(τ)〉 − E0 =

󰁓
j |cj |2(Ej − E0)e

−2(Ej−E0)τ

󰁓
j |cj |2e−2(E−E0)τ

≤
󰁓

j |cj |2(maxE − E0)e
−2(E1−E0)τ

|c0|2
= O(e−2∆01τ ).

(2.39)

I also remark that the time-evolved state is exponentially close to the ground state since

〈u0|ψ(τ)〉 〈ψ(τ)|u0〉
〈ψ(τ)|ψ(τ)〉 =

|c0|2󰁓
j |cj |2e−2(Ej−E0)τ

≥ |c0|2

|c0|2 + (1− |c0|2)e−2(E1−E0)τ
. (2.40)

2.3.3 Generalised imaginary-time evolution

In additional to the original imaginary-time evolution gτ (H) = e−Hτ , we could consider gener-

alised imaginary-time evolution, such as a Gaussian type function, gτ (H) = e−H2τ2 . Here, we

define a general matrix function acting on the Hamiltonian, which is expressed as

g(H) :=

N−1󰁛

i=0

g(Ei) |ui〉 〈ui| , (2.41)
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where g(h) : R → C is a generic continuous-variable function determining the transformation

of the energy spectrum of the Hamiltonian. To realise this eigenstate preparation process, we

require g(h) satisfying strictly non-increasing absolute value, |g(h′)| < |g(h)|, ∀h′ > h > 0

or h′ < h < 0, and vanishing asymptotic value, limτ→∞ |g(τh′)/g(τh)| = 0, ∀h′ > h > 0 or

h′ < h < 0 or alternatively limτ→∞ |g(τh)/g(0)| = 0, ∀|h| > 0.

While the projector3 is nonunitary by construction, we can effectively realise it by using a

combination of real-time dynamics e−iHti with real-time length ti, which is given by

gτ (H) =
󰁛

i

pie
−iHti . (2.42)

The Fourier transformation provides such a natural and universal decomposition. Therefore,

we can realise this nonunitary operation by a series of unitary operations. These unitary opera-

tions can be implemented using Hamiltonian simulation methods on a digital quantum simulator

or an analogue quantum simulator. For the most commonly used projection operator, we have

e−τH =
1

π

󰁝
dx

1

1 + x2
eiτxH , τ > 0 (2.43)

e−τ2H2
=

1

2
√
π

󰁝
dxe−x2/4eiτxH . (2.44)

also known as a Hubbard-Stratonavich transformation which is widely used in condensed matter

physics and quantum field theories.

The maximum time complexity maxi ti, which determines the circuit complexity required to

achieve an additive error ε, is logarithmic in the inverse error O(log(ε−1)).

2.4 Quantum dynamics simulation

Simulation of quantum dynamics U = e−iHt is one of the most natural and promising applica-

tion of quantum computing. As discussed in Section 2.3, dynamics simulation is an essential

component for eigenstate preparation. In addition, it is also an important subroutine for many

other quantum algorithms, like optimisation problems and open-system dynamics [25, 143]. In

this section, I briefly review methods for quantum dynamics simulation.

2.4.1 Overview

Quantum dynamics simulation of U = e−iHt is also called Hamiltonian simulation in the com-

munity of quantum computing. The problem of approximating the unitary operator can be

abstracted as follows.

Problem 1. Given a Hamiltonian H on n qubits, evolution time t, output a unitary approxima-

tion, U , of the ideal unitary U0 = e−iHt within an error ε, such that 󰀂U − U0󰀂 ≤ ε.

3Herein, a projector is referred to as a spectral projector of H.
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Suppose the Hamiltonian can be decomposed as H =
󰁓L

l=1Hl. It is assumed that the

Hamiltonian is sparse, that is, the number of terms in the Hamiltonian grows polynomially

with respect to the system size, L = O(Poly(N)). The most natural and direct Hamiltonian

simulation method is to apply the Lie-Trotter-Suzuki (Trotter) formulae, which approximate the

real-time evolution operator U(t) by the product of the evolution of the summands, eitHl , which

are relatively easy to implement. Historically, Lloyd proposed first-order Trotter methods for

universal Hamiltonian simulation [13]; Suzuki extended it to high-order product formula [139];

Berry et al. provided a detailed error analysis [35]; Childs et al. tightened the error analysis

using the commutator information in the Hamiltonian [144]. To improve the dependence on the

Hamiltonian sparsity L, Campbell proposed the qDRIFT algorithm, which randomly sample the

summands to realise the Trotter formula [145]. However, the remainder of a kth-order Trotter

formula (Trotter error) is usually large, which is polynomial in the order k, and the required gate

number is consequently polynomially dependent on the accuracy requirement as O(Poly(1/ε).

In recent years, there have been developments in Hamiltonian simulation algorithms by im-

plementing different linear-combination-of-unitary (LCU) formulae [36]. In 2015, Berry et al.

proposed a simulation algorithm using the LCU formula introduced by Taylor series expansion

of U(t) [38]. Low and Chuang subsequently proposed the quantum signal processing (QSP) algo-

rithm [32,33], which achieves optimal Hamiltonian simulation. In the QSP algorithm,H is embed-

ded into a larger unitary operator, usually based on a LCU decomposition of H, H =
󰁓L

l=1 αlUl;

a polynomial of the Hamiltonian (such as Taylor series [38] or Jacobi-Anger expansion [32]) can

be realised through coherent phase iterations and post-selection. These post-Trotter methods

are able to capture dominant terms in the time evolution U(t) with few resources, leading to a

logarithmic gate-number dependence on the accuracy requirement as O(Poly(log(1/ε)).

Nearly optimal simulation by quantum signal processing will be reviewed in Section 2.4.3,

which achieves the scaling

O(λt+ log(1/ε)/ log log(1/ε)) (2.45)

where λ =
󰁓

l |αl| is the sum of absolute values of the Hamiltonian coefficients and ε is the target

precision. It is worth noting that the scaling on t and ε is separate, which shows advantages

over LCU. This is attributed to the fact that Jacobi-Anger expansion approximates the operator

during a full time period t, instead of dividing the time into ν segments; the latter unavoidably

results in a coupling of t and ε, and thus has the multiplicative error dependence in the circuit

complexity as O(λt log(1/ε)/ log log(1/ε)). I refer to Section 2.4.3 for a detailed discussion of the

complexity, which will be used in Chapter 9.

These advanced algorithms, however, require the implementation of LCU formulae or block

encoding of Hamiltonians, which often costs many ancillary qubits and multi-controlled Toffoli

gates. Resource analysis at gate level will be discussed in Chapter 9.
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2.4.2 Product formula

One notable quantum dynamics simulation method is the product formula [144]. Typical product

formulae are the Trotter-Suzuki formulae, which shall be referred to as Trotter formulae or Trotter

methods in this thesis. In the Trotter methods, we first divide the real-time evolution into ν

short-time segments,

e−iHt =
󰀃
e−iHx

󰀄ν
(2.46)

where each time step is defined as x := t/ν, and approximates the unitary by a successive product

of short-time evolution. The first-order Trotter formula is

S1(x) =

L󰁜

l=1

e−ixHl (2.47)

and the second-order Trotter formula is

S2(x) =

1󰁜

l=L

e−i(x/2)Hl

L󰁜

l=1

e−i(x/2)Hl . (2.48)

A general (2k)th-order Trotter formula is

S2k(x) = [S2k−2 (pkx)]
2 S2k−2 ((1− 4pk)x) [S2k−2 (pkx)]

2 (2.49)

with pk := 1/
󰀃
4− 41/(2k−1)

󰀄
for k ≥ 1. The zeroth-order Trotter formula is denoted as S0(x) = I.

Denote the (multiplicative) remainder of the Trotter formulae as

V0(x) = U(x),

V1(x) = U(x)S1(x)
†,

V2k(x) = K2k(−x)U(x)K2k(x)
†,

(2.50)

with U(x) = e−ixH . Suzuki proves that,

Sk(x) = U(x) +O(xk+1) (2.51)

for k = 1 or even positive k. As a result, the remainder Vk(x) will only contain terms of xq with

q ≥ k + 1.

To improve the error dependence of the Trotterisation method, it is crucial to study the

remainder of the Trotter formulae. I will show how the Trotter error can be compensated by

LCU in Chapter 9.

2.4.3 Nearly optimal simulation by quantum signal processing

The quantum signal processing (QSP) algorithm by Low and Chuang [32,33,37] aims to expand

the real-time evolution using some polynomial functions of eigenvalues. To realise this, we first

encode the n-qubit Hamiltonian H =
󰁓

l αlUl to a (nL + n)-qubit unitary, select(H)

select(H) :=

L󰁛

l=1

|l〉〈l|⊗Hl, (2.52)
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where nL = ⌈log(L)⌉ and Ul is a unitary operator. Denote

|G〉 := 1√
λ

L󰁛

l=1

√
αl|l〉, (2.53)

with λ =
󰁓L

l=1 |αl|, then we have

H = λ(〈G|⊗ I) select(H)(|G〉 ⊗ I), (2.54)

which indicates that H is block-encoded into select(H).

The eigenvalues of H are related to the ones of select(H). Denote the spectral decomposition

of H as follows,

H =
󰁛

j

Ej |uj〉〈uj | = λ
󰁛

j

hj |uj〉〈uj | (2.55)

where hj = Ej/λ is the jth normalised eigenvalue. We have hj ∈ [−1, 1] since 󰀂H󰀂 ≤ λ by the

triangle inequality. For each eigenvalue hj ∈ (−1, 1), the following operator

−iQ := −i((2|G〉〈G|− I)⊗ I) select(H), (2.56)

has two corresponding eigenvalues h±j , which are given by

h±j = ∓
󰁴

1− h2j − ihj = ∓e±i arcsin(hj) = ∓e±iθj , (2.57)

with eigenvectors
󰀏󰀏󰀏h±j

󰁈
=

󰀓
|Gj〉± i

󰀏󰀏󰀏G⊥
j

󰁈󰀔
/
√
2, where

|Gj〉 : = |G〉 ⊗ |uj〉
󰀏󰀏󰀏G⊥

j

󰁈
: =

hj |Gj〉 − select(H) |Gj〉󰁴
1− h2j

. (2.58)

The QSP algorithm aims to construct the Hamiltonian evolution operator using the operator −iQ

with a sequence of operations called phase iterates. To realise this, we introduce an additional

ancillary qubit and define the phase iteration operator, following the discussion in [37] rather

closely,

Vφ :=
󰀓
e−iφσz/2 ⊗ I

󰀔
(|+〉〈+|⊗ I + |−〉〈−|⊗ (−iQ))

󰀓
eiφσ

z/2 ⊗ I
󰀔
. (2.59)

Denote the spectral decomposition of −iQ to be

−iQ =
󰁛

l

eiθl |ql〉 〈ql| , (2.60)

where θl contains the values of ±θj = ± arcsin (hj). Then, the phase iteration operator Vφ can

be rewritten as

Vφ =
󰁛

l

eiθl/2Rφ (θl)⊗ |ql〉 〈ql| (2.61)
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where

Rφ(θ) := e−iθσ(φ)/2, σ(φ) := cos(φ)σx + sin(φ)σy (2.62)

As a result, each eigenvalue eiθl of −iQ is embedded into Vφ as a rotation operator Rφ (θl) with

a tuneable angle φ.

The idea of QSP is to concatenate the rotation operators {Rφm (θl)}Mm=1 with well-designed

angles φ1, . . . ,φM so that the resulting operator can be realised,

RφM
(θ) . . . Rφ1(θ) = A

󰀕
cos

θ

2

󰀖
I + iB

󰀕
cos

θ

2

󰀖
σz + i cos

θ

2
C

󰀕
sin

θ

2

󰀖
σx + i cos

θ

2
D

󰀕
sin

θ

2

󰀖
σy

(2.63)

where the polynomials A(x) and C(x) can be engineered to be some target functions of the

eigenvalues θl and hence the functions of hj . The unwanted phase eiθl/2 in the phase iteration

Vφ in Eq. (2.61) will be cancelled out by alternating between Vφ and V †
φ+π,

V := V †
φM+πVφM−1

. . . V †
φ2+πVφ1 . (2.64)

The polynomials with only A(x) and C(x) can be extracted by preparing the ancillary qubit in

the state |+〉, performing the operations in Eq. (2.64), and post-selecting the ancillary qubit to

|+〉 (so that the polynomials B(x) and D(x) will be cancelled out). The resulting polynomial is

Poly(θ) = A

󰀕
cos

θ

2

󰀖
+ i cos

󰀕
θ

2

󰀖
C

󰀕
sin

θ

2

󰀖
(2.65)

In our case, the target is to realise the time evolution operator, which can be written as,

e−iHt =

N−1󰁛

j=0

e−i(λt)hj |uj〉〈uj | =
N−1󰁛

j=0

e−i(λt) sin(θj)|uj〉〈uj | (2.66)

To realise e−iHt using Eq. (2.64), the Jacobi-Anger expansion is used,

ei sin(θ)t =

∞󰁛

k=−∞
Jk(t)e

ikθ (2.67)

To approximate e−i(λt) sin θj , we use the polynomial Poly (θj) constructed from M phase iteration

operators. It is shown in [33] that with proper choices of the angles φ1, . . . ,φM , we can realise

the expansion in Eq. (2.67) at order q := M
2 + 1, giving an approximation with error at most

2

∞󰁛

k=q

|Jk(t)| ≤
4tq

2qq!
(2.68)

The detailed classical algorithm to find the angles φ1, . . . ,φM to realise the target polynomials

will not be introduced here.

Remarkably, quantum signal processing achieves nearly optimal scaling in terms of query

complexity as

O(λt+ log(1/ε)/ log log(1/ε)), (2.69)
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where λ =
󰁓

l |αl| is the sum of coefficients of the Hamiltonian and ε is the target precision.

Note that a block encoding of H could be difficult to implement, as it requires a huge overhead

in circuit compilation. The resource cost for circuit compilation will be discussed in Section 9.3.

2.4.4 Approximation of time-evolved states

In many applications, we are simply interested in the evolution of a specific quantum state. There-

fore, it is unnecessary to approximate the unitary U = e−iHt. This problem is less demanding,

and can be abstracted as follows.

Problem 2. Given an initial state |ψ(t = 0)〉, a Hamiltonian H on n qubits, evolution time t,

output a state approximation, |Φ(t)〉, of the ideal time-evolved state |ψ(t)〉 = e−iHt |ψ(t)〉 within

an error ε, such that 󰀂 |Φ(t)〉 − |ψ(t)〉 󰀂 ≤ ε.

The error of the unitary approximation is the upper bound of the state error as

󰀂U − U0󰀂 = max
φ

󰀂U |φ〉 − U0 |φ〉 󰀂. (2.70)

We see that the resource requirement for state approximation is lower than that for the approxi-

mation of the unitary operation. It is also worth noting the connection to the variational methods

introduced in Section 2.2.3. Variational methods aim to solve such a problem and approximate

the evolution from a specific state, although it cannot guarantee the simulation accuracy. In

Chapter 5, I will introduce a possible approach to Problem 2 with a theoretical guarantee of the

simulation accuracy.

There are also other specific settings, such as a fixed electron or spin number [146], local

observables [147], lattice models [144] and fixed observables [148], where quantum resources can

be further reduced.

2.4.5 Circuit implementation of multi-qubit Pauli rotation e−iP t

In this section, I give a pedagogical explanation of how an operator e−iP t can be implemented

with a quantum circuit. Assume P = P1 ⊗ P2 ⊗ · · · ⊗ Pn, where Pj ∈ {X,Y, Z}. Notice

that HdXHd = Z (Hd means the Hadamard gate) and Rx(
π
2 )Y Rx(−π

2 ) = Z. Define a map

G from a Pauli operator to a gate, such that G(Z) = I,G(X) = Hd, G(Y ) = Rx(−π
2 ) and

G−1(Pj)PjG(Pj) = Z. Then e−iP t is decomposed as

e−iP t = exp(−it

n󰁒

j=1

Pj) = exp(−it

n󰁒

j=1

G−1(Pj)Z
⊗n

n󰁒

j=1

G(Pj)) =

n󰁒

j=1

G−1(Pj)e
−iZ⊗nt

n󰁒

j=1

G(Pj),

(2.71)

where G(Pj) can be implemented by simple single-qubit gates. To implement e−iZ⊗nt, one can

first apply a series of CNOT gates

CNOTs = CNOT1→2CNOT2→3 · · ·CNOTn−1→n
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so that, for any input |󰂓z〉 from the computational basis, the last qubit will be transformed

into |z1 ⊕ z2 ⊕ · · ·⊕ zn〉. Then, we can simply apply e−itZ on the last qubit and finally apply

CNOTs−1. An example for the case of n = 4 is shown below.

• •
• •

• •

e−itZ

Through such a construction, one can easily check that for all inputs |z〉 from the computational

basis, a phase e−it will be applied to it when z1 ⊕ z2 ⊕ · · ·⊕ zn = 1 and all the other inputs will

remain the same. Thus, the effect of the circuit is equivalent to the operator e−iZ⊗nt.

Finally, we can use the circuit for e−iZ⊗nt to implement e−iP t, which can be realised by

applying single-qubit operations without introducing additional two-qubit gates. In such a con-

struction, 2n− 2 CNOT gates will be used. In practical implementation, the depth of quantum

circuits may be further reduced on a case-by-case basis.

2.5 Quantum operations

2.5.1 Generalised quantum operation

In this section, I introduce the concept of generalised quantum operations and its implementation,

which was initially proposed in [95]. The concept will frequently be used in this thesis, such as

in Section 2.2, and the entirety of Part II. The generalised quantum operation is defined as

Φ(ρ) = TrE [U(ρ⊗ |0〉 〈0|E)V
†], (2.72)

where U and V could be different unitary operators that apply jointly on ρ and |0〉E , and |0〉E 〈0|E
is short-handed as |0〉 〈0|E . The following shows several properties of the generalised quantum

operation Φ(ρ).

The generalised quantum operation Φ(ρ) has a bounded Schatten norm. Specifically, the

Schatten norm of a matrix is 󰀂M󰀂p = Tr[|M |p]1/p for p ∈ [1,∞) and we have

󰀂Φ(ρ)󰀂p ≤ 󰀂Φ(ρ)󰀂1 ≤ 󰀂U(ρ⊗ |0〉 〈0|E)V
†󰀂1 = 󰀂ρ⊗ |0〉 〈0|E 󰀂1 = 󰀂ρ󰀂1. (2.73)

Here the two inequalities follow from the non-increase of the Schatten norm over p and the non-

increase of the trace norm under a partial trace. Nevertheless, since Φ(ρ) could be complex, it

might not be a quantum channel in general.

The real and imaginary part of Φ(ρ) could be expressed as a linear combination of completely

positive trace non-increasing quantum channels. Specifically, they could be obtained with the
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following circuit.

|+〉0 • X0, Y0

ρ

U V U †
|0〉E

The output state before measurement is

ρout = |0〉 〈0|0 Uρ⊗ |0〉 〈0|E U † + |0〉 〈1|0 Uρ⊗ |0〉 〈0|E V †

+ |1〉 〈0|0 V ρ⊗ |0〉 〈0|E U † + |1〉 〈1|0 V ρ⊗ |0〉 〈0|E V †.
(2.74)

The real and imaginary part of Φ(ρ) can be obtained from the X and Y measurements

Re[Φ(ρ)] = Tr0[ρoutX0], Im[Φ(ρ)] = Tr0[ρoutY0]. (2.75)

The measurement of the output state is realised in a similar way. For example, the real and

imaginary parts of Tr[Φ(ρ)O] could be realised with the following circuit.

|+〉0 • X0, Y0

ρ

U V U †
O

|0〉E

When U = V , it reduces to a quantum channel N with N (ρ) = TrE [U(ρ⊗ |0〉 〈0|E)U †] and the

quantum circuit implementation

|0〉E
U

ρ

When there is no ancillary E, it becomes Φ(ρ) = UρV †, with the circuit

|+〉0 •

ρ U V U †

which plays a key role in our explicit scheme in Section 6.3.

Given two generalised quantum operations

Φ1(ρ) = TrE1 [U1(ρ⊗ |0〉 〈0|E1
)V †

1 ],

Φ2(ρ) = TrE2 [U2(ρ⊗ |0〉 〈0|E2
)V †

2 ],
(2.76)

the concatenated operation

Φ2 ◦ Φ1(ρ) = TrE1E2 [U2U1(ρ⊗ |0〉 〈0|E1,E2
)V †

1 V
†
2 ], (2.77)
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is also a generalised quantum operation. The real and imaginary part of Φ2 ◦ Φ1(ρ) could be

obtained from measuring the ancillary qubit on the X0 and Y0 basis with the following circuit.

|+〉0 • X0, Y0

ρ
U2U1 V2V1U

†
1U

†
2|0〉E1,E2

It can be equivalently realised as follows using two ancillary qubits.

|+〉0 • X0, Y0

|+〉0′ • X0′ , Y0′

ρ
U1 V1U

†
1

U2 V2U
†
2

|0〉E1

|0〉E2

In particular, the above circuit factorises into two independent circuits when (1) ρ is a tensor

product of two states ρ = ρ1 ⊗ ρ2 (2) U1 and V1 applies on ρ1 and |0〉E1
; U2 and V2 apply on ρ2

and |0〉E2
.

2.5.2 Pauli transfer matrix representation

In this section, I introduce the Pauli transfer matrix representation of states, observables, and

channels as a preliminary. By using Pauli transfer representation, a state, and an observable are

mapped to a real column and row vectors respectively, as follows

|ρ〉〉 = [. . . ρk . . . ]

ρk = Tr(Pkρ),
(2.78)

and
〈〈Q| = [. . . Qk . . . ]

Qk =
1

d
Tr(QPk),

(2.79)

where Pk ∈ {I,σx,σy,σz}⊗n, n is the number of qubits, and d = 2n. Furthermore, for a process,

i.e., E(ρ) =
󰁓

k KkρK
†
k, the Pauli transfer matrix representation is

Ek,j =
1

d
Tr

󰀃
PkE(Pj)

󰀄
, (2.80)

and the measurement in the Pauli transfer representation is

Tr
󰀃
QE(ρ)

󰀄
= 〈〈Q|E |ρ〉〉. (2.81)
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2.5.3 A complete basis operation set

Every single-qubit operation can be decomposed into a linear combination of 16 basis operations.

This is because every single-qubit operation (including projective measurements) can be expressed

with square matrices with 4 × 4 = 16 elements by using the Pauli transfer representation in

Section 2.5.2. Therefore, 16 linearly independent operations are sufficient to emulate arbitrary

single-qubit operations. Table 2.1 shows a set of single-qubit basis operations [149].

1 [I] (no operation) 2 [σx]

3 [σy] 4 [σz]

5 [Rx] = [ 1√
2
(I + iσx)] 6 [Ry] = [ 1√

2
(I + iσy)]

7 [Rz] = [ 1√
2
(I + iσz)] 8 [Ryz] = [ 1√

2
(σy + σz)]

9 [Rzx] = [ 1√
2
(σz + σx)] 10 [Rxy] = [ 1√

2
(σx + σy)]

11 [πx] = [12(I + σx)] 12 [πy] = [12(I + σy)]

13 [πz] = [12(I + σz)] 14 [πyz] = [12(σ
y + iσz)]

15 [πzx] = [12(σ
z + iσx)] 16 [πxy] = [12(σ

x + iσy)]

Table 2.1: Sixteen basis operations. These operations are composed of single-qubit rotations
and measurements. [I] denotes an identity operation (no operation), [σi] (i = x, y, x) corresponds
to operations applying Pauli matrices. [π] corresponds to projective measurements.

Here, the complete set of basis operations is denoted as {Bi}. For multiple qubit systems,

a tensor product of single-qubit operations, e.g., Bi ⊗ Bj , also forms a complete basis set for

composite systems. Therefore, we can decompose any n-qubit operation into the basis {Bi}⊗n

E =
󰁛

i

λiBi. (2.82)

Although the decomposition is universal, it may produce a large coefficient Λ :=
󰁓

i |λi|, which
results in a large sampling overhead. More details will be discussed in Chapter 6.

2.6 Quantum error mitigation

2.6.1 Error Model

Noise is inevitable in a quantum device due to interaction with the environment. Effective

quantum error mitigation (QEM) schemes are crucial for suppressing errors in order to guarantee

calculation accuracy. This section provides a review of QEM.

In a digital gate-based quantum computer, the effect of noise is simplified as a quantum

channel appearing either before or after each gate. The output state is different from the ideal

one, which can be described as

ρnoisyout = NNg ◦ UNg ◦ . . .N1 ◦ U1(ρin)

ρidealout = UNg ◦ · · · ◦ U1(ρin),
(2.83)
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where ρnoiseout is a noisy output and ρidealout is a noise-free output from the quantum circuit, Uk

and Nk are kth quantum operation and the noise accompanying it, and Ng is the number of

gates. Here, we assume the noise processes are Markovian for the sake of simplicity. Fault-

tolerant error correction based on encoding of qubits can be used to compensate for the effect of

noise and obtain correct computation results. However, in near-term quantum computing, the

number of qubits and gate operations are restricted due to imperfections of quantum devices,

which include physical noise and limited interactions among qubits. Therefore, fault-tolerant

error correction necessitating encoding of qubits could be challenging for near-term quantum

computing. Instead, QEM was introduced for mitigating errors in quantum circuits without

using additional qubits. By using QEM, one cannot restore the quantum state itself, but can

instead obtain an approximation of expectation values of observables corresponding to the ideal

density matrix, i.e.,

Tr
󰁫
QEM

󰀓
ρnoisyout

󰀔
O
󰁬
≈ Tr

󰁫
ρidealout O

󰁬
, (2.84)

for any observable O. Here, QEM(ρ) denotes the process of error mitigation, which may not

satisfy the requirements of a quantum channel. Therefore, we generally need classical post-

processing to realise QEM(ρ), which may introduce a sampling overhead (cost) when measuring

observables. The cost in general increases exponentially with respect to the error strength, as we

will see below. Therefore, a constant small error strength is generally required in order to make

QEM to work.

2.6.2 Quasi-probability method

Among different QEM schemes via different post-processing, the quasi-probability error mitiga-

tion method is one of the most effective approaches [97, 149, 150]. It recovers the ideal unitary

processes by randomly generating noisy operations, with post-processing of measurement results.

Suppose the ideal quantum operation is denoted as U , then the key idea of the quasi-probability

method is to express the ideal evolution U as a linear combination of noisy operations Ki as

U ≈
󰁛

i

qiKi = C
󰁛

i

pisgn(qi)Ki, (2.85)

where U and Ki are superoperators, and
󰁓

i qi = 1, C =
󰁓

i |qi|, pi = |qi|/C. As qi can be

negative, we refer to qi as the quasi-probability, and therefore the overhead coefficient C ≥ 1 in

general. To obtain the error free expectation value of an observable O, we randomly generate

noisy operation Ki with probability pi, multiply the measured result by the parity factor sgn(qi),

and obtain the expectation value 〈O〉eff as follows,

〈O〉eff =
󰁛

i

pisgn(qi)Tr[OKi(ρin)], (2.86)

Finally, the error-free expectation value of 〈O〉 is approximated by C 〈O〉eff . The variance is

amplified C2 times greater, and thus the number of measurements required to achieve the same
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accuracy as that without QEM will be amplified C2 times greater. C2 can be interpreted as a

resource cost for QEM.

By way of illustration, we shall take a case in which a single-qubit operation is affected by

depolarising errors as DU . The removal of the error D can be formally done by applying its

inverse channel D−1. Now, the depolarising channel can be expressed as

D(ρ) =

󰀕
1− 3

4
p

󰀖
ρ+

p

4
(XρX + Y ρY + ZρZ), (2.87)

with the inverse channel derived as

D−1(ρ) = CD−1 [p1ρ− p2(XρX + Y ρY + ZρZ)], (2.88)

where CD−1 = (p + 2)/(2 − 2p) > 1, p1 = (4 − p)/(2p + 4), and p2 = p/(2p + 4). Here, it is

assumed that p < 1.

Consequently, the ideal channel U can be expressed as

U = D−1DU

= CD−1 [pIDU − p2(XDU + YDU + ZDU)],
(2.89)

where I, X , Y and Z correspond to an identity operation, and the superoperators for Pauli

operators. Note that Eq. (2.89) is written in the same form as Eq. (2.85), and hence the quasi-

probability method can be performed similarly.

To mitigate errors in a quantum circuit consisting of multiple gates, the quasi-probability

operations are applied after each noisy gate. The parity is updated depending on the generated

operations, and the final outcome of the parity is applied to measurement results in the same

way as a single quantum operation, shown in Eq. (2.85). Suppose there are N gates in a circuit;

the total overhead CN can be expressed as

CN =

N󰁜

i=1

Ci, (2.90)

where Ci is the overhead for the ith gate. Assume the error εi for each gate is small, and thus

the cost Ci is close to 1. We assume Ci takes the form of Ci ≈ 1 + λiεi, which is the first-order

expansion with respect to εi, where λi characterises the error strength. The total overhead CN

can be approximated by

CN ≈
󰁜

i

(1 + λiεi). (2.91)

For simplicity, we assume λi = λ and εi = ε are independent of i. Then we have

CN ≈ (1 + λε)N = (1 + λε)
1
λε

λεN ≈ eλεN = eλεN . (2.92)

Here εN = εN is denoted as the total error rate of all the N gates. The total cost CN increases

exponentially with the total error rate εN . Error mitigation methods are useful when the total

error rate of a quantum circuit is small, εN = O(1).
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2.6.3 Stochastic error mitigation

In the above discussion, the QEM method assumes that the noise appears either before or after

each gate in a digital gate-based quantum computer, but realistic noise occurring in the ex-

perimental apparatus is more complicated. Specifically, every gate in digital circuits or every

process in analogue simulation is physically realised via a continuous real-time evolution of a

Hamiltonian, and thus errors can either inherently mix with the evolution making it strongly

gate- or process-dependent, or act on multiple qubits leading to highly nonlocal correlated effects

(crosstalk). Since conventional quantum error mitigation methods are restricted to gate-based

digital quantum computers and over-simplified noise models, they fail to work when applied to

realistic errors and general continuous quantum processes. In Chapter 10, I extend and apply

the QEM method to a more practical scenario, demonstrating how errors can be mitigated for

inherent dynamics-based and nonlocal noise in practical noisy quantum devices.
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Part II

Estimating static and dynamic
properties of quantum many-body

systems
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In Part I, I introduced a general recipe for describing and solving a quantum many-body

problem. The first step is to encode the problem, which requires an effective and efficient de-

scription of a quantum many-body system. With this efficient representation in place, we prepare

the initial state, evolve the state under the Hamiltonian, and measure the final state to get the

observation of interest. In this process, the essential components are eigenstate preparation and

dynamics simulation, which correspond to the static problems and dynamic problems introduced

in Section 1.2. In this part, I will show a solution to such a general quantum many-body problem,

covering specifically how to estimate static and dynamic properties of quantum systems.

In Chapter 3, I introduce a new quantum-classical architecture, the hybrid tensor network,

which serves as a basis for a general representation of quantum systems and is applicable to

a broad range of problems. This method incorporates the complementary strength of tensor

networks and quantum computing, and is shown to be capable of unifying many existing classical

and quantum algorithms.

In Chapter 4, I focus on eigenenergy estimation and eigenstate property estimation. A quan-

tum algorithmic cooling scheme is proposed to find the energy spectrum and estimate eigenstate

properties, which achieves exponential speed-up for the circuit complexity with the requirement

of only one ancillary qubit, and shows clear advantages over quantum phase estimation and

variational algorithms.

In Chapter 5 and Chapter 6, I focus on dynamic problems. The central objective is to

approximate a unitary operator or a time-evolved state, formalised in Section 2.4. In Chapter 5,

I propose an adaptive product formula for the latter problem. I further show how to enable large-

scale quantum simulation by using the methods developed in Chapter 3. In Chapter 6, I introduce

a perturbative approach for a generic interacting quantum system described by H = H loc+V int.
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Chapter 3

Hybrid quantum-classical tensor
networks: framework and application

The first step of quantum simulation is to develop a general framework for representing a quantum

many-body system in an efficient way. There are several methods of describing a quantum system,

one of which is tensor networks. Tensor network theory, originating from the density matrix

renormalisation group (DMRG) for 1D Hamiltonians [151, 152], describes the quantum state

with a network consisting of low-rank tensors. It has achieved notable success in its application

to a variety of problems, particularly in 1D local gapped systems. However, the tensor network

theory may become inadequate for application to general strongly correlated systems or those

that do not admit an efficient tensor network description.

Drawing on tensor network theories and quantum computation, I introduce a new paradigm

to represent quantum many-body states incorporating the power of quantum computing and

classical tensor networks (overviewed in Section 2.1.4). A framework of the hybrid tensor network

consisting of classical low-rank tensors and many-body quantum states is established. This

method provides a basis for general hybrid quantum-classical representation of a many-body

wave function that is applicable to a broad range of problems with concrete examples, such

as quantum chemistry, quantum spin systems, searching for topological phase transitions, and

quantum field theories.

By leveraging the ability of tensor networks in the efficient classical representation of quantum

states, complex interacting quantum systems can be effectively represented using fewer quantum

resources, which enables medium- or large-scale quantum simulation using small quantum pro-

cessors. More importantly, this method demonstrates the ability to unify some typical algorithms

in quantum simulation, which are commonly used in condensed matter physics and chemistry.

In this chapter, I will introduce the definition of classical and quantum tensors, the definition

of tensor contraction and its meaning, the way to measure local observables, its properties, and

applications in quantum many-body systems. This chapter is relevant to work published in
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collaboration with Xiao Yuan, Junyu Liu, Qi Zhao, and You Zhou [90]. Author contributions

are listed at the end of this chapter. The same format will be used in the following chapters.

3.1 Framework

3.1.1 Classical and quantum tensors

As introduced in Section 2.1.4, a hybrid tensor network consists of classical and quantum tensors,

whose mathematical definition is consistent with that of a conventional tensor network. That is,

tensor contractions are mathematically defined in the same way for classical and quantum tensors.

Nevertheless, it is worth highlighting the difference between them. Operationally, classical tensors

are contracted classically via tensor multiplication, while quantum tensors are contracted via

measuring a quantum state on a quantum computer.

To motivate the establishment of hybrid tensor networks (TN), I begin with classical tensor

network theory. A rank-n tensor, when regarded as a multi-dimensional array, can be represented

as Tj1,j2,...,jn with n indices. The amplitude of an n-partite quantum state in the computational

basis corresponds to a rank-n tensor

|ψ〉 =
󰁛

j1,j2,...,jn

ψj1,j2,...,jn |j1〉 |j2〉 . . . |jn〉 .

A classical TN typically consists of low-rank tensors, which could efficiently describe physical

states that lie in a small subset of the whole Hilbert space.

A typical tensor network is a matrix product state (MPS) [153], which has achieved success

in representing 1D local gapped systems with area law of entanglement. MPS admits the form

of

|ψ〉 =
󰁛

j1···jn

Tr[Aj1 . . . Ajn ] |j1 . . . jn〉

which consists of rank-3 tensors with a small bond dimension κ of each matrixAjk , and compresses

the state dimension from O(2n) to O(nκ2). As discussed in Section 2.1.4, tensor networks may

not be able to represent general quantum many-body systems. This motivates the incorporation

of quantum computing. A quantum state generated from applying a unitary circuit to a certain

initial state generically forms an intrinsic large-rank quantum tensor and can be naturally stored

and manipulated with a quantum computer.

In the literature, classical tensor network theory and quantum simulation are generally used

as separate techniques in classical and quantum computing. Below I introduce quantum tensors

as general n-partite quantum states prepared by a quantum computer, and classical tensors as

low-rank tensors stored in a classical computer; I then demonstrate the combination of quantum

and classical tensors as a hybrid tensor network.

Suppose an n-partite quantum state is generated by applying a unitary Uψ to an initial state

|0̄〉 as |ψ〉 = Uψ |0̄〉, as shown in Figure 3.1(a). As shown in Eq. (2.17), the quantum state can be
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Figure 3.1: Tensor network representation of quantum states and tensor contractions. (a) A
general n-partite quantum state can be regarded as a rank-n tensor (black line, subscript). (b)
A classical index (red line, superscript) is added to an n-partite quantum state to generate a
rank-(n+ 1) tensor with n indices representing n quantum systems and 1 classical index. With
a quantum circuit, it is equivalent to preparing different states |ψi〉 = U i |i〉 with (b1) different
unitary operations as |ψi〉 = U i |0̄〉 or (b2) simply the same unitary but different initial states
as |ψi〉 = U |0̄i〉. (c, d) Tensor contractions between a quantum tensor and a classical tensor.
The contracted index could be (c) classical (red) or (d) quantum (black), which is contracted in
different ways. (e, f, g) Tensor contractions between two quantum tensors. (c, e) The contracted
index of both tensors corresponds to a classical index. (d, f) The contracted index corresponds
to a classical index for one tensor and a quantum index for another tensor. (g) The contracted
index of both tensors corresponds to a quantum index. The tensor Π is equivalent to a projective
measurement

󰁓
i=i′ |i〉 〈i|⊗ |i′〉 〈i′|.

regarded as a rank-n tensor in the computational basis. We can also introduce classical index to

the quantum state by applying different unitary gates as

|ψi〉 = Uψi |0̄〉 =
󰁛

j1,j2,...,jn

ψi
j1,j2,...,jn |j1〉 |j2〉 . . . |jn〉 . (3.1)

Alternatively, we can also apply the same unitary but to different initial states as

|ψi〉 = U |0̄i〉 =
󰁛

j1,j2,...,jn

ψi
j1,j2,...,jn |j1〉 |j2〉 . . . |jn〉 , (3.2)

where the classical index i indicates the different unitaries or different initial states. As a result,

{|ψi〉} as a whole forms a rank-(n+ 1) tensor. This is illustrated in Figure 3.1(b).

For simplicity, only one classical index is introduced here, but there is no restriction on

introducing more classical indices. All these cases are regarded as quantum tensors, and a

network connecting with quantum tensors and classical tensors is termed as a hybrid tensor

network. Hereafter, we put indices corresponding to classical labels and quantum basis to the

superscript and subscript of the tensor, respectively. This work focuses on qubits, and the results

can be straightforwardly generalised to qudits in higher dimensions.
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3.1.2 Hybrid tensor networks

In this section, I show how to connect quantum and classical tensors to form a hybrid tensor.

When connecting two tensors, being either classical or quantum, we follow the conventional rule

for tensor contraction.

Regarding low-rank tensors as classical tensors (superscript index, coloured red in figures)

and quantum states as quantum tensors (subscript index, coloured black), we define hybrid TNs

as networks constructed by connecting both classical and quantum tensors. For example, the

tensor Ai1,i2 represents a classical tensor with two classical indices and ψi
j1,j2,...,jn

represents a set

of n-partite quantum states. Two tensors, being either classical or quantum, are connected by

following the conventional contraction rule, i.e., Ci1,i3 =
󰁓

i2
Ai1,i2Bi2,i3 . As an example of this,

the connection of a quantum and a classical tensor is shown in Figure 3.1(c, d).

While the mathematical definition of tensor contraction of a hybrid tensor network is consis-

tent with the conventional definition, its practical meaning can be different. Specifically, classical

and quantum tensors are contracted in two different ways via tensor contraction and quantum

state measurement, respectively. Depending on whether the tensor and the index are quantum

or classical, there are five different cases under contraction, as shown in Figure 3.1(c-g). For ease

of explanation, this chapter considers the contraction of rank-2 classical tensors and rank-(n+1)

quantum tensors without loss of generality. Hereafter, ”. . . ” is used to abbreviate the quantum

indices (e.g., j1, j2, ..., jn in Figure 3.1(a)) when they are not contracted.

Case 1: quantum tensor (contracted index: classical) & classical tensor (contracted index:

classical) in Figure 3.1(c).

First, a quantum tensor ψi1
... is connected with a classical tensor αi1,i2 to form a new rank-

(n+ 1) tensor,

ψ̃i2
... =

󰁛

i1

ψi1
... · αi1,i2 , (3.3)

where the contracted index from the quantum and classical tensors is a classical label. To

understand the meaning of Eq. (3.3), the quantum tensor ψi1
... is regarded as a set of independent

quantum states {|ψi1〉} and the tensor ψ̃i2
... represents a new set of states,

|ψ̃i2〉 =
󰁛

i1

αi1,i2 |ψi1〉 , (3.4)

where each one is now a superposition of the original states {|ψi1〉}. As a special case, when the

classical tensor is rank-1, αi1 , the output tensor is

|ψ̃〉 =
󰁛

i1

αi1 |ψi1〉 . (3.5)

Therefore, we can connect a classical tensor to the classical index of a quantum tensor to effec-

tively represent a superposition of quantum states.
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Case 2: quantum tensor (contracted index: quantum) & classical tensor (contracted index:

classical) in Figure 3.1(d).

When the contracted index i1 of the quantum tensor ψi1,... corresponds to a quantum system,

the tensor contraction is similarly defined as

ψ̃i2
... =

󰁛

i1

ψi1,... · αi1,i2 . (3.6)

When considering quantum states, the contraction transforms an input state |ψ〉 to a set of

output states {|ψ̃i2〉} as

|ψ̃i2〉 =
󰁛

i1

αi1,i2 〈i1|ψ〉 , (3.7)

which is equivalent to projecting the contracted system onto 〈i1| to form a set of un-normalised

states |ψi1〉 = 〈i1|ψ〉 and re-combining them with coefficients αi1,i2 . Actually, if we regard α

as a unitary gate with i2 representing a quantum system, it corresponds to a local unitary

transformation of the state.

Case 3: quantum tensor (contracted index: classical) & quantum tensor (contracted index:

classical) in Figure 3.1(e).

Next, consider the contraction of two quantum tensors, with the contracted index being

classical for both tensors. Suppose the two quantum tensors are ψi
... and φi

..., the contraction of

index i gives

ψ̃... =
󰁛

i

ψi
... · φi

.... (3.8)

Considering quantum states, the contraction transforms two sets of states {|ψi〉} and {|φi〉} to

an un-normalised state

|ψ̃〉 =
󰁛

i

|ψi〉 ⊗ |φi〉 . (3.9)

By contracting two quantum tensors, we can thus effectively entangle two quantum systems. A

classical tensor can also be added in between so that the amplitude for each |ψi〉⊗|φi〉 is different.
Case 4: quantum tensor (contracted index: quantum) & quantum tensor (contracted index:

classical) in Figure 3.1(f).

When one of the contracted indices corresponds to a quantum system, the contraction is

similarly defined as

ψ̃... =
󰁛

i

ψi,... · φi
.... (3.10)

Considering quantum states, the contraction converts |ψ〉 and {|φi〉} to

|ψ̃〉 =
󰁛

i

〈i|ψ〉 ⊗ |φi〉 . (3.11)

Again, this is equivalent to applying a projection to |ψ〉 to get a set of states {|ψi〉 = 〈i|ψ〉} and

then connecting the classical indices of the two quantum tensors.
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Case 5: quantum tensor (contracted index: quantum) & quantum tensor (contracted index:

quantum) in Figure 3.1(g).

When both contracted indices represent quantum systems, two quantum tensors ψi,... and

φi,... are contracted as

ψ̃... =
󰁛

i

ψi,... · φi,.... (3.12)

It is equivalent to

|φ̃〉 =
󰁛

i

〈i|ψ〉 ⊗ 〈i|φ〉 =
󰁛

i

〈i, i| |ψ〉 ⊗ |φ〉 , (3.13)

which accounts for a Bell state projection on the contracted systems. Note that since it is a joint

measurement on both states, the success probability could be less than 1. If there are multiple

contractions of quantum indices, the overall probability could be exponentially small. Therefore,

we only allow a constant number of contractions of two quantum indices in the hybrid tensor

network.

For a general hybrid tensor network consisting of classical and quantum tensors, its tensor

contraction rule and operational meaning are similar to the above cases.

3.1.3 Calculation of expectation values of local observables

In this section, I show how to measure the expectation values of tensor products of local observ-

ables given a hybrid tensor network representation of a quantum state. The basic rule follows the

same mathematics of tensor contraction. For classical tensors, the expectation value is calculated

in the same way as conventional tensor networks. Conversely, for quantum tensors we can no

longer calculate the expectation value via tensor contraction since it involves matrix multiplica-

tion of a rank-n tensor. Instead, the expectation value is obtained by preparing the state on a

quantum computer and measuring the state.

Figure 3.2(a) shows how to get an expectation value of local observables for the quantum

systems described by a rank-(n + 1) quantum tensor. This tensor can be either an n-partite

quantum state with a classical index i or an (n+1)-partite quantum state with a quantum basis

index i. By measuring the n parties, it gives a new rank 2 tensor M i′,i with two open indices i

and i′,

M i′,i = 〈ψi′ |O1 ⊗O2 ⊗ · · ·⊗On |ψi〉 , (3.14)

where Oj is a local observable acting on the jth bit. Here the definition is the same if we measure

an (n+ 1)-partite quantum state.

The indices of M i′,i are always put in the superscript, because the observable in Eq. (3.14) is

always a classical low-rank tensor. Note that the matrix M i′,i is always hermitian so that it can

be measured when the indices i and i′ are contracted to another quantum tensor. I now illustrate

how to get M i′,i under different circumstances.
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Figure 3.2: Measuring expectation values of a quantum tensor. (a) Consider a rank-(n + 1)
quantum tensor, which could be either an n-partite quantum state with a classical index i or
an (n + 1)-partite quantum state with a quantum basis index i. The expectation value of the
n quantum systems gives a hermitian observable M i′,i = 〈ψi′ |O1 ⊗ O2 ⊗ · · · ⊗ On |ψi〉 on the
open indices. Each element M i′,i can be measured with a quantum circuit of (b), (c), or (d).
(b) Suppose the index i is classical and |ψi〉 = U i |0̄〉, we choose U1 = U i, U2 = U i′(U i)†, and
UM to be the unitary that rotates the eigenstates of the observables to the computational basis.
Each M i′,i is obtained by measuring the ancillary qubit in the X, Y , Z bases and the other
n qubits in the computational Z basis. (c) Suppose the index i is classical and |ψi〉 = U |0̄i〉;
U1 is applied to prepare four input states |0̄i〉 , |0̄i′〉 , (|0̄i〉 + |0̄i′〉)/

√
2, (|0̄i〉 + i |0̄i′〉)/

√
2. Each

M i′,i corresponds to a linear combination of the measurement results. (d) Suppose the index
i is quantum, after applying the unitary U for preparing the state |ψ〉 = U |0̄〉, we measure n
qubits in the computational basis and the qubit with index i in the Pauli X, Y , and Z bases. (e)
Tensor contraction can have different orders. With a rank-(n+ 1) quantum tensor connected to
a classical tensor, we can either (e1) first calculate the expectation value of the classical tensor
and then measure the (n+ 1)-partite quantum state or (e2) first measure the n systems via (d)
and then do classical tensor contraction.

Case 1: The rank-(n + 1) quantum tensor is an n-partite quantum state with a classical

index i.

• Suppose |ψi〉 = U i |0̄〉, U1 = U i. M i′,i is measured with the quantum circuit in Fig-

ure 3.2(b). Consider U2 = U i′(U i)† and UM to be the unitary that rotates the eigenstates

of the observable to the computational basis. The output state before the UM gate is

|ψ̃〉 = 1√
2

󰀃
|0〉 |ψi〉+ |1〉 |ψi′〉

󰀄
. (3.15)

When the ancillary qubit measures the Pauli X, Y , Z operators, and the n-partite system

measures M = O1 ⊗O2 ⊗ · · ·⊗On, the expectation values are

〈ψ̃|X ⊗M |ψ̃〉 = 1

2

󰀃
M2,1 +M1,2

󰀄
,

〈ψ̃|Y ⊗M |ψ̃〉 = 1

2

󰀃
iM2,1 − iM1,2

󰀄
,

〈ψ̃|Z ⊗M |ψ̃〉 = 1

2

󰀃
M1,1 −M2,2

󰀄
.

(3.16)

Note that M1,2 is the complex conjugate of M2,1, and we have

〈ψ̃|I ⊗M |ψ̃〉 = 1

2

󰀃
M1,1 +M2,2

󰀄
, (3.17)
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which can be obtained from the measurement of any Pauli basis. Therefore, we can exactly

solve for each term M i,j (i, j = 1, 2) and construct the measurement

M̃ =

󰀝
M1,1 M1,2

M2,1 M2,2

󰀞
.

• Suppose |ψi〉 = U |0̄i〉. M i′,i can be measured with the quantum circuit in Figure 3.2(c).

Now we need to input (|0̄i〉± |0̄i′〉)/
√
2 and (|0̄i〉± i |0̄i′〉)/

√
2 and the matrix elements can

be similarly obtained.

Case 2: The rank-(n+ 1) quantum tensor is an n+ 1-partite quantum state with a quantum

index I.

We need to measure

M i′,i = 〈ψ| |i′〉 ⊗O1 ⊗O2 ⊗ · · ·⊗On ⊗ 〈i| |ψ〉 = 〈ψ| (|i′〉 〈i|)⊗O1 ⊗O2 ⊗ · · ·⊗On |ψ〉 . (3.18)

Note that the matrix |i′〉 〈i| can always be represented as a linear combination of the Pauli

operators, we can thus instead measure the uncontracted qubit in the three X,Y, Z Pauli bases

to equivalently get any M i′,i as shown in Figure 3.2(d). Suppose |ψ〉 = U |0̄〉, denote

E(σ) = 〈ψ|σ ⊗O1 ⊗O2 ⊗ · · ·⊗On |ψ〉 , (3.19)

and we can reconstruct the measurement M̃ as

M̃ =
1

2

󰀃
E(I)I + E(X)X − E(Y )Y + E(Z)Z

󰀄
, (3.20)

where E(X), E(I), E(Y ), E(Z) are the obtained expectation values with Pauli measurements

I,X, Y, Z.

Calculating the expectation value of a general hybrid tensor network follows the above basic

rules for classical and quantum tensors. Nevertheless, similar to conventional tensor networks,

different orders of tensor contraction could have different procedures and complexities. For

example, say that we are considering the hybrid tensor shown in Figure 3.2(e), which consists

of a rank-(n + 1) quantum tensor and a classical tensor. We could first contract the right

classical observable O0 with the classical tensor α, and obtain a new observable O
′
0. Then we

measure the n+1-partite quantum state to get the final expectation value. Here we need classical

contraction and a single local measurement with repetition samples M. This procedure is shown

in Figure 3.2(e1). Alternatively, we can also use the circuit in Figure 3.2(d) to reconstruct

observable M by measuring the n + 1-partite quantum state and then contract the classical

tensors. This procedure requires three local measurement settings (X, Y , and Z on the first

qubit) with total repetition samples of 3M.
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3.1.4 Application in quantum simulation

The hybrid tensor network provides a way to more efficiently represent quantum states with fewer

quantum resources. The hybrid tensor network can be applied in variational quantum simulation

for solving static energy spectra and simulating dynamics of a quantum system.

Consider a many-body Hamiltonian

H =
󰁛

i

λihi (3.21)

with coefficients λi and tensor products of Pauli matrices hi. To find the ground state of the

Hamiltonian, consider a parameterised hybrid quantum tensor network, which corresponds to a

possibly un-normalised state |ψ(󰂓x)〉. Here 󰂓x denotes the parameters in a hybrid tensor network,

which include the parameterised rotation angles in the quantum circuit and parameters in the

classical tensors. Then we can measure the average energy as

E(󰂓x) =
〈ψ(󰂓x)|H |ψ(󰂓x)〉
〈ψ(󰂓x)|ψ(󰂓x)〉 =

󰁓
i λi 〈ψ(󰂓x)|hi |ψ(󰂓x)〉
〈ψ(󰂓x)|ψ(󰂓x)〉 , (3.22)

where each 〈ψ(󰂓x)|hi |ψ(󰂓x)〉 and the normalisation 〈ψ(󰂓x)|ψ(󰂓x)〉 can be obtained by calculating

the expectation value of the hybrid tensor network with the method I discussed in the previous

section. Having measured E(󰂓x) for any 󰂓x, we can then optimise the parameters via the classical

algorithm to minimise E(󰂓x) to search for the ground state. The whole optimisation procedure

is identical to a conventional approach named variational quantum eigensolver (VQE) which is

introduced in Section 2.2.2. The difference lies in the usage of the hybrid tensor network, which

may enable quantum simulation of large systems with small quantum processors. We can also use

hybrid tensor networks for simulating Hamiltonian dynamics. The circuit for the implementation

of variational Hamiltonian simulation with hybrid tensor networks is slightly more complicated.

I leave the discussion to Chapter 5. In the following sections, we mainly focus on using hybrid

tensor networks for finding the ground state of a Hamiltonian.

3.2 Hybrid tree tensor networks

Calculating a general hybrid tensor network can be costly. Here we expand the discussion of the

main text and focus on hybrid tensor networks with a tree structure. I first consider representa-

tive examples of hybrid tree tensor networks (TTN) and discuss its application in representing

correlations of the multipartite quantum state. I then study the cost of calculating the expecta-

tion values of a general hybrid TTN.

I show several examples of hybrid tree tensor networks in Figure 3.3. Below, I discuss the

application of each tensor network and its connection with existing results. For each n-partite

state, we assume it is an n-qubit parameterised state |ψ(󰂓θ)〉, obtained by applying a sequence of

local gates as |ψ(󰂓θ)〉 =
󰁔

j Uj(θj) |0̄〉 with an initial state |0̄〉 and parameters 󰂓θ = {θj}.
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Figure 3.3: Hybrid quantum-classical tensor network. (a) We can extend the power of a quantum
state by adding a classical tensor as in Eq. (3.23). (b) We can combine a quantum state and a
classical tensor to represent a state in a larger Hilbert space as in Eq. (3.29). (c) We can use a
classical tensor to connect two quantum states as in Eq. (3.32). (d) A quantum-classical hybrid
tensor in Eq. (3.34). (e) A classical-quantum hybrid tensor in Eq. (3.37). (f) A quantum-quantum
hybrid tensor in Eq. (3.40). (g) A commonly used classical tensor network MPS.

3.2.1 Extending the power of the quantum state

Suppose we use the quantum state |ψ(󰂓θ)〉 as a potential solution to an n-qubit problem. We

can regard the quantum state as a pure rank-n quantum tensor. A simple way to extend the

capability of an rank-n quantum tensor is to concatenate a classical tensor αi to it,

|ψ(󰂓x)〉 =
󰁛

i

αi |ψi(󰂓θi)〉 , (3.23)

where each |ψi(󰂓θi)〉 can be regarded as different rank-n quantum tensors and 󰂓x = (α1, . . . , 󰂓θ1, . . . )

are the total parameter setting. Such a concatenation corresponds to the hybrid tensor network

in Figure 3.3(a). To find the ground state of Hamiltonian H, the energy can be obtained as

E(󰂓x) =
〈ψ(󰂓x)|H |ψ(󰂓x)〉
〈ψ(󰂓x)|ψ(󰂓x)〉 =

󰁓
i,j ᾱ

iαj 〈ψi(󰂓θi)|H |ψj(󰂓θj)〉
󰁓

i,j ᾱ
iαj 〈ψi(󰂓θi)|ψj(󰂓θj)〉

, (3.24)

and a minimisation over the parameter space could lead to the solution.

We can see that such a hybrid tensor network contains the subspace expansion method as a

special case. In particular, suppose we fix the parameters of the quantum tensors |ψi(󰂓θi)〉 and

denote |ψi(󰂓θi)〉 = |ψi(󰂓θ)〉, then we can analytically solve the minimisation of E(󰂓x) as follows.

Denote

H i,j = 〈ψi(󰂓θ)|H |ψj(󰂓θ)〉 , Si,j = 〈ψi(󰂓θ)|ψj(󰂓θ)〉 . (3.25)
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Suppose we consider the subspace with 〈ψ(󰂓x)|ψ(󰂓x)〉 = 1, then it is equivalent to optimising

E(󰂓x) = 〈ψ(󰂓x)|H |ψ(󰂓x)〉, or the function E′(󰂓x) = E(󰂓x)− λ 〈ψ(󰂓x)|ψ(󰂓x)〉 with a Lagrangian multi-

plier λ. Variation of the new function E′(󰂓x) gives

δE′(󰂓x) =
󰁛

i,j

(αjδᾱi + ᾱiδαj)H i,j − λ
󰁛

i,j

(αjδᾱi + ᾱiδαj)Si,j , (3.26)

and a local minimum solution requires δE′(󰂓x) = 0, which is equivalent to

H i,jαj = λSi,jαj . (3.27)

Writing the equation in the matrix form, it is equivalent to

H󰂓α = λS󰂓α, (3.28)

which coincides with the subspace expansion method.

In practice, we can optimise all the parameters in both quantum and classical tensors. We

can simultaneously optimise them by treating E(󰂓x) as a black box cost function. Alternatively,

we can first optimise the parameters of the quantum tensor and fix them, and then optimise

parameters of the classical tensor. Since the parameters are not simultaneously optimised, we

may need to repeat the procedure several times until convergence of energy.

3.2.2 Virtual qubits via classical tensors

In addition to extending the power of the quantum circuits, we can also use the classical ten-

sor to represent physical quantum systems, similar to a classical tensor network. As shown in

Figure 3.3(b), one can connect a rank-(n + 1) quantum tensor to a rank d + 1 classical tensor

network to represent a system of n + d qubits. Here we assume the classical tensor network

consists of low-rank classical tensors and admits efficient contraction, such as the matrix product

state (MPS) as defined in Eq. (2.18). In the remainder of the section, I consider MPS as an

example of the classical tensor network.

Suppose the rank-(n + 1) quantum tensor ψi1
... represents a set of n-qubit quantum states

{|ψi1〉} and the classical tensor is given by αi1,jn+1,...jn+d = Tr[α
i1,jn+1

1 α
jn+2

2 . . .α
jn+d
n ], then the

hybrid tensor of Figure 3.3(b) represents a quantum state

|ψ̃〉 =
󰁛

i1,j1,...,jn+d

αi1,jn+1,...jn+d |ψi1〉 |jn+1〉 . . . |jn+d〉 . (3.29)

For any tensor products of local observables M = O1 ⊗ · · ·⊗On+d, we have

〈ψ̃|M |ψ̃〉 =
󰁛

i1,i′1

〈ψi′1 |O1 ⊗ . . . On|ψi1〉M i′1,i1 , (3.30)
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with

M i′1,i1 =
󰁛

j′n+1,...j
′
n+d,jn+1,...jn+d

ᾱi′1,j
′
n+1,...j

′
n+dαi1,jn+1,...jn+d 〈j′n+1|On+1|jn+1〉 . . . 〈j′n+d|On+d|jn+d〉 .

(3.31)

Here each 〈ψi′1 |O1 ⊗ . . . On|ψi1〉 is obtained with a quantum computer and each element M i′1,i1

is obtained by an efficient tensor contraction of the MPS ansatz. Note that the dimension of i1

can be chosen to be a small number, similar to how we decide the bond dimension of the MPS

ansatz. The definition also holds when the quantum tensor is an (n+ 1)-partite state, where we

can assign multiple qubits to the system that the i1 label represents.

3.2.3 Local quantum correlation and non-local classical correlation

Quantum tensors can be used to represent quantum correlations of local subsystems and classical

tensors to represent correlations between the subsystems1. For example, consider two subsystems

A and B with Hamiltonian H = HA + HB + λhA ⊗ hB with a small coupling constant λ. We

can use the hybrid tensor network in Figure 3.3(c) to represent its ground state,

|ψ̃〉AB =
󰁛

i1,i2

αi1,i2 |ψi1〉A ⊗ |ψi2〉B . (3.32)

Here |ψi1〉A and |ψi2〉B represent the state of subsystem A and B, respectively, and αi,j is the

classical tensor representing the correlation between A and B. If the quantum correlation is

not too strong, we can set the rank of αi,j to be a small number. The average energy of the

Hamiltonian is

E =
〈ψ̃|H|ψ̃〉AB

〈ψ̃|ψ̃〉AB

=

󰁓
i1,i2,i′1,i

′
2
ᾱi′1,i

′
2αi1,i2

󰀓
H

i′1,i1
A S

i′2,i2
B + S

i′1,i1
A H

i′2,i2
B + λh

i′1,i1
A h

i′2,i2
B

󰀔

󰁓
i1,i2,i′1,i

′
2
ᾱi′1,i

′
2αi1,i2S

i′1,i1
A S

i′2,i2
B

, (3.33)

where the matrices H
i′1,i1
A , S

i′2,i2
B , S

i′1,i1
A , H

i′2,i2
B , h

i′1,i1
A , h

i′2,i2
B are defined in a general way as in

Eq. (3.25), that is, M i,j
A(B) = 〈ψi|M |ψj〉A(B). We can then obtain the energy by measuring the

matrices with a quantum computer and contracting the classical tensors classically. Suppose that

each system A and B consists of n qubits, so that the total system size is 2n qubits. The energy

can be obtained by only manipulating states of n qubits instead of 2n qubits.

In a similar way, we can extend the hybrid tensor network for two subsystems to k subsystems,

as shown in Figure 3.3(d). The matrix product state αi1,i2...ik = Tr[αi1
1 α

i2
2 . . .αik

k ] is used as

the description of the correlation between subsystems. Suppose each subsystem is represented

by quantum states {|ψis〉s}, such that the hybrid tensor network of Figure 3.3(d) represents a

quantum state

|ψ̃〉 =
󰁛

i1,i2,...ik

αi1,i2,...ik |ψi1〉1 ⊗ |ψi2〉2 . . . |ψ
ik〉k . (3.34)

1In this context, ’local’ concerns correlations in each subsystem, whilst ’non-local’ concerns correlations between
different subsystems.
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To measure the expectation value of M = O1 ⊗ · · · ⊗ Ok with each Os representing a local

observable on the s-th subsystem, we have

〈ψ̃|M |ψ̃〉 =
󰁛

i1...ik,i
′
1,...i

′
k

ᾱi′1,...i
′
kαi1,...ikM

i′1,i1
1 . . .M

i′k,ik
k , (3.35)

with

M i′s,is
s = 〈ψi′s |Os|ψis〉s . (3.36)

As a result, we can just use an n-qubit system to represent a kn-qubit system, and the bipartite

version corresponds to k = 2. The dimension of each index i1, . . . ik should be a small number,

similar to the bond dimension of MPS. This is a general form of the hybrid quantum-MPS tensor

network, and one can also consider other classical tensor networks (see Appendix A). Indices

involved here in the contraction between the quantum and classical tensors are all classical ones.

Alternatively, one can also make a hybrid contraction, where the index of the quantum tensor is

a quantum one, as shown in Eq. (3.6).

In this instance, the quantum tensors are used to represent the local n-qubit correlation, and

the classical rank-k tensor is used to represent the global correlation among these k clusters of

qubits. This kind of quantum-classical tensor can be used as a heuristic ansatz for representing

systems where local correlation dominates over global correlation, such as weakly coupled cluster

systems. However, it is worth noting at this point that it may still be inadequate for representing

a general quantum system.

3.2.4 Local classical correlation and non-local quantum correlation

Instead of using a quantum processor to represent local correlations within each subsystem, one

can also consider a classical-quantum two-depth tree structure in Figure 3.3(e). In this structure,

classical tensors are used for representing local correlations of each subsystem, and a quantum

tensor is used for representing the non-local correlation between the subsystems.

The idea underpinning this approach is that after the quantum circuit is applied to pre-

pare a k-qubit state |ψ〉, we additionally connect a classical tensor network to each qubit

to transform it to n qubits. Suppose we use the MPS for representing each subsystem as

αis,js1 ...j
s
n = Tr[α

is,js1
1 . . .α

jsn
n ], the state corresponding to Figure 3.3(e) is

|ψ̃〉 =
󰁛

󰂓i,󰂓j1,...󰂓jk

αi1,󰂓j1 . . .αik,󰂓j
k
ψi1,...,ik |󰂓j1〉 ⊗ · · ·⊗ |󰂓jk〉 , (3.37)

where we denote 󰂓i = (i1, . . . ik), 󰂓j
s = (js1, . . . , j

s
n), and ψi1,...,ik = 〈󰂓i|ψ〉. To measure M =

O1 ⊗ · · ·⊗Ok with each Os representing tensor products of local observables, we have

〈ψ̃|M |ψ̃〉 = 〈ψ|Õ1 ⊗ · · ·⊗ Õk|ψ〉 , (3.38)
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with each observable Õs obtained by classical tensor contraction as

Õi′s,is
s =

󰁛

󰂓js
′
,󰂓js

α̃i′s,󰂓j
s′
αis,󰂓jsO

󰂓js
′
,󰂓js

s . (3.39)

Again, only k qubits are used to represent a system of nk qubits. Note that each subsystem may

have a different number of qubits, and we can use multiple qubits to represent each index is to

increase the bond dimension. When n ≫ 1, this kind of hybrid tensor network can be used as a

heuristic ansatz to represent long-range correlation due to the effect of quantum tensor, and it

may be applied to an exotic topological state. When n is a small number, it also represents a

normalisation of local correlations with the classical tensor.

3.2.5 Local and non-local quantum correlations

In the previous two cases, a classical tensor network is used to represent either local or non-local

correlation, and a quantum tensor is used to represent the other part. I will now demonstrate how

quantum tensors can be used to represent both the local and non-local correlations. Considering

a tree structure with depth 2 in Figure 3.3(f), it represents a state

|ψ̃〉 =
󰁛

i1,...,ik

ψi1,...,ik |ψ
i1
1 〉 . . . |ψik

k 〉 , (3.40)

where ψi1,...,ik = 〈i1| . . . 〈ik|ψ〉 denotes the quantum tensor of the correlation between the sub-

systems and {|ψis
s 〉} denotes the quantum states for each subsystem s. The expectation values of

local observables can be measured using an approach similar to that outlined in the cases above.

To measure M = O1 ⊗ · · · ⊗ Ok with each Os representing tensor products of local observables

on the subsystem s, we have

〈ψ̃|M |ψ̃〉 = 〈ψ|Õ1 ⊗ · · ·⊗ Õk|ψ〉 , (3.41)

with each observable Õs being

Õi′s,is
s = 〈ψi′s

s |Os|ψis
k 〉 (3.42)

obtained via the method discussed in Section 3.1.3. Here we represent a system of nk qubits

by controlling a quantum device with up to max{n, k} qubits. We can also use multiple qubits

for each index is to increase the bond dimension. Suppose the quantum states are generated as

|ψ〉 = U |0〉⊗k
0 and |ψis

s 〉 = Us |is〉 |0〉⊗(n−1)
s , the hybrid tensor network of Figure 3.3(f) can be

obtained via a quantum circuit

|ψ̃〉 = Uk

󰀓
. . . U2

󰀓
U1

󰀓
U |0〉⊗k

0 ⊗ |0〉⊗(n−1)
1

󰀔
⊗ |0〉⊗(n−1)

2

󰀔
· · ·⊗ |0〉⊗(n−1)

k

󰀔
, (3.43)

where each Us applies to the sth qubit of the first k qubits with subscript 0 and the new n − 1

qubits with subscript s. While such a quantum circuit requires joint control of nk qubits, our

hybrid tensor network allows us to represent the same state by controlling up to max{n, k} qubits.
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Figure 3.4: An example for calculating expectation values of a hybrid TTN. Considering a hybrid
TTN of Figure 3.3(f), the expectation value of local observables ⊗k

i=1 ⊗n
j=1 O

i
j corresponds to

tensor contraction of (a). We first calculate the observable M i′s,is for each tensor on the second
layer as (d) with quantum circuits shown in Figure 3.2(b,d). Then the tensor contraction of (a)
reduces to the contraction of (b), which corresponds to a quantum circuit representation in (c)
that prepares the state |ψ〉 with |ψ〉 = U |0̄〉 and measures the observables M1 ⊗ · · ·⊗Mk.

The 2-layer MPS structure is used by way of an example; other classical tensor networks such

as projected entangled-pair state (PEPS) can be similarly used to represent the full quantum

state. In the quantum-quantum network, the contracted indices of the second-layer quantum

tensors are classical. Figure 3.4 illustrates a quantum circuit representation of this network. The

expectation values of arbitrary local observables can be efficiently obtained from measurements

using quantum circuits.

3.3 Construction of D-depth tree tensor networks

For quantum systems that have local renormalisation properties, such as a d-dimensional lattice

problem, we can construct a D-depth tree tensor network to represent the many-body quantum

state. The procedure can be summarised as follows.

1. Divide the quantum system into local units (subsystems).

2. Perform a real-space renormalisation group transformation to produce a coarse-grained

system, where a tensor is attached in order to connect the original local units.

3. Repeat procedure 2 until the full quantum system is represented.

4. Contract the D-depth tree tensor network using the contraction rules.

The tensor of the upper layer2, which connects the subsystems in procedure 2, can be con-

structed according to the type of interactions between the subsystems. Recall that we can

2For example, the ”upper” tensor in Figure 3.3 refers to ψi1,i2,...,ik .
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introduce a classical index to the quantum state of the subsystem by applying unitary operations

as |ψi〉 = Uψi |0̄〉. This indeed forms a representation of the target quantum state in the basis

given by {Uψi |0̄〉}. In the above procedure, each node of the tree can be regarded as a coarse-

grained quantum state and the degree of connections among all the tree nodes can be bounded

by a constant number t. Denote Cj = max{nj , t} with nj representing the maximum number of

qubits of the subsystems in the jth layer. Even if we construct the tensors of the upper layer

((j-1)th layer) by considering all operators in the interacting Hamiltonian of the subsystems,

the maximum bond dimension of tensors scales as O(poly(nj)) and at most O(log nj) qubits

are required to encode the interactions for the subsystem. The number of controllable qubits

to represent the quantum state with system size O(tD−1) is less than maxj(Cj log nj) qubits,

which in practice can be greatly reduced by considering boundary conditions or renormalisation

properties.

In Section 3.6, I provide an example of 2-layer tree structures for 1D and 2D systems by

using different initial states |0̄〉. We can also specify different unitaries depending on the type of

interactions of the target quantum systems. In addition, we may also consider the case where

contracted indices of quantum tensors are quantum.

3.4 Resource estimation

Since conventional tensor network theory is a special case of our hybrid TN framework, contract-

ing an arbitrary hybrid TN is at least a #P-hard problem. In this section, I consider special tree

networks and give a resource estimation for the cost of calculating expectation values of tensor

products of local observables on a hybrid tree tensor network.

Starting from a chosen node referred to as a root in a tree, we separate other vertices into

different layers according to the distance to the root. Each node can be either a classical tensor or

a quantum tensor. In order to efficiently contract the whole tensor network, only classical tensor

networks that can be efficiently contracted are considered, for instance, matrix product states

(MPS), in Figure 3.3(g). Suppose the tree has a maximum of D layers, and each node has at

most g connections, it corresponds to a tree with depth D and maximal degree g, which we call

a (D, g)-tree. The total number of nodes in the tree is upper bounded by O(gD). The D-th layer

has at most gD−1 tensors, and each one is at most a g-rank classical tensor network or quantum

tensors, with the open index representing at most g qubits. Thus, a (D, g)-tree represents about

O(gD) physical qubits.

Now, suppose our aim is to measure the expectation value of tensor products of local physical

observables. Without loss of generality, consider a node with degree g and denote the cost to be

Cq or Cc for a quantum or a classical tensor, respectively. In the ith layer, denote nq
i and nc

i to

be the numbers of quantum and classical tensors, respectively, which satisfy nq
i +nc

i ≤ gi−1. The

cost of contracting the ith layer is thus Ci = Cqn
q
i + Ccn

c
i ≤ gi−1(Cq + Cc) and the total cost of
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contracting the whole tree is at most O(gD(Cq + Cc)) by summing all the layers. Note that the

number of qubits N represented by the (D, g)-hybrid tree tensor network is N = O(gD), so the

cost is also linear in the number of qubits. Here we take the sum of the classical and quantum

cost. The cost for quantum tensors is the measurement of quantum circuits, while the cost for

classical tensors is pure classical computation. We can thus separately use O(NCq) and O(NCc)

to denote the quantum and classical cost. The result can be summarised as follows.

Proposition 1. The cost for evaluating the expectation values of local observables of a (D, g)-

hybrid tree tensor network is at most O(gD(Cq +Cc)) or O(N(Cq +Cc)). In particular, we need

O(NCq) quantum circuits and classical cost O(NCc). Here N = O(gD) is the number of qubits

represented by the (D, g)-hybrid tree tensor network.

The proposition focuses on local observables that have a tensor product form, O = O1⊗O2⊗
· ⊗ ON with Oj acting locally on the jth qubit. An arbitrary observable can be expressed as a

sum of local observables. For example, it can be decomposed in the Pauli bases as O =
󰁓M

i=1 Pi

with Pi ∈ {I,X, Y, Z}⊗N being the tensor product of single-qubit Pauli operators. Here, we

require the number of terms M is polynomial in the number of qubits in order to make the

method efficient. In the following, we further discuss the magnitude of Cq and Cc. The value

of Cq depends on the bond dimension of the index connecting the node to its parent, which

quantifies how many measurement settings one needs to contract the quantum tensor to get the

effective observable, as illustrated in Figure 3.4(a). For each observable element, Cq also depends

on the number of samples required for suppressing shot noise to a desired accuracy ε. Meanwhile,

the value of Cc depends on the choice of classical tensor network and the bond dimension of the

connecting index as well. Suppose the bond dimension of each contracted index is upper bounded

by κ, then we have Cq = O(κ2/ε2) and Cc = O(gκ4) for MPS (the cost could be improved with

more dedicated contraction methods). Therefore, one has the following detailed contraction cost.

Proposition 2. Consider a (D, g)-hybrid tree tensor network with quantum tensors and classical

MPS tensor networks as the building block with bond dimension at most κ. The cost for evaluating

the expectation values of local observables is O(N(κ2/ε2+gκ4)). In particular, we need to evaluate

O(Nκ2/ε2) quantum circuits with O(Ngκ4) classical computation cost.

Quantum tensor (Cq) Classical tensor (Cc)

O(κ2/ε2)
MPS (D′, g′)-Tree PEPS

O(gκ4) O(gκ(g
′+2)) O(gκ8κ̃2) (approx.)

Table 3.1: Contraction cost for g-qubit tensors

There are a few additional remarks worth making at this juncture. It appears that the cost

reduction when using quantum tensors is not very significant when compared to using classical

tensors, that is, κ2 compared to κ4. However, this is not actually the case. The quantum tensor
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in our hybrid TTN can express more complicated quantum correlations. The entanglement

structure of hybrid TTNs is discussed in Appendix A. If one substitutes this quantum tensor

with a classical tensor, say MPS, the new bond dimension of the classical tensor denoted by

κ′ could be much larger than κ, hence leading to a significantly larger cost. This is the major

quantum advantage of our hybrid TN framework. Note that here we regard the cost of classical

and quantum tensor contractions to be the same, and add them together to be the total cost. In

practice, classical and quantum computation are run independently on a classical and a quantum

processor, respectively, and so are totally parallel. If we only focus on the resource cost for the

quantum processor, the cost scales as O(N(κ2/ε2)), which is linear to the number of qubits and

polynomial in the bound dimension and inverse polynomial in the simulation accuracy.

I summarise the contraction cost for different types of g-qubit tensors in Table 3.1. Hybrid

tensor networks in a generalised tree structure with a small number of loops can be found in [90].

3.5 Applications

Hybrid tensor networks could have a wide array of applications in solving a variety pf physics

problems. The key benefit of a hybrid tensor network is to be capable of representing a mul-

tipartite quantum state efficiently, so that the required quantum resource can be reduced with

the help of classical computers. The hybrid tensor network could extend the power of near-term

quantum computers so that the limitation on the number of controllable qubits and the circuit

depth could be greatly alleviated.

The most promising application of the hybrid TN is for clustered subsystems with weak

subsystem-wise interactions. Consider that the whole quantum system is divided into several

subsystems, where particles in the same subsystem are strongly correlated, and the particles

from different subsystems are weakly correlated. Since each subsystem has strong interaction,

the whole system, in general, could be classically hard to solve. On the contrary, our hybrid

TN uses a classical TN solely to represent the cluster-wise interactions and a quantum TN to

represent the strongly interacting subsystems. Therefore, hybrid TNs integrate the advantages

of classical tensor networks and quantum computing. Here, each subsystem could have a general

topology structure of interactions.

In this section, I focus on potential applications of the hybrid tensor network in chemistry

problems. Real-world physical systems admit the interaction form considered in our framework.

Several chemical molecules can be described by an interacting Hamiltonian that has a similar

form as that in our simulation, providing a natural application of our method. The examples

include (Cr7Ni)2 dimers, consisting of two purple-(Cr7Ni) antiferromagnetic rings. The two Cr7Ni

rings are linked through a pyrazine unit as shown in Figure 3.5, which provides two donor atoms

binding to Ni centres in the nearest-neighbour rings. This leads to a weak exchange coupling
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between the Ni ions [154,155]. The subsystems have strong correlations, and the two subsystems

interact weakly via the boundary spins.

Figure 3.5: Molecular structure of the molecular dimer, consisting of two purple-(Cr7Ni) anti-
ferromagnetic rings. The two Cr7Ni rings are linked through a pyrazine unit, which provides two
N-donor atoms binding to Ni centres in different rings. This leads to a weak exchange coupling
between the Ni ions. The figure is adapted from Ref. [154].

Aside from physical systems featuring these cluster properties, we can use the hybrid TNs

to represent different degrees of freedom. The following is an illustration of their application

in chemistry for finding molecular vibrational spectra. Methods of calculating the vibrational

and electronic structure of a molecule generally assume the Born-Oppenheimer approximation

by treating the electrons and nuclei separately. Here, I show how to go beyond the Born-

Oppenheimer approximation by using the hybrid tensor network method. Consider the molecular

Hamiltonian in atomic units as

Hmol =−
󰁛

i

∇2
i

2
−

󰁛

I

∇2
I

2MI
−

󰁛

i,I

ZI

|ri −RI |
+

1

2

󰁛

i ∕=j

1

|ri − rj |
+

1

2

󰁛

I ∕=J

ZIZJ

|RI −RJ |
. (3.44)

with MI , RI , and ZI being the mass, position, and charge of the nucleus I, respectively, and ri

being the position of electron i. Given the location of the nuclei, the electronic Hamiltonian is

He(RI) = −
󰁛

i

∇2
i

2
+

󰁛

i,I

ZI

|ri −RI |
+

1

2

󰁛

i ∕=j

1

|ri − rj |
, (3.45)

and the total Hamiltonian can be represented as

Hmol = −
󰁛

I

∇2
I

2MI
+

1

2

󰁛

I ∕=J

ZIZJ

|RI −RJ |
+He(RI). (3.46)

Under the Born-Oppenheimer approximation, we assume the electrons and nuclei are in a product

state,

|ψ〉 = |ψ〉n |ψ〉e , (3.47)

and the ground state energy in the Born-Oppenheimer approximation is given by

E0 = min
|ψ〉n

min
|ψ〉e

〈ψ|n 〈ψ|eHmol |ψ〉n |ψ〉e . (3.48)
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Because only the electronic Hamiltonian He(RI) depends on electronic state |ψ〉e, minimisation

over the electronic state |ψ〉e is equivalent to finding the ground state of the electronic Hamiltonian

He(RI). Suppose we solve the electronic structure for any He(RI) by finding

V e
0 (RI) = min

|ψ〉e
〈ψ|eHe(RI) |ψ〉e , (3.49)

then the ground state of Hmol can be found by solving the ground state of H0,

H0 = −
󰁛

I

∇2
I

2MI
+

1

2

󰁛

I ∕=J

ZIZJ

|RI −RJ |
+ V e

0 (RI). (3.50)

The Born-Oppenheimer approximation enables us to solve the molecular Hamiltonian by sep-

arately solving the electronic Hamiltonian and the nuclei Hamiltonian. We thus only need to

operate a quantum system, either for the electronic Hamiltonian or the nuclei Hamiltonian.

The conventional approach beyond the Born-Oppenheimer approximation is to consider the

electrons and nuclei together as a whole system and directly solve the Hamiltonian Hmol. How-

ever, this requires storing the joint entangled state of electrons and nuclei, making it harder to

simulate with near-term quantum computers. Since the nuclei are much heavier than the elec-

trons, beyond the Born-Oppenheimer approximation breaks, the entanglement between electrons

and nuclei may still be weak. Therefore, we can use the hybrid tree tensor network to represent

the whole state. Suppose the tensor for the electrons and nuclei are {|ψi
e(
󰂓θe)〉} and {|φi

n(
󰂓θn)〉},

respectively. Then a hybrid tensor network representation of the joint state is

|ψ̃〉 =
󰁛

i

αi |ψi
e(
󰂓θe)〉 |φi

n(
󰂓θn)〉 , (3.51)

and this is used to represent the ground state of the molecule by only controlling states of either

the electrons or the nuclei. We can also apply the hybrid tensor network for representing the

electrons or the nuclei to further reduce the size of the quantum system we need to control.

Our method could also be applied to represent virtual qubits. In Ref. [156], the authors

demonstrated that they could effectively represent the state in the full space3 by applying op-

erations on the active space only. They started by preparing the quantum state in the active

space as a reference state |ψRef〉. They chose a set of expansion operators {Oi}, applied it on the

reference, and got Oi |ψRef〉. This forms a representation of {Oi} in the basis given by {Oi |ψRef〉}.
The ground state and low-lying eigenstates can be obtained by solving the generalised eigenvalue

problem in the well-conditioned subspace as

HC = SCE (3.52)

3Here, the full space includes the active space and the virtual space. In quantum computational chemistry, the
active space usually refers to partially occupied spatial orbitals, in which dominant mechanisms of interest lie [44],
while the virtual space usually refers to unoccupied spatial orbitals.
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with the matrix elements of H and S given by

H ij = 〈ψref |O†
iHOj |ψref〉 Sij = 〈ψref |O†

iOj |ψref 〉. (3.53)

The subspace expansion method was demonstrated analytically in Section 3.2 to be one special

case in our framework. More specifically, we can choose the quantum tensor as |ψi〉 = Ui |ψRef〉,
where Ui is generated by a quantum circuit, and it reduces to the original method when Ui is

selected as the single and double excitation operators. We can add a classical tensor to further

increase the representation capability in chemistry problems. As the subspace expansion method

could potentially improve the accuracy of the ground state and provide approximations to excited

states, we expect our method to be applicable to these problems.

3.6 Numerical simulation

In this section, I test the effectiveness of hybrid TNs in finding ground states of 1D and 2D spin

lattice systems with nearest-neighbour interactions and external fields.

3.6.1 Model Hamiltonians

I consider the Hamiltonians for 1D and 2D spin systems that admit a general form

H =

k󰁛

j=1

Hj + λHint, (3.54)

where Hj and Hint represents the local Hamiltonian of the jth subsystem and their interactions,

with interaction strength of subsystems λ. The topology of the spin systems can be found in

Figure 3.6.

For 1D spin clusters, each adjacent n = 8 qubits is taken as a subsystem and consider

k = 2, 3, . . . , 8 subsystems with n×k qubits. Consider the local Hamiltonian of the jth subsystem

as

Hj =

7󰁛

i=1

fẐ8j+iẐ8j+i+1 +

8󰁛

i=1

󰀓
gX̂8j+i + hẐ8j+i

󰀔

and their interactions as

Hint =

k−1󰁛

j=1

fjẐ8jẐ8j+1.

Here, the interaction strength is characterised by λ, X̂i and Ẑi are Pauli operators acting on the

ith qubit.

For the 2D n × k spin lattice, each n = 3 × 3 qubits on a small square lattice are grouped

as a subsystem and consider k = Nx ×Ny subsystems with Nx (Ny) subsystems along the x (y)

direction. The 2D Hamiltonian is

H =
󰁛

〈i,j〉
fijẐiẐj +

󰁛

i

󰀓
gX̂i + hẐi

󰀔
, (3.55)
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Figure 3.6: Numerical simulation for 1D and 2D quantum systems with hybrid TTN. (a) 1D
spin cluster and 2D spin lattice with interactions (thin lines) on the boundary. The interactions of
subsystems are represented by thick lines. 8 adjacent qubits and 3×3 qubits on a square sublattice
are grouped as subsystems for the 1D and 2D systems, respectively. (b) The ansatz circuit
for the quantum tensors in Figure 3.3(f). The circuits of both layers share similar structures,
with d repetitions of circuits in the dashed box. Here, Rα (α ∈ {X̂, Ŷ , Ẑ}) represents single-

qubit rotation around α-axis and the two-qubit gate is RZZ(θi) = e−iθiẐ⊗Ẑ . The rotation angle
(parameter) for each gate is initialised from a small random value and updated in each variational
cycle. The circuit depths for V (first layer tensor) and U (second layer tensor) are d(V ) = 6
and d(U) = 8. The additional unitary M is inserted at the 1st and [d/2 + 1]th block of the
first layer (b1) and the second layer (b2). (c)-(d) Simulation results of the ground state energy.
For the 1D and 2D cases, we compare E to the reference results E0 = EMPS and E0 = EPEPS

obtained from a standard DMRG with bond dimension κ = 32 and from PEPS. The relative
error 1 − E/E0 is used to characterise the accuracy. The red dashed line (1D) and blue dash-
dotted line (2D) correspond to the energy using tensor products of the ground state of local
subsystems. The cyan dot (1D) and blue triangle (2D) are results obtained with hybrid TNs.
(c1, d1) Convergence towards the ground state for the 1D 8×8 and 2D 9×4 systems with λ = 1,
respectively. (c2, d2) Error versus different subsystem coupling strength λ for the 1D 8× 8 and
2D 9 × 4 systems, respectively. (c3, d3) Errors with different numbers of local subsystems with
λ = 1, respectively.

where 〈i, j〉 represents all the nearest-neighbour pairs on a square lattice. Consider that the

interactions in each subsystem are identical f = 1, while interactions on the boundary of nearest-

neighbour subsystem {fj} or {fi,j} are generated randomly from [0, 1], as shown in Figure 3.6(a).

The parameters of the external fields for both the 1D and 2D cases are set as h = 1/π = 0.32

and g = 0.5.

The interactions between subsystems {fj} or {fj,i} are first generated randomly from [0, 1]

and then fixed. The lattice models, which have local interactions in the subsystems and non-

local interactions between subsystems of random strengths, have been investigated to describe
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the phenomena in high energy physics [157].

3.6.2 Results

Considering the hybrid TTN of Figure 3.3(f), the first layer state and the jth subsystem of the

second layer are generated as

|ψ〉 = V (󰂓θ0) |0̄0〉 =
󰁛

αi1,...,ik |i1, . . . , ik〉 (3.56)

and

|ψij
j (

󰂓θj)〉 = U(󰂓θj) |0̄ij 〉 , (3.57)

respectively, with V and U shown in Figure 3.6(b) and initial states |0̄ij 〉 = |ij〉⊗n, ij ∈ {0, 1}.
The hybrid TTN represents a quantum state

|ψ̃(󰂓θ)〉 =
󰁛

i1...ik

αi1,...,ik(
󰂓θ0) |ψi1

1 (󰂓θ1)〉 ⊗ · · ·⊗ |ψik
k (󰂓θk)〉 (3.58)

with 󰂓θ = (󰂓θ0, 󰂓θ1, . . . , 󰂓θk) representing all the parameters. The state is automatically normalised

since

〈ψi′j
j |ψ

ij
j 〉 = δi′j ,i′j .

For parameters 󰂓θ, we obtain the energy expectation value E(󰂓θ) = 〈ψ̃(󰂓θ)|H|ψ̃(󰂓θ)〉 by following the

contraction rule of Figure 3.4. Specifically, we first measure the observables of the second layer

states and then measure the effective observables of the first layer state.

I choose to use variational imaginary time evolution to minimise the energy E(󰂓θ), as shown

in Section 2.2.3.3. As demonstrated in Eq. (2.32), we can variationally simulate imaginary time

evolution by tracking the evolution of the parameters with one ancillary qubit. This requires

the calculation of A and C for given parameters by Eq. (2.34). When |ψ(󰂓θ)〉 is directly prepared

by a quantum circuit, we can obtain the matrix elements by a modified quantum circuit by

introducing an ancillary qubit [120, 131]. When considering trial states represented by a hybrid

tensor network, we can calculate A and C by making use of a similar method for calculating

the expectation values of hybrid tensor networks. The main idea is to generalise the circuit to

implement the contraction of two quantum tensors.

I then show how to calculate the matrix elements by the finite difference method. For example,

to calculate each Ai,j , we can approximate it as

Ai,j = Re

󰀣
(〈ψ(󰂓θ + δθi)|− 〈ψ(󰂓θ)|)

δθi

(|ψ(󰂓θ + δθj)〉 − ∂|ψ(󰂓θ))〉
δθj

󰀤
,

=
1

δθiδθj
Re

󰀓
〈ψ(󰂓θ + δθi)|ψ(󰂓θ + δθj)〉 − 〈ψ(󰂓θ)|ψ(󰂓θ + δθj)〉 − 〈ψ(󰂓θ + δθi)|ψ(󰂓θ)〉+ 〈ψ(󰂓θ)|ψ(󰂓θ)〉

󰀔
.

(3.59)
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The last term corresponds to the normalisation of the hybrid tensor, which is 1 for the hybrid

TTN considered in the simulation. The second two terms are the overlaps of two different

hybrid tensor networks. Again, calculating such overlaps requires quantum circuits similar to

calculating expectation values. In our simulation, for simplicity, the overlaps are obtained by

directly contracting the quantum tensors by summing over the state vector array. Each Ci

element can be obtained via the difference of the energy gradient,

Ci =
〈ψ(󰂓θ + δθi)|H|ψ(󰂓θ + δθi)〉 − 〈ψ(󰂓θ)|H|ψ(󰂓θ)〉

2δθi
. (3.60)

Therefore, the C vector can be obtained from the finite difference of energy changes. We can

optimise the total energy by either minimising all the parameters as minθ0,θ1,...,θk 〈ψ̃(󰂓θ)|H|ψ̃(󰂓θ)〉
or minimising local subsystem of each layer as minimin{θi} 〈ψ̃(󰂓θ)|H|ψ̃(󰂓θ)〉.

We can readily find that the quantum systems needed for simulating the 8× k-qubit 1D and

9×k-qubit 2D systems need 8+1 and 9+1 qubits, respectively. The calculation is benchmarked

by comparison with open-boundary MPS for 1D systems and imaginary time evolution projected

entangled-pair state (PEPS) for 2D systems. I choose to consider the relative error 1 − E/E0

with the ground state energy E and the reference energy E0. For the 1D case, E is compared

to the reference result E0 = EMPS obtained from a standard DMRG implementation with bond

dimension κ = 32. For the 2D case, the full quantum state is represented using PEPS. We can

start from a random tensor product state, and use a standard imaginary time evolution scheme

to find the ground state of the 2D Hamiltonian. To reduce the computational cost, I use the

local update method, i.e. the so-called ’simple update’ method [158], and set the bond dimension

κ = 5 and the maximum allowed boundary bond dimension, which approximates the original

tensor during the contraction, κ̃ = 64.

Figure 3.6(c1, d1) study the convergence of ground state energy of 1D (c1) and 2D (d1)

systems with coupling strength λ = 1 on 8× 8 and 9× 4 qubits respectively, and show a relative

error below 10−3. Next, I examine how the coupling strength or the number of subsystems

affect the efficacy of hybrid TTN. We present the calculation error with respect to different λ

for the 8× 8-qubit 1D and 9× 4-qubit 2D systems in Figure 3.6(c2) and (d2), respectively. We

can find that although the error fluctuates with different coupling strengths, which might owe to

instability from the optimisation, the error remains consistent around 10−3. In Figure 3.6(c3, d3),

I show the calculation error for the 1D with k subsystems (c3) and 2D with Nx×Ny subsystems

(d3) for λ = 1, and we can achieve a desired simulation accuracy.

The simulation results demonstrate that we can decrease the error to a relatively low level,

which indicates the effectiveness of our method in a proof-of-principle way. In practice, we can

use different types of optimisation method and circuit ansatz to further reduce simulation error.

The results with different coupling strengths and numbers of subsystems verify the robustness of
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the hybrid TTN method. The spin lattice problem with uniform nearest-neighbour interactions

on the boundary is shown in Appendix A.

3.7 Discussion

The Hybrid tensor networks established in this chapter provide a natural way of performing qubit-

time trade-off in quantum computing. Quantum resources (such as qubit number and circuit

depth) can be reduced by replacing some of the quantum tensors with their classical counterparts,

at the cost of increasing running time. Our protocol also lends itself to studying the physics of

many-body systems, with an approach that combines quantum and classical computation in an

appropriate form. This is particularly useful when the quantum resource is limited and we have

some prior knowledge of the target problem.

In this chapter, I have chosen to exemplify our hybrid TTN using a quantum-quantum tensor

network, which can be implemented on a near-term quantum computer using variational quantum

algorithms. Other hybrid TTN structures with classical tensors can be implemented in a similar

way. We may also simulate other systems to explore interesting physics behind these models,

such as the models discussed in Chapter 8.

Finally, I would like to discuss the limitations of hybrid TTNs. As described, a hybrid TTN

can be used as a heuristic ansatz for systems, and enables the simulation of large quantum systems

with fewer qubits. However, it may not guarantee simulation accuracy for a general quantum

system. With a very small bond dimension κ, hybrid TTNs may be inadequate to represent

a target quantum system. This is similar to classical tensor networks. It is expected that the

representation capability of hybrid TTNs could be increased by increasing the bond dimension. A

rigorous analysis of the representation capability of hybrid TTNs, and its advantage over classical

tensor networks, could be an interesting avenue of future research.

Author contributions. X.Y. and J.S. conceived the idea of the hybrid tensor network

ansatz for representing quantum many-body states. X.Y., J.S., and J.L initiated the project.

X.Y. and J.S developed the theoretical framework of hybrid tensor networks. J.S. conceived the

implementation of hybrid tree tensor networks (TTN) and carried out the numerical simulation.

J.S., J.L., and X.Y. conceived the applications of hybrid TTN. Q.Z. and Y.Z. analysed the

resource cost of hybrid TTN. X.Y. supervised the project.
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Chapter 4

Eigenenergy estimation and
eigenstate property estimation

Estimating properties of the ground state and excited states of a quantum many-body system is a

long-standing problem of fundamental interest in condensed matter physics, quantum chemistry,

and material science. This is a challenging problem for both classical computing and quan-

tum computing, and indeed estimating the ground state energy of a general Hamiltonian is a

QMA-complete problem. Despite this, quantum computing promises to address this problem

under certain assumptions. The common assumptions include a nonvanishing energy gap and

a nonvanishing overlap of the initial state and the target state, as in phase estimation [29] and

qubitisation [31].

The problems considered in this chapter (eigenenergy estimation and eigenstate property

estimation) were initially formalised in Section 1.2.1, followed by a discussion on the intuition

in Section 2.3. In this chapter, I discuss a solution to the two problems by realising generalised

quantum imaginary time evolution with a concrete theoretical guarantee. Gate complexity and

compilation to standard quantum gates will be discussed in Chapter 9.

This chapter is relevant to a preprint in collaboration with Pei Zeng and Xiao Yuan [93] and

a manuscript under preparation [92].

4.1 Motivation

Among the various task-specific classical algorithms — such as perturbation theories [95,159,160],

variational approaches [161, 162], self-consistent embedding methods [163, 164], machine learn-

ing [165–167], etc, — imaginary time evolution [168] defines a natural and universal cooling

procedure, which can also be regarded as a projection process. Consider a Hamiltonian H, imag-

inary time evolution e−τH with a real-valued time τ monotonically lowers the average energy

and deterministically drives an arbitrary pure state to the lowest eigenstate that has a nonzero

overlap. Despite being mathematically universal, realising imaginary time evolution for an ar-

bitrary Hamiltonian is by no means an easy problem. The notorious sign problem [169, 170] in
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the Monte Carlo implementation of imaginary time evolution has limited its usage for solving

general strongly correlated problems [171,172].

As motivated in Section 2.3, a new paradigm is proposed for realising general quantum projec-

tion procedures on a quantum computer. For a general decaying function g(h), such as g = e−|h|

or g = e−h2
, I demonstrate how to realise a projection procedure g(τH) for a Hamiltonian

H using solely real-time evolution and proper classical post-processing. The algorithm essen-

tially implements general non-Hermitian dynamics, and can efficiently find energy spectra and

the corresponding eigenstates, with any initial states that have nonvanishing overlaps with the

target state. It is worth pointing out that the term ’projection’ is commonly referred to as a

low-rank projector in the context of quantum information and quantum computing. However,

g(τH) regarded as a spectral projector of H since it can be applied to prepare the eigenstate

by projecting out the contributions from other eigenstates. Hereafter, we refer to g(τH) as a

projection operator.

Compared to the variational approaches in Section 2.2, this method works deterministically

without any assumption on parameterised circuits. Compared to other universal quantum algo-

rithms, such as quantum phase estimation, our method only needs an exponentially shallower

circuit with only one ancillary qubit, and it reaches the Heisenberg limit of eigenenergy estima-

tion.

Ground state preparation can be understood as a cooling procedure, a deterministic process

that drives any state to the lowest eigenstate. In this process, we do not experimentally cool

down the system, but instead implement the cooling by applying a few basis operations e−iHt

with different time lengths. Therefore, in the paper [93], we also term this state preparation

method as algorithmic cooling.

The essential component of the ground state property estimation is to realise a cooling oper-

ation (or projection operation), which projects out the contributions from the other eigenstates.

In Section 4.2, I introduce the basics of cooling operations. I demonstrate how this can be applied

to estimate the eigenstate property and the eigenenergy in Section 4.3. The complexity analysis

is shown in Section 4.4. Finally, numerical tests are presented in Section 4.5.

4.2 Cooling operation and the dual phase representation

First, a general matrix function acting on the Hamiltonian is defined, which is expressed as

g(H) :=

N−1󰁛

i=0

g(Ei) |ui〉 〈ui| . (4.1)

where g(h) : R → C is a generic continuous-variable function determining the transformation of

the spectrum of the Hamiltonian. To realise the cooling process, g(h) is required satisfying the

following property.
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Definition 1. A real-valued function g(h) : R → C is called a cooling function if it satisfies,

1. The value of g(0) is non-zero: g(0) ∕= 0;

2. Strictly non-increasing absolute value: |g(h′)| < |g(h)|, ∀h′ > h > 0 or h′ < h < 0;

3. Vanishing asymptotic value: limτ→∞ |g(τh′)/g(τh)| = 0, ∀h′ > h > 0 or h′ < h < 0 or

alternatively limτ→∞ |g(τh)/g(0)| = 0, ∀|h| > 0.

A typical example is the exponential decreasing function g(h) = e−|h|, corresponding to

imaginary time evolution g(τH) = e−τH for positive H.

Suppose we want to prepare the jth eigenstate |uj〉 with the eigenenergy Ej . With the

definition in Eq. (E.15), a cooling operator is introduced as follows,

g(τ(H − Ej)) =

N−1󰁛

i=0

g(τ(Ei − Ej)) |ui〉 〈ui| . (4.2)

For an arbitrary input state |ψ0〉 =
󰁓

i ci |ui〉, the state after the cooling g(τ(H − Ej)) at a

finite τ is given by

|ψ(τ)〉 = g(τ(H − Ej)) |ψ0〉
󰀂g(τ(H − Ej)) |ψ0〉 󰀂

=

󰁓
i g(τ(Ei − Ej))ci |ui〉󰁓
i pig(τ(Ei − Ej))2

, (4.3)

with pi = |ci|2. Since for the eigenenergies Ei ∕= Ej , the function g(τEi) decreases faster with τ ,

the amplitudes of the normalised state |ψ(τ)〉 concentrate to the eigenstates with energy Ej , and

the evolved state asymptotically approximates the eigenstate |uj〉 with nonzero | 〈ψ0|uj〉 |2 ∕= 0

for sufficiently large τ as

lim
τ→∞

g(τ(H − Ej)) |ψ0〉 ∝ |uj〉 . (4.4)

There are two important parameters, τ and Ej , in the Hamiltonian function g(h) in the cooling

procedure, in which τ is a time scaling factor, and Ej indicates a shift of the original function.

In later discussion, we shall see that τ indicates the timescale for the cooling procedure, in which

larger τ will cool the state closer to the target eigenstate. The shift Ej plays an important role in

searching for the eigenenergies and, additionally, observable estimation on the eigenstate. From

the above equation, readers may wonder if a concentration around the eigenstate |uj〉 with energy

Ej can be obtained if the exact value of Ej is not known a priori. It is therefore worth noting that

Ej only appears in classical post-processing and will not be involved in quantum measurements.

In the implementation, Ej is tuned as a classical variable to find the true eigenenergy, and thus

does not increase any quantum resource cost.

The next step is to realise the cooling operator, which is nonunitary by construction. I

show how to implement it by using a combination of real-time dynamics. Consider its dual

realisation based on a Fourier transform, g(h) = 1
2π

󰁕∞
−∞ f(x)eixhdx. and its inverse form f(x) =
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󰁕∞
−∞ g(h) e−ixhdh. Given the norm of f(x) defined as 󰀂f󰀂 =

󰁕∞
−∞ |f(x)|dx, consider the normalised

function p(x) = |f(x)|/󰀂f󰀂 and we have

g(h) = c

󰁝 ∞

−∞
eiθxp(x)eixhdx, (4.5)

where c := 󰀂f󰀂/2π and eiθx := f(x)/|f(x)|. Here, the function g(h) is required to be Fouirer-

realisable, which is defined as follows.

Definition 2. A function g(h) in Definition 1 is called Fouirer-realisable if the following require-

ments hold.

1. The Fourier transform of g(h), f(x) =
󰁕∞
−∞ g(h)e−ixhdh exists.

2. The norm of the dual function 󰀂f󰀂, 󰀂f󰀂 :=
󰁕∞
−∞ |f(x)|dx, is finite.

3. ∃L(ε) = O(poly(1ε )), such that
󰀏󰀏1−

󰁕 L(ε)
−L(ε) p(x)dx

󰀏󰀏 ≤ ε, ∀ε ≥ 0.

The third condition implies that a finite frequency in [−L(ε), L(ε)] with L(ε) = O(poly(1/ε))

is sufficient for approximating the normalised function g(h)/c, i.e.,
󰀏󰀏g(h)/c−

󰁕 L(ε)
−L(ε) p(x)e

ixh+θxdx
󰀏󰀏 ≤

ε. Table 4.1 gives several examples of g(h). Since our examples have zero phase, for a simpler

presentation, the phase terms are set to be 0 in the following discussion, although the discussion

also naturally generalises to cases with nonzero phases.

I introduce several typical cooling functions g(h) and discuss their properties. The most

important property is the cutoff error L(ε) defined in Definition 2 which shows the hardness of

realising g(h) with real-time sampling.

For the exponential function we have L(ε) = 2/(πε). For the Gaussian function, we have

L(ε) = 2
󰁳

ln (ε−1). Therefore, the Gaussian function is a realisable cooling function. Note that

unlike the exponential function, the tail of the Gaussian function decays quickly with respect to

xm. This implies that Gaussian cooling is more experimentally-friendly. The properties of the

representative cooling functions are summarised in Table 4.1.

Table 4.1: Representative cooling functions g(h). f(x) corresponds to the Fourier transform of
g(h).

Function g(h) f(x) 󰀂f󰀂/2π L(ε)

Exponential e−|h| 2
x2+1

1 2/(πε)

Gaussian e−h2 √
πe−x2/4 1 2

󰁳
ln(1/ε)

Hyperbolic sech(h) πsech(πx/2) 1 2
π ln(1/ε)

In this thesis, I mainly focus on the analysis of the Gaussian function g(τH) = e−τ2H2
in

the application. It is easy to verify that the three condition hold. We have the dual form of the
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Gaussian function f(x) =
√
πe−x2/4, the norm is finite 󰀂f󰀂 = 2π, and the truncation at the finite

frequency L(ε) = 2
󰁳

ln(1/ε) is sufficient to ensure the truncation error,

󰀏󰀏g(h)−
󰁝 L(ε)

−L(ε)
p(x)eixhdx

󰀏󰀏 ≤ ε,

is less than ε.

With the normalised dual phase representation p(x) of g(h), the cooling operator is

g(τ(H − E)) = c

󰁝 ∞

−∞
dp(x)eiθxeix(H−E). (4.6)

The quantum state in Eq. (4.3) becomes,

|ψ(τ)〉 ∝ g(τ(H − E)) |ψ0〉

∝ c

󰁝 ∞

−∞
dp(x)ei(θx−τxE) |φ(xτ)〉 ,

(4.7)

which is now a superposition of real-time evolved states |φ(xτ)〉 = eixτH |ψ0〉 with probability

distribution dp(x) = p(x)dx. In Section 4.3, I will show how to effectively prepare1 the quantum

state described by Eq. (4.7) through quantum algorithmic cooling.

4.3 Quantum algorithmic cooling

Suppose we want to estimate the expectation value of an observable O with respect to an eigen-

state |uj〉, 〈O〉 := 〈uj |O|uj〉. For a given finite evolution time τ , the estimation value of 〈O〉τ is

given by

〈O〉τ =
Nτ (O)

Dτ
, (4.8)

where
Dτ = 〈ψ0|g2(τ(H − Ej))|ψ0〉 ,

Nτ (O) = 〈ψ0|g(τ(H − Ej))Og(τ(H − Ej))|ψ0〉 .
(4.9)

are, respectively, the normalisation factor and the unnormalised expectation value.

The basic idea is that the numerator Nτ (O) can be efficiently obtained by sampling x and x′

from the distribution p(x) and p(x′) (defined in Eq. (4.6)), respectively, and then estimating the

mean value Ex,x′ 〈φ(x′τ)|O|φ(xτ)〉, where each term can be evaluated on a quantum computer

with a Hadamard test circuit. The denominator Dτ can be similarly obtained by estimating

Ey 〈ψ0|eiyτH |ψ0〉 with probability dp̃(y) (see Eq. (4.13) below). A quantum computer is only

required to estimate the expectation values of a state overlap like 〈ψ0|U |ψ0〉 with U being either

e−ix′τHOeixτH or eiyτH , and then we can effectively obtain the time-dependent expectation value

of any observable by post-processing the measurement outcomes. In practice, we also need to

consider a cutoff of the integral from [−∞,∞] to [−xm, xm] to avoid infinite integration.

1This chapter is focused on eigenenergy estimation and eigenstate property estimation. The latter corresponds
to obtaining the expectation value of an observable measured on the target eigenstate. This task will be less
demanding when compared to directly preparing the target eigenstate.
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I will now demonstrate how to estimate state overlaps by a Hadamard test circuit. The target

observable O can be decomposed by the Pauli operators,

O =
󰁛

l∈Pn

olPl = 󰀂O󰀂1
󰁛

l∈Pn

PrO(l)Pl (4.10)

where Pn denotes the n-qubit Pauli group, ol is the coefficient of the Pauli component Pl, and

here the coefficients {ol} are all set to be positive. The signs of the coefficients are put into the

corresponding Pauli matrices {Pl}. In Eq. (4.10), 󰀂O󰀂1 is the l1-norm of the Pauli coefficients of

O,

󰀂O󰀂1 =
󰁛

l∈Pn

ol. (4.11)

The probability distribution PrO(l) is defined to be,

PrO(l) =
ol󰁓

l∈Pn
ol

=
1

󰀂O󰀂1
ol. (4.12)

Using Eq. (4.6), one can expand the cooling operator g(τ(H −Ej)) and receive the following

estimation formulae,

Dτ = c2
󰁝 ∞

−∞
dyp̃(y)e−iτyEj 〈ψ0|eiτyH |ψ0〉 ,

Nτ (O) = c2󰀂O󰀂1
󰁝 ∞

−∞
dx

󰁝 ∞

−∞
dx′p(x)p(x′)

󰁛

l∈Pn

PrO(l)e
−iτ(x−x′)Ej 〈ψ0|e−iτx′HPle

iτx′H |ψ0〉 ,

(4.13)

where p̃(y) := 1
2

󰁕∞
−∞ p( z+y

2 )p( z−y
2 )dz is the self-correlation of the probability p(x). The normali-

sation factor c2 can be removed, since it is the same for both Dτ and Nτ (O), hence, unimportant

for the estimation of 〈O〉τ . In the following discussion, this normalisation factor is ignored during

the estimation procedure.

In the quantum cooling algorithm, the (normalised) evolution time x (or y) is generated based

on the probability p(x) (or p̃(y)). For the sake of practicality, when the (normalised) evolution

time x (or y) is larger than a cutoff value xm, we denote the estimation of this round to be 0

without performing a quantum experiment. In this way, the estimation formula of Nτ (O) and

Dτ , originally given by Eq. (4.13), now becomes

D(xm)
τ =

󰁝 xm

−xm

dyp̃(y)e−iτyEj 〈ψ0|eiτyH |ψ0〉 ,

N (xm)
τ (O) = 󰀂O󰀂1

󰁝 xm

−xm

dx

󰁝 xm

−xm

dx′p(x)p(x′)
󰁛

l∈Pn

PrO(l)e
−iτ(x−x′)Ej 〈ψ0|e−iτx′HPle

iτx′H |ψ0〉 .

(4.14)

To estimate the values of N
(xm)
τ (O) and D

(xm)
τ in Eq. (4.14), the core issue is to realise an

unbiased estimation of the following quantities,

〈ψ0|eiτyH |ψ0〉 , 〈ψ0|e−iτx′HPle
iτx′H |ψ0〉 . (4.15)
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These 〈ψ|U |ψ〉 can be estimated using the Hadamard test, shown in Figure 4.1.

To measure 〈ψ|U |ψ〉, the state |ψ〉 is first prepared and an extra ancillary qubit is prepared in

the computational basis state |+〉. Afterward, a C-U gate from ancillary to |ψ〉 is performed. If

we directly measure the ancillary qubit in the X-basis, the outcome a will be 0 with a probability

of 1
2(1+Re(〈ψ|U |ψ〉)) and 1 with a probability of 1

2(1−Re(〈ψ|U |ψ〉)). Alternatively, if we perform

an extra S gate before the X-basis measurement, the outcome a will be 0 with a probability of

1
2(1 + Im(〈ψ|U |ψ〉)) and 1 with a probability of 1

2(1− Im(〈ψ|U |ψ〉)).

Figure 4.1: The diagram of the Hadamard test. If b = 0, Pr(a = 0) = 1
2(1 + Re(〈ψ|U |ψ〉)); if

b = 1, Pr(a = 0) = 1
2(1 + Im(〈ψ|U |ψ〉)).

To simplify the theoretical analysis, I now introduce a combined estimation of the real part

and imaginary parts in a single round. In each round of experiments, we first randomly decide

the binary value b uniformly from {0, 1} in Figure 4.1. Denote the binary uniform distribution

of b as PrU (b). Based on the measurement outcome a, the following complex-valued estimator is

constructed,

r̂ =

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

2, (b, a) = (0, 0),

−2, (b, a) = (0, 1),

2i, (b, a) = (1, 0),

−2i, (b, a) = (1, 1).

(4.16)

That is, r̂ = 2ib(−1)a. In this case, it is easy to verify that r̂ is an unbiased estimator for 〈ψ|U |ψ〉
as E(r̂) = 〈ψ|U |ψ〉.

In the estimation of Dτ and Nτ (O), the phase term and normalisation factor 󰀂O󰀂1 in

Eq. (4.13) can also be put into the estimator. That is to define

d̂ = e−iτyEj r̂,

n̂ = 󰀂O󰀂1e−iτ(x−x′)Ej r̂.
(4.17)

As a result, if y is randomly sampled from p̃(y), based on Eq. (4.13), we have

Ey,b,a(d̂) = Dτ . (4.18)

On the other hand, if we randomly sample x, x′ from p(x) and l from PrO(l), based on Eq. (4.13)

we have

Ex,x′,l,b,a(n̂) = Nτ (O). (4.19)

In the experiments, variables x, x′, a, b and l are generated independently, randomly in each

round of experiment. After performing single-shot Hadamard test experiments, we will obtain a
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group of unbiased estimators {d̂p}NM
p=1 and {n̂q}NM

p=1 for Dτ and Nτ (O), respectively. We then use

the average value of the estimators as an accurate estimate of Dτ and Nτ (O), whose tightness

is given by the concentration bound analysed in Section 4.4.2, as well as in Section B.1.3 and

Section B.3.3.

There are two main applications of the universal algorithmic cooling: (1) The estimation of

eigenenergies; (2) The estimation of the properties of the jth eigenstate with or without exact

knowledge of the energy.

This can be divided into three elementary tasks:

1. Estimate the eigenenergy Ej of the jth eigenstate given an initial guess interval [EL
j , E

U
j ];

2. Given a known eigenenergy Ej , estimate the normalisation factor Dτ ;

3. Given a known eigenenergy Ej and an observable O, estimate the normalisation factor

Nτ (O).

The algorithm for these tasks is introduced below.

4.3.1 Estimation of the eigenenergy

To start with, I first show how to estimate the normalisation factor Dτ based on Eq. (4.14) and

the Hadamard test, when the eigenenergy Ej is known. Recall that the unbiased estimator for

the normalisation factor is,

d̂ = e−iτyEj r̂ = 2ib(−1)ae−iτyEj . (4.20)

If we randomly sample y from p̃(y), based on Eq. (4.13) we have

Ey,b,a(d̂) = Dτ . (4.21)

I now show how to estimate the eigenenergy using the normalisation factor. Suppose the initial

state |ψ0〉 has a constant overlap with the eigenstate |uj〉. We can then sweep the parameter

E
(e)
j in a range to maximise Dτ . The estimation accuracy depends on the finite imaginary time

τ , finite truncation xm, sampling number NM and the overlap pj .

To clarify this, consider a simple case where the jth eigenenergy is known to be in a range

Ej ∈ [EL
j , E

U
j ]. Moreover, suppose other eigenenergies lie far beyond this range. Expand the

initial state in the eigenstate basis as

|ψ0〉 =
N−1󰁛

j=0

cj |uj〉 , (4.22)

and denote the square overlap of |ψ〉 and |ui〉 to be

pi = | 〈ui|ψ〉 |2 = |ci|2. (4.23)
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For an energy value E in the range [EL
j , E

U
j ], the ideal normalisation factor Dτ is calculated

as,
Dτ (E) = 〈ψ|g2(τ(H − E))|ψ〉

= g2(τ(Ej − E))pj +
󰁛

i ∕=j

g2(τ(Ei − E))pi

≈ g2(τ(Ej − E))pj .

(4.24)

The approximation holds when g2(τ(Ej − E))pj ≫ g2(τ(Ei − E))pi. This naturally holds when

the eigenenergies {Ei}i ∕=j are far from the range [EL
j , E

U
j ]. From Eq. (4.24) we can see that, the

normalisation factor takes a local maximum value close to pj when the energy value E = Ej ,

Ej = argmax
E∈[EL

j ,EU
j ]

Dτ (E). (4.25)

Therefore, we can sweep the values of E in a range [EL
j , E

U
j ] to search the largest value of

Dτ (E). Here, a free usage of classical computational resources is assumed, as we mainly focus on

the quantum resources. This may be refined by the introduction of a better classical peak-value

searching algorithm.

4.3.2 Estimation of the unnormalised observable expectation value

In this section, I discuss the estimation Nτ (O) of a given observable,

O =
󰁛

l∈Pn

olPl = 󰀂O󰀂1
󰁛

l∈Pn

PrO(l)Pl (4.26)

which is defined in Eq. (4.10).

Recall the unbiased estimator of Nτ (O) is

n̂ = 󰀂O󰀂1e−iτ(x−x′)Ej r̂ = 2󰀂O󰀂1e−iτ(x−x′)Ej ib(−1)a. (4.27)

If we randomly sample x, x′ from p(x) and l from PrO(l), based on Eq. (4.13) we have

Ex,x′,l,b,a(n̂) = Nτ (O). (4.28)

Nτ (O) given in Eq. (4.14) can be similarly measured by the Hadamard test. With the above

results, we can solve two problems, namely, eigenstate property estimation with known eigenstate

energy, and eigenstate property estimation with unknown eigenstate energy.

4.4 Complexity analysis

In this section, I show the error and resource requirement for eigenenergy estimation and eigen-

state property estimation in Section 4.4.1 and Section 4.4.2, respectively.
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4.4.1 Error and resource requirement analysis for eigenenergy estimation

In this section, the estimation error of the jth eigenenergy is analysed. Based on the error

dependence, I estimate the resource requirements (i.e., circuit depth and sampling number) of

the energy estimation.

For simplicity, I focus on a case when the following assumptions hold. The eigenvalue

searching range [EL
j , E

U
j ] is a subset of [Ej − ∆

2 , Ej +
∆
2 ], where ∆ is a known lower bound

of min{Ej − Ej−1, Ej+1 − Ej}. Under this assumption, the normalisation factor can then be

expressed as,

Dτ (E) ≈ pjg(τ(E − Ej))
2. (4.29)

Here, the approximation holds when the values g(τ(E−Ei))
2 contributed by other eigenenergies

Ei are negligible. The location of the peak of Dτ (E) then indicates the eigenenergy Ej .

In practice, however, we can only obtain the estimation D̂
(xm)
τ (E) of Dτ (E), considering the

finite cutoff time xm and finite sample number NM . We are going to prove that, the solution of

the following maximisation problem

Êj := argmaxE∈[EL
j ,EU

j ] D̂
(xm)
τ(E) , (4.30)

will be close to the real solution Ej .

The sources of error include the finite imaginary time, finite cutoff of real-time evolution,

discretisation error, and statistical error due to a finite sampling number,

Dxm,r
τ (Êj)−Dτ (Ej) ≤ ετ + εx + εr. (4.31)

Based on the error dependence, the resource requirement (i.e., circuit depth and sample number)

of the energy estimation can be estimated. The workflow of error analysis is summarised in

Figure 4.2.

As a complete analysis involves many technical details and the proof is lengthy, I will show

the main results here to streamline the discussion.

Theorem 1 (Accuracy of the eigenenergy estimation). Given constant K > 0, error ε ∈ (0, 1),

finite imaginary time τ ≥ g−1(αpj/6)/κ, cutoff time xm ≥
√
2L (αpj/6), and sample number

NM ≥ 9Kp−2
j /α2 where α := 1 − g(1), the error between the estimated eigenenergy Êj and the

one ideal Ej is |Êj − Ej | ≤ κ, with a failure probability of 2δ = 4 exp (−K/8).

Since only the imaginary time τ depends on the inverse accuracy 1/κ, the total cost τ ·xm ·NM ,

which is circuit complexity × sample complexity, also scales as 1/κ, indicating Heisenberg’s limit

for eigenenergy estimation.
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Figure 4.2: Summary of the error analysis of eigenenergy estimation. First study the effect of
the finite imaginary time τ , finite normalised cutoff time xm and finite sampling number NM

on the normalisation estimation, and then bound the difference between the estimation value Êj

from true value Ej .

4.4.2 Eigenstate property estimation

In this section, I analyse the estimation error of the observable value 〈O〉 under a finite circuit

depth and sampling numbers. Based on the error dependence, the resource requirements (i.e.

circuit depth and sample number) of the cooling algorithm are estimated. For simplicity, it is

assumed that we have already obtained a precise eigenenergy estimation Ej of the jth eigenstate.

Similar to Section 4.4.1, the sources of error include the finite imaginary time, finite cutoff of

real-time evolution, discretisation error, and statistical error due to a finite sampling number.
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Figure 4.3: Summary of the error analysis of the observable estimation. Started from the ideal
observation value 〈O〉, we sequentially study the effect of finite imaginary time τ , finite cutoff
time xm and finite sampling number NM .
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For the numerator and denominator, we have
󰀏󰀏󰀏D̂(xm)

τ −D
󰀏󰀏󰀏 ≤ ε(1)τ + ε(1)x + ε(1)n ,

󰀏󰀏󰀏N̂ (xm)
τ (O)−N(O)

󰀏󰀏󰀏 ≤ (ε(2)τ 󰀂O󰀂∞ + ε(2)x 󰀂O󰀂∞ + ε(2)n 󰀂O󰀂1),
(4.32)

In the appendix, the error is shown to have a bound as

| 〈Ô〉(xm)

τ − 〈O〉 | ≤ p−1
j (〈O〉+ 1)(ε(1)τ + ε(1)x + ε(1)n ) + p−1

j (ε(2)τ 󰀂O󰀂∞ + ε(2)x 󰀂O󰀂∞ + ε(2)n 󰀂O󰀂1).
(4.33)

Based on the error dependence, I analyse the resource requirements (i.e., circuit depth and

sample number) of the eigenstate property estimation. The workflow of the error analysis is

summarised in Figure 4.2.

In order to simplify the discussion, I discuss the error of observable estimation with a known

target eigenenergy. Denote the ideal (estimated) measurements with infinite (finite) τ , xm, and

NM as 〈O〉 (〈Ô〉(xm)

τ ), the effect of the three factors on observable estimation is given as follows.

Theorem 2 (Accuracy of the observable estimation). Given constant K > 0, error ε ∈ (0, 1),

finite imaginary time τ ≥ 2
∆g−1 (εpj/12), normalised cutoff time xm ≥

√
2L (εpj/12), and sample

number NM ≥ K/(εpj/6)
2, the error between the expectation value estimation 〈Ô〉(xm)

τ and the

ideal expectation value 〈O〉 is bounded by | 〈Ô〉(xm)

τ −〈O〉 | ≤ ε(󰀂O󰀂1+1) with a failure probability

of δ = 4 exp(−K/8). Here 󰀂O󰀂1 =
󰁓

l |ol| where {ol}l are the Pauli coefficients O =
󰁓

l olPl,

∆ = min{|Ej−1 − Ej |, |Ej+1 − Ej |}, and pj is the overlap with the target eigenstate.

Theorem 2 states that the asymptotic time complexity of the cooling algorithm is determined

by g−1(ε)L(ε) of the cooling function. The valid cooling functions in Table 4.1 all satisfy g−1(ε) =

O(log(1/ε)). Therefore, we can choose τ to be O(log(1/(pjετ ))∆
−1), which is logarithmic in

the inverse state overlap 1/pj and inverse error 1/ετ , and linear to the inverse gap ∆−1. For

the cutoff xm, it is shown that we have L(ε) = O(poly(1/ε)) for the triangle and exponential

cooling functions, and we can achieve even better results O(
󰁳

log(1/ε)) or L(ε) = O(log(1/ε))

for the Gaussian and secant hyperbolic cooling functions. Taking the Gaussian function as an

example, we have xm = O(
󰁳

log(1/(εpj))). Note that the maximum real-time evolution is given

by tm = τxm. As a result, we arrive at the following Proposition.

Proposition 3. The time (circuit) tm and sample NM complexity for the Gaussian cooling

function is

tm ∼ O
󰀃
∆−1 log(1/(εpj))

󰀄
, NM ∼ O(1/(εpj)

2). (4.34)

The time or circuit complexity is logarithmic to 1/(pjε), which is exponentially better than that

of quantum phase estimation or adiabatic state preparation, which is generally polynomial to

1/(pjε). The sample complexity in terms of pj is slightly worse than that of quantum phase

estimation, which is O(1/(pjε
2)).
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One can find that from Theorem 2, the efficiency of the cooling algorithm relies on two

assumptions: a nonvanishing initial state overlap and a nonvanishing energy gap. These two

assumptions are formalised in the following.

Assumption 1 (Nonvanishing state overlap assumption [29, 31, 141]). For an n-qubit gapped

Hamiltonian H with the ground state |u0〉, we assume that it is feasible to prepare an initial state

|ψ0〉 satisfying a nonvanishing overlap of the target eigenstate p0 := | 〈ψ0|u0〉 |2. We assume that

the lower bound of the overlap satisfies p0 ≥ O(Poly( 1n)).

Assumption 2 (Gapped Hamiltonian assumption [29,31,141]). For an n-qubit gapped Hamilto-

nian H with the ground state energy E0, we assume that the energy gap E1−E0 is lower-bounded

by a known value ∆.

Assumption 1 is reasonable in many practical scenarios, since even in many strongly-correlated

quantum systems or chemical molecules Hamiltonians, the mean-field solution, like the Hartree-

Fock state, still has a considerable overlap with the ground state. In practice, people usually

apply the variational methods [130] or adiabatic methods [173] as a heuristic way to prepare an

initial state with a large overlap p0 with the ground state. Assumption 2 is also of practical

relevance for the study of quantum many-body systems. For example, the ferromagnetic XXZ

Heisenberg chain H = J(
󰁓

i σ
x
i σ

x
i+1 + σy

i σ
y
i+1 +∆σz

i σ
z
i+1) with J < 0 has a finite energy gap if

∆ > 1 [174].

4.4.3 Comparison to prior works

Compared to prior works on eigenstate preparation and eigenenergy estimation, our method has

the following advantages.

1. Only one ancillary qubit is needed in the whole algorithm. Furthermore, we do not require

any quantum oracle, such as select-H for LCU or qubitisation methods, which could be

difficult to implement2.

2. The time complexity for ground-state energy estimation reaches the Heisenberg limit.

3. The time complexity for ground-state property estimation is logarithmic in the inverse of

the precision requirement when we adopt the Gaussian cooling function.

To our knowledge, this is the first algorithm that encompasses all of the above advantages.

In Table B.1 and Table B.2, our cooling method is compared with several typical quantum

algorithms in the two primary tasks considered in this thesis, i.e., eigenenergy estimation and

observable estimation. Here, we mainly focus on the algorithms without the usage of oracles

2The implementation of qubitisation is introduced in Section 2.4.3. The resource cost for implementing these
quantum oracles (block encoding of a given Hamiltonian H) is discussed in Section 9.3.
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for the block-encoding of a Hamiltonian. The latter will be discussed in Chapter 9. The Tables

compare the maximal evolution time which characterises the complexity of quantum circuits for

realising Hamiltonian simulation e−iHt, the number of repetitions required to run the quantum

circuit, and the total evolution time needed for estimating the ground state energy to within

error 󰂃. The complexity of estimating properties of excited states can be analysed in a similar

fashion. Note that we simply compare with the conventional phase estimation method. Here we

also use asymptotic notations, besides the usual O notation, to denote the complexity up to a

polylogarithmic factors, similarly to that in Ref. [29].

Note that we can generalise Assumption 1 and Assumption 2 to the case of the estimation of

jth eigenenergy Ej and the properties of jth eigenstate |uj〉: it is also assumed that the initial

state has a large overlap pj with the jth eigenstate of the target Hamiltonian H; we also assume

a known lower bound ∆ on the energy gap min{|Ej − Ej−1|, |Ej − Ej+1|}. In this case, our

proposed algorithm can then be used for eigenenergy and eigenstate property estimation.

4.5 Numerical simulation

In this section, I show numerical implementation of the algorithmic cooling method for the

anisotropic Heisenberg Hamiltonian,

H = J

7󰁛

i=1

󰀃
σx
i σ

x
i+1 + σy

i σ
y
i+1 + 2σz

i σ
z
i+1

󰀄
+ h

8󰁛

i=1

σz
i ,

where J = 1 is the exchange coupling, σα
i (α = x, y, z) is the Pauli operator on the ith site, h = 1

is the strength of a uniform magnetic field in the z direction, and periodic boundary condition is

imposed. The initial state is in the computation basis as |01010101〉, which is close to the ground

state and has nonzero overlap with a relatively small number of low-energy eigenstates.

Under the dual phase representation of the unphysical Gaussian function, the eigenenergy Ei

maximises the denominatorDτ (E) if the initial state has a nonvanishing spectral weight |〈ψ0|ui〉|2

on the eigenstate |ui〉. We can thus determine the eigenenergy by searching for the peaks ofDτ (E)

with the Gaussian cooling function. Both the imaginary time τ and the cutoff xm are consistently

adjusted by the target precision. I elaborate on how to determine the imaginary time τ and the

cutoff xm by taking the Gaussian function as an example. For a certain simulation accuracy ε, the

imaginary time τ and the cutoff xm satisfy τ ∝
󰁳

log(2∆/󰂃) and xm = 2
󰁳

log(2/󰂃), respectively.

The reference line is calculated by the error due to a finite imaginary-time τ plus the theoretical

maximum cutoff error L(󰂃). Using a finite imaginary time τ = 1.7 and cutoff xm = 4.4, and 105

number of samples for the integral, I show the energy spectra in Figure 4.4. The maximum error

introduced is below 0.01, which aligns with our error analysis.

I then show the spectrum search with different total evolution times T = τxm with cutoff xm

and imaginary evolution time τ . Here, τ and xm are calculated according to the target precision,
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Figure 4.4: Energy spectra search of the 8-site anisotropic Heisenberg model using the Gaussian
cooling function. The solid line shows the denominator of Dτ with τ = 1.7 and cutoff xm = 4.4.
The dashed line shows the exact eigenenergy of the Heisenberg model. The figure inset shows
the error of Dτ with respect to that under the exact cooling. Ns = 105 is set in the Monte Carlo
sampling of the integral. Measurement shot noise is ignored.
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Figure 4.5: The spectrum search of the 8-site anisotropic Heisenberg model using the Gaussian
cooling function with different evolution time. The solid line shows the denominator of Dτ with
different τ from τ = 0.9 to 1.7. The cutoff is calculated according to the target precision. The
sampling number is set as Ns = 105 in the Monte Carlo sampling of the integral to keep consistent
with Figure 4.4.

as discussed in the above sections. The maximum imaginary evolution time τ ranges from τ = 0.9

to 1.7. As shown in Figure 4.5, with increasing imaginary time, we can distinguish the peaks

that are close to each other, aligning with our theoretical analysis.

Finally, I show the error dependence of the eigenstate preparation, with a particular emphasis

on the time complexity. Suppose we aim to find the second eigenstate |u2〉, which has the largest

overlap with the initial state. Given the associated eigenenergy E2 found by the above method,

one can analyse the error introduced from finite imaginary time and cutoff. Here, I focus on the

state infidelity of the normalised state after cooling and the target ideal eigenstate, which can be
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Figure 4.6: Error dependence of the total evolution time with (a1-a2) Gaussian and (b1-b2)
exponential cooling functions. In (a1) and (b1), we study the infidelity versus maximal total time
tm = τxm and both the imaginary time τ and the cutoff xm are adjusted. The measurement
shot noise is ignored in (a1, b1). In (a2) and (b2), we further consider measurement shot noise,
which introduces more instability of the infidelity. Nevertheless, we still observe the exponential
and linear inverse decay of the infidelity for the Gaussian and exponential functions, respectively.
The error bar is the standard deviation of Dτ error over 10 independent repetitions of the entire
setup. 105 samples are used in the Monte Carlo sampling of the integral. Dashed line: theoretical
upper bound of the infidelity assuming infinite samples; Dots with error bar: actual infidelity
with a constant number of samples.

expressed as ε = 1− 〈O〉τ with O = |u2〉 〈u2|. I illustrate the error dependence on the imaginary

time τ and the maximal total evolution time tm = τxm with Gaussian and exponential cooling

functions in Figure 4.6(a1-a2) and (b1-b2), respectively. I plot the theoretical upper bound of

the infidelity in the dashed line in the figures (assuming finite τ , infinite xm, and infinite samples

NM ) and realistic infidelity with constant resources (a finite circuit depth and a finite number

of measurements) using dots. I set the imaginary time τ and the cutoff according to precision

in the worst case, similar to the spectrum analysis, and the pre-determined precision is plotted

in the dashed line in the figures. In Figure 4.6(a1) and (b1), I consider finite τ and xm with

105 samples for calculating the integral, but ignore statistical errors due to a finite number of
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Figure 4.7: Simulation error during the cooling process. The error is compared with the ideal
expectation value given by 〈ψ0|g(τ(H − E2))

†Og(τ(H − E2))|ψ0〉. The simulation error is below
0.05 under evolution.

measurements. We can see the exponential scaling with respect to the total evolution time

tm for the Gaussian cooling function, while it asymptotically becomes 1/ε for the exponential

cooling function. Figure 4.6(a2) and (b2) further show the error dependence when considering

the statistical errors, where single-shot measurement outcomes are collected, and 105 samples are

used.

Additionally, the simulation accuracy under the cooling process compared to the ideal cooling

process is shown in Figure 4.7. We can see that the error is kept to a relatively small value

during the cooling process, which verifies the effectiveness of our random sampling scheme. We

can improve the simulation accuracy by increasing the Monte Carlo sampling of the integral.

Author contributions. This chapter is relevant to a preprint [93] and a manuscript un-

der preparation [92]. Z.P., J.S., and X.Y. conceived the project. Z.P. and J.S. developed the

theoretical framework of algorithmic cooling. J.S. carried out numerical simulation and resource

estimation. X.Y. supervised the project.
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Chapter 5

Dynamics simulation by adaptive
product formulae

As discussed in Section 2.4, one major application of quantum computing is to simulate the

time evolution of quantum many-body systems [6]. This is an essential component of quantum

simulation, which not only allows us to study dynamical behaviours of quantum systems [7,

9, 12, 95, 175–178], but also supplements other quantum algorithms as a common subroutine

(e.g. quantum phase estimation [28, 179]) for general tasks (e.g. finding energy spectra [80, 177,

180–184] or particle scattering [41,42]).

In Section 2.4, I have introduced several solutions to Problem 1, from the initial simple

Trotter-Suzuki product formula [139,185] to the latest advanced approaches [37,38,144,186–189],

such as ones based on Taylor series [38] and quantum signal processing with qubitisation [32,33].

In this chapter, I will focus on Problem 2 introduced in Section 2.4 and show the solution with

adaptive product formula, as an extension to product formula introduced in Problem 2. Moreover,

I will further show how this is built on the hybrid tensor networks established in Chapter 3, which

extends its application to dynamics simulation.

This chapter is relevant to a published paper in collaboration with Zi-Jian Zhang, Xiao Yuan,

and Man-Hong Yung [94] and a manuscript under preparation [91].

5.1 Introduction

Consider a Hamiltonian H =
󰁓L

j=1 ajPj that is decomposed as a sum of tensor products of Pauli

operators Pj with real coefficients aj . The key idea of the product formula (PF) methods is to

approximate the time evolution operator e−iHδt via a sequence of operators selected from the

Hamiltonian evolution operation pool {e−iPjδt
′} such as the first-order Trotter-Suzuki formula

e−iHδt ≈
L󰁜

j=1

e−iajPjδt +O(δt2).

Higher-order Trotter-Suzuki formulae are shown in Section 2.4. Theoretically, tighter bounds

have been derived for special types of systems (e.g. lattice Hamiltonians with nearest-neighbour
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interactions) [144, 189], verifying the empirical error estimates of the product formula methods.

Numerically, it has been shown that product formula methods require entangling gates and T

gates to orders of magnitude fewer than those more advanced methods (e.g. qubitisation) for a

system of 100 qubits [37]. Since product formula methods are ancilla-free and are much easier to

implement in experiments, they are favoured for simulating dynamics with near-term quantum

devices.

Product formula methods approximate the time evolution operator (quantum channel), which

works for arbitrary input states, and thus they may require an unnecessarily large number of

gates when we only evolve a specific quantum state in practice. Recent numerical and theoretical

studies have shown that product formulae with fixed or random input states only require a

much shorter circuit [147, 148, 190]. On the one hand, this indicates an even greater degree of

practicality of the product formula methods for fixed input states. On the other hand, since

existing product formula methods do not exploit the input state information, whether we can

further exploit such information to reduce the implementation complexity merits further study.

As near-term quantum hardware has limited gate fidelity [8, 11, 25, 71, 74, 191–193], it is crucial

to design Hamiltonian simulation algorithms with a shorter circuit, and hence higher calculation

accuracy.

In this chapter, I will discuss a construction-based method to adaptively find the optimal

product formula for evolving an unknown but fixed input quantum state. The task description is

formulated in Problem 2 in Section 2.4. Instead of using the theoretical worst-case error bound

of conventional product formula methods, I will introduce a measurable quantifier to describe

the simulation error. This work considers different evolution operators at different times and

constructs the optimal one by minimising the error quantifier. Since the error quantifier focuses

on the quantum state instead of the entire evolution channel, we can thus adaptively obtain the

state evolution circuit with a significantly reduced circuit depth than conventional approaches

for the unitary evolution.

This chapter is organised as follows. In Section 5.2, I introduce the framework of adaptive

product formulae. To stimulate the discussion, I begin with a single-step adaptive product

formula. Then, I show a jointly-optimised adaptive product formula. In Section 5.3, I show how

dynamics simulations can be scaled up using hybrid tensor networks. In Section 5.4, I discuss

the relation between our work and prior works in this field, and provide some perspectives on

dynamics simulation methods. The error analysis is presented in Section C.1.1.

5.2 Adaptive product formula

This section discusses how to adaptively find a short product formula for the Hamiltonian sim-

ulation from a fixed input quantum state. Consider the above time-independent Hamiltonian

94



H =
󰁓L

j=1 ajPj . Recall in Section 2.4 that conventional product formula approaches approxi-

mate the time evolution operator e−iHδt within a small time step δt as

ε = 󰀂e−iHδt −
󰁜

j

e−iOjλjδt󰀂, (5.1)

as stated in Problem 1. Here, ε is the approximation error, Oj ∈ {Pj} are chosen from Pauli

words in the Hamiltonian, λjs are real coefficients, and 󰀂 · 󰀂 is the operator norm. By properly

choosing {Oj} with a given order, the approximation error ε can be suppressed to higher orders

of δt (e.g. ε = O(δt2)) and we can accordingly simulate the whole evolution operator e−iHT with

a small error in the order of O(T δt). The error bound is a pessimistic estimation of the worst-

case scenario, and several numerical and theoretical studies [147, 148, 190] have further shown

that for Problem 2 the complexity could be much smaller. In the following, I show a solution to

Problem 2 by adaptive product formulae.

5.2.1 Single-step adaptive product formula

In the single-step protocol, the exact time-evolved state e−iHδt |Ψ(t)〉 is approximated by

|Ψ(t+ δt)〉 =
󰁜

j

e−iOjλjδt |Ψ(t)〉 , (5.2)

where the tuple 󰂓O = {Oj} at each step is chosen from the Hamiltonian and the coefficients

󰂓λ = {λj} are real. The error for the approximation within each finite time step can be described

by the Euclidean distance between the exact time-evolved state and the approximated state

ε̃ = 󰀂e−iHδt |Ψ(t)〉 −
󰁜

j

e−iOjλjδt |Ψ(t)〉 󰀂, (5.3)

where 󰀂 |ψ〉 󰀂 =
󰁳

〈ψ|ψ〉 represents the state vector norm or Frobenius norm.

Using Taylor expansion

e−iHδt =

∞󰁛

k=0

δtk

k!
(−iH)k

and
󰁜

j

e−iOjλjδt =

∞󰁛

k=0

󰁛

j1,j2,...,jk

(−i)kδtk

k!

󰁜

k

(λjkOjk),

the algorithmic error can be expressed by

ε̃ =
󰁳

∆2δt2 +O(δt3) ≤ ∆δt+O(δt3/2) (5.4)

with the first-order error ∆ being

∆2 = 〈H2〉+
󰁛

jj′

Ajj′λjλj′ − 2
󰁛

j

Cjλj (5.5)
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Algorithm 1 Adaptive product formula (single step)

1. Set ∆cut and n = 1. Input the initial state |Ψ(t)〉 and Hamiltonian H =
󰁓L

j=1 ajPj ;

2. In the nth iteration, calculate A,C,󰂓λ and ∆ of the new circuit e−iPkλkδt
󰁔n−1

j=1 e
−iOjλjδt |Ψ(t)〉

for each Pauli word Pk in the Hamiltonian;
3. Set Pk that gives the lowest ∆ in step 2 to be On;
4. If ∆ > ∆cut for the new circuit, go to step 2 with n = n+ 1. Else, stop and output 󰂓O, 󰂓λ for
approximation in Eq. (5.2).

Here, we have defined Ajj′ = Re
󰀃
〈Ψ(t)|OjOj′ |Ψ(t)〉

󰀄
, Cj = Re (〈Ψ(t)|HOj |Ψ(t)〉) and 〈H2〉 =

〈Ψ(t)|H2|Ψ(t)〉. These values can be evaluated by quantum circuits [116,131].

With a given 󰂓O, ∆2 is a quadratic function of 󰂓λ, whose minimum can be obtained at the

stationary point where ∂
∂λj

∆ = 0 for all j. This is equivalent to
󰁓

j′ Ajj′λj′ = Cj , or A󰂓λ = C (in

a vector form). Therefore, the coefficients 󰂓λ that give the minimum of ∆2 can be determined by

solving a linear equation, either by applying the inverse matrix A−1 or by an iterative algorithm.

The accuracy of time evolution at each time step can be bounded by error O(∆δt), and ∆

(or ∆2) serves as a handy measurable quantifier to estimate the quality of the time evolution

with a choice of 󰂓O. Therefore, to construct a circuit (which could be represented by 󰂓O) that

approximates the exact evolution with better quality, we can just add a new Pauli word to 󰂓O

and see how ∆ will change. In the single-step strategy, we iterate over all the Pauli words in the

Hamiltonian and add the Pauli word that gives the lowest ∆ to 󰂓O. As the total error can be

bounded by εtotal ≤ T max∆ when δt is small enough, we can set a threshold ∆cut = εtotal/T ,

and if ∆ > ∆cut for the new circuit, we repeat the addition of new operators until ∆ < ∆cut.

This adaptive circuit construction process can suppress the effect of the algorithmic error in the

time evolution to any given εtotal with proper ∆cut and δt. The above method is summarised in

Algorithm 1.

The performance of adaptive product formulae is guaranteed by Theorem 3

Theorem 3. Algorithm 1 satisfies the following properties.

(1) The error ∆ strictly decreases at each iteration;

(2) Each Pauli word only needs to appear once;

(3) We can achieve an error ∆ ≤ ∆cut in at most L iterations for any ∆cut ≥ 0.

The first property indicates that the strategy is always effective; The second property indicates

that the strategy only requires applying each Pauli word once 1; The third property states that

Algorithm 1 will terminate in a finite number of steps. The above theorem thus guarantees the

effectiveness and efficiency of the adaptive approach in the approximation of the time-evolved

state in Eq. (5.2).

The proof of Theorem 3 was mainly carried out by my collaborator Zi-Jian Zhang. Here, I

will merely give a rough idea of the proof and refer to a complete proof in [94]. The proof is

1This property only holds when we consider the first-order error ∆, which may fail for higher-order errors.
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based on analysing the tangent space of product formulas. The first-order error is found to be

the distance from the objective evolution direction to the tangent space of the current product

formula. The next step is to find the condition for the error ∆ to decrease when adding the new

Pauli word to the product formula. The condition is proven to be fulfilled in our method.

5.2.2 Jointly optimised adaptive product formula

I first overview the jointly optimised adaptive product formula before moving on to the technical

details. To evolve an initial state |Ψ0〉 to e−iHT |Ψ0〉 = |Ψ(T )〉, we can sequentially apply the

single-step adaptive strategy, in a similar vein to conventional product formula methods. How-

ever, this might not be optimal since the circuit constructed independently at each step may still

be redundant for the state evolution. To further reduce the circuit depth, a jointly-optimised

adaptive strategy is introduced to produce a more compact quantum circuit.

Using an iterative description, it is assumed that the approximation of the time-evolved state

at time t to be |Ψ(t)〉 = G( 󰂓O, 󰂓Λ) |Ψ0〉, where G( 󰂓O, 󰂓Λ) =
󰁔

j e
−iOjΛj is the circuit that has been

constructed at time t. Let us represent the list of Pauli words by 󰂓O = {Oj} and the adjustable

real coefficients (parameters) by 󰂓Λ = {Λj}. The single-step adaptive strategy considers the

approximation of Eq. (5.2) as G( 󰂓O′,󰂓λ′δt)G( 󰂓O, 󰂓Λ) |Ψ0〉, in which the original circuit block G( 󰂓O, 󰂓Λ)

is fixed and only the new added circuit block G( 󰂓O′,󰂓λ′δt) (specifically 󰂓O′ and the associated 󰂓λ′) is

optimised. However, since our objective is to obtain the time-evolved state from |Ψ0〉, rather than
a general unitary for the time evolution, we may only need a much shorter circuit to effectively

implement the state evolution to any time t. In this section, I demonstrate how to optimise the

parameters jointly and implement the state evolution up to a given simulation error.

A refined strategy (Algorithm 2) is to jointly optimise G( 󰂓O′,󰂓λ′δt) and G( 󰂓O, 󰂓Λ). That is to

consider the approximation

e−iHδt |Ψ(t)〉 ≈ G( 󰂓O′,󰂓λ′δt)G( 󰂓O, 󰂓Λ+ 󰂓λδt) |Ψ0〉 , (5.6)

where we also 󰂓λ, which corresponds to the variation of the parameters found in the previous steps.

Specifically, consider the simulation error ε̃ = 󰀂e−iHδt |Ψ(t)〉 − G( 󰂓O′,󰂓λ′δt)G( 󰂓O, 󰂓Λ + 󰂓λδt) |Ψ0〉 󰀂.
The first-order error ∆ = limδt→0 ε̃/δt has a similar form of Eq. (5.5). Given 󰂓O′, 󰂓O and 󰂓Λ,

the optimal 󰂓λ and 󰂓λ′ that minimise ∆ could then be analytically obtained by solving a linear

equation, and hence ∆ can also be obtained. Below, I will show the analytical formula of ∆ and

detailed calculation of the optimal 󰂓λ and 󰂓λ′).

Methods.— I will now expand on the methods employed in detail. In the jointly-optimised

strategy, the exact time-evolved state e−iHδtG( 󰂓Ot, 󰂓Λt) |Ψ0〉 at time t is approximated by

G( 󰂓O′
t,
󰂓λ′
tδt)G( 󰂓Ot, 󰂓Λt + 󰂓λtδt) |Ψ0〉) = G( 󰂓Ot ⊕ 󰂓O′

t, (
󰂓Λt + 󰂓λtδt)⊕ (󰂓λ′

tδt)) |Ψ0〉 . (5.7)
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After this step at t, we will have 󰂓Ot+δt = 󰂓Ot⊕ 󰂓O′
t and

󰂓Λt+δt = (󰂓Λt+󰂓λδt)⊕(󰂓λ′
tδt). The total error at

time t+ δt for the approximation can be described by the Euclidean distance of the exact time-

evolved state and the approximated state as εtotal = D(e−iH(t+δt) |Ψ0〉 , G( 󰂓O′
t,
󰂓λ′
tδt)G( 󰂓Ot, 󰂓Λt +

󰂓λtδt) |Ψ0〉) where D(ρ,σ) = 󰀂ρ − σ󰀂 represents the Euclidean distance. Using the triangle in-

equality, the total error is upper bounded by

εtotal ≤D(e−iH(t+δt) |Ψ0〉 , e−iHδtG( 󰂓Ot, 󰂓Λt) |Ψ0〉)

+D(e−iHδtG( 󰂓Ot, 󰂓Λt) |Ψ0〉 , G( 󰂓O′
t,
󰂓λ′
tδt)G( 󰂓Ot, 󰂓Λt + 󰂓λtδt) |Ψ0〉)

≤
󰁛

t∈time steps

D(e−iHδtG( 󰂓Ot, 󰂓Λt) |Ψ0〉 , G( 󰂓O′
t,
󰂓λ′
tδt)G( 󰂓Ot, 󰂓Λt + 󰂓λtδt) |Ψ0〉).

(5.8)

Here, we used the invariance of distances under unitary transformation and the summation in

the second line is made over all the t at which a time step is made. Denote the approximation

error as

ε̃t = D(e−iHδtG( 󰂓Ot, 󰂓Λt) |Ψ0〉 , G( 󰂓O′
t,
󰂓λ′
tδt)G( 󰂓Ot, 󰂓Λt + 󰂓λtδt) |Ψ0〉), (5.9)

which characterises the error with the circuit G( 󰂓O′
t,󰂓0)G( 󰂓Ot, 󰂓Λt) at each time step.

In order to give a first-order approximation of the error ε̃ defined above, I will derive an

equation for

ε̃ = D(e−iHδtG( 󰂓O, 󰂓Λ) |Ψ0〉 , G( 󰂓O, 󰂓Λ+ 󰂓λδt) |Ψ0〉), (5.10)

which will become ε̃t by setting 󰂓O ← 󰂓Ot ⊕ 󰂓O′
t,
󰂓Λ ← 󰂓Λt ⊕󰂓0 and 󰂓λδt ← 󰂓λtδt⊕ 󰂓λ′

tδt.

The approximation error can be expanded as

ε̃ =
󰁴

∆2δt2 +∆2
2δt

3 +O(δt4) ≤ ∆δt+∆2δt
3/2 +O(δt2). (5.11)

The total error can thus be bounded by

εtotal ≤
󰁛

t∈time steps

ε̃t ≤ ∆(max)T +∆
(max)
2

√
δtT. (5.12)

Proposition 4 shows the explicit form of the first-order error. An upper bound of ∆2 is shown

in the Section C.1.1.

Proposition 4 (First-order approximation error by adaptive product formula). The first-order

approximation error of ε̃ = D(e−iHδtG( 󰂓O, 󰂓Λ) |Ψ0〉 , G( 󰂓O, 󰂓Λ+󰂓λδt) |Ψ0〉) is characterised by ∆, and

we have
∆2 = 〈ψ1|ψ1〉 = 〈H2〉+

󰁛

jj′

Ajj′λjλj′ − 2
󰁛

j

Cjλj , (5.13)

where we denote

Ajj′ = Re
󰀓
〈Ψ0| ∂jG†( 󰂓O, 󰂓Λ)∂j′G( 󰂓O, 󰂓Λ) |Ψ0〉

󰀔
, Cj = Im

󰀓
〈Ψ0|∂jG†( 󰂓O, 󰂓Λ)HG( 󰂓O, 󰂓Λ)|Ψ0〉

󰀔
,

(5.14)

and

〈H2〉 = 〈Ψ0|G†( 󰂓O, 󰂓Λ)H2G( 󰂓O, 󰂓Λ)|Ψ0〉 . (5.15)
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To minimise ∆, the coefficients 󰂓λ can be determined by solving the linear equation as
󰁓

j′ Ajj′λj′ = Cj , similarly to that in the single-step strategy. Each term in Eq. (5.13) can

be measured on a quantum circuit, as discussed in Section 2.2.3. In practice, due to a finite

number of measurements or hardware noise, the estimates of A and C may deviate from the true

values, which results in an error in the estimation of ∆. In this thesis, it is assumed that the

true values of Ajj′ and Cj can be obtained. I refer to [94] for discussions on the shot noise due

to a finite number of measurements.

One difference between the jointly-optimised strategy and the single-step strategy is that when

old parameters are permitted to change, the ∆ of the circuit may be lower than the cutoff ∆cut

by merely using the old circuit itself. In this case, adding new operators becomes unnecessary.

Therefore, in the new jointly-optimised strategy, we only add new operators when ∆ > ∆cut,

which largely reduces the quantum gates required for certain simulation accuracy.

Similar to the single-step strategy, the jointly-optimised strategy also constructs its circuit by

iterating over all the Pauli words in the Hamiltonian. We calculate ∆ for each Pauli word and

add the Pauli word that gives the lowest ∆, O(min), to the previous circuit. ∆ is calculated by

optimising over 󰂓λ ⊕ 󰂓λ′ associated with the circuit 󰂓O ⊕ 󰂓O′, instead of merely optimising over 󰂓λ′.

⊕ denotes the concatenation of the two vectors. This procedure is repeated until the first-order

error ∆ is less than a threshold.

A major advantage of the new strategy is that when the old parameters are allowed to change,

we may only need to add much fewer new operators to ensure ∆ is below the threshold. This

is because we only add gates when ∆ > ∆cut; in the extreme case in which optimising over

the existing parameters 󰂓λ directly makes ∆ ≤ ∆cut, no additional gates are needed to proceed

the evolution. In addition, we arrange that every time the circuit is constructed, we add new

operators until ∆ ≤ ∆cut/2, so that we do not necessarily have to add new operators in a few

following evolution steps until ∆ > ∆cut. The refined algorithm is summarised in Algorithm 2

and Figure 5.1.

Algorithm 2 Adaptive product formula

1. Set ∆cut. Input the initial state |Ψ0〉 and Hamiltonian H =
󰁓L

j=1 ajPj ;

2. (Joint parameter optimisation) Calculate optimal 󰂓λ and ∆ of the current circuit G( 󰂓O, 󰂓Λ +
󰂓λδt) |Ψ0〉 at time t. If ∆ > ∆cut, go to the step 3. Otherwise, set 󰂓Λ → 󰂓Λ+󰂓λδt and continue step
2 with t → t+ δt; Terminate when t = T ;
3. (Add new operators)

(a) For every Pauli word Pk in H, calculate ∆ of the circuit G( 󰂓O ⊕ Pk, (󰂓Λ+ 󰂓λδt)⊕ λ′δt) |Ψ0〉.

(b) With O(min) being the Pauli word giving the smallest ∆ in step (3a), add O(min) to the end
of the product formula as 󰂓O → 󰂓O ⊕O(min) and 󰂓Λ → 󰂓Λ⊕ 0;

(c) If we have ∆ ≤ ∆cut/2, stop adding operators and go to step 2. Otherwise, go to step (3a).
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Adaptive Product Formula

Calculate 𝚫 of new PFs

Adopt PF with min 𝚫

Joint parameter optimization

Calculate 𝝀 and 𝚫 of current PF

∏𝒆−𝒊𝑶𝒋𝚲𝒋 𝚿𝟎 ≈ 𝒆−𝒊𝑯𝒕 𝚿𝟎

𝚫 ≤ 𝚫𝐜𝐮𝐭?

Update coefficients 𝚲 in PF by 𝝀𝜹𝒕

𝚫 ≤ 𝟏
𝟐
𝚫𝐜𝐮𝐭?

No

Yes

Yes

No

       Add new operators

Figure 5.1: Scheme of the adaptive product formula (PF) method described in Algorithm 2.
We adaptively construct the time evolution circuit of quantum states by learning the quantum
gates and parameters that minimise the first-order error ∆ at each step.

It is proven that the “Add new operator” procedure of Algorithm 2 also satisfies the same

properties in Theorem 3. Compared to conventional product formula methods, which apply a

deterministic sequence of gates, our method provides a circuit-growth strategy that optimises

quantum circuits with a shallow depth.

5.3 Large-scale dynamics simulation with hybrid tensor networks

Simulation of quantum dynamical processes based on classical perturbative approaches or tensor

networks in general scales exponentially with evolution time. Quantum computing provides

an alternative solution, but the simulation task requires a number of physical or logical qubits

no smaller than the problem size and a relatively deeper circuit. In this section, I propose

a quantum dynamics simulation method with hybrid tensor networks that address these two

challenges, making it compatible with the near-term quantum technology.

5.3.1 Stage setting

Consider a quantum many-body Hamiltonian

H = H loc + V int, (5.16)

where H loc =
󰁓

l Hl corresponds to a strong but local interaction with each Hl acting on the lth

subsystem and V int corresponds to a weak perturbation. In practice, one can always divide the
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whole system into L subsystems, which will be discussed in Chapter 6 in detail. We can thus

consider

V int =
󰁛

j

αjV
(j)
l (5.17)

as the weak perturbation interaction between the subsystems with different interactions V
(j)
l

acting on the lth subsystem and the corresponding coefficients αj . The local Hamiltonians and

the perturbation interaction depend on the partitioning strategy of the subsystems. A time-

independent Hamiltonian is assumed in the following discussion. However, our results also apply

to general time-dependent Hamiltonians. Without loss of generality, we assume that every Hl

could be decomposed as a linear combination of tensor product of Pauli operators and each V int
j

is a tensor product of Pauli operators.

The quantum state at time t is approximated by

|Ψ(t)〉 =
󰁛

i1,...,iL

αi1,...,iL |ψi1
1 (t)〉 ⊗ · · ·⊗ |ψiL

L (t)〉 , (5.18)

where αi1,...,iL denotes the generalised tensor that characterises the correlation between the sub-

systems and {|ψil
l 〉} denotes the quantum states for each subsystem l. Each subsystem is repre-

sented by quantum states {|ψil
l 〉}, and we may use either a quantum or classical tensor αi1,i2...iL to

describe the correlation between subsystems. If the entanglement of subsystems is not large, we

can set the rank of αi1,i2...iL to be a small number. For example, we can use the matrix product

state αi1,i2...iL = Tr[αi1
1 α

i2
2 . . .αiL

L ]. Alternatively, we can use a quantum tensor to represent the

correlation between subsystems as ψi1,...,iL = 〈i1| . . . 〈iL| ψ̃〉.
The time-evolved state from |Ψ(t)〉 based on the above hybrid quantum-classical tensor net-

work can be approximated by

|Ψ(t+ δt)〉 = e−iHδt |Ψ(t)〉 ≈
󰁛

i′1,...,i
′
L

αi′1,...,i
′
L
|ψi′1

1 (t)〉 ⊗ · · ·⊗ |ψi′L
L (t)〉 (5.19)

The evolution of state is thus mapped to the evolution of the tensors α... and ψil
l .

To measure the expectation value of M = O1 ⊗ · · · ⊗ OL with each Ol representing a local

observable on the lth subsystem, we have

〈ψ̃|M |ψ̃〉 =
󰁛

i1...iL,i
′
1,...i

′
L

ᾱi′1,...i
′
Lαi1,...iLM

i′1,i1
1 . . .M

i′L,iL
L , (5.20)

with

M
i′l,il
l = 〈ψi′l

l (t)|Ol|ψil
l (t)〉 . (5.21)

The dimension of each index i1, . . . iL should be a small number similar to the bond dimension

of MPS.

Here, quantum tensors are used to represent the local n-qubit correlation, and the classical

rank-L tensor is used for global correlation among these L clusters of qubits. Consequently,
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this kind of quantum-classical tensor could be suitable for systems, in which local correlation

dominates over global correlation. Again, it is worth pointing out that the ansatz in Eq. (5.19)

may not guarantee simulation accuracy for a general quantum system.

5.3.2 Results

In this section, I demonstrate how to update the parameters in the tensor networks to achieve

certain simulation accuracy ε under time evolution. I further show a joint optimisation method

that may avoid the exponential increase of the bond dimension.

5.3.3 Tensor evolution—single step

As a starting point, I first discuss the approximation error at single step with time step δt.

Consider the evolution of a local subsystem by Trotterisation as

e−iHδt |Ψ(t)〉 = e−iV δt
󰁛

i1,...,iL

αi1,...,iL

󰁒

l

e−iδtHl |ψil
l (t)〉 ≡ e−iV δt |Ψloc(t+ δt)〉 . (5.22)

The error for the approximation of

e−iHδt |Ψ(t)〉 ≈ |Ψ(t+ δt)〉 =
󰁛

i′1,...,i
′
L

αi′1,...,i
′
L
|ψi′1

1 (t)〉 ⊗ · · ·⊗ |ψi′L
L (t)〉 (5.23)

within each finite time step can be described by the Euclidean distance of the exact time-evolved

state and the approximated state as

ε = 󰀂e−iV δt |Ψloc(t+ δt)〉 − |Ψ(t+ δt)〉 󰀂2,
(5.24)

where 󰀂 |ψ〉 󰀂2 =
󰁳

〈ψ|ψ〉 represents the state vector norm.

The algorithmic error in a finite time step can be similarly expressed as

δε =
󰁳

∆2δt2 +O(δt3) ≤ ∆δt+O(δt3/2) (5.25)

with

∆2 = 〈δΨ1(t+ δt)|δΨ1(t+ δt)〉 , |δΨ1(t+ δt)〉 = −
󰀃
iV +

󰁛

j

α̇j∂j
󰀄
|Ψloc(t+ δt)〉 . (5.26)

Here, the parameter set is denoted as 󰂓α = {αi1,...,iL}, the jth component of 󰂓α as αj , and the

differential operator on the jth component of 󰂓α as ∂j ≡ ∂/∂αj in short. The variation of

the tensor is represented by δαi1,...,iL =
󰁓

j α̇jδt. Note that this mathematically holds for the

quantum tensor α.... I remark that we can adaptively adjust the parameters in the tensors at

each time t. For instance, the parameters can be adjusted as 󰂓α ← 󰂓α⊕ 󰂓α′ from t to t+ δt.

The first-order error ∆ can be expressed as

∆2 = 〈V 2〉+
󰁛

jj′

Ajj′α̇jα̇j′ − 2
󰁛

j

Cjα̇j , (5.27)
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where we denote 〈V 2〉 = 〈Ψloc(t+ δt)|V 2 |Ψloc(t+ δt)〉, Ajj′ = Re
󰀃
∂j 〈Ψloc(t+ δt)| ∂j′ |Ψloc(t+ δt)〉

󰀄
,

and Cj = Im
󰀃
∂j 〈Ψloc(t+ δt)|H |Ψloc(t+ δt)〉

󰀄
.

Note that the first-order algorithmic error is a quadratic function with respect to the derivative

of the parameters α̇j , whose minimum is obtained at A(󰂓̇α⊕ 󰂓̇α′) = C, and thus the coefficients can

be similarly determined by solving the linear equation
󰁓

j′ Ajj′αj′ = Cj . Each term in Eq. (5.27)

can be measured on a quantum circuit.

5.3.4 Tensor evolution—full dynamics

I will now discuss a jointly optimisation method that circumvents the exponential increase of

bond dimension. I show how a circuit that realises the evolution from a given quantum state can

be adaptively determined.

To initiate the discussion, I first revisit the single-step evolution from time t to t + δt. We

find that the evolution under the non-local interaction operator e−iHδt is able to be realised by

the evolution of the tensors. Mathematically, the evolution can be represented by

e−iHδt |Ψ(t)〉 =
󰁛

i1,...,iL

e−iHδtαi1,...,iL(t)
󰁒

l

|ψil
l (t)〉

≈
󰁛

i′1,...,i
′
L

αi′1,...,i
′
L
(t+ δt) |ψi′1

1 (t+ δt)〉 ⊗ · · ·⊗ |ψi′L
L (t+ δt)〉 .

(5.28)

Note that compared to directly mimicking the local operator e−iHlt, the state is approximated

by updating the tensors of the local quantum tensors ψ
i′l
l (t + δt) ← ψil

l (t) and the upper layer

quantum tensors αi′1,...,i
′
L
(t+ δt) ← αi1,...,iL(t) instead. Now, the evolution of the state is mapped

to the evolution of the parameters in the tensors. Denote the total parameters as 󰂓Λ, the variation

of parameters as δΛ = λδt, and represent the state as |Ψ(t)〉 ≡ T (󰂓Λ(t)) |Ψ0〉. Note that we could

adjust the tensors at each time and this could be described by 󰂓Λ(t + δt) ← 󰂓Λ(t) ⊕ 󰂓Λ′(t) where

we add the additional tensors with parameters Λ′ at time t.

The error for the approximation during the evolution can be described by the Euclidean

distance of the exact time-evolved state and the approximated state as

ε = 󰀂e−iHt |Ψ0〉 −
󰁛

i1,...,iL

αi1,...,iL |ψi1
1 (t)〉 ⊗ · · ·⊗ |ψiL

L (t)〉 󰀂2 (5.29)

where, 󰀂 |ψ〉 󰀂2 =
󰁳

〈ψ|ψ〉 represents the Frobenius norm. The exact time-evolved state e−iHδt |Ψ(t)〉
is approximated by T (󰂓Λ(t+ δt)) |Ψ0〉. The total error at time t+ δt for the approximation can be

described by the Euclidean distance of the exact time-evolved state and the approximated state

as ε̃ = D(e−iHδt |Ψ(t)〉 , T (󰂓Λ(t + δt)) |Ψ0〉) where D(ρ,σ) = 󰀂ρ − σ󰀂2 represents the Euclidean

distance defined above. Using the triangle inequality, the total error is upper bounded by

ε̃ ≤
󰁛

t

D(e−iHδtT (󰂓Λ(t)) |Ψ0〉 , T (󰂓Λ(t+ δt)) |Ψ0〉). (5.30)
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Here distance invariance under the unitary transformation is used and the summation is made

over all the time steps.

Denote δε = D(e−iHδtT (󰂓Λ(t)) |Ψ0〉 , T (󰂓Λ(t+δt)) |Ψ0〉), which characterises the approximation

error with the tensor T at a time step. Denote the jth component in 󰂓Λ ⊕ 󰂓Λ′ as Λj and denote

the differential operator on the jth component of 󰂓Λ ⊕ 󰂓Λ′ as ∂j ≡ ∂/∂Λj . The algorithmic error

in a finite time step can be thus expressed as

δε =
󰁴

∆2δt2 +∆2
2δt

3 +O(δt4) ≤ ∆δt+∆2δt
3/2 +O(δt2) (5.31)

with

∆2 = 〈δΨ1( 󰂓O,󰂓λ)|δΨ1( 󰂓O,󰂓λ)〉 ,∆2
2 = 2Re

󰀓
〈δΨ2( 󰂓O,󰂓λ)|δΨ1( 󰂓O,󰂓λ)〉

󰀔
, (5.32)

and
|δΨ1( 󰂓O,󰂓λ)〉 = −

󰀃
iH +

󰁛

j

λj∂j
󰀄
T (󰂓Λ) |Ψ0〉

|δΨ2( 󰂓O,󰂓λ)〉 = −1

2

󰀃
H2 +

󰁛

jj′

λjλj′∂
2
jj′

󰀄
T (󰂓Λ) |Ψ0〉 .

(5.33)

The first-order order error ∆ can be expressed as

∆2 = 〈H2〉+
󰁛

jj′

Ajj′λjλj′ − 2
󰁛

j

Cjλj , (5.34)

where we denote Ajj′ = Re
󰀃
〈Ψ0| ∂jT †∂j′T |Ψ0〉

󰀄
,Cj = Im

󰀃
〈Ψ0|∂jT †HT |Ψ0〉

󰀄
, and 〈H2〉 =

〈Ψ0|T †H2T |Ψ0〉. Note that first-order algorithmic errors is a quadratic function with respect

to 󰂓λ ⊕ 󰂓λ′, whose minimum obtains at A(󰂓λ ⊕ 󰂓λ′) = C, and thus the coefficients can be similarly

determined by solving the linear equation as
󰁓

j′ Ajj′λj′ = Cj .

We can first choose the tensors α′ that give the minimal ∆2, and adaptively adjust the

tensors by adding the corresponding tensor α′ under evolution. The procedure is very similar to

Algorithm 2.

With our method, one can represent a Ln-qubit system by using an O(n)-qubit system, and

emulate large-system dynamics by carrying out operations on a small quantum processor. The

success of this method relies on the fact that the entanglement of the system does not grow

drastically under time evolution.

5.4 Discussion

5.4.1 Comparison to other works

Compared to the first-order Trotter method, where Oj and Λj are set as the corresponding

Pauli word Pj and weight aj in the Hamiltonian, respectively, our method provides a systematic

circuit-growth strategy that optimises the quantum circuits with much smaller gate counts. In

the original paper [94], the adaptive product formula (PF) method is numerically benchmarked

for molecular systems and spin systems in both the dynamic and static problems. Our numerical
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simulation shows a significant improvement of the gate count saving in practical computation.

Specifically, the number of CNOT gates are significantly reduced by two orders compared to the

first-order Trotter-Suzuki product formula. I am indebted to my collaborator Zi-Jian Zhang for

performing the numerical simulation, and I refer the reader to [94] for the numerical simulation

results.

Meanwhile, variational methods (see Section 2.2.3) have been widely used to simulate quan-

tum dynamics, which use a shallow quantum circuit than that in conventional Trotterisation

algorithms. One major challenge in variational quantum simulation is to design an appropriate

circuit ansatz to represent the manifold that the target states live in, and in general it is difficult

to ensure simulation accuracy. In contrast to a pre-determined and fixed circuit ansatz in varia-

tional quantum simulation, the circuit under time evolution is optimised by tracking the accuracy

of the circuit at each time, which in turn enables an adaptive circuit construction with guaran-

tees on the simulation errors in the time evolution. In this chapter, I mainly focus on real-time

dynamics, and it is left to future work on the subject to extend the results to imaginary-time

evolution, which could potentially be used to find energy spectra of quantum many-body sys-

tems, similarly to Refs. [177, 178]. Several adaptive variational quantum algorithms have been

proposed for finding the energy spectra of the quantum many-body problems [194,195], and our

results using the quantum Krylov algorithm can be compared against these (see [94]).

It is also worth comparing our results with a parallel work, termed AVQDS, proposed by Yao

et al. [196]. AVQDS is a work of considerable interest, with points of commonality between the

authors’ approach and our own. AVQDS shares a similar idea to Algorithm 2 in this chapter,

i.e., the jointly-optimised algorithm, which adaptively constructs a quantum circuit for real-time

evolution. The approach outlined in this chapter is, however, based on the theory of product

formula and has guaranteed simulation accuracy as its primary consideration. A direct result

of this difference is that AVQDS permits a wider choice of operator pools, whereas our work

only allows the use of operators from the decomposition of the Hamiltonian. This feature of our

method guarantees that the circuit construction in adaptive PF is valid, i.e., ∆ can be reduced

to any ∆cut > 0 and thus objective simulation accuracy can be achieved. This is an important

distinction as improper pools may result in errors that cannot be reduced by circuit constructions.

It can be shown that when the length of the longest Pauli word in the pool is smaller than 2
3 of

the length of the longest Pauli word in the Hamiltonian, the algorithm cannot always suppress

simulation error below an arbitrarily low level. Intuitively, this is because the short Pauli words

cannot cover the evolution generated by long Pauli words. More rigorous and detailed discussions

can be found in a future work [197].

Finally, I would like to remark that while two algorithms - the ’single-step’ and ’jointly-

optimised’ algorithms - are introduced in order to help the readers comprehend the spirit of our
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methods in a more natural way, the single-step adaptive PF has its own advantage. The single-

step adaptive PF does not require computing the coefficient shift in the product formula that

has been added to the circuit. This makes the number of circuits that are needed to evaluate

in the single-step algorithm independent of the number of steps that have been completed. It

is expected that in the long-term when applying quantum gates is both relatively easy and fast,

the single-step adaptive PF may be more desirable than the jointly-optimised one.

5.4.2 Resource cost

Compared to variational quantum algorithms, our adaptive strategy requires measuring an ad-

ditional expectation value of the operator H2, which can be taken as the resource cost for the

adaptive method. Our method could be inefficient when simulating arbitrary many-body dynam-

ics. Nonetheless, our method may be practical in quantum systems with short-range interactions,

such as the Ising or Heisenberg model. Moreover, recent works [74,87,98,198–201] have proposed

methodologies to efficiently measure Hamiltonians and their higher-order moments, such as clas-

sical shadows, Pauli group approaches, etc, which can be directly incorporated into our method.

More specifically, we find tensor product basis sets, and the elements in each set qubit-wisely

commute. The number of measurements can be reduced significantly by exploiting the measure-

ment compatibility of the Pauli terms of the observables. In the extreme case, we only need

to measure once if all the Pauli terms of the observable are compatible. While finding the op-

timal Pauli sets is equivalent to the minimum clique cover problem, which is NP-hard, several

heuristic methods have been put forward to solve the problem, such as largest degree first (LDF)

grouping [74, 198]. An efficient measurement strategy will be discussed in detail in Chapter 10.

Moreover, the measurements and the optimisations at each iteration are fully parallelable and

hence our method could have further speedup with the addition of more quantum devices.

Author contributions. Section 5.2 is relevant to a published work [94]. In this work,

Z.Z., and J.S. initiated the project of adaptive product formulae. X.Y. and M.Y. supervised

the project. J.S. and X.Y. conceived the idea of adaptive product formulae. J.S. developed the

framework of single-step and jointly-optimised adaptive product formulae with input from Z.Z.

and X.Y.. Z.Z. carried out numerical simulation and verification of our algorithms. Z.Z. proved

the main theorem in [94] with input from J.S.. J.S. and Z.Z. analysed the effect of shot noise

in [94].

Section 5.3 is relevant to a manuscript under preparation [91]. J.S. is responsible for the

results in Section 5.3.
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Chapter 6

A perturbative approach to
simulating interacting dynamics

In previous chapters, I initially demonstrated how the static and dynamic problems posed in Sec-

tion 1.2 can be formulated in a general framework, and then show the solutions in the Chapter 4

and Chapter 5. In this chapter, I will focus on a generic interacting system, which can be divided

by the local part and the interacting part as

H = H loc + V int. (6.1)

Here H loc corresponds to the strong but local interaction and V int corresponds to weak pertur-

bations. In this chapter, I introduce a perturbative approach to simulating quantum many-body

dynamics, with a generic system Hamiltonian characterised by Eq. (6.1).

This chapter is relevant to a work published in collaboration with Suguru Endo, Huiping Lin,

Patrick Hayden, Xiao Yuan, and Vlatko Vedral [95].

6.1 Motivation

I start the discussion with a generic quantum many-body Hamiltonian characterised by Eq. (6.1).

In practice, we can always divide the full quantum system into L subsystems, according to their

topological structures or degrees of freedom. For instance, a lattice Hamiltonian and a molecular

system with virtual and active orbitals or in a clustered structure (see [154, 202, 203]) provide

natural partitioning strategies for the subsystems, similarly to that in perturbation theory. As

such, we could consider

H loc =
󰁛

l

Hl (6.2)

as the local Hamiltonians with each Hl acting on the lth subsystem, and

V int =
󰁛

j

λjV
int
j (6.3)
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as the weak perturbation interaction between the subsystems with different interactions V int
j

and real coefficients λi. Without loss of generality, V int
j may be taken to be a product of Pauli

operators for efficient implementation on a quantum computer. It is worth mentioning that

the local Hamiltonians and the perturbation interactions depend on the partitioning strategy

of the subsystems. Partitioning strategies for several typical physical systems can be found in

Section 8.1.

To simulate the dynamics of U(t) = e−iHt, one possible solution is to leverage classical

methods that have been developed to solve quantum many-body problems, wherein the most

successful one is perturbation theory. This method divides the Hamiltonian into a major but

easily solved component and a weak but potentially complicated counterpart, so that the full

dynamics can be expressed as a series expansion [159,202,204–207].

A representative perturbation treatment via Dyson series expansion is expressed as

U(t) = 1− i

󰁝 t

t0

dt1e
iHloc(t1−t0)V inte−iHloc(t1−t0) + . . . (6.4)

The time evolution becomes a linear combination of different trajectories, where each one un-

dergoes local Hamiltonian evolution eiHlt with interactions V int uniformly inserted during the

evolution time. When the local Hamiltonians {Hl} are solvable, one can further represent the

expansion graphically, such as via Feynman diagrams, and compute expectation values of the

time evolved state with different graphs corresponding to different expansion terms.

A major limitation of classical perturbation theory is the assumption of the simple, and hence

solvable, local Hamiltonians, which fails when the local Hamiltonians {Hl} become strongly

correlated, as can occur in some realistic systems. In this case, it becomes hard to realise the

local evolution eiHlt. A suggested solution to this could be to consider a different partition,

where the complex part of local Hamiltonians is assigned to the interaction. However, this in

turn may result in strong interactions, causing the expansion to become inefficient or divergent.

Additionally, computing the higher-order expansions of general quantum many-body problems

could be challenging, which further limits the use of perturbation theory. Regardless, even when

there is no interaction under certain partitioning strategy with V int = 0, no classical methods

exist that can efficiently simulate the dynamics of general Hamiltonian H loc =
󰁓

l Hl, otherwise

the computational class of bounded-error quantum polynomial time collapses.

To circumvent this conundrum, the leveraging of quantum computing power to simulate the

local Hamiltonians is proposed. We have termed this method perturbative quantum simula-

tion (PQS), which uses a quantum computer to directly simulate the major component while

perturbatively approximates the weak interaction component. Since there is no assumption on

the size or interactions of the major component, PQS potentially goes beyond the conventional

perturbative approach, conceivably being able to simulate classically intractable systems, such

as large systems with weak inter-subsystem interactions or intermediate systems with general
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interactions. An explicit algorithm mimicking Dyson series expansion is proposed. Its optimality

in relative to more general theories is proven. Although PQS may not be applicable to arbitrary

problems, it possesses a major advantage over conventional quantum simulation algorithms, in

that its perturbative treatment of the weak component reduces quantum resources. Remarkably,

PQS runs a shallow circuit on a smaller number of qubits, making it more noise-robust and thus

useful in benchmarking large quantum devices with smaller ones.

6.2 Perturbative quantum simulation

6.2.1 Method description — discrete time

A time-independent Hamiltonian is assumed in the following discussion; however, our results

apply to general time-dependent Hamiltonians. Without loss of generality, I assume that every

Hl could be decomposed as a linear combination of tensor product of Pauli operators and each

V int
j is a tensor product of Pauli operators.

To do so, I first introduce the concept of local generalised quantum operations,

Φ(ρ) = TrE

󰁫
U (ρ⊗ |0〉 〈0|E)V

†
󰁬
, (6.5)

where we denote ancillary qubits |0〉 〈0|E = |0〉 〈0|E1
⊗ · · · ⊗ |0〉 〈0|EL

and unitary operators

U = U1E1 ⊗ · · ·⊗ ULEL
and V = V1E1 ⊗ · · ·⊗ VLEL

. The notation UjEj and VjEj indicates that

the operators act only on subsystem j and the jth ancillary qubits. While the operation Φ(ρ) is

non-physical in general, it can be realised effectively using local operations and post-processing

as shown in Figure 6.1(b). Note that Φ(ρ) reduces to local quantum channels when U = V, as

illustrated in Figure 6.1(b1). The properties of this generalised quantum operation were shown

in Section 2.5.1.

The key idea of PQS is to decompose the joint evolution into a set of generalised quantum

operations, which separately act on each subsystem. I first describe the algorithm assuming

discretised time, and then demonstrate how to take the limit of infinitesimal time steps. We aim

to simulate the time evolution governed by the Hamiltonian H with time t,

U(T )[ρ] = U(T )ρU(T )†, (6.6)

where U(t) = e−iHt. Considering discrete time δt, we have

U(T ) =
T/δt󰁜

i=1

U(δt) =
T/δt󰁜

i=1

󰀗
V int(δt) ◦

󰁒

l=1

Ul(δt)

󰀘
+O(T δt), (6.7)

where Ul(t) = Ul(t)ρUl(t)
† with Ul(t) = e−iHlt and V int(t) = V int(t)ρV int(t)† with V int(t) =

e−iV intt. Here O(T δt) corresponds to the Trotter error, which vanishes when taking the limit of

δt → 0. Note that the evolution consists of local evolution Ul(δt) on the lth subsystem term and

the joint evolution V int(δt).
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Figure 6.1: Schematic diagram of the perturbative quantum simulation algorithm. (a) The
decomposition of interactions into local generalised quantum operations. (b) The implementation
of a generalised quantum operation Φ(ρ) = TrE [U(ρ⊗ |0〉 〈0|E)V†] using quantum circuits, which
reduces to a quantum channel when U = V in (b1) and unitary operations Φ(ρ) = UρV † when
there is no ancilla in (b2). (c) We can equivalently realise the discretised scheme with δt → 0.
The operation sequences for Ns samples are predetermined provided the decomposition. We
either continuously apply the local time evolution or randomly apply a generalised quantum
operation. The time to apply the operations is determined by the probability P[Jump] and the kth
operation is applied with probability P[Φk]. The scheme in (c) does not assume time discretisation
and the number of generalised quantum operations that applies during the evolution scales as
O(

󰁓
k |αk|T ). (d) Schematic of the simulation process for a single sample as an example. For

the lth subsystem, we evolve the state under local operations Ul and apply operations Φl,k1 and
Φl,k2 at time t1,1 and t1,2, respectively. We measure the output states with a product observable
O and obtain the outcomes Oj,l for the jth sample. The process is repeated for Ns times. For
any product input state, the expectation value of observable O under the joint evolution U in (e)
can be unbiasedly approximated by 〈O〉L ≈ C

Ns

󰁓Ns
j=1 Pj

󰁔
l Oj,l with the overhead C and phase

Pj determined by the decomposition.

The next step is to decompose the joint non-local operation V int(δt) into local operations that

separately act on the subsystems. In particular, we can consider a set of generalised quantum

operations as

Φk(ρ) = TrE [Uk (ρ⊗ |0〉 〈0|E)Vk] (6.8)

where we denote Uk = U1E1,k ⊗ U2E2,k ⊗ · · · ⊗ ULEL,k, Vk = V †
1E1,k

⊗ V †
2E2,k

· · · ⊗ V †
LEL,k

, and

|0〉 〈0|E = |0〉 〈0|E1
⊗ |0〉 〈0|E2

· · · ⊗ |0〉 〈0|EL
, and each UlEl,k and VlEl,k is applied jointly on the

lth subsystem and the ancilla El. Denoting Φl,k(ρl) = TrEl

󰁫
UlEl,k

󰀓
ρl ⊗ |0〉 〈0|El

󰀔
V †
lEl,k

󰁬
to be

the generalised quantum operation acting on the lth subsystem, we thus have

Φk = Φ1,k ⊗ Φ2,k ⊗ · · ·⊗ ΦL,k, (6.9)
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which applies separately on each subsystem. When we choose a sufficient number of Φk, we can

always decompose the instant joint evolution V int(t) as a linear combination of local operations,

V int(δt) = I + δt
󰁛

k

αkΦk = I + δt
󰁛

k

αkΦ1,k ⊗ Φ2,k ⊗ · · ·⊗ ΦL,k, (6.10)

where I corresponds to the identity channel I(ρ) = ρ and αk are complex coefficients. For

example, we can choose {Φk} to be a complete basis for all quantum channels. When the set of

{Φk} is chosen, we can find the coefficients αk via linear programming.

Now we can express the joint evolution as

U(T ) =
T/δt󰁜

i=1

󰀗󰀕
I + δt

󰁛

k

αkΦk

󰀖
◦
󰁒

l=1

Ul(δt)

󰀘
+O(T δt). (6.11)

Denote Φ0 = I, c(δt) = 1+
󰁓

k |αk|δt, p0(δt) = 1/c(δt), pk(δt) = |αk|δt/c(δt), θk = −i ln(αk/|αk|),
we can re-express the above equation as

U(T ) =
T/δt󰁜

i=1

󰀗
c(δt)

󰀕󰁛

k

eiθkpk(δt)Φk

󰀖
◦
󰁒

l=1

Ul(δt)

󰀘
+O(T δt),

= c(δt)T/δt
󰁛

k1,k2,...,kT/δt

T/δt󰁜

i=1

󰀗
eiθkipki(δt)Φki ◦

󰁒

l=1

Ul(δt)

󰀘
+O(T δt),

= c(δt)T/δt
󰁛

k

eiθkpk

T/δt󰁜

i=1

󰀗󰁒

l=1

Φl,ki ◦
󰁒

l=1

Ul(δt)

󰀘
+O(T δt),

= c(δt)T/δt
󰁛

k

eiθkpk
󰁒

l=1

󰀗 T/δt󰁜

i=1

󰀕
Φl,ki ◦ Ul(δt)

󰀖󰀘
+O(T δt).

(6.12)

Here k = (k1, . . . , kT/δt), pk = pk1pk1 . . . pkT/δt
, θk = θk1 + θk2 · · ·+ θkT/δt

. The phase is denoted

as Pk = eiθk .

Under the expansion in Eq. (6.12), the joint evolution U(T ) becomes a series of different

trajectories. Here, each trajectory is defined by which operations act at each time, including

the local time evolution Ul(δt) of each subsystem and one of the generalised quantum operation

Φk(ρ) that on average emulates the effect of V int = e−iV intt. The whole evolution U(T ) is now

decomposed as a linear combination of operations that act locally on each subsystem. The joint

evolution can thus be effectively realised using only local operations, which is the central idea of

PQS.

I next discuss the measurement of non-local observable. Suppose the initial state ρ(0) is

decomposed as

ρ(0) =
󰁛

k0

αk0

󰁒

l=1

ρl,k0 (6.13)

and measure an observable like

O =
󰁛

kO

αkO

󰁜

l=1

Ol,kO . (6.14)

111



where we have abused the notation of α. The expectation value of O with respect to the time-

evolved state can be expressed as

Tr

󰀗
U(T )[ρ(0)]O

󰀘
= c(δt)T/δt

󰁛

kO,k0,k

αk0αkOe
θkpk

󰁜

l=1

Tr

󰀗 T/δt󰁜

i=1

󰀕
Φl,ki◦Ul(δt)

󰀖
[ρl,k0 ]Ol,kO)

󰀘
+O(T δt).

(6.15)

Here each term Tr

󰀗󰁔T/δt
i=1

󰀕
Φl,ki ◦ Ul(δt)

󰀖
[ρl,k0 ]Ol,kO)

󰀘
can be obtained from operations only

on the lth subsystem. Consequently, the expectation value of observables with respect to an

arbitrary joint state is now a linear combination of products of local measurement results.

6.2.2 Monte Carlo implementation and continuous time

6.2.2.1 Discrete time Monte Carlo method

The above discretised scheme assumes a small discrete time step and requires applying the

operations at each time step δt, which is unnecessary since the effect of the weak interacting

operation V(δt) in a short time is close to the identity operation. I address this problem by

stochastically applying the operations Φk depending on the amplitude of its associated coefficient

|αk|.
More specifically, the number of expanded terms is proportional to N

T/δt
V , with NV being the

number of terms in the expansion of Eq. (6.10). Although N
T/δt
V increases exponentially, we do

not need to measure all the expanded terms and the Monte Carlo method could more efficiently

obtain the measurement outcome.

In particular, the decomposition of Eq. (6.15) can be written in a general form of

〈O〉 =
󰁛

k

qk
󰁜

l=1

Tr [Φl(ρl,k)Ol,k] = C
󰁛

k

eiθkpk
󰁜

l=1

Tr [Φl(ρl,k)Ol,k] +O(T δt), (6.16)

with k = (kO, k0,k), qk = c(δt)T/δtαk0αkOe
iθkpk, C =

󰁓
k qk = c(δt)T/δt

󰁓
k0
|α0|

󰁓
kO

|αO|,

θk = −i ln(qk/|qk|), pk = |qk|/C, and Φl =
󰁔T/δt

i=1

󰀕
Φl,ki ◦ Ul(δt)

󰀖
. To obtain the measurement

〈O〉, we can use the following Monte Carlo random sampling method,

1. Generate random numbers k according to the probability {pk};

2. For the lth subsystem, prepare state ρl,k, apply the operation Φl, and measure the observ-

able Ol,k to get 〈Ol,k〉.

3. Multiply all the outcomes 〈Ol,k〉 = Tr[Φl(ρl,k)Ol,k] of different subsystems, as well as the

phase eiθk and C.

4. Repeat steps 1-3 Ns time and output Oest =
󰁓

k Ceiθk
󰁔

l 〈Ol,k〉.
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Ignoring the effect of Trotter error with a finite time step, the expansion guarantees that the

output is an unbiased estimation of the exact measurement outcome. Suppose each Ol,k is a

Pauli measurement, then with failure probability δ, the estimation error scales as

ε = O
󰀕
C

󰁶
log2 1/δ

Ns

󰀖
. (6.17)

Since the coefficient C boosts the error, it quantifies the cost of the random sampling process.

Suppose the input state is a product state, then the additional cost that the perturbative expan-

sion introduces is C = c(δt)T/δt. A detailed analysis of the resource cost is shown in Section 6.2.3.

A major caveat to the above scheme is that it assumes a small discrete time step and requires

continuously interchanging the subsystem evolution Ul and Φl with a sufficiently small time step

δt. In practice, it could be challenging to ‘continuously’ interchange the subsystem evolution

within a sufficiently small time step δt. I show in the next subsection that an equivalent Monte

Carlo method can be applied, which stochastically implements the joint evolution. As such, a

general Hamiltonian simulation method other than Trotterisation could be applied to reduce the

algorithmic error.

6.2.2.2 Stochastic implementation

First rewrite Eq. (6.11) as follows

U(T ) = c(δt)T/δt
T/δt󰁜

i=1

󰀕
p0I + p≥1Φ̃

󰀖
◦
󰁒

l=1

Ul(ρ(0)), (6.18)

where p≥1 =
󰁓

k≥1 pk, Φ̃ =
󰁓

k≥1 αkΦk/
󰁓

k |αk|. At each time step, we always evolve each

subsystem according to Ul, and with a small probability p≥1, we evolve under Φ̃. Since the

probability p≥1 ∝ δt is negligible when taking the limit of δt → 0, we can equivalently realise it

with a continuous decaying or jump process. Specifically, we can realise the evolution U(T ) with
the following stochastic process

1. Generate a uniformly distributed random number pjp ∈ [0, 1].

2. Determine tjp by solving pjp = Q(t) with Q(t) = e−Γ(t), Γ(t) = t
󰁓

k≥1 p̃k, and p̃k =

limδt→0 pk/δt = |αk|.

3. Evolve each subsystem state with Ul to time t and update t = t+ tjp.

4. Generate another random number qm ∈ [0, 1] to determine Φk and apply Φl,k to the lth

subsystem.

5. Repeat Step 1− 4 until t = T .
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The average of different trajectories reproduces the evolution under the joint channel U(T ).
We can therefore stochastically realise the decomposition without assuming a discrete time.

Note that the number of generalised quantum operations required to realise the joint evolution

scales proportionally to the interaction strength as O(
󰁓

k |αk|T ), and on average the stochastic

implementation is proven to be equivalent to the discretised scheme in Figure 6.1(a). The equiv-

alence is proven in Section D.1. Meanwhile, other advanced Hamiltonian simulation algorithms

such as qubitisation introduced in Section F.2 could be used for each time evolution at step 3. I

also note that the jump time tjp as well as the evolution could be predetermined, which renders

its implementation similar to conventional Hamiltonian simulation.

I illustrate the procedure in Figure 6.1 and summarise the key steps of PQS in Algorithm 3.

Algorithm 3 Perturbative quantum simulation

1: Given a set of generalised quantum operations, find the decomposition Eq. (6.10).
2: Generate a sequence of trajectories where each subsystem evolves and experiences random

local generalised quantum operations.
3: Sample from the trajectories. The average behaviour reproduces the joint evolution.

In quantum simulation, we usually prepare a simple initial state, such as a product state,

evolve it under a joint Hamiltonian H, and measure an observable that could be decomposed as

a linear combination of local ones, i.e., the input state ρ(0) =
󰁑

l ρl(0) and product measurement

O =
󰁑

l Ol. When the input state or the measurement is not in a product form, we can similarly

decompose them as we discuss above.

By applying our algorithm, the whole simulation process is now decomposed into the average

of different ones, each of which only involves operations on the subsystems. If each subsystem

consists of n qubits, then we can effectively simulate nL qubits with operations on only O(n)

qubits. Although the aforementioned analysis assumes Trotterisation, the local time evolution

Ul(t) could be implemented with any Hamiltonian simulation methods, such as product formulae

discussed in Chapter 5 and Refs. [37, 144], and quantum signal processing [32, 33] discussed in

Chapter 2. Our algorithm is compatible with both near-term devices and fault-tolerant quantum

computers.

6.2.3 Cost analysis

The above perturbative quantum simulation (PQS) method introduces a sampling overhead

which is quantified by

C = lim
δt→0

T/δt󰁜

i=1

c(δt) = lim
δt→0

T/δt󰁜

i=1

(1 + αδt) = eTα, (6.19)

where α =
󰁓

k |αk|. Since the simulation accuracy is now C times larger, we need to have

C = O(1) and hence αT = O(1) in order to get an accurate result. This could be satisfied
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when T and α are not too large, i.e., when the product of the simulation time and the total

interaction strength is constant. While α roughly measures the interaction strength, its analytical

relationship to the interaction Hamiltonian V int is not obvious. This is because the value of α

depends on the choice of generalised quantum operations and the decomposition. We can thus

define the minimal value of α by optimising over all possible decompositions,

αmin = min
{Φk}

α({αk,Φk}), (6.20)

where α({αk,Φk}) is written as a function of the generalised quantum operations and the min-

imisation is over all possible decomposition strategies.

Below, I provide an analytical lower bound to αmin as a function of the interaction V int.

In the next section, I demonstrate an explicit decomposition strategy that achieves this lower

bound.

To do so, I consider the Choi state of the instant evolution V int(δt) by inputting tensor

products of the maximally entangled states. Specifically, inputting |φ〉l,l′ =
󰁓

j |jj〉l,l′ /
√
d to the

lth subsystem with d being the dimension, the output state φint
1,1′,...,L,L′ is the Choi state,

φint
1,1′,...,L,L′ = V int(δt)

󰀗󰁒

l

φl,l′

󰀘
. (6.21)

Suppose that V int(δt) is decomposed as

V int(δt) =
󰁛

k

α̃kΦ1,k ⊗ Φ2,k ⊗ · · ·⊗ ΦL,k, (6.22)

where we have put I into the summation and denote α̃k as the new coefficient incorporating δt.

The relation between α and α̃ =
󰁓

k |α̃k| is

α = lim
δt→0

α̃− 1

δt
. (6.23)

Since α depends linearly on α̃, we can equivalently minimise α̃.

Define isomorphisms S and T of a general matrix M =
󰁓

i,j Mi,j |i〉 〈j| as

S(M) =
󰁛

i,j

Mi,j |i〉 |j〉 ,

T (M) =
󰁛

i,j

Mi,j 〈i| 〈j| .
(6.24)

Several useful properties of the matrices S and T are

• The definitions of S(M) and T (M) are basis dependent.

• When applying matrices U and V to M , we have

S(UMV ) = U ⊗ V T
󰁛

i,j

Mi,j |i〉 |j〉 = U ⊗ V TS(M),

T (UMV ) =
󰁛

i,j

Mi,j 〈i| 〈j|UT ⊗ V = T (M)UT ⊗ V.
(6.25)
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• S(M) and T (M) are related as follows,

S(M) = [T (M∗)]† . (6.26)

This is true because [T (M∗)]† =
󰁫󰁓

i,j M
∗
i,j 〈i| 〈j|

󰁬†
=

󰁓
i,j Mi,j |i〉 |j〉 = S(M). Suppose we

denote |M〉 = S(M) then T (M) = [S(M∗)]† = 〈M∗|.

• The norms of S and T are the same,

S(M)† · S(M) = T (M) · T (M)† = Tr[M †M ] = 󰀂M󰀂22, (6.27)

which corresponds to Schatten-2 norm of M . This is because

S(M)† · S(M) =
󰁛

i′,j′

M∗
i′,j′ 〈i′| 〈j′|

󰁛

i,j

Mi,j |i〉 |j〉 =
󰁛

i,j

M∗
i,jMi,j = Tr[M †M ].

The proof is similar for T (M).

By applying S to the l, l′ systems and T to the rest systems, we get a matrix

ψint
l,l′ = Sl,l′ ◦

󰁒

j ∕=l,j′ ∕=l′

Tj,j′(φ
int
1,1′,...,L,L′). (6.28)

Using, the above property, we can thus lower bound α̃ as follows.

Theorem 4. Given a decomposition of Eq. (6.22) with generalised quantum operations {Φl,k},
we have

α̃ ≥ max
l

󰀐󰀐ψint
l,l′

󰀐󰀐
1
, (6.29)

where 󰀂A󰀂1 = Tr[
√
AA†] is the trace norm.

I leave the technical proof of Theorem 4 in Appendix D. Consider the specific form of

V int(δt)[ρ] = ρ+ δt(−iV intρ+ iρV int) and define the interaction part as

V̄ int[ρ] = −iV intρ+ iρV int. (6.30)

We can then similarly define the Choi state of Ṽ int as

φ̄int
1,1′,...,L,L′ = V̄ int

󰀥
󰁒

l

φl,l′

󰀦
, (6.31)

and the matrices

ψ̄int
l,l′ = Sl,l′ ◦

󰁒

j ∕=l,j′ ∕=l′

Tj,j(φ̄
int
1,1′,...,L,L′). (6.32)

Then consider the decomposition Eq. (6.10), we have

Corollary 1. Given a decomposition of Eq. (6.10) with generalised quantum operations {Φl,k},
we have

α ≥ max
l

󰀐󰀐ψ̄int
l,l′

󰀐󰀐
1
, (6.33)

where 󰀂A󰀂1 = Tr[
√
AA†] is the trace norm.

In the following section, a specific decomposition strategy will be introduced and we shall see

how to use the analytical lower bound to prove its optimality.
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6.2.3.1 Optimising the decomposition

Here, in order to minimise the simulation cost, we could consider an over-complete basis with

generalised quantum operations and then find an optimised decomposition through linear pro-

gramming.

Specifically, consider a set of over-complete basis {Φk} which includes the identity channel.

Our target is to solve the following problem.

minC1 =
󰁛

k

α+
k −

󰁛

k′

α−
k′ ,

such that V int(δt) =
󰁛

k

α+
k Φk −

󰁛

k′

α−
k′Φk′ ,

α+
k ,α

−
k ≥ 0.

(6.34)

There are a few problems evident here. First, the optimisation becomes exponentially costly

when the channel acts on a large number of qubits. Second, basis operations also contain mea-

surement and state preparation, which might be challenging in an experiment. In the next

section, we give another explicit decomposition strategy to resolve these problems. The explicit

decomposition could be optimal under mild conditions, and only requires unitary operations

without measurements or state preparation.

6.3 An explicit decomposition method

While the decomposition of Eq. (6.10) holds in general for a complete set of {Φk}, it may

involve some operations that render experimental implementation challenging. Here, I address

this problem by developing an explicit decomposition with only local unitary operations. Its

optimality over other expansions under a mild condition is demonstrated in Section 6.3.2.

6.3.1 Method description

Suppose V int =
󰁓

j λjV
int
j with each V int

j being a tensor product of Pauli operators. Consider

an expansion of V int, which is given by

V int(δt)[ρ] = I(ρ)− iδt(V intρI − ρV int) +O(δt2)

= I(ρ)− iδt
󰁛

j

λj(V
int
j ρ− ρV int

j ) +O(δt2), (6.35)

where both V int
j ρ and ρV int

j are generalised quantum operations. Suppose V int
j =

󰁑
l V

int
l,j and the

input state is a product state ρ =
󰁑

l ρl the above decomposition could be expressed generally

as

V int(δt)

󰀗󰁒

l

ρl

󰀘
= c(δt)

󰁛

k

eiθkpk
󰁒

l

󰁫
Ũl,kρlṼl,k

󰁬
+O(δt2). (6.36)
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Here each Ũl,k and Ṽl,k could be I and V int
l,j , c(δt) = 1 + 2δt

󰁓
j |λj |, pk and θk are defined

correspondingly. Denoting the unitary evolution of the lth subsystem as Ul(δt) and following the

notation of the above discussion, the joint evolution of all the subsystems is

U(T )
󰀗󰁒

l

ρl

󰀘
= C

󰁛

k

eiθkpk
󰁒

l

󰁫
Ũl,kT/δt

Ul(δt) . . . Ũl,k1Ul(δt)ρlU
†
l (δt)Ṽl,k1 . . . U

†
l (δt)Ṽl,kT/δt

󰁬
,

(6.37)

where C = c(δt)T/δt = e2Tλ with λ =
󰁓

j |λj |. Now we have decoupled the joint evolution as a

linear combination of independent evolution of each subsystem. When we further implement the

stochastic Monte Carlo method, the evolution of each subsystem looks like

ρl,k = Ũl,kNjp
Ul(tNjp) . . . Ũl,k1Ul(t1)ρlU

†
l (t1)Ṽl,k1 . . . U

†
l (tNjp)Ṽl,kNjp

, (6.38)

where Njp is the number of jumps (decay events), and t1 + t2 + · · ·+ tNjp = T . Here, each Ũl,ki

is either I or one of {V int
l,j }. When we measure Ol, it becomes

Tr[ρl,kOl] = Tr[Ũl,kNjp
Ul(tNjp) . . . Ũl,k1Ul(t1)ρlU

†
l (t1)Ṽl,k1 . . . U

†
l (tNjp)Ṽl,kNjp

O], (6.39)

which could be implemented with the following circuit

|+〉 • • X,Y

· · ·

ρl Ul(t1) Ũl,k1 Ṽ
†
l,k1

Ul(tNjp) Ũl,kNjp
Ṽ †
l,kNjp

Ol

The measurement result of the whole evolution state is

Tr

󰀥
U(T )

󰀗󰁒

l

ρl

󰀘
·
󰁒

l

Ol

󰀦
= C

󰁛

k

eiθkpk
󰁜

l

Tr[ρl,kOl]. (6.40)

Therefore, after measuring each Tr[ρl,kOl], we can obtain the exact measurement result.

The perturbative quantum simulation method with explicit decomposition is proven to be

equivalent to the infinite-order Dyson series. I would direct the interested reader to Appendix D

for a description of the Dyson series, its implementation on a quantum computer, and Theorem 10

for a rigorous proof.

6.3.2 Cost analysis

According to the above discussion, the cost associated with the explicit expansion is

C = e2Tλ, (6.41)

with λ =
󰁓

j |λj |. I demonstrate that the expansion is optimal, i.e., with the smallest cost, when

V int satisfies the following condition.
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Condition 1. Suppose V int acts nontrivially on the set of subsystems S. Given V int =
󰁓

j λjV
int
j

with each V int
j =

󰁑
l V

int
l,j and V int

l,j being a tensor product of Pauli operators, we have

Tr
󰀅
V int
l,j

󰀆
= 0, ∀j, ∀l ∈ S,

Tr
󰀅
V int
l,j V int

l,j′
󰀆
= 0, ∀j ∕= j′, ∀l ∈ S.

(6.42)

The first condition requires that each V int
l,j is non-identity and the second condition requires two

interaction terms of the same system are orthogonal. When we say V int acts nontrivially on

subsystems S, it means that for any l ∈ S, at least one of V int
j has non-identity Pauli operators

on subsystem l. The result is shown in Theorem 5.

Theorem 5. Suppose the interaction V int satisfies Condition 1. The explicit expansion of

Eq. (6.35) has a minimal cost over all possible decomposition strategies.

Proof. We assume that V int acts nontrivially on all the systems. The proof is similar to the

general case. The Choi state of the interaction part Ṽ int[ρ] = −iV intρ+ iρV int is

φ̃int
1,1′,...,L,L′ = Ṽ int

󰀥
󰁒

l

φl,l′

󰀦
= −i

󰁛

j

λj

󰀗󰁒

l

V int
l,j |φ〉l,l′ 〈φ|l,l′ −

󰁒

l

|φ〉l,l′ 〈φ|l,l′ V
int
l,j

󰀘
. (6.43)

Taking ψ̃int
1,1 as an example, we have

ψ̃int
1,1′ =− i

󰁛

j

λj

󰀗
V int
1,j |φ〉1,1′ ⊗ |φ〉1,1′

󰁒

l≥2

〈φ|l,l′ (V
int
l,j )T ⊗ 〈φ|l,l′ − |φ〉1,1′

󰁒
(V int

1,j )
T |φ〉1,1′

󰁒

l

〈φ|l,l′ ⊗ 〈φ|l,l′ V
int
l,j

󰀘
.

(6.44)

Denoting
|ψ1,j,a〉 = V int

1,j |φ〉1,1′ ⊗ |φ〉1,1′ ,

|ψ1,j,b〉 = |φ〉1,1′ ⊗ (V int
1,j )

T |φ〉1,1′ ,

〈ψl,j,a| = 〈φ|l,l′ (V
int
l,j )T ⊗ 〈φ|l,l′ ,

〈ψl,j,b| = 〈φ|l,l′ ⊗ 〈φ|l,l′ V
int
l,j ,

(6.45)

we can express ψ̃int
1,1 as

ψ̃int
1,1′ = −i

󰁛

j

λjc

󰀗
|ψ1,j,a〉

󰁒

l≥2

〈ψl,j,a|− |ψ1,j,b〉
󰁒

l≥2

〈ψl,j,b|
󰀘
. (6.46)

When {Vl,j} satisfies Condition 1, elements in {|ψ1,j,a〉 , |ψ1,j,b〉} are mutually orthogonal, i.e.,

〈ψ1,j,x|ψ1,j′,y〉 = 0, ∀j ∕= j′ or x ∕= y, x, y ∈ {a, b}. (6.47)

Similarly elements in {〈ψl,j,a| , 〈ψl,j,b|} are mutually orthogonal. Therefore, Eq. (6.46) is a singular

value decomposition of ψ̃int
1,1 and we have

󰀂ψ̃int
1,1′󰀂1 = 2

󰁛

j

|λj |. (6.48)

The above proof holds for all other ψ̃int
l,l′ .
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The following provides several examples of V int that satisfy the condition. First, the condition

is satisfied when there is only one interaction term V int
1 .

Corollary 2. The decomposition is optimal when V int only has one term (a tensor product of

Pauli matrices).

Condition 1 could also hold when the interaction V int has multiple terms. For example,

consider three subsystems and denote (l,m) to be the mth qubit of the lth subsystem. The

following examples of different interactions satisfy Condition 1.

V int =aX1,1 ·X2,1 ·X3,1 + bX1,2 ·X2,2 ·X3,2 + cX1,3 ·X2,3 ·X3,3,

V int =aX1,1 ·X2,1 ·X3,1 + bY1,1 · Y2,1 · Y3,1 + cZ1,1 · Z2,1 · Z3,1,

V int =aX1,1Y1,2 ·X2,1Z2,2 · Y3,1Y3,2 + bX1,1Z1,2 · Z2,1Z2,2 ·X3,1Y3,1

+ cZ1,1Y1,2 ·X2,1Y2,2 · Z3,1Y3,2 + dZ1,1Z1,2 · Z2,1Y2,2 ·X3,1Z3,1.

(6.49)

Since Condition 1 requires that the interaction terms of each subsystem are mutually orthog-

onal, the number of interaction terms is limited.

Proposition 5. When V int =
󰁓Nint

j=1

󰁑
l V

int
l,j satisfies Condition 1 with Nint being the number of

terms and n being the minimal number of qubits of each subsystem. Suppose the minimal weight

of each V int
l,j is k, and we have

Nint ≤ 3k
󰀕
n

k

󰀖
. (6.50)

In particular, when k = 1, i.e., the interaction on each subsystem only act on one qubit, Condi-

tion 1 requires V int to have at most 3n terms. We leave a more detailed exploration of conditions

for the optimal decomposition to future work on the subject.

6.4 Limitations and applications

In this section, I discuss the potential applications and limitations of the PQS algorithm. Since

PQS is a hybrid method that combines quantum computing and classical perturbation theory, it

inherits both their advantages and limitations. The major constraint on the use of PQS comes

from the limitation of classical perturbation theories, which generally only work for weakly cor-

related systems. For PQS, since we simulate the coupling of subsystems using the perturbation

theory, it is only efficient if the coupling strength is weak. In comparison to a universal quantum

simulation algorithm using a fault-tolerant quantum computer, the systems that our method is

capable of simulating are limited. Specifically, our method cannot work for large systems with

general arbitrary two-body interactions, such as strongly correlated electrons, high-dimensional

strongly interacting lattice Hamiltonians, or scenarios when the simulation time is very long. Nev-

ertheless, note that similar limitations prevail in almost all modern classical computing methods

apart from perturbation theory, such as density functional theory (DFT), quantum Monte Carlo
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(QMC), tensor and neural network methods, etc. As I discuss below, these limitations do not

prevent wide applications of PQS to realistic problems.

While our method is restricted in scope compared to a universal quantum simulation al-

gorithm, it is worth pointing out that these universal quantum algorithms generally rely on a

fault-tolerant quantum computer, which is still challenging to realise using current technology.

This simple fact explains why many contemporary works in quantum computing focus on applica-

tion in the NISQ era or the early stage of fault-tolerant quantum computing, where both the size

(number of qubits) and (circuit) depth of the quantum hardware could be limited. Therefore,

as we elaborate below, our method does indeed have broad application from simulating intri-

cate quantum many-body systems and probing interesting physics phenomena, to benchmarking

larger quantum processors for NISQ devices and early stage fault-tolerant quantum computers.

Theoretically, our method combines the complementary strengths of quantum computing and

perturbation theory, to respectively simulate the subsystem and the inter-subsystem interactions.

PQS would be most powerful in investigating large systems with weak inter-subsystem interac-

tions or intermediate systems with general interactions. Since there is no assumption regarding

the subsystem interactions, locality of the inter-subsystem interactions, or the initial state of the

subsystems, the method is widely applicable.

The most promising and exciting application of perturbative quantum simulation concerns

clustered subsystems with weak subsystem-wise interactions. Since all subsystems could have

arbitrarily strong interactions, the whole system might not be efficiently solvable using classical

approaches, in general. In contrast, our methods are significantly more resource efficient, making

the study of system dynamics a viable proposition. One prominent example of a suitable appli-

cation of our approach is the simulation of 1D systems, where we could easily divide the systems

into clustered subsystems and have weak subsystem-wise interactions. It could be argued that

under certain assumptions (local and gapped Hamiltonians), the ground state of a 1D system

could be efficiently solvable using matrix product states, hence the ability of our approach to

simulate 1D systems is unsurprising. By way of response, it is worth pointing out that simulating

the dynamics of general 1D systems is actually a very challenging task using classical methods.

Indeed, as shown in Ref. [208], one can use a 1D system to simulate a 2D system, which indicates

classically simulating an arbitrary 1D systems could be hard. In contrast, our method could be

applied to study exotic properties of 1D system dynamics with strong subsystem interactions.

In addition, many real-world physical systems also admit clustered interaction forms. Many

types of realistic Hamiltonians, such as molecules (the dimer system or functionalised compound),

lattice models for materials, or toy models for high energy physics, admit a similar form as that

in our simulation, indicating a natural application of our method. Specific examples include the

molecular rings, such as the (Cr7Ni)2 dimer, in which the subsystem has strong correlations and

the two subsystems are weakly interacting via spins on the boundary.
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Aside from physical systems featuring these geometrical cluster properties, PQS is also appli-

cable for systems with multiple degrees of freedom. Indeed, quantum many-body systems that

consist of both weak and strong correlations in different levels of the system could be suitable

for our methods. Taking the Hamiltonian of molecules as an example, we can divide the system

into electrons and nuclei. We can then separately simulate the two subsystems of the electrons

and process their correlation classically to surpass the Born-Oppenheimer approximation. We

may use the PQS method to investigate dynamic correlations beyond the Born-Oppenheimer

approximation.

The method is also applicable to electronic structure. When considering a relatively large

bond distance, we could divide the spin-orbitals from different atoms or molecules into different

subsystems. Similarly, we could divide the spin-orbitals into active and virtual ones and represent

them with quantum and classical means, respectively. Our method can consequently be employed

to construct an effective Hamiltonian for solving large molecules or molecules with more basis

states using a small quantum computer. Other examples in condensed matter physics include

dynamics simulation of electron-phonon coupling. Many interesting phenomena emerge due to

the dynamic coupling of electrons and phonons. Our method could be directly applied to these

problems.

Practically, our method could be applied for probing interesting physics phenomena. As will

be demonstrated in Chapter 8, PQS can be applied to study the quantum walk of bosons, dy-

namical phase transition, the propagation of correlations, and spin-charge separation of bosons,

fermions, or spins. Apart from these applications, our method could also be used to examine

other more general dynamic behaviours, such as molecular reactions of the dimer and electron-

phonon interactions in superconducting models. Following a recent study of cluster simulation

schemes [209], our method could also be applicable to variational quantum simulation for molecu-

lar Hamiltonians. With proper embedding methods [210–212], such as DFT [40,211,213], dynami-

cal mean-field theory (DMFT) [214,215], or density matrix embedding theory (DMET) [216–218],

PQS might also be used to probe larger physics problems. These include, for example, ones in

the thermodynamic limit.

Furthermore, PQS would be helpful for studying general strongly interacting problems with

short time and benchmarking near-term quantum computation. Using the PQS method, a larger

problem with N · L qubits could be processed by a N + 1 qubit quantum device. Since a

smaller quantum device is generally much more accurate than a larger quantum processor due

to crosstalks or other types of errors when controlling large quantum systems, our method could

serve as a benchmark of the computing result for larger problems. This advantage was also

clearly demonstrated using the IBM quantum devices in Section 8.2. Consequently, when we

construct larger quantum hardware or aim to use it to demonstrate quantum advantages for
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solving a larger problem, we can first run PQS with a smaller device to test the performance of

hardware and the feasibility for faithfully implementing the algorithm.

6.5 Discussion

The PQS algorithm leverages the power of quantum computing to simulate the major component

of the Hamiltonian, alleviating the constraints of classical perturbation methods. It uses classical

perturbation to approximate the interaction, reducing the requirements for qubit numbers, which

is favourable for both NISQ devices and early-stage fault-tolerant quantum computers. While

the algorithm cannot efficiently simulate arbitrary systems, especially large 2D or 3D systems, it

is applicable to ones with an intermediate size, such as a square lattice with tens to hundreds of

qubits, and is particularly useful for simulating large systems with weak inter-subsystem inter-

actions, such as (quasi) one-dimensional systems and clustered subsystems. PQS methods can

be applied to study various many-body physical phenomena, and has demonstrated potential in

benchmarking large quantum processors with small ones, corresponding to an emerging demand

in the NISQ and early FTQC era. Numerical and experimental results will be presented in

Chapter 8.

Our work set out the potential of hybrid quantum-classical algorithms which combine clas-

sical physics methods with quantum computing, clearing a path for studying large many-body

quantum systems with near-future quantum hardware. There are, additionally, other classical

perturbation treatments of the interaction, such as one which expands according to the in-

teraction strength; integrating it with quantum computing may provide a more efficient PQS.

Furthermore, perturbation theories have also been applied in analogue quantum simulation for

synthesising effective Hamiltonians (see [219]), and analogue simulation has already been suc-

cessfully used to discover novel phenomena such as quantum many-body scars [220]. Whether

our PQS method could be generalised to analogue quantum simulation is an interesting future

direction of research.

Author contributions. This chapter is relevant to a published work [95]. S.E., X.Y., and

J.S. conceived the idea. X.Y. and V.V. supervised the project. J.S. and X.Y. developed the

theoretical aspect of the work. J.S. and X.Y. wrote the manuscript with input from S.E., V.V.,

and H.P..
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Part III

Exploring emergent quantum
phenomena by quantum simulation

and spectroscopy
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We are generally interested in the eigenstate properties (such as the magnetic ordering of the

ground state), dynamic properties, and spectral features of a quantum many-body system. The

central aim of Part III is to explore interesting quantum phenomena using the methods developed

in this thesis.

Spectroscopy and quantum computing arguably provide a natural and complementary solu-

tion to these problems. As discussed in Section 1.3, spectroscopy techniques have a close relation

with quantum simulation, from both a theoretical and operational perspective. Spectroscopy

stimulates the development of quantum computing methods in predicting excited state proper-

ties of quantum many-body systems with general and tuneable interaction.

In Chapter 7, I introduce an engineered spectroscopy method for probing the spectroscopic

features of quantum many-body systems on a quantum simulator. This is a continuation of the

discussion in Section 1.3, in which I set out the basics of quantum simulation and spectroscopy,

illustrating their relation, and drawing some notation comparisons. In Chapter 8, I show how

to study eigenstate and dynamic properties using the quantum simulation techniques developed

in Chapter 6 and Chapter 7. In particular, I show how to explore many-body phenomena, and

probe excitation spectra of quantum many-body systems, including interacting bosons, fermions,

and quantum spins.
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Chapter 7

Probing spectroscopic features of
quantum many-body systems

Spectroscopy techniques provide a powerful tool for exploring many-body phenomena and have

achieved great success in probing the excited states of materials, such as vibrational and magnetic

structures. In this chapter, motivated by spectroscopy techniques introduced in Section 1.3.3, I

introduce a framework that considers engineered quantum dynamics induced by a local or global

perturbation to estimate transition energies between the eigenstates of a quantum system. After

applying a local perturbation to an initial state which is prepared by an engineered quantum

system, the spectral function of the target quantum system can be obtained by looking at the

Fourier transform of time-evolved operator correlation functions. I demonstrate a close relation

between our engineered spectroscopy method and the quantum algorithmic cooling method intro-

duced in Chapter 4. I further discuss the algorithmic error, and quantum resource requirements

for our method, and show that the quantum circuit complexity has a logarithmic dependence on

the desired simulation accuracy.

This chapter is relevant to a manuscript under preparation in collaboration with Lucia Vilchez

Estevez, Vlatko Vedral, and Andrew Boothroyd [96].

7.1 Motivation

Spectroscopy has been used extensively to facilitate our understanding of many-body phenomena,

such as magnetism and superconductivity. In magnetic neutron scattering, for example, neutrons

interact with spins of electrons, and the intensity of the scattered neutrons reflect the magnetic

response of electrons in the materials. This in turn carries certain information about the magnetic

interaction in the materials being probed. To motivate the discussion on engineered spectroscopy,

I will briefly recall the basics of spectroscopy introduced in Section 1.3 with the main focus being

a discussion of inelastic neutron scattering.

The observable in inelastic neutron scattering [14, 15] is the dynamical structure factor

S(Q,ω), also known as the magnetic response function. As discussed in Section 1.3.3, it is
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related to a two-point unequal time correlator

C(t, t′) = 〈Ŝ1(t)Ŝ2(t
′)〉 , (7.1)

by the Fourier transform, where Ŝ is a spin operator. This can be regarded as a special case of

Eq. (1.8), and thus the discussion in Section 1.3.3 flows naturally from this observation.

The two-point unequal time correlator contains spectral information on the spin dynamics

of a many-body system. In a translationally invariant system, the dynamical structure factor

S(Q,ω) reaches its local maximum when the energy selection rule, as well as the momentum

selection rule, are both satisfied, as indicated by Eq. (1.10). In a spectroscopic experiment,

consequently, we usually track the peak of intensities in the neutron scattering spectrum, from

which we can infer the energy dispersion.

Nevertheless, we should note that there are several constraints to conventional spectroscopy

experiments. As discussed in some detail in Chapter 1, the allowed degrees of freedom in con-

ventional spectroscopy experiments are limited, so that we can only access the intrinsic property

of materials, instead of an engineered system with general interactions. It is worth reiterating

that some degrees of freedom in engineering the system are possible in spectroscopy experiments,

such as through the application of an external electric or magnetic field. However, these external

fields usually contribute only single-body local terms, instead of many-body interactions, to the

Hamiltonian of the system being probed. In addition, the conclusion reached in the discussion in

Section 1.3.3 holds under two conditions: (1) the perturbation is weak, and the linear response

theory holds, (2) the perturbed system is in an equilibrium state. The second condition indicates

that there is no coherence of the initial state, as ρ is diagonal in the eigenbases of the Hamilto-

nian, ρnn
′
= 0 for n ∕= n′, and thus we can only probe the properties in the equilibrium phase.

This raises the following questions: (1) can we explore the spectroscopic properties of a general

quantum many-body system, and (2) can we explore the properties in the out-of-equilibrium

phase. To be more specific in relation to the tasks, spectroscopic properties are referred to as

transition energies between eigenstates of the Hamiltonian and the excitation spectrum from the

ground state, which are the central objectives in this chapter.

Readers may find that this problem rests within a subset of the problem that was posed

in Section 1.2.1. Although it is an out-of-equilibrium problem, the key component of the task

considered here is to obtain the eigenstates and the corresponding eigenenergies, which can be

achieved through using the quantum algorithmic cooling method developed in Chapter 4 or other

eigenstate preparation methods introduced in Chapter 2. The dynamical behaviours can subse-

quently be obtained by applying the dynamics simulation methods developed in this thesis. A

combination of these methods would consequently provide us with a result. Nevertheless, apply-

ing the above methods to the study of realistic materials with current quantum hardware could

be challenging. Capturing the collective behaviour in a realistic material presents a significant
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challenge given the many degrees of freedom involved in the problem description, as detailed in

previous sections. More importantly, simply in terms of efficiency, having an experiment-friendly

method to access the behaviours of materials, without requiring too many experimental resources,

is always desirable. This is even more crucial in the noisy intermediate-scale quantum era, in

which available quantum hardware has limited practicality, a point which was underscored in

Section 1.4.

Spectroscopic techniques [16,17,19–21,221] provide valuable insights for us to design resource-

efficient methods. Motivated by spectroscopy, I demonstrate how to probe spectroscopic features

of a quantum many-body system in an efficient way. Our method only requires the realisation of

time evolution e−iHt without reliance on any ancillary qubits. This is in contrast to many algo-

rithms, such as algorithmic cooling developed in Chapter 4 and variational dynamics simulation

outlined in Section 2.2.3, which usually require controlled-unitary operations. Our method is

therefore compatible with an analogue quantum simulator, and has the advantage of potentially

being more robust against noise. The quantum circuit complexity of our method for transition

energy estimation is shown to be logarithmic in precision, which shows a clear advantage over

existing works in this estimation task.

7.2 Methods

7.2.1 Framework

In this section, I discuss how to estimate transition energies between the eigenstates of a quantum

many-body system using engineered spectroscopic methods. I first formulate this problem in a

similar fashion to that in Chapter 4. To begin with, let us consider a quantum channel

G(ρ,ω) =
󰁛

n,n′=0

|n′〉 〈n′| ρ |n〉 〈n| pτ (En′ − En − ω), (7.2)

where |n〉 is the eigenbasis of the Hamiltonian satisfying H |n〉 = En |n〉. The function pτ (·) that
selects the energy difference between |n′〉 and |n〉 is introduced. For instance, we may choose the

Gaussian function pτ (ω) = exp(−τ2ω2) which decays exponentially fast with respect to τ or ω.

Here, we arrange that pτ (ω) = p(τω), such that τ is coupled with ω.

With a properly selected observable Ô, we can obtain the measurement outcome G(ρ,ω) =

Tr[G(ρ,ω)Ô]. Denote Γn′,n := ρn
′n〈n|Ô|n′〉 which represents the state-and-observable dependent

coherence, yet is time-independent. We have

G(ρ,ω) =
󰁛

n,n′=0

Tr[Ô |n′〉 〈n′| ρ |n〉 〈n| p(τ(En′ − En − ω))]

:=
󰁛

n,n′=0

Γn′,np(τ(En′ − En − ω)).
(7.3)

We can find that the quantityG(ρ,ω) contains the information on transition energies. Specifically,

given a proper p(·), G(ρ,ω) takes its local maximum when ω approaches to En′ −En, from which
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we can see that p(·) plays a role as a spectral filter that filters En′ − En out from the other

transition energies.

Next, I show how to estimate G(ρ,ω) in Eq. (7.3). The key idea is to consider a Fourier

transform of G(ρ,ω). Let us consider the dual form of p via its Fourier transform

g̃(t) :=

󰁝 ∞

∞
p(ω)eiτωtd(τω), (7.4)

and its inverse form

p(τω) =
1

2π

󰁝 ∞

∞
g̃(t)e−iτωtdt. (7.5)

Consider the normalised function g(t) = |g̃(t)|/󰀂g̃(t)󰀂 with 󰀂g̃(t)󰀂 :=
󰁕∞
∞ |g̃(t)|dt, and we have

g(t) =
1

c

󰁝 ∞

∞
p(ω)eiτωtd(τω), (7.6)

and its inverse form

p(τω) =
c

2π

󰁝 ∞

∞
g(t)eiθte−iτωtdt. (7.7)

with c := 󰀂g̃(t)󰀂 and the phase eiθt := g̃(t)/|g̃(t)|.
Plugging the Fourier transform of p into Eq. (7.3), we find that

G(ρ,ω) =
c

2π

󰁛

n,n′=0

Γn′,n

󰁝 ∞

−∞
e−iτ(En′−En−ω)tg(t)eiθtdt

=
c

2π

󰁛

n,n′=0

Tr[Ô

󰁝 ∞

−∞
e−iτEn′ t |n〉 〈n| ρ |n′〉 〈n′| eiτEnt]g(t)eiθteiτωtdt

=
c

2π

󰁝 ∞

−∞
Tr[Ôρ(τ t)]g(t)eiθteiτωtdt =

c

2π

󰁝 ∞

−∞
G(τ t)g(t)eiθteiτωtdt

(7.8)

where we denote

G(t) := Tr[Ôρ(t)], (7.9)

in the Schrödinger picture. The above equation indicates that we can first obtain Tr[Ô(τ t)ρ] by

measuring Ô on the time-evolved quantum state at time τ t, and then use Eq. (7.8) to obtain

G(ρ,ω). Since g(t) is normalised and hence can be regarded a probability distribution, we can

estimate G(ρ,ω) by

Ĝ(ρ,ω) =
1

Ns

Ns󰁛

i=1

ĝi(ρ,ω), (7.10)

where Ns is the total number of samples, and ĝi is a single-shot estimator, which takes the form

of

ĝi(ρ,ω) =
c

2π
ô(τ ti)e

iθtieiτωti , (7.11)

where ti is sampled from the probability distribution g(t) and ô(τ ti) is an unbiased estimate of

Tr[Ô(τ t)ρ]. Ĝ(ρ,ω) is an unbiased estimator of G(ρ,ω)1,

G(ρ,ω) = EĜ(ρ,ω),

1ĝi(ρ,ω) is also an unbiased estimator of G(ρ,ω).
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where the average is over the probability distribution g(t).

It is worth noting that in Eq. (7.8), we choose to treat τω as a whole when we perform the

Fourier transform. As such, g(·) is a probability distribution that is independent of τ , and the

time length2 for evaluating G(ρ,ω) is τ t, which is extended by a factor τ . Alternatively, we

can treat τ as a separate parameter that is independent of ω, and hence will not be Fourier-

transformed. One can show that these two ways are equivalent, which will not be elaborated on

in this thesis for the sake of conciseness.

Eq. (7.3) indicates that to be able to infer the transition energy ∆n′,n := En′ −En, there are

two necessary requirements: (1) a sufficiently large coherence Γn′,n, and (2) a proper function

p(τω) (or equivalently its dual form g(t)) that ensures that ∆n′,n can be distinguished from other

transition energies.

The coherence Γn′,n is time-independent yet dependent on the state and the chosen observable.

We can consider the following strategy in order to satisfy the first condition. We first prepare the

initial state ρ as the ground state of the noninteracting system governed by Ĥ0. The interaction

Ĥ1 at t = 0 is then suddenly turned on. The state will be evolved under the Hamiltonian

Ĥ = Ĥ0 + Ĥ1. In a weakly coupled regime, where the initial state ρ is close to the ground state

|0〉 of Ĥ, the initial state can be expanded using the first-order perturbation as

ρ ≃ ρ00|0〉〈0|+
󰁛

n ∕=0

ρ0n|0〉〈n|+ ρn0|n〉〈0|. (7.12)

The state coherence ρn0 is nonzero, which indicates that it allows a transition between the

eigenstate |n〉 and the ground state |0〉, and consequently we can in principle detect the energy

difference En − E0.

It can be observed that the task of detecting transition energies is very similar to the problem

of searching for eigenenergies which was discussed in Chapter 4. However, there are several

differences between the method developed in this chapter and the algorithmic cooling which was

introduced in Chapter 4. In terms of implementation, this spectroscopic method does not require

controlled unitary operations and is thus free of ancillary qubits. It only requires the realisation of

real-time dynamics e−iĤt, a basic and most promising application of quantum computing [13,37].

It is also therefore applicable to most analogue quantum simulators and could be more robust

against noise.

It is also worth noting the relation between our method and conventional spectroscopy tech-

niques, since both are capable of obtaining the energy spectrum of a quantum system. The

essential component of our method is to obtain the expectation value of a properly chosen Ô on

a time-evolved state, and it relies on the realisation of real-time dynamics e−iĤti with different

times ti, which will be implemented on a quantum simulator. As we will find in Section 7.2.2,

one advantage of our method is that it only requires evolution with a short time length which

2The maximal time length determines the time complexity of the algorithm.
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is logarithmic in the target precision ε. In addition, since the Hamiltonian is capable of being

engineered, we can engineer quantum simulators to detect the energy excitation spectra of many

different types of quantum many-body systems.

7.2.2 Error analysis and resource requirement

In this section, I discuss the computational complexity of our method. I focus on the above weakly

coupled case, in which the initial state is populated by a collection of low-lying excited states,

and it is assumed that Γn,0 is nonvanishing while Γn,n′≥1 = 0. In this context, ’nonvanishing’

indicates that the coherence Γn′n of the eigenstates is a constant or can be lower-bounded by a

polynomial of the inverse of the system size N as

Γn′n ≥ O(Poly(
1

N
)). (7.13)

The objective is to estimate the transition energy ∆j,0 = Ej − E0 within an error ε, i.e.,

|∆̂j,0 −∆j,0| ≤ ε. For the sake of convenience, we shift the full energy spectra by a constant E0,

such that the shifted ground state energy is zero, E0 = 0. As such, finding the transition energy

is converted to an eigenenergy problem, and Eq. (7.3) is simplified as

G(ρ,ω) =
󰁛

n

Γn,0p(τ(En − ω)). (7.14)

Generally speaking, the eigenenergy Ej can be determined by searching peaks of G(ρ,ω) over

the frequency domain ω. Under the assumption,

Γj,0p(τ(Ej − ω)) ≫ Γi,0p(τ(Ei − ω)), ∀i ∕= j (7.15)

the eigenenergy could be determined by

Ej = argmaxω∈[EL
j ,EU

j ]G(ρ,ω). (7.16)

This assumption, which is suggested in relation to the discussion in Chapter 4, holds when the

target precision is sufficiently small ε ≪ ∆j with ∆j := min{Ej − Ej−1, Ej+1 − Ej}, and τ is

sufficiently large. For example, we can consider the Gaussian function p(τω) = e−τ2ω2
, and set

τ ≥ ε−1. Using the results detailed in Chapter 4, the maximal time complexity is Õ(ε−1), where

polylogarithmic dependence is hidden within the big-O notation.

Although the total circuit complexity (maximal evolution time × sampling numbers) reaches

the Heisenberg limit for eigenenergy estimation, which is still Õ(ε−1) as proven in Chapter 4, it

is sub-optimal for the maximal time complexity which is more important for practical implemen-

tation with near-term devices due to a relatively short decoherence time. In this chapter, I will

demonstrate that in a situation where the required simulation accuracy is sufficiently small, i.e.,

ε ≪ ∆j , such a large τ ∼ ε−1 is unnecessary. Indeed, a relatively small τ that is of the order of

∆j suffices to estimate the eigenenergy.
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To see this point, let us rewrite G(ρ,ω) as

G(ρ,ω) = Γj,0p(τ(Ej − ω)) +
󰁛

i ∕=j

Γi,0p(τ(Ei − ω)). (7.17)

Given a large τ , the first term will be dominant to G(ρ,ω). The crucial step is to show that

τ = Õ(∆−1
j ) suffices to guarantee that G(ρ,ω) is close to the peak value Γj,0 only if ω is close to

Ej . In addition, in the vicinity of Ej , ∂
2G(ρ,ω)/∂2ω < 0. The eigenenergy can thus be estimated

by finding the peak of the estimate Ĝ(ρ,ω)

Êj = argmaxω∈[EL
j ,EU

j ]Ĝ(ρ,ω). (7.18)

Intuitively, a time length of τ = O(∆−1
j ) is sufficient to suppress contributions from the

other eigenstates. As a complete proof would entail the inclusion of many technical details,

here I only show an intermediate result. For τ = O(∆−1
j ) and ε ≪ ∆j , one can show that (1)

|Dτ (ω) − pj | < c1τ
2ε2, ∀|ω − Ej | ≤ 0.5ε; (2) |Dτ (ω) − pj | > c2τ

2ε2 , ∀|ω − Ej | ∈ (ε,O(∆j)).

This indicates that the distance d = |Γj,0 − G(ρ,ω)| can be modulated by the estimation error

|ω−Ej |, and consequently, the eigenenergy Ej can be distinguished from the other eigenenergies.

Here, c1 and c2 are some constants that are irrelevant of τ and ε yet are dependent on Γj,0. It is

assumed that Γj,0 is nonvanishing, otherwise we cannot see the peak when ω approaches Ej . In

the following discussion, Γj,0 is assumed to be a constant and will thus not be explicitly shown

in the complexity analysis.

Given the theoretical guarantees, we first get an estimate of G(ρ,ω) by Eq. (7.10), and Ej is

then determined by finding the peak of Ĝ(ρ,ω) over the frequency domain ω. Here, it is worth

noting that since we only need to measure Tr[Ôρ(τ t)] in Eq. (7.10), calculating Ĝ(ρ,ω) as a

function of ω is a task involving purely classical computing, and does not cost any quantum

resources. Therefore, we can locate the position of eigenenergy Ej , which corresponds to a local

maximum of G(ρ,ω) and is distinguishable from other eigenenergies.

The algorithmic complexity concerning a finite τ , a finite cutoff for the integral, and a finite

number of measurements is shown below.

Proposition 6. Suppose that a system is weakly coupled, in which the initial state is close to

the ground state, and that there is a sufficiently large coherence between the excited state |j〉 and
the ground state |0〉. To guarantee that an estimation ∆̂j,0 of the transition energy ∆j,0 is close

to the true value within an error ε, we require that the maximum time is O(∆−1Polylog(1/ε)),

and the total running time is O(∆3ε−4 log(1/ε)), where ∆ is a chosen lower bound of the gap

∆ ≤ ∆j := min{Ej+1 − Ej , Ej − Ej−1}.

Proposition 6 indicates that when the required simulation accuracy ε is much less than ∆, the

circuit complexity is exponentially improved with respect to ε. Nevertheless, the total running

time scales as Õ(ε−4), in contrast to that established in Chapter 4 which is Õ(ε−1). The cost
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of a large total running time can be understood as follows. Recall that the target is to estimate

∆j,0 with accuracy ε, i.e., |∆̂j,0 −∆j,0| ≤ ε. By the Taylor expansion, we have

|G(ρ, ∆̂j,0)−G(ρ,∆j,0)| = Γj,0(τ
2ε2) +O((τε)4). (7.19)

Due to a finite sampling number, we can only have an estimate of G(ρ, ∆̂j,0) and G(ρ,∆j,0).

The sampling number required to achieve accuracy ε̃ scales as O(ε̃−2). Here, we choose to set

ε̃ = (τε)2 to ensure that the energy estimation error is up to ε. Consequently, the sampling

number scales as O(∆4ε−4), and the total running time is O(∆3ε−4).

A remaining issue is the error from a finite cutoff when evaluating the integral in Eq. (7.8)

with the integral range from (−∞,+∞) to [−T,+T ]. One can show that a finite cutoff only

contributes to a logarithmic factor to the circuit complexity. This analysis is very similar to that

in the algorithmic cooling method in Chapter 4, and I direct the interested reader to Section B.1.2

for details.

Proposition 6 also indicates when we choose to set ∆ = ε, our result is reduced to algorithmic

cooling (Theorem 1), of which the total running time reaches O(ε−1), the so-called the Heisenberg

limit. Recently, Wang it al. proposed quantum algorithms for ground state energy estimation

which achieves a similar result [222]. More specifically, they proposed using a Gaussian derivative

function in the form of pσ(x) = − 1√
2πσ3

x exp(− x2

2σ2 ) as a filter to estimate the ground state

energy, where σ plays a similar role to τ−1. They achieved a maximal time complexity which is

logarithmic in ε and a total running rime Õ(ε−2). However, this method can only be used to

estimate the ground state energy instead of transition energies because the convolution function

used in [222], which can be regarded as a modified G(ρ,ω), will be close to zero instead of reaching

its maximum when ω approaches Ej .

7.2.3 Engineered spectroscopy

The above result rests upon the assumption that the coherence between the two eigenstates |n〉
and |n′〉 with respect to an observable Ô is large. The choice of the initial state and observable

is therefore crucial for observing the transitions. Thus far, several works have discussed how

to probe excitation spectra of a quantum many-body system by engineering the system and

monitoring the dynamics of observables [16,17,19–21,221]. These works provide insights into the

selection of the initial state and observables. In particular, it has been shown that nonequilibrium

dynamics after a global quench [16,19] or a local quench [20] is sufficient to unveil the excitation

spectrum, which has been termed quench spectroscopy. The basic idea is that quench will drive

the initial stationary state out of equilibrium and generate low-lying quasiparticle excitations,

the dispersion relation of which can be obtained by measuring a properly chosen observable. For
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instance, the basic protocol of local quench spectroscopy3 for a lattice model with translation

invariance is that we first initialise the system in its ground state, then apply a local operation

L̂ to a single lattice site, and measure the dynamics of a local observable, as discussed in [20].

At the basis of these spectroscopic method is that the initial state is populated by a branch

of low-lying excited states, which can be expressed as |ψ0〉 =
󰁓

j cj |j〉 where |j〉 is an eigenstate

of Ĥ. The initial state, either generated by quench or local operations, can be formally expressed

as

|ψ0〉 = L̂ |0〉 , (7.20)

where |0〉 is the ground state of Ĥ. The ground state can be expressed as

|0〉 = L̂−1 |ψ0〉 =
󰁛

j

L̂−1cj |j〉 . (7.21)

The observation in relation to the excited state and the ground state can thus be expressed as

〈0|Ô|n〉 =
󰁛

j

cj 〈j|(L̂−1)†Ô|n〉 . (7.22)

In a simple case where L̂ is a unitary, one natural choice is L̂ = Ô, which provides a guarantee

of nonzero observation, since 〈0|Ô|n〉 = cn.

In the case of a solid system, translation invariance is usually conserved, where the system

Hamiltonian satisfies [H, P̂] = 0, where P̂ is the total momentum operator, and hence each

eigenstate |n〉 has a well-defined momentum of Pn, P̂n |n〉 = pn |n〉. Suppose we choose the

observable at a given position x, which can be expressed as

Ô(x) = e−iP̂·xÔe+iP̂·x (7.23)

where we abbreviate Ô := Ô(0) for the sake of simplicity. Assume that translation invariance of

the initial state4 is broken. Taking a space Fourier transform of Gx(ρ, t) in Eq. (7.3) with the

observable Ô(x), we have

Gk(ρ,ω) =

󰁝
dxe−ikxGx(ρ,ω) = 2π

󰁛

n,n′=0

Γn′,np(τ(En′ − En − ω))δ(pn′ − pn − k). (7.24)

This indicates translation invariance imposes selection rules of both energy and momentum for

transition between eigenstates. This is the key element in spectroscopy experiments, where ele-

mentary excitations between eigenstates emerge when the selection rule of energy and momentum

is satisfied.

3Note that the ’local quench’ in the original paper may stretch the conventional meaning of quench. Quench
usually refers to a process where parameters in the Hamiltonian are changed in time, and usually the time-scale
for the change of parameters is very fast. For example, a system is prepared as an eigenstate of a Hamiltonian
Ĥ0 at t < t0, while at time t0, the system is evolved dynamically under a different Hamiltonian Ĥ0 + Ĥ1. A more
accurate description of ’local quench’ in the protocol in [20] could be ’local perturbation’.

4For instance, translation invariance of the state after applying a local operation to a single site is broken.
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In a weakly coupled system, the particle excitations induced by perturbations are restricted to

a manifold of single-particle excitation. Therefore, an excited state can be understood as a single

quasiparticle excitation above a vacuum state, |n〉 = γ̂†q |0〉, carrying on momentum q, where |0〉,
is the vacuum state, and γ̂†q is a creation operator of a quasiparticle with momentum q. The

observable can be chosen as

Ô =
󰁛

p

Apγ̂
†
p +A∗

pγ̂p, (7.25)

and we have

〈0|Ô|n〉 = Aq∗. (7.26)

This indicates that the choice of Ô in Eq. (7.25) enables a nonzero observation, and the excitation

spectrum can thus be observed.

We can use a similar fashion to probe the transition energy between the excited states |n〉 and
|n′〉. The transition can be expressed as 〈n|Ô|n′〉 = 〈q|Ô|q+ k〉 where the momentum selection

rule is imposed. If the excitations are restricted to a single quasiparticle manifold, we can choose

an observable that conserves the quasiparticle number

Ô =
󰁛

p,p′

Ap,p′ γ̂†pγ̂p′ . (7.27)

In this case, we can ensure that the observation is nonzero since 〈n|Ô|n′〉 = Aq,q+k.

It is worth noting that a priori knowledge of the system is still required to prepare the initial

state which is composed of the desired excitations. Nonetheless, several spectroscopy protocols

have been demonstrated that can successfully create excitations in many quantum systems, such

as Bose-Hubbard models [19], spin chains [16–18], and disordered systems [221]. Below, I briefly

discuss several representative spectroscopy protocols [16–18].

Let us consider a one-dimensional transverse field Ising model with,

H =
󰁛

i<j≤N

Jij σ̂
x
i σ̂

x
j +B

󰁛

j≤N

σ̂z
j , (7.28)

where σ̂α
i (α = x, y, z) is a Pauli operator on the ith site, Jij is the strength of spin-spin coupling

between the ith and jth site. Ref. [16] considered a strong field case B ≫ max Jij , in which the

energy spectrum of H is split into N + 1 decoupled subspaces spanned by different excitation

numbers5. They proposed observation of quasiparticle spectroscopy by engineering the initial

state consisting of the particular quasiparticle excitations. More specifically, by rotating the

spins on each site |θj〉 = cos(θj) |0〉j + sin(θj) |1〉 where |0〉j represents a spin-up state, the initial

state |ψ0〉 = ⊗N
j=1 |θj〉 could be a good approximation of a superposition of the ground state and

5The Hamiltonian H conserves the total excitations numbers n̂ =
󰁓

j(σ̂
z
j + 1)/2.
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the eigenstate ofH in the single-excitation subspace. To probe the single quasiparticle excitations

Ek, the initial state is prepared as

|ψ0〉 ≈ |0〉+ γ |k〉 , (7.29)

where γ is a small constant, |0〉 is the ground state and |k〉 is the eigenstate with a momentum

k6 It is easy to verify that the state coherence 〈0|ψ0〉 〈ψ0|k〉 = γ. For probing transitions between

|k〉 and |k′〉, the authors prepared the state as

|ψ0〉 ≈ |0〉+ γ(|k〉+ |k′)〉 , (7.30)

in which the state coherence 〈k|ψ0〉 〈ψ0|k′〉 = γ2. Transitions between quasiparticles in higher-

order excitation sectors can be obtained by preparing the state in a similar fashion.

Yoshimura et al. considered a time-dependent field B = B(t), which is decreased from a

large polarising field to a constant, to create excitations, a method termed diabatic-ramping

spectroscopy [18]. The transition energies can be obtained by taking the Fourier transform

of the observable dynamics. Senko et al. considered a similar time-dependent field B(t) =

B0 +Bp sin(2πvpt) for probing the energy spectrum of a weakly coupled system. At the basis of

this method is the emergence of an energy resonance between |n〉 and |n′〉 when the frequency of

the external field, vp, matches the transition energies |∆n′,n| [17]. The emergence of resonance

at vp = |∆n′,n| could be understood by time-dependent perturbation theory.

Finally, it is worth noting how our method differs from those of spectroscopy experiments.

In spectroscopy experiments, the external injected neutrons act as a weak perturbation and the

system remains in equilibrium; it probes the intrinsic properties of materials in the equilibrium

state. In global or local quench spectroscopy, the eigenstates are assumed to be nearly unchanged

after quench, which is similar to that in spectroscopy experiments, although the state will be out

of equilibrium. However, our framework holds for solving a more general quantum many-body

problem. In our method, the eigenstates are not assumed to be unchanged after applying the

perturbation, as long as the coherence is sufficiently large. Although in general a large coherence

cannot be guaranteed, in certain cases discussed above, we could engineer the system to probe

the desired transitions.

7.3 Comments on spectroscopic methods and relations between
static and dynamic problems

At the heart of engineered spectroscopy is the extraction of eigenenergy information from real-

time dynamics e−iHt. This relates to the central topic of this thesis, that is, the relation between

6As shown in [16], the eigenstates can be written as |k〉 =
󰁓N

j=1 Ã
k
j |1〉j ⊗i ∕=j |0〉i where for nearest-neighbour

couplings Ãk
j =

󰁳
2/(N + 1) sin(kjπ/(N + 1)). By setting θj = tan−1(γÃk

j ), we have a tensor product state that
is a good approximation of Eq. (7.29).
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static and dynamic problems, which have been intensively discussed in Chapter 1 and Chapter 2.

Based on the observation in Eq. (1.7), all the spectral information is contained in the dynamics

of the state, which indicates eigenstate properties and dynamical properties are closely related

to each other, and thus one can be inferred from the other. An important question arises as to

how to extract the spectral information from 〈ψ(t)|Ô|ψ(t)〉, which was introduced in Eq. (7.9),

and serves as an essential element in our spectroscopic protocol. In this section, I discuss how to

infer static properties from 〈ψ(t)|Ô|ψ(t)〉, and provide some comments on the relation between

static and dynamic problems.

A key element in this chapter is the generation of a time-evolved state

|Φj〉 = e−iHtj |Ψ0〉

evolving from an initial state |Ψ0〉 =
󰁓

n cn |n〉 with time length tj . Consider a matrix element

Sjj′ = 〈Φj′ |f(H)|Φj〉, (7.31)

and from the expansion of the initial state, the matrix element can be expressed by

Sj,j′ =
󰁛

nn′

cnc
∗
n′e−i(Entj−En′ tj′ )〈n′|f(H)|n〉. (7.32)

Here, we have introduced a general matrix function f(H) acting on the Hamiltonian, which is

defined as f(H) :=
󰁓

i=0 f(Ei) |ui〉 〈ui| . where f(h) : R → C is a generic continuous-variable

function determining the transformation of the spectrum of the Hamiltonian. We should note

that if Trotterisation is used to implement real-time evolution, it will break the translational

symmetry in the time domain, and this becomes an approximation of the element.

f(H) can be regarded as the observable in engineered spectroscopy. A simple choice could

be f(H) = Hk, k ∈ N. Note that the quantity Sjj′ can be efficiently measured by the Hadamard

test on a quantum computer, or using the quantum signal processing methods [33]. Consider the

kth moment of H, f(H) = Hk, Eq. (7.31) becomes

Sk
j,j′ =

󰁛

n

|cn|2Ek
ne

−iEn(tj−tj′ ). (7.33)

For a fixed k, the dual form of Sk
j,j′ via a discrete Fourier transform is given by

S̃k(ω) =
󰁛

j,j′

F(ω)Sk
j,j′ =

󰁛

n

Ek
n|cn|2

󰁛

j,j′

e−i(tj−tj′ )(En−ω), (7.34)

with F(ω) =
󰁓

n exp(+i∆tjj′ω) and ∆tjj′ = tj−tj′ . If the time interval is selected as ∆tjj′ = τm

with m = −M,−M + 1, ...,M , the matrix can now be represented as

S̃k(ω) =
󰁛

n

Ek
n|cn|2τ

󰁛

j,j′

e−i∆tjj′ (En−ω)

=
󰁛

n

Ek
n|cn|2τ

M󰁛

m=−M

e−iτm(En−ω)

=
󰁛

n

Ek
n|cn|2τ

󰀕
1 + 2 cos((En − ω)(T + τ)/2)

sin((En − ω)T/2)

sin(En − ω)τ/2)

󰀖
(7.35)
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with T = Mτ . At τ → 0, it becomes

S̃k(ω) =
󰁛

n

Ek
n|cn|2

󰀕
sin((En − ω)T/2)

(En − ω)/2)

󰀖
. (7.36)

Each term in this expression takes a maximal value at En = ω. Several constraints may be

imposed as

(Emax − Emin)∆t ∼ 2π, ∆Etmax ∼ 2π. (7.37)

The eigenenergies in principle could be extracted from Eq. (7.36) with proper classical post-

processing.

In addition to spectroscopic methods, the time-evolved state can be used to construct a

reference basis and one can use it to estimate the eigenvalues. The basic idea is to represent the

original problem in a new subspace in the span of non-orthogonal states {|Φj〉}, where |Φj〉 is

the basis state generated by time evolution with time length tj , |Φj〉 = e−iHtj |Ψ0〉, also known

as the subspace expansion method. We can decompose any state in the subspace
󰁏

j |Φj〉 〈Φj |
spanned by the basis states. The eigenstate of the Hamiltonian can be decomposed as a linear

combination of these basis states as

|uk〉 ≈
󰁛

j

αj |Φj〉 . (7.38)

Recall that the original eigenvalue problem H|uk〉 = Ek|uk〉 has, by exact diagonalisation, an

exponential complexity in respect of the system size. Alternatively, we can solve it in a subspace

in the span of non-orthogonal states {|Φj〉}. The original eigenvalue problem is then converted

to

F(H)α = EkSα, (7.39)

where α is the column vector of expansion coefficients, and the matrix element of F and S

are defined as F(H)jj′ := 〈Φj |H|Φj′〉 and Sjj′ := 〈Φj |Φj′〉, respectively. We may use different

reference states in practice; for example, time-evolved states with different time lengths or states

generated by hybrid tensor networks detailed in Chapter 3.

As discussed above, the spectroscopy analysis methods and subspace expansion methods

provide insights for quantum computing of spectral properties using real-time dynamics, and

both can be efficiently implemented on quantum hardware.

7.4 Discussion

In this chapter, I introduce an engineered spectroscopy protocol to probe spectroscopic features

of quantum many-body systems. The key element of the protocol is the realisation of real-time

dynamics on a quantum simulator, and the time length is proven to be logarithmic in precision,

which is near-optimal for eigenenergy estimation. In terms of practical implementation, since
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our protocol is ancilla-free, it could be more experimentally friendly to be implemented using

the current generation of quantum simulators. The result in this chapter shows that eigenstate

properties can be estimated by dynamic properties of the quantum systems. In addition, it

reveals an inherent relation between the two primary classes of quantum many-body problems,

i.e., static problems and dynamic problems introduced in this thesis.

To further understand why the engineered spectroscopy methods could be used to select the

eigenvalues, one can show that the method established in the chapter is closely related to the

cooling or projection operations introduced in Chapter 4, which effectively realises the imaginary

time evolution and can thus obtain the eigenstates and the eigenvalues. The derivation and

discussion can be found in Section E.2 in Appendix E. I will further show how to use our method

for probing the spectroscopic features of spin Hamiltonians (a transverse-field Ising model and

a J1-J2 model) in Chapter 8, and refer to [96] for other examples, such as the Bose-Hubbard

Hamiltonian and fermionic Hamiltonians without particle conservation.

Before ending this section, I propose an interesting future direction for the exploration

of unconventional superconducting phases and understanding the pairing mechanism of high-

temperature superconductivity. The spin resonance mode is one important feature in uncon-

ventional superconductors, such as cuprates and iron-based superconductors. Spin resonance

occurs in superconductors with different signs of energy gap, and it can be used to distinguish

different pairing mechanism, such as spin-fluctuation-mediated and orbital-fluctuation-mediated

pairing. This has been intensively explored both theoretically and through experiments. I refer

the interested reader to Refs. [223,224] for a review on this subject.

A key observation is the dynamical spin susceptibility χs, which can be calculated by

χs(q, iω) =
1

3

󰁝 β

0
dτeiωτ

󰁇
Ŝ(q, τ)Ŝt(−q, 0)

󰁈
(7.40)

with τ being the imaginary time and ω a Matsubara frequency. Here, Ŝ is the spin operator

Ŝ(q) = 1
2

󰁓
k,αβ c

†
sα(k + q)σ̂αβcsβ(k). The above quantity is obtained from the Matsubara spin-

spin correlation function, while it could also be calculated in the real-time domain. The spin

susceptibility can be calculated using the methods developed in this thesis, and can thus be used

to study the spin resonance mode in unconventional superconductors. However, it is worth not-

ing that this generally involves many bands in practice and 2D simulation is hard, and I leave a

detailed discussion and simulation for spin resonance in unconventional superconducting phases

to future works.

Author contributions. This chapter is relevant to the theoretical part of a manuscript

under preparation [96]. J.S. initiated the project. J.S. developed the theoretical aspects of this

project with input from L.E., V.V., and A.B..
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Chapter 8

Exploration of interacting physics

In this chapter, I demonstrate how the methods developed in this thesis can be applied to explore

interesting quantum many-body phenomena. In Section 8.1, I first show the simulation results for

interacting bosons, fermions, and quantum spin systems using the perturbative method developed

in Chapter 6. I then demonstrate this method experimentally on the IBM quantum cloud and

show the experimental results in Section 8.2. In Section 8.3, I show the simulation of interacting

spectroscopy of representative quantum systems using the spectroscopic technique developed in

Chapter 7. Section 8.1 and Section 8.2 is relevant to a published work [95] and Section 8.3 is

relevant to a manuscript under preparation [96].

8.1 Probing interacting dynamics by perturbative quantum sim-
ulation

In this section, I demonstrate the concrete applications of our perturbative approach in simu-

lating quantum dynamics of quantum many-body physics problems with operations on a small

quantum simulator. I focus on the algorithm with the explicit decomposition method introduced

in Section 6.3. I numerically test the perturbative quantum simulation (PQS) method through

simulating several interacting physics with different topologies as examples.

Specifically, I investigate (a) the quantum walk of bosons on a one-dimensional lattice, (b) the

separation of charge and spin excitations of fermions with two-dimensional topology, and (c)

the correlation propagation of quantum spin systems of two clusters. Appropriate partitioning

strategies are designed, in which the whole system consists of two subsystems and each subsystem

consists of 8 qubits. Figure 8.1 illustrates four different topological structures and the explicit

partitioning strategies considered in this thesis. In each example, the corresponding task-specific

partitioning strategy of the quantum systems is presented.

I use the perturbative quantum simulation method, in particular, the explicit decomposition

method introduced in Section 6.3, for dynamics simulation1. 8 + 1 qubits are used to simulate

1Note that ’explicit decomposition method’ refers to a specific perturbative method that is developed in Sec-
tion 6.3, which considers a specific and explicit decomposition of a joint evolution channel. It is worth clarifying
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each subsystem. By post-processing the results of the subsystems, we can obtain the simulation

results of the whole quantum system. All unique features are detected just as the whole system

is simulated directly; the numerical results using PQS align with those of the exact simulation

as shown in the figures below, thus verifying the reliability of the method.

These numerical tests are restricted to 16 qubits at most, since exact simulation of larger

quantum systems becomes exponentially costly. To benchmark our method for larger systems,

I investigated a 1D 48-site spin chain with nearest-neighbour couplings, using the time-evolving

block decimation (TEBD) method with matrix product states as the reference. As shown in

Figure 8.6, our simulation results coincide with those of TEBD, again confirming the reliability

of PQS for simulating multiple subsystems. Intriguingly, our method only needs to manipulate

8 + 1 qubits to recover the joint evolution dynamics of the 48 qubits.

In this section, I only consider real-time evolution of small and classically tractable quantum

systems for benchmarking our method. However, for all the examples considered here, since

the simulation cost is independent of the interaction and initial state of the subsystems, the

PQS algorithm would also work when tackling much larger subsystems with more complicated

subsystem interactions. In practice, when the subsystem size is increased to around n = 50

qubits and general strong interaction is considered, PQS could outstrip the capabilities of classical

simulation and reliably probe properties of quantum systems many times the size of the quantum

processor.

In the following subsections, I show dynamics simulation of different interacting systems using

maximally 8 + 1 qubits.

Bose Hubbard Model

Correlated Spin Cluster

Long Range Spin Chain

Fermi Hubbard Model

(a) (c)

(d)

(b)

(b2)

(b1)
2

3

7

8

1

6

5

4

11

10

14

13

15

16

9
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Figure 8.1: Four different topological geometries and the partitioning strategies corresponding to
the Bose Hubbard model, the Fermi Hubbard model, the long-range spin chain and the correlated
spin cluster considered in this work. The explicit decomposition strategy for the examples (a,b,d)
(except (d)) are proven to be optimal over other perturbative expansions according to Theorem 5.

that it is irrelevant to partitioning strategies.
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8.1.1 Interacting bosons

Let us first consider the physics of interacting spinless bosons on a lattice [225], which could be

described by the extended Bose-Hubbard Hamiltonian

H = −
󰁛

i,j

tij b̂
†
i b̂j +

U

2

󰁛

i

n̂i (n̂i − 1) +
󰁛

i

hin̂i, (8.1)

where b̂i and b̂†i are the bosonic annihilation and creation operators, n̂i = b̂†i b̂i gives the number of

particles on the site i, tij describes the hopping strength, U describes the on-site interaction, and

hi is the on-site chemical potential that can be tuned in various quantum systems. The model

reduces to the Bose-Hubbard model HBHM when only nearest-neighbour hopping is allowed, i.e.,

tij = δ|i−j|,1t. In the large U limit U/t → +∞, this model reduces to the Tomonaga-Luttinger

gas Hamiltonian, which describes the collective behaviour of hard-core bosons [225]. Using the

Holstein and Primakoff transformation, the Bose-Hubbard model in the large U limit is mapped

onto the XX spin chain model

HBHM = J
󰁛

j

󰀓
σ̂x
j σ̂

x
j+1 + σ̂y

j σ̂
y
j+1

󰀔
+

1

2

󰁛

j

hi

󰀓
Îj − σ̂z

j

󰀔
(8.2)

with σ̂j representing the Pauli operator on the jth site and the effective interaction J = −2t.

Hard-core bosons can also be related to one-dimensional free spinless fermions under the Jordan-

Wigner transformation.

Quantum walks of the 1D translationally invariant bosons were experimentally demonstrated

in Ref. [226]. The device system, a 12-qubit superconducting processor, can be well described by

the hard-core boson Hamiltonian in Eq. (8.2). In our numerical simulation, I consider a situation

in which translation invariance is broken. Specially, I consider two clusters of the interacting

bosons with tuneable hopping strength tij = t′ on the boundary of subsystems and investigate

the density distribution and correlations of bosons under time evolution.

The Hamiltonian can be expressed as H = H1 +H2 + V int with the local Hamiltonian and

interactions on the boundary as

H loc
l = J

󰁛

j

󰀓
σ̂x
j σ̂

x
j+1 + σ̂y

j σ̂
y
j+1

󰀔
+

1

2

󰁛

j

hi

󰀓
Îj − σ̂z

j

󰀔
,

V int = J ′(σx
1,Nσx

2,1 + σy
1,Nσy

2,1).

(8.3)

Here, σl,i represents Pauli operators acting on the ith site of lth subsystem, and the interactions

at the boundary is J ′ = −2t′. This Hamiltonian reduces to the Bose-Hubbard model when t = t′.

Next, I divide the whole system into two parts and simulate the dynamics of interacting bosons

using our perturbative approach with the explicit decomposition introduced in Section 6.3. Our

method enables the simulation of the 16-qubit problem with only 8 + 1 qubits. It is worth

noting that the explicit decomposition is optimal with respect to all possible decomposition
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Figure 8.2: Dynamics of 16 interacting bosons on a 1D array in the large on-site repulsion limit
U/t → ∞. (a) Quantum walk after single particle excitation at the centre |ψ0〉 = b̂†8 |0〉. The
interaction strengths are set as J = 0.5 and J ′ = 0.8J . (a1) and (a2) show the simulation results

and exact results by exact diagonalisation (ED) for time-evolved density evolution n̂j = 〈b̂†j b̂j〉,
respectively. (a3) The density distribution n̂j at different sites Q9 to Q13 under time evolution.
The nearest-neighbour Lieb-Robinson bounds (dashed line) capture the maximum propagation
speed of density spreading. (a4) and (a5) show the evolution of the averaged two-body correlation
functions C̄d(t) =

1
N−d

󰁓N−d
j=1 Cj,j+d(t), which exhibit similar light cone propagation. The inset

figure in (a3) shows the errors for the density and the averaged two-body correlation functions.

(b) Quantum walk after two particle excitations at the centre |ψ0〉 = b̂†8b̂
†
9 |0〉. The interaction

strengths are set as J = 0.5 and J ′ = 0.5J . (b1) and (b2) show the simulated results and exact

results for time-evolved density evolution n̂j = 〈b̂†j b̂j〉, respectively. (b3) The density distribution
n̂j at different sites Q9 to Q13 under time evolution. The nearest-neighbour Lieb-Robinson
bounds are shown by the dashed line. The inset figure in (b3) shows the errors for the density

and the two-body density-density correlation functions ρ̂ij = 〈b̂†i b̂
†
j b̂ib̂j〉. (c) Spatial anti-bunching

and fermionisation in the quantum walk of two indistinguishable bosons. The two bosons are
excited at the centre. The normalised density-density correlation functions ρ̂ij/ρ̂

max
ij at several

time T . The off-diagonal correlations appear under evolution, which shows the anti-bunching
and fermionisation of strongly correlated bosons. This phenomenon is well captured by the
non-interacting spinless fermions. In this numerical simulation, the sampling number is set as
5× 105.

strategies, as proven in Theorem 5. I first demonstrate the dynamics after local perturbation

under the interacting Hamiltonian. Previous works have extensively studied the propagation
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speed of quantum information in quantum many-body systems with finite range interactions,

which is limited by a maximal group speed, known as the Lieb-Robinson velocity vg [59, 227].

Information that propagates faster than vg is exponentially suppressed, which exhibits a light-

cone-like information propagation analogous to the relativistic theory. One can consider a local

perturbation to the initial state |ψ0〉 as |ψ(t = 0)〉 = OA |ψ0〉 in the region A. As proven in

Ref. [227], the change of the expectation of the observable OB in the region B under time

evolution can be bounded by

|〈ψ(t)|OB|ψ(t)〉 − 〈ψ0|OB|ψ0〉| = |〈ψ|O†
A[OB(t), OA]|ψ〉| ≤ 󰀂[OB(t), OA]󰀂, (8.4)

where OB(t) represents the operator in the Heisenberg picture. This establishes how local oper-

ations OA affect the observables OB under time evolution. If the interactions decrease exponen-

tially with distance, one can bound the unequal time commutator by

󰀂|[OB(t), OA]󰀂 ≤ C󰀂OA󰀂󰀂OB󰀂 exp
󰀗
− d− vg|t|

ξ

󰀘
, (8.5)

where d is the distance in between the region A and B (shortest path connecting A and B),

and c, vg, and ξ are positive constants depending on g = maxi,j |Jij |. For the nearest-neighbour

interaction, one can have a tighter bound by |〈ψ(t)|OB|ψ(t)〉 − 〈ψ0|OB|ψ0〉| ≤ Id(4Jt), where d is

the distance in between the site A and B, c and v are the velocity constant, and Id is the modified

Bessel function of the first kind [59]. In our simulation, the particle number is conserved, and I

consider the observable as the occupation number operator OA = n̂j and local perturbation as

OB =
󰁔

j∈B σ̂x
j |ψ0〉.

I now show the propagation of density distribution and non-local two-body correlations after

local excitations. One boson is first excited at the centre by |ψ0〉 = b̂†8 |0〉, where |0〉 is the vacuum.

The density spreading of the boson under the interacting Hamiltonian with interaction strength

J = 0.5 and J ′ = 0.8J is shown. In Figure 8.2(a1), the evolution of density n̂j = 〈b̂†j b̂j〉 indicates
a light-cone-like propagation. The propagation is well captured by the nearest-neighbour Lieb-

Robinson bound (dashed line), as shown in Figure 8.2(a3). Next, I study the distribution of

correlations after the single-particle excitation. I consider the averaged non-local correlations as

C̄d(t) =
1

N − d

N−d󰁛

j=1

Cj,j+d(t) (8.6)

with the two-body correlation function Cij(t) = 〈σz
i σ

z
j 〉 − 〈σz

i 〉 〈σz
j 〉. We see the correlation

grows nonlocally under evolution, and also exhibits a clear light cone propagation, as shown in

Figure 8.2(a4). The exact dynamics are shown in Figure 8.2(a2, a5) for comparison.

Next, I show the strong correlation effects with two bosons excitations. The two adjacent

bosons display spatial bunching effects in the non-interacting case while it gradually trans-

forms to spatial anti-bunching in the large U case, which is similar to non-interacting spinless
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fermions [228]. The fermionisation phenomenon of the 1D translationally invariant bosons in

the large U limit was experimentally demonstrated in Ref. [226]. Here, I consider the correlated

Hamiltonian in Eq. (8.3) with reduced interaction strength J ′ = 0.5J on the boundary. At t = 0,

two adjacent indistinguishable particles are excited at the centre |ψ0〉 = b̂†8b̂
†
9 |0〉. I show the

density spreading in Figure 8.2(b1,b3), which exhibits similar propagation as the single particle

excitation case. The dynamics of two particle excitation can be sensitive to the particle statistics

due to interference. As proposed in Ref. [228], the fermionisation or bosonisation of the particle

statistics can be distinguished by measuring the two-body density-density correlators

ρ̂ij = 〈b̂†i b̂
†
j b̂ib̂j〉 (8.7)

In Figure 8.2(c), I show the time evolution of the density operator n̂j and density-density corre-

lators of two bosons placed at the adjacent centre. The long-range anti-correlations appearing in

the off-diagonal pattern reveal the fermionisation of strongly correlated bosons with reduced in-

teraction strength. We can also see the interference pattern in Figure 8.2(c) during the evolution

as an indication of interactions between the bosons.

8.1.2 Interacting fermions

In this section, I consider one-dimensional interacting fermions with spin degrees of freedom,

which is described by the Fermi-Hubbard Hamiltonian as

H = −J
󰁛

j,σ

󰀓
ĉ†j,σ ĉj+1,σ + h.c.

󰀔
+ U

󰁛

j

n̂j,↑n̂j,↓ +
󰁛

j,σ

hj,σn̂j,σ (8.8)

where ĉj,σ (ĉ†j,σ) is the fermionic annihilation (creation) operators on the jth site with the spin

state σ ∈ {↑, ↓}, and n̂j = ĉ†j ĉj is the particle density operator. One-dimensional interacting

fermions can be well captured by the Luttinger liquid theory, which indicates that the spin

and charge of the electrons disintegrate into two separate collective excitations, spinon (holon)

excitations with only spin (charge) degrees of freedom. To understand the separation of spin and

charge excitations in a 1D fermionic system, I briefly review the theory of bosonisation [204] for

the convenience of readers in the quantum information science community.

The Fermi surface of interacting electrons in 1D only has two points, and therefore it could

be reduced to the effective Hamiltonian describing the excitation from one point to the other.

The effective Hamiltonian ignoring spins can be expressed as H = H0 + Vee where H0 =
󰁓

ζ=±1

󰁓
q vFqĉ

†
ζq ĉζq and Vee = 1

2L

󰁓
kk′q Vee(q)ĉ

†
k−q ĉ

†
k′+q ĉk′ ĉk, which describes the allowed scat-

tering near the Fermi surface. Here, ζ = ±1 represents the left or the right side of the Fermi

surface, and vF is the Fermi velocity. For one-dimensional electrons, density modulation is the

elementary excitation, and thus it is natural to introduce the bosonic operator,

b̂†ζq =

󰁵
2π

Lq

󰁛

k

ĉ†ζ,k+q ĉζ,k, (8.9)
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in order to map the interacting fermions to the free bosons, where L is a normalisation constant,

which is the length of the system. The creation and annihilation operations of bosons satisfy the

commutation relation as 󰁫
b̂ζq, b̂

†
ζ′q′

󰁬
= δζζ′δqq′ . (8.10)

Therefore, the full interacting Hamiltonian can be mapped to a non-interacting Hamiltonian

in terms of the bosonic operators as

H =
󰁛

q>0,σ,σ′ζ=±1

󰁫
vF qδσσ′ b̂†ζqσ b̂ζqσ +

qg2
4π

󰀓
b̂†ζqσ b̂

†
−ζqσ′ + b̂ζqσ b̂−ζqσ′

󰀔
+

qg4
2π

b̂†ζqσ b̂ζqσ′

󰁬
, (8.11)

where g2 and g4 measure the strength of the interaction in the vicinity of the Fermi points as

conventionally used in the literature, and σ denotes the spin degrees of freedom. We can write the

above Hamiltonian with the bosonic operators of charges and spins b̂†ζqc =
1√
2

󰀓
b̂†ζq↑ + b̂†ζq↓

󰀔
and

b̂†ζqs = 1√
2

󰀓
b̂†ζq↑ − b̂†ζq↓

󰀔
with c (s) denoting charge (spin). Since the Hamiltonian is quadratic,

we can diagonalise the Hamiltonian by a Bogoliubov transformation,

H =
󰁛

q>0,ζ=±1

󰀗
vc

󰀕
d̂†ζqcd̂ζqc +

1

2

󰀖
+ vsd̂

†
ζqsd̂ζqs

󰀘
. (8.12)

which is represented in a new basis of bosons d̂ and d̂† with the velocities vc = q
󰁴󰀃

vF + g4
2π

󰀄2 −
󰀃 g2
2π

󰀄2

and vs = qvF . This clearly shows that the spin and charge densities have a different velocity

near the Fermi surface, as predicted by the theory of Luttinger liquids. This observation has

been numerically and experimentally investigated [225, 229, 230], and Arute et al. reported a

simulation of this model using a programmable superconducting quantum processor with high

gate accuracy [230].

To simulate the dynamics of interacting fermions carrying spins on a quantum computer, one

can use the Jordan-Wigner transformation to map the fermionic operators ĉj on each site to the

qubit Pauli operators as

ĉj 󰀁→
1

2

󰀓
σ̂x
j + iσ̂y

j

󰀔 j−1󰁒

i=1

σ̂z
i , (8.13)

with Pauli operators σ̂α
j , α = (x, y, z) acting on the jth site, as introduced in Section 2.1. I

consider an 8-site interacting 1D Fermi-Hubbard model, which requires N = 16 qubits to encode

the spin state (spin up and spin down) at each site. The qubit layout is shown in Figure 8.1(b).

According to the topology of the interactions, we have two partitioning strategies, by regarding

either the nearest hopping or on-site Coulomb interactions as the V int. Therefore, depending on

the relative strength of t and U , we can cut the full interacting systems along either transverse

or longitudinal directions, which are shown in Figure 8.1(b1) and (b2), respectively. I will then

show how to apply our perturbative quantum simulation method to use 8 + 1 qubits to simulate

the dynamics of the 16 qubit system.

146



The initial state is prepared as the ground state of a non-interacting Hamiltonian. In the non-

interacting limit, the Hamiltonian commutes with the total number operators [H,
󰁓

j n̂j,σ] = 0.

For a one-dimensional chain, one finds that the Hamiltonian in the one-particle sector simply

moves the occupied site to the left or right site, and thus can be expanded on the one-particle

basis as a tridiagonal matrix. The Hamiltonian has the elements Hij = 〈i|H|j〉 with |j〉 = ĉ†j |0〉
and |0〉 representing the vacuum. We can use a unitary transformation U ≡ [u]ij to diagonalise

the Hamiltonian. This process is also known as a basis rotation. The Hamiltonian after a basis

rotation is expressed in a new basis of fermionic operators âj and â†j , which are referred to as

rotated bases. The rotated basis is related to the original basis by the unitary transformation,

â†j =
󰁛

j

uij ĉ
†
j . (8.14)

In the two-particle sector, there are
󰀃
N
2

󰀄
basis states, and we can similarly diagonalise the matrix

of Hamiltonian to obtain the eigenstates and eigenenergies. For the system with a general

occupation number Nf (relatively small Nf ≤ N), we first identify the basis states of Nf particle

number, based on which we have the matrix representation of the Hamiltonian. We can then get

the transformation from the original basis ĉ†j to the rotated basis â†j . Refs. [231,232] showed that

a linear-depth circuit can be used to prepare the ground state of a non-interacting Hamiltonian.

I briefly review the procedure to prepare the initial state using a linear-depth circuit. Denote

the operators in the rotated basis that diagonalise the non-interacting Hamiltonian as â and â†.

We can apply a particle-conserving rotation U of the single particle basis to the rotated basis

as Uĉ†jU
† = â†j . Then we obtain the ground state of the non-interacting Hamiltonian from the

easy-to-prepare state as

|φ〉 = Uĉ†1 · · · ĉ
†
Nf

|0〉 , (8.15)

where |0〉 is the vacuum. The two bases are related by a unitary transformation that transforms

the original operators ĉ (ĉ†) of the interacting Hamiltonian to the new operators â (â†) of non-

interacting Hamiltonian, â†i =
󰁓

j uij ĉ
†
j where u is a N × N matrix. The basis-change unitary

is given by U(u) = exp
󰀓󰁓

ij [log u]ij(ĉ
†
i ĉj − ĉ†j ĉi)

󰀔
which can be implemented by O(N) depth

circuits using Givens rotations in parallel [232]. In the numerical simulation, the hopping strength

is set as J = 0.5, and the on-site interaction U = 0.5J or U = J . The local potential for spin

up is set to be a Gaussian distribution hj,↑ = −λ↑ exp
󰀓
− (j−(L+1)/2)2

2ν2

󰀔
with L = 8, λ↑ = 4 and

ν = 1 while hj,↓ = 0 for spin down, which is the same as in Ref. [230] for comparison. The state

is initialised with quarter filling N↑ = N↑ = 2, in which the charge and spin density are generated

in the middle of the chain at t = 0 in Figure 8.3.

Next, the two-particle system is evolved under the Fermi-Hubbard Hamiltonian with different

strengths of on-site interaction U . The charge and spin densities characterise the collective
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Figure 8.3: Separation of charge and spin density under the one-dimensional Fermi Hubbard
model. The quantum state is initialised as the ground state of the non-interacting Hamiltonian
with local potential hj,σ, as specified in Section 8.1.2. I consider the dynamics with two-particle
excitations, i.e. N↑ = N↑ = 2, which are generated at the middle of the chain at t = 0. (a1) and
(b1). The time evolution of separation speed κ for charge (square and blue) and spin (diamond
and red) with the interaction U = J/2 (a1) and U = J (b1), respectively. Solid lines represent
the ideal results by exact diagonalisation for comparison. The figure inset shows the errors of
κ compared with the exact results over time. (a2) and (b2). The difference of charge and spin
densities ρcj(t) − ρsj(t) − const at each site with the interaction U = J/2 (a2) and U = J (b2,
respectively. The separation are offset by a constant as 0 at t = 0, i.e. const = ρcj(0)− ρsj(0). (c)
and (d) show the time evolution of density spreading of both charge and spin at different T for
U = J to T = 2.0. The sampling number is set as 5× 105.

excitations, which are defined as the sum and difference of the spin-up and -down particle densities

over all sites, respectively,

ρηj = 〈n̂j,↑〉± 〈n̂j,↓〉 (8.16)

where η = c or s represents charge or spin degrees of freedom. I show the density spreading

of both charge and spin in Figure 8.3(c) and (d) at different t. The difference of charge and

spin density is plotted in Figure 8.3(a2) and (a4) for U = J/2 and U = J , respectively. Here,

the separation of charge density and spin density is offset as 0 at t = 0 to make the difference

comparable.

The excitations spreading from the middle can be quantitatively distinguished by introducing

the separation speed

κ =

L󰁛

j=1

|j − (L+ 1)/2| ρηj . (8.17)
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Under time evolution, we observe a clear separation of spin density and charge density as shown

in Figure 8.3(a1) and (b1). As U increases to U = J , the separation of spin density and charge

density becomes much faster. The error for the separation speed κη (η = c/s) are shown in the

figure inset. In the large interaction regime, the initial state is a mixture of excited states, and

therefore the effective physics are unable to be well captured by the Luttinger liquid theory [204].

While this effective model for Luttinger liquids is only able to capture the low-energy exci-

tations in a weakly coupled regime, our method can simulate the dynamics in the highly excited

regime with a medium or large interaction. The Hamiltonians for these 1D interacting fermions

have two parts: (1) kinetic terms due to the nearest-neighbour hopping t, and (2) on-site spin

interaction U . According to the topology of interactions, we have two strategies, by regarding

either on-site spin interactions (Figure 8.1(b1)) or the nearest hopping (Figure 8.1(b2)) as V int.

Therefore, depending on the relative strength of t and U , we can cut the full interacting systems

along either transverse (Figure 8.1(b1)) or longitudinal (Figure 8.1(b2)) directions. This enables

the simulation in both regimes. To prepare the general entangled state, we can decompose it

into a linear combination of local states, which might introduce an additional sampling cost for

the state preparation.

It is worth noting that this strategy enables quantum simulation for the two opposite regimes,

which aligns with the view from the perturbation theory which applies to the weakly-interacting

and strongly-interacting limit. Our method could be used to simulate the dynamics of interacting

phenomena with quasi-1D or 2D geometry. In the case of the Fermi-Hubbard model considered

above, the explicit decomposition strategy in PQS for both geometric layout of qubits are optimal

over other perturbative expansions in terms of the resource cost for the simulation of non-local

interactions, as proven by Theorem 5.

8.1.3 Quantum spin systems

8.1.3.1 Dynamical quantum phase transitions

Quantum spin models have been investigated to capture some typical emergent quantum phe-

nomena in condensed matter, such as phase transitions and collective transitions. While many

theoretical and numerical methods have been proposed to solve the effective spin models in exact

or approximate solutions, a long-range spin chain with general interaction strength could be hard

to solve classically. In this section, I consider a long-range spin chain, which is described by

H =
󰁛

ij

Jij σ̂
z
i σ̂

z
j + h

󰁛

j

σ̂x
j (8.18)

with the interactions obeying the power law decay rule Jij = J0|i− j|−α. In this section, I study

the dynamical quantum phase transitions (DQPT) [52,233] in a long-range spin chain.

The partitioning strategy of a fully connected spin chain is shown in Figure 8.1(c). Dynamical

properties of such a spin chain will be characterised by the local order parameters and the

149



Loschmidt amplitude. The state is first initialised as the eigenstate |1〉⊗n of the non-interacting

Hamiltonian with h = 0. The system is quenched by suddenly adding the transverse field h along

x direction. In the limit of α = 0, the Hamiltonian in Eq. (8.18) reduces to the Lipkin-Meshkov-

Glick (LMG) model. The LMG model has an analytical solution, as it can be regarded as a

classical model, in which dynamical behaviour can be predicted by a semiclassical limit. In this

limit, the HamiltonianH preserves the magnitude of the total spin and has the spin flip symmetry,

i.e., [H,S2] = 0 and [H,
󰁔

i σ̂
x
i ] = 0. We can write the Hamiltonian as H = J

N (Σz)2 + hΣx

using collective spin operators Σα =
󰁓

i σ
α
i with α = x, y, z. The spin can be represented in

a mean-field approach as a classical spin vector (Σx,Σy,Σz) = N(cos θ, sin θ sinφ, sin θ cosφ)

that can be determined by the equation of motion. In Ref. [234], the authors considered a spin

Hamiltonian with an external field Bz along the z direction, and showed analytically that the

spatially averaged two-point correlation shows a DQPT when Bz/J0 crosses unity. One can

similarly use this analytical method to analyse the dynamical behaviour of Eq. (8.18) with small

α near to zero.

Refs. [234, 235] experimentally demonstrated a DQPT and various dynamical results for the

long-range spin model with α close to zero on a trapped ion platform [234] and a superconducting

processor [235]. Here, I focus on the weakly coupled regime, i.e. large α, as a complementary

result for comparison. In the numerical simulation, I set J0 = 1, and the decay rate α = 3 in

the Hamiltonian Eq. (8.18). The full system is partitioned into 2 or 3 subsystems with each

subsystem consisting of at most 8 qubits. The explicit decomposition is used to simulate the

large system. Note that the explicit decomposition in this example may not be optimal, as it

involves too many Pauli terms at each site. Other decomposition methods within the framework

of generalised quantum operations could be numerically searched to obtain a minimal resource

cost.

I first show the evolution of order parameters of a 16-site quantum spin chain. Figure 8.4(b1)

and (b2) shows the magnetisation Mz(t) (b1) and Mx(t) (b2). We can find that Mz(t) rapidly

oscillate across 0 when the external field is large, while the magnetisation oscillates slowly in the

low field. The motion of spin can be illustrated in a Bloch sphere in Figure 8.4(a). The order

parameters of Mz(t) and Mx(t) provide an evidence for two phases: the ferromagnetic phase and

the paramagnetic phase.

The dynamical quantum phase transitions could be observed by the Loschmidt amplitude

G(t) =
󰀏󰀏〈ψ0|e−iHt|ψ0〉

󰀏󰀏2 (8.19)

as an indicator to characterise the dynamical echo back to the initial state [52,233,235]. A DQPT

occurs with the non-analytical behaviour of a rate function

γ(t) = −N−1 log (G(t)) (8.20)
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Figure 8.4: Dynamical quantum phase transition of a long-range spin chain with full connectivity
and the decay rate α = 3. The qubit layout and partitioning strategy are shown in Figure 8.1(c).
The system is initialised to the eigenstate of the Hamiltonian with a zero field as |ψ0〉 = |1〉⊗N ,
and then the external field along x axis is suddenly turned on at time t ≥ 0. (a) The numerical
(a1) and ideal (a2) time evolution of the average spin magnetisation shown in the Bloch sphere
for different strengths of the transverse fields hx = 1, 2, 3. (b) Time evolution of the averaged
magnetisation Mz =

1
N

󰁓
j 〈σz

j (t)〉 (b1) and Mx = 1
N

󰁓
j 〈σx

j (t)〉 (b2) for different strengths of the
transverse fields hx = 1, 2, 3, 4. The magnetisation Mz and Mx oscillate rapidly at a large field.
The external field drives the system from the dynamical ferromagnetic phase to the dynamical
paramagnetic phase. (c) The Loschmidt amplitude G(t) =

󰀏󰀏〈ψ0|e−iHt|ψ0〉
󰀏󰀏2, as an indicator to

characterise the dynamical echo back to the initial state for different transverse field strengths hx.
(d) System size dependence of the Loschmidt amplitude. The phase transition appears earlier
with larger system size [234,235]. Solid lines represent the exact results.

in the thermodynamic limit N → ∞, which can be regarded as a dynamic counterpart to a free

energy density up to a normalisation N . In the LMG model, the system undergoes DQPT in the

thermodynamic limit N → ∞. I consider the weakly-coupled regime and present the dynamical

behaviour of Loschmidt amplitude G(t) for different external field h in Figure 8.4(a). We clearly

see that the Loschmidt amplitude rapidly decays to zero when the external field h is above the

critical field. The non-analytical behaviour of the rate function γ(t) for a large external field

h reveals a dynamical phase transition to the paramagnetic phases. The minimal of Loschmidt

amplitude is above zero for small h, which indicates the system persists a ferromagnetic phase

under evolution. Figure 8.4(d) shows the system size dependence of minimal Loschmidt amplitude

for various hx. We can see that the minimal Loschmidt amplitude appears much earlier with an

increasing system size. It is worth noting that the decay rate α of the trapped ions quantum

simulator can be tuned in the region of 0 ≤ α ≤ 3 due to the physical interaction, while the PQS

method could be leveraged to go beyond these limitations.
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8.1.3.2 Propagation of correlations

The elementary excitations usually emerge from interactions, and in some cases they could be

described in a quasiparticle picture. In quantum systems with finite range interactions, the quan-

tum dynamics exhibits a light-cone-like information propagation, and the speed of information

propagation is governed by the interactions of the systems. With nearest-neighbour couplings,

like the results presented in Section 8.1.1, the propagation of information has a finite maximal

velocity vg, the so-called Lieb-Robinson velocity. If the interactions exponentially decay with an

increasing distance, from Eq. (8.5), we know that the change of the expectation of an observable

(OB) under time evolution is exponentially decreased with the distance d, which indicates that

information propagating faster than vg is exponentially suppressed with the distance d. This

light-cone-like information propagation is somewhat analogous to the relativistic theory. The

speed of information propagation for power law decay interactions has been experimentally in-

vestigated in Ref. [59], which is beyond the light-cone picture. Understanding the effective model

to describe quasiparticle excitations and the propagation of information for general interactions

is an interesting direction of investigation. In this section, I show the quasiparticle excitations of

correlated spin clusters with various interaction strengths using our algorithms.

Now, let us consider the out-of-equilibrium dynamics of a one-dimensional interacting spin

system with the Hamiltonian H = H loc + V int with the local Hamiltonian and interactions on

the boundary as

H loc
l =

󰁛

i<j

Jij σ̂
x
l,iσ̂

x
l,j + h

󰁛

j

σ̂z
l,j , V int = J0σ̂

x
1,N σ̂x

2,1. (8.21)

Here, σ̂l,i represents Pauli operators acting on the ith site of lth subsystem, and the interactions

obey the power law decay rule as Jij = J0|i− j|−α. In the regime of a sufficiently large field h ≫
max(|Jij |), the Hamiltonian conserves the total magnetisation along the z direction MZ =

󰁓
i σ̂

z
i .

One can show that it could be reduced to the XX model H =
󰁓

ij Ji<j

󰀓
σ̂+
i σ̂

−
j + h.c.

󰀔
[59]. This

spin model can also be mapped to a model of hard-core bosons, H =
󰁓

i<j Jij(â
†
i âj + h.c.)

which conserves the total particle numbers as well. For the system with continuous translational

symmetry, we can Fourier transform the real-space operator into the operators that are diagonal

in momentum space, written as H =
󰁓

k ωkâ
†
kâ−k where the modes with energies ωk have well-

defined quasi-momentum k. Here, the operator â†k creates an excitation with momentum k in the

momentum space, and it is related to the original operator by â†k =
󰁓

i,k â
†
i . In our simulation, I

consider a spin-cluster system and first excite the system by local perturbation, which creates a

magnon quasiparticle. For the system with nearest-neighbour interactions, the energy spectrum

has a well-known quadratic dispersion ωk ∝ k2 in the low energy excitation regime. For a spin

cluster system, the mode does not have a well-defined momentum, but one can determine the

energy dispersion ωk provided the boundary condition and the interaction Jij .
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Figure 8.5: Simulation results of a correlated spin cluster (Figure 8.1(d)) with interactions on
the boundary and different power law decay interactions α in the subsystems. The systems are
initially perturbed at the 8th site at t = 0, |ψ0〉 = σ̂x

8 |ψ0〉, and suddenly the interactions between
each spin with the interaction strength Jij = J0|i − j|−α are turned on where J0 = 1. (a), (b)
and (c) show α = 0.5, 1, 2, respectively. (a1), (b1) and (c1) show the dynamics of magnon
quasiparticle excitations 〈n̂j〉, related to the local magnetic moment by 〈n̂j〉 = (1 − 〈σ̂z

j 〉)/2.
(a2)-(c2) and (a3)-(c3) show the signal of the magnetisation distribution at 4th-7th sites and
8th-12th sites respectively. The nearest-neighbour Lieb-Robinson bounds (dashed lines) do not
capture all the signals for this propagation. (a4)-(c4) show the averaged two-body correlation
functions Cd from the 8th site. (a5)-(c5) show the errors for magnetisations and the correlation
functions.

Below, I will show the simulation dynamics results of a spin cluster system. The geometry

of such a spin cluster system and the partitioning strategy are shown in Figure 8.1(d). In our

numerical simulation, I consider an intermediate regime where the external field is much larger
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than the maximum interaction strength J0, while being comparable to the total interaction

strength J̃ =
󰁓

i<j Jij . In this case, the total magnetisation is nearly conserved; however, the

field effects cannot be fully ignored. In our numerical simulation, I set J0 = 1, while the external

field is set as h = 2NJ0 with N = 16 being the total sites in the full system. The system

is first initialised as the eigenstate |ψ0〉 = |0〉⊗N of a non-interacting H with Jij = 0. The

system is initially perturbed (at t = 0) at the centre (8th site) of the spin chain, with the state

|ψ0〉 = σ̂x
8 |ψ0〉. Then, the system is suddenly quenched by turning on the interactions between

each spins with the interaction strength Jij . I show the information propagation with different

decay rate α = 0.5, α = 1, and α = 2 in Figure 8.5(a), (b) and (c), respectively. In our numerical

experiments, I consider the magnetic moment of each spin, and set the sampling number to be

2× 105.

The magnetic moment distributions over each site are shown in Figure 8.5(a1)-(c1), and the

distribution of several neighbour sites Q4 to Q7 in (a2)-(c2) with three interaction strengths.

We clearly see that the quasiparticle excitations in the first subsystem propagate much faster as

the interaction strength increases (α decreases). This is similar to the phenomena of a 1D long

range spin chain with the Hamiltonian described by Eq. (8.18), in which the maximum group

velocity is predicted to show a divergent behaviour when the decay rate α approaches to zero,

as has been reported in [59,236]. From Figure 8.5, we can compare the maximum group velocity

within the two clusters. The quasiparticle excitations for small α (strongly coupled) appear to

be much more localised when compared to that of the weakly coupled regime. In addition, the

propagation speed violates the Lieb-Robinson bounds, when considering the nearest-neighbour

interaction max Jij or renormalised interaction
󰁓

ij Jij , which indicates that long-range physics

cannot be well described by light-cone propagation with a finite group velocity. Nevertheless, for

the other subsystem, which was unperturbed at the beginning, we observe a different propagation

under time evolution, as shown in Figure 8.5(a3), (b3) and (c3). This shows an intermediate

behaviour of short- and long-range physics in the spin cluster system, which might be captured

by the model of nearest-neighbour interactions max Jij . In addition, we can also study the

dynamical phase transition from the quasiparticle distribution2.

I next present the two-body correlation functions Cd with the spin at the centre, which is

expressed as

Cd = 〈σ̂z
j σ̂

z
j+d〉 − 〈σ̂z

j 〉 〈σ̂z
j+d〉 (8.22)

with j = 8 at the centre in Figure 8.5(a4), (b4) and (c4), showing a quasiparticle picture explained

above. Refs. [59, 236] discussed the long-range physics and short-range physics in a 1D long

range spin chain with the Hamiltonian described by Eq. (8.18). Discussions on the quasiparticle

2Specifically, the Loschmidt amplitude can be inferred from the dynamics on the 8th site (lines of Q8 in
Figure 8.5), under the assumption of the conservation of quasiparticle numbers
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propagation in a spin cluster could be complementary to that in a 1D long range spin chain (with

the Hamiltonian Eq. (8.18)).

Here, we mainly focus on the regime in which the magnetisation is conserved, but we can

similarly simulate the highly excited regime using the same method. In the highly excited

regime, i.e., h ∼ J0, the quasiparticle picture does not hold, and the collective excitations could

consequently be different. The investigation of the interacting physics of the spin clusters is an

interesting direction.
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Figure 8.6: Numerical simulation of dynamics of 1D 48-site spin chains with nearest-neighbour
couplings. The couplings within each cluster are identical as J = 1 while interactions on the
boundary are randomly generated from [0, J/2]. (a) The partitioning sketch. We group 8 adjacent
qubits within each cluster as a subsystem. (b) The averaged magnetisation 1

N

󰁓
i σ̂

z
i , nearest-

neighbour correlation functions 1
N−1

󰁓
i 〈σ̂z

i σ̂
z
i+1〉 and Loschmidt echo G(t), compared with TEBD

based on the matrix product state representation as a benchmark. (c) shows the errors for the
averaged magnetisation and correlation. (d) and (e) shows the simulated and exact results for
the long-range correlation functions Ci = 〈σ̂z

1σ̂
z
i 〉 from 2th-48th site, respectively.

8.1.4 Multiple subsystems

Finally, I will demonstrate that our method could be extended to simulate systems consisting of

multiple clusters. I consider the out-of-equilibrium dynamics of one-dimensional interacting spin

clusters with the Hamiltonian H = H loc + V int, with the local Hamiltonian and interactions on

the boundary as

H loc
l = Jl

󰁛

i

σ̂x
l,iσ̂

x
l,i+1 + h

󰁛

i

σ̂z
l,i, V int

l = flσ̂
x
l,N σ̂x

l+1,1. (8.23)

Here, σ̂l,i represents Pauli operators acting on the ith site of lth subsystem. The interactions in

each subsystem are identical Jl = J0 = 1, while interactions between subsystems fl are generated
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randomly from [0, 0.5]. The external field is set as h = 1. The geometry of the spin system

and the partitioning strategy are shown in Figure 8.6(a). In the numerical simulation, I consider

a spin cluster model consisting of 6 clusters, and there are 8 spins within each cluster. Again,

8 adjacent qubits in each cluster are grouped as a subsystem, and the explicit decomposition

strategy is used to simulate up to 48 qubits with operations only on 8 + 1 qubits. Note that

that according to Corollary 2, the explicit decomposition strategy for the example of Eq. (8.23)

is optimal.

I show the averaged time-evolved magnetisation Mz =
󰁓

i 〈σ̂z
i 〉 and the nearest-neighbour

correlation function C̄1 = 1
N−1

󰁓
i 〈σ̂z

i σ̂
z
i+1〉 and long-range correlations with the first site C̄2 =

1
N−1

󰁓
i 〈σ̂z

1σ̂
z
i 〉 and the Loschmidt echo G(t) in Figure 8.6(b). To benchmark our algorithms,

I compare our results using the time-evolving block decimation (TEBD) method, which is a

numerical method commonly employed to simulate the dynamics of quantum many-body systems

based on the matrix product states formalism. Figure 8.6(c) shows that the simulation error can

be achieved below 10−2 at an intermediate time scale.

8.2 Experimental Implementation on the IBM quantum devices

Our perturbative quantum simulation algorithm is experimentally implemented on the IBM

quantum cloud. Remarkably, in contrast to direct simulation, PQS could be more robust to

noise attributed to the reduction of quantum sources. In order to verify such an advantage, I

used the IBM quantum cloud hardware to experimentally implement PQS, as discussed below.

8.2.1 Experimental results

Let us consider an 8-qubit one-dimensional Ising Hamiltonians

H =

7󰁛

i=1

σ̂z
i σ̂

z
i+1 + h

8󰁛

j=1

σ̂x
j , (8.24)

with nearest-neighbour interaction and a transverse magnetic field with different strength h.

Starting from an eigenstate of H with h = 0, we evolve the state, |ψ(0)〉 = |0〉⊗8, with h = 0.5

from time T = 0 to 1 and observe the dynamical quantum phase transition. At time t ∈ [0, 1], I

focus on the expectation value of the spin operatorMz =
󰁓8

j=1 σ̂
z
j /8 and the Loschmidt amplitude

G(t) = | 〈ψ(0)|e−iHt|ψ(0)〉 |2, which is equivalent to evaluating the state overlap between |ψ(0)〉
and |ψ(t)〉 = e−iHt |ψ(0)〉.

To get the exact time-evolved state, I consider the Trotterisation with four time-steps. Specif-

ically, we have

|ψ(t)〉 =

󰀳

󰁃
8󰁜

j=1

e−ihδtσ̂x
j

7󰁜

j=1

e−iδtσ̂z
j σ̂

z
j+1

󰀴

󰁄
t/δt

, (8.25)
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Figure 8.7: Implementing perturbative quantum simulation on the IBM quantum cloud. The
DQPT of 8 interacting spins with nearest-neighbour interactions are considered. The initial
state |0〉⊗8 is evolved under the Hamiltonian H =

󰁓
j σ̂

z
j σ̂

z
j+1 + h

󰁓
j σ̂

x
j . (a) Quantum circuit

implementation for 8-qubit simulation based on Trotterisation. (b) An example for the imple-
mentation of PQS to simulate 8-qubit system with operations on 4 + 1-qubits. (c) The circuit
block for single-step evolution. (d) The topological geometry for the spin system and the parti-
tioning strategy. (e1-e4) The magnetisation along the z direction with h = 0.5, 1, 1.5, 2.5. (f1-f4)
The Loschmidt amplitude with h = 0.5, 1, 1.5, 2.5. The comparison of results of exact simulation
(dashed line), PQS (numerics, circle), PQS using IBMQ (5 qubits in (c), upper triangle) and the
direct simulation using IBMQ (8 qubits in (a), lower triangle). The results using measurement
error mitigation are shown, both for PQS (solid square) and direct simulation (solid diamond).
103 samples (8192 counts for each sample) are used.

with t ∈ {0.25, 0.5, 0.75, 1} and δt = 0.25. Each term e−iδtσ̂z
j σ̂

z
j+1 = CNOTj,j+1Rz(2δt, j +

1)CNOTj,j+1 could be realised with a single qubit rotation gate Rz(2δt, j + 1) = e−iδtσ̂z
j+1 sand-

wiched by two controlled-X gates CNOTj,j+1 and each e−ihδtσ̂x
j = Rz(2hδt, j) is a single qubit

gate. As shown in Figure 8.7(c), for each step, all the single qubits gates are implemented in

parallel and the two-qubit gates are realised with depth d = 2. The Trotter error could be

negligible, which is much less than 10−2.

With PQS, we only need to apply operations on 4 + 1 qubits with the partitioning strategy

shown in Figure 8.7(d). Each subsystem will evolve under the corresponding subsystem Hamil-
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tonian, and at some time, a local operation, which is determined by the interaction between

subsystems3, is applied, which we refer to as a decay event. The maximal number of decay

events is truncated to four, and the truncation error is found to be small. When a decay event

happens at time t, say t = 0.1, we further divide the Trotter step from 0 to 0.25 into two steps,

i.e., [0, 0.1] and [0.1, 0.25]. Then we insert a controlled-Z operation, with the control qubit being

the ancilla and the target being the first (last) qubit. As shown in Figure 8.7(b), we design the

circuit in a similar way if we have multiple decay events. While the quantum circuit could be

further optimised with fewer gates, it is nevertheless sufficient in this form to demonstrate the

power of our PQS method.
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Figure 8.8: Implementing perturbative quantum simulation on the IBM quantum cloud with
fewer samples and less optimised quantum circuit. We run 103 samples for PQS and collect
128 counts each samples. The quantum circuit for each time evolution block is different from
Figure 8.7(c), where we apply the two-qubit gates sequentially with depth 7. (a1-a4) The mag-
netisation along the z direction with h = 0.5, 1, 1.5, 2.5. (b1-b4) The Loschmidt amplitude with
h = 0.5, 1, 1.5, 2.5. I compare the results of exact simulation (dashed line), PQS (numerics, cir-
cle), PQS using IBMQ (5 qubits in (c), upper triangle). We also show the results using error
mitigation for measurement both for PQS (solid square).

The direct 8-qubit simulation and our PQS method with 5 qubits were implemented on the

IBM quantum cloud. The processor employed to conduct the direct 8-qubit simulation was

‘ibmq 16 melbourne’, which has 16 qubits with T2 time ranging from 18 ∼ 105µs, CNOT gate

error 3.3×10−2 and read-out error 4.7×10−2. The processor employed to conduct the 5-qubit PQS

method was ‘ibmq santiago’, which has 5 qubits with T2 time ranging from 66.9 ∼ 143µs, CNOT

gate error 7.1 × 10−3 and read-out error 1.7 × 10−2. The circuits were implemented through

Qiskit [237], a python-based software development kit for working with OpenQASM and the

3Specifically, this local operation is Φk in Eq. (6.18).
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IBMQ processors. The IBM cloud admits multiple job submissions, with each job consisting of

a maximal of 72 circuits, where each circuit is fixed and allows 8192 single-shot measurements.

The experimental results are shown in Figure 8.7(e,f). The external field is applied along the

x direction with h = 0.5, 1, 1.5, 2.5. The results of exact simulation (dashed line), PQS (numerics,

circle), PQS using IBMQ (5 qubits in Figure 8.7(b), upper triangle) and the direct simulation

using IBMQ (8 qubits in Figure 8.7(a), lower triangle) are compared. For each data point of

the direct simulation, 16 circuits are run with 8192 × 16 single-shot measurements. For the

PQS method, 1024 trajectories are considered, with each trajectory corresponding to a circuit

measured 8192 times. Even though the number of samples of the PQS method is much larger

than the number of samples for the direction simulation method, the shot noise is substantially

smaller than the error caused by device imperfections. We could also use a smaller number of

samples (128 samples) for each trajectory of the PQS method, and similar results are observed as

shown in Figure 8.8. The simulation results are not identical, as we ran a less optimised circuit

on the IBM quantum processor.

Measurement error mitigation is applied to increase the simulation accuracy. The measure-

ment error mitigation is implemented by running a set of circuits with different computational-

basis input states and computational basis measurements. We can obtain the readout noise

matrix from the measurement results. The measurement read errors can be mitigated by apply-

ing the inverse of the readout noise matrix to the noisy measurement outcomes. I refer to [238]

and [69] for detailed discussion on the theory and implementations, respectively. From our sim-

ulation results, we observe that the PQS method outperforms the direct simulation. This is

because the five-qubit ‘ibmq santiago’ processor is able to carry out more accurate operations

than the ‘ibmq 16 melbourne’ processor. Since our PQS method only requires a small quantum

computer with a relatively low circuit depth on which to run, it could be applied to benchmarking

large-scale quantum devices, which may have more errors than a small-scale one.

8.2.2 Analysis of noise robustness

An explanation as to why PQS is more robust to noise in the simulation of general systems

is pertinent at this point. Suppose we aim to simulate time evolution of an Ising Hamiltonian

with Ln qubits. Conventional approaches require 2Ln− 2 two-qubit gates for each Trotter step,

whereas PQS only need 2n−2 two-qubit gates if L number of n-qubit clusters is being considered.

Suppose the fidelity of each two-qubit gate is 1−ε, then the infidelities of the conventional method

and PQS are 1 − (1 − ε)2Ln−2 and 1 − (1 − ε)2n−2, respectively. In the regime of small ε and

nε and relatively large n, the state infidelity using PQS is approximately nε, which is L times

smaller than Lnε using conventional quantum simulation methods. For example, when L = 2,

the infidelity will be half of that obtained from conventional quantum simulation. Therefore,
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PQS not only allows for the simulation of larger systems, but also effectively increases simulation

accuracy.

8.3 Spectroscopic features

Figure 8.9: Simulation of the Ising model for h/J = 3 on a chain with L = 49 sites. Left.
Evolution of the expectation value of the spin operator 〈σy

i (t)〉. Right. Normalised modulus of
the quench spectral function. The energy band calculated in theory is ploted by a red line.

In this section, I demonstrate how interesting quantum phenomena can be probed by using

the engineered spectroscopy technique developed in Chapter 7. Here, we consider a spectroscopy

protocol with a local perturbation applied to the system, which generates a branch of low-lying

excitations of the system. The quasiparticle spectroscopic features can consequently be probed

by analysing the dynamics of the observables. The protocol is summarised as follows. First,

the ground state of a target Hamiltonian H is prepared. A local perturbation is then applied

to the initial ground state. Finally, the system is evolved under a unitary operator U = e−iHti

with different time lengths ti. The effect of perturbations in different physical systems will be

discussed.

The time evolution e−iHt is simulated using classical methods. For instance, tensor networks

have been widely used in classically simulating the time evolution of quantum systems, as dis-

cussed in Chapter 3. The density matrix renormalisation group (DMRG) is used to initialise the

system into the ground state (before applying quench). Then, the time-dependent variational

principle (TDVP) algorithm, similarly to the variational principle introduced in Section 2.2.3.2,

is applied to compute the time evolution after the local quench. Both of these algorithms are

based on the matrix product states (MPS), which can efficiently represent 1D local gapped sys-

tems. It is also interesting to examine 2D systems, and we can still employ MPS to simulate

two-dimensional arrays at the expense of more computational resources. In general, classical

simulation becomes inefficient when the number of lattice sites L increases to a certain large size,

or the interaction becomes complex. In these instances, quantum computing technique can be

applied to surpass classical limitations and obtain the spectroscopic features of quantum systems.
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Figure 8.10: Simulation of the Ising model for h/J = 3 on a square lattice with Lx = Ly = 11.
Evolution of the expectation value of the spin operator 〈σy

i (t)〉.

(a) (b)

(c) (d)

Figure 8.11: Simulation of the J1 − J2 model on a chain with L = 49 sites. Top: Hamiltonian
parameters are J1 = J2 = J and h/J = 3: (a) Evolution of the expectation value of the
spin operator 〈σy

i (t)〉; (b) Modulus of the spectral function. Bottom: The same plots but for
J2/J1 = −0.5 and h/J1 = 1.1.

First, let us consider a transverse-field Ising (TFI) model with the Hamiltonian

HTFI = −J
󰁛

i

σx
i σ

x
i+1 − h

󰁛

i

σz
i . (8.26)

The quench spectroscopy4 by a local perturbation at the centre of the spin chain is shown in

4Here, the term ’quench spectroscopy’ is adopted from [20]. I refer to Chapter 7 for a more detailed discussion
on different spectroscopic methods.
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Figure 8.3. The quench spectral function (QSF) is the space-time Fourier transform of G(t) in

Eq. (7.9), namely the expectation value of a properly chosen observable under real-time evolution,

as discussed in Chapter 7. The quasiparticle excitations agree well with the theoretical analysis

which is plotted by the red line, as shown in Figure 8.3(b). For all 1D simulations, we set the

bond dimension χ = 15, and the lattice size L = 49. We then consider a 2D lattice of dimension

Lx × Ly with Lx = Ly = 11 to have sufficient spatial resolution. The simulation results for a

2D lattice are shown in Figure 8.10. One needs to increase the bond dimension of MPS for the

simulation of 2D systems, since the 2D state becomes non-local in the MPS representation.

Next, a J1 − J2 model is considered, which has been widely used in describing magnetism.

The Hamiltonian is expressed as

HJ1J2 = −J1
󰁛

i

σz
i σ

z
i+1 − J2

󰁛

i

σz
i σ

z
i+2 − h

󰁛

i

σx
i , (8.27)

with the nearest-neighbour coupling strength J1, the next-nearest-neighbour coupling strength J2,

and the external field h. Figure 8.11 shows the quasiparticle excitations with different interaction

strengths and external fields. Further examples, such as the Bose-Hubbard model and Fermi-

Hubbard model, can be found in a manuscript currently under preparation [96].

Author contributions. This chapter is relevant to a publication [95] and a manuscript

under preparation [96]. J.S. conceived the applications demonstrated and the algorithm design

in this chapter. J.S. carried out the numerical simulation for PQS. J.S. and X.Y. performed

experiments on the IBM quantum cloud with the assistance of H.L.. L. E. carried out the

simulation of spectroscopy with input from J.S..
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Part IV

Towards realistic applications in the
near future
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In this part, I will discuss the quantum resource requirement and challenges of quantum

computing towards realistic applications in the near future.

An interesting question is how far away it is for us to solve a practical problem using the

advanced quantum computing methods. To answer this question, it is essential to address the

resource requirement for such a problem. In Chapter 9, I will first discuss the requirement to

demonstrate quantum advantage in the near future.

In Chapter 10, I will discuss the challenges in the NISQ era. For practical implementation,

error is unavoidable; this includes the device error and statistical error. In order to address these

challenges appearing in the practical implementation, I propose quantum error mitigation and

better quantum state measurement schemes.
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Chapter 9

Resource estimation

Estimating eigenstate properties of a quantum many-body system is a fundamental problem

in quantum physics. In this chapter, I provide an efficient scheme for estimating eigenenergies

and observable expectations on the eigenstates. The method for preparing the eigenstate of

a Hamiltonian H is that we apply a filter operator to the initial state, so as to filter out the

contributions from the other eigenstates. For instance, we can choose a Gaussian operator g =

e−(H−Ej)
2τ2 to prepare the eigenstate |Ej〉 with eigenenergy Ej

1. The filter operator g in general is

a nonunitary operator, and consequently cannot be directly implemented on a quantum computer.

However, g can be expanded as a linear combination of real-time dynamics e−iHti with different

time lengths ti as g =
󰁓

i cie
−iHti , and it can thus be implemented on a quantum computer by

using the random sampling method introduced in Chapter 4.

The circuit complexity for eigenstate property estimation is determined by the maximum time

maxi ti, which is proven to be logarithmic in the inverse precision O(log(1/󰂃)), and it requires at

most one ancillary qubit. A key question is whether we can realise e−iHt in a circuit complexity

O(log(1/󰂃)) without introducing any additional ancillary qubits so that the total complexity will

still be logarithmic in precision. To address this point, I introduce a new Hamiltonian simulation

method by employing the Taylor series methods for the realisation of e−iHt. I present the resource

cost requirements for typical problems, such as lattice models and chemistry problems, at a

quantum gate level (including CNOT gate numbers, T gate numbers, and qubit numbers). Our

scheme is compared with existing advanced methods, including phase estimation, qubitisation,

and LCU. This chapter provides a basis for the application of quantum computing in the NISQ

and FTQC era

This chapter is relevant to a manuscript under preparation in collaboration with Pei Zeng

and Vlatko Vedral [92].

1Here, the initial state is assumed to have a nonvanishing overlap with the eigenstate |Ej〉.
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9.1 Introduction

Estimating properties of the ground state and excited states of a quantum many-body system

is a long-standing problem of fundamental interest in condensed matter physics, quantum chem-

istry, and material science. It poses a challenging for both classical computing and quantum

computing; estimating the ground state energy of a k-local (k ≥ 2) Hamiltonian is indeed a

QMA-complete problem [2]. Nevertheless, quantum computing holds the promise of being able

to tackle this challenge on the condition that certain assumptions are met2. There has been

considerable progress in the development of quantum computing algorithms, such as quantum

phase estimation [29], quantum signal processing [31–34], projection by linear combination of

unitaries (LCU) [29]. While these algorithms are believed to have the potential to provide a

rigorous solution in the long-term, their implementation requires an oracle or a deep circuit,

which imposes challenges to current quantum devices. In the noisy intermediate-scale quantum

computing (NISQ) era and the early fault-tolerant quantum computing (FTQC) era, it is much

more desirable to design resource efficient algorithms. To achieve this goal, the query complexity,

as well as the gate complexity after circuit compilation, must be estimated. This in turn involves

the systematic analysis of the algorithm complexity with the consideration of logarithmic factors

or even constant prefactors.

A few papers have discussed the cost of performing quantum algorithms at gate level for

practical problems, such as quantum chemistry [99,101,239,240], condensed-phase electrons [187,

188], etc. In these works, energy estimation or eigenstate preparation are mainly based on phase

estimation. A typical strategy is to encode the eigenspectra of the Hamiltonian in a unitary

for phase estimation by the evolution e−iHt, which is synthesised by Trotterisation [187, 188],

or a qubitised quantum walk [101, 239] with eigenspectrum proportional to e±i arccos(H/λ) where

λ is a parameter related to the norm of the Hamiltonian. However, due to the cost of phase

estimation, the circuit depth will inevitably scale polynomially in precision, which is far from

optimal computation.

To circumvent this problem, several works consider using a projection method, for instance,

e−Ht, which defines a natural way to prepare the eigenstate. With the development of LCU

and qubitisation, these nonunitary projectors can be directly synthesised [33, 37]. For instance,

Ge et al. proposed filtering the initial state by realising a LCU of cosM (Ht), which achieves

the ground state preparation to a high degree of precision [29]. Lin and Tong proposed using

the block-encoding to realise the projector, and this method achieves a near-optimal asymptotic

scaling for eigenstate preparation [31]. However, the block encoding method requires multi-qubit

control gates, and thus requires quantum devices with a long coherence time. Subsequently, the

quantum eigenvalue transformation of unitaries (QET-U) method was proposed for the task [241],

2The common assumptions include a nonvanishing energy gap, and a nonvanishing overlap of the initial state
and the target state, outlined in 1 and 2, respectively.
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an approach which uses a similar idea of qubitisation, but avoids querying the block-encoding of

the Hamiltonian. However, it relies on the controlled unitary oracle, e−iHt, and the use of Trotter

formulae eliminates the advantage of the scaling in the observable estimation, or eigenenergy

estimation. Indeed, conventional ancilla-free methods such as Trotterisation only achieve a scaling

polynomial in the error, and it is still unknown if one can achieve the Hamiltonian simulation

with scaling of logarithmic in the error without block-encoding of the Hamiltonian.

To address the aforementioned problems, I provide an efficient end-to-end scheme for the

two tasks, with the best asymptotic scaling for the circuit depth with respect to the precision.

The method developed in this chapter is much easier to implement, since it does not require

multi-control gates. The two problems considered here are eigenenergy estimation and observ-

able estimation on the eigenstate. The latter can be further divided into two cases; one with a

priori known eigenenergy and the other with unknown eigenenergy. I proposed using a recently

developed method, which realises a nonunitary operator by randomly sampling real-time evolu-

tions with different time length [93] (see Chapter 4). The circuit complexity for each instance

is O(log(ε−1)). Importantly, I demonstrate that the advantage of logarithmic dependence on

the error is preserved by employing a random paired Taylor-series sampling (RTS) method to

realise the Hamiltonian simulation. It is also worth remarking that by comparison with Lin and

Tong’s method for ground state property estimation [48], our circuit complexity, with respect

to precision, has better scaling in the polylogarithmic factor, due to the reuse of the quantum

measurement results.

Our method is a universal algorithm that can be applied to the study of a broad class of

problems of physical interest, such as condensed matter and quantum chemistry. In practical

applications, apart from scaling with respect to precision and system-dependent parameters (such

as the energy gap and the initial state overlap), another highly relevant question is scaling in

respect to the number of terms L in the Hamiltonian. For quantum chemistry problems, the

second-quantised Hamiltonian, when represented in the Gaussian basis set, has a number of

terms increasing quartically, O(N4), with the system size, although it could be reduced by

considering other basis sets, symmetry, or factorisation [43,99,101,130]. For the quantum signal

processing or LCU method, although the query complexity of quantum signal processing or RTS

method only depends on the strength of the Hamiltonian λ, the gate complexity depends on

the number of terms in the Hamiltonian when the block-encoding operation is compiled into

elementary gates. A major contribution of our work is that we achieve near-optimal system-size

dependence for lattice Hamiltonians. This is achieved by exploiting the commutation relation

of lattice Hamiltonians. For systems with nearest-neighbour interaction, our algorithm has a

scaling of O(n1+o(1)ε−(1+o(1)))3, which is nearly-optimal with respect to the system size n. This

shows a clear advantage over QSP, which has a scaling O(n2 log(1/ε)) [31]. The gate complexity

3There is a small overhead in the power of n, which depends on the order of the paired Taylor series.
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of QSP depends on the number of terms in the Hamiltonian when the block-encoding operation

is compiled into elementary gates. This complexity cannot be decreased by considering the

commutation relation of the Hamiltonian, hence non-opitmal for lattice Hamiltonians.

In addition, to improve the dependence on L, we can choose the zeroth-order RTS method for

Hamiltonian simulation, and the total complexity for eigenstate preparation is O((λt)2) where t

is the time length in real time dynamics. However, in a practical scenario, there is a trade-off

between the L and t dependence. I will show the comparison in different regimes.

With the establishment of the framework, I analyse the resource in detail concerning its actual

overhead and circuit compilation. To meet the requirements of application in the NISQ era and

FTQC era, I analyse the gate count for solving practical problems. For near-term application,

the major bottleneck is the number of two-qubit gates for a noisy quantum computer, while the

major overhead for the error-corrected quantum computer is the T gate count, which requires

more gates to perform error correction. We study the resource requirement for ground-state

energy estimation and observable estimation for representative physical models in condensed

matter and chemistry. I set out a systematic comparison with existing advanced methods for

eigenstate preparation, which include the phase estimation method combining the Hamiltonian

simulation with Trotter formulae (first-order, higher-order, qDRIFT, and randomised version)

or qubitisation method, projection method based on LCU, the QSP method, and the QET-U

method. One remarkable contribution of this chapter is that I demonstrate how to analyse the

resource cost of different methods with respect to the number of CNOT gates, T gates and qubits,

which is achieved by providing a detailed circuit compilation strategy. This chapter provides

a useful toolbox for researchers to compare different methods with various initial conditions.

More importantly, this chapter answers quantum resources requirements for eigenstate property

estimation in realistic applications with both noisy quantum computers and early fault-tolerant

quantum computers.

9.2 Methods

In this section, I discuss the framework of eigenenergy estimation and eigenstate property esti-

mation, as introduced in Section 1.2.1.

To access the physical properties of eigenstates, the first step is to prepare the eigenstate by

applying a projection operation to the initial state that projects out the contributions from the

other eigenstates. While the projector is nonunitary by construction, we can realise it effectively

by using a combination of real time dynamics e−iHti with different real time ti. The maximum

time complexity, maxi ti, which determines the circuit complexity required to achieve an additive

error ε, is proven to be logarithmic in the inverse error O(log(ε−1)). The next step is the

realisation of time evolution, while preserving the logarithmic dependence on the error. As

discussed in Section 2.4, Trotter methods will make the error dependence polynomial in the
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inverse error, and advanced Hamiltonian simulation methods such as qubitisation or LCU will

introduce additional cost on the block encoding and ancillary qubits, which is undesirable in

this scenario. To circumvent these problems, I develop random paired Taylor-series sampling

methods for high-precision Hamiltonian simulation, which is discussed in Section 9.2.1.

9.2.1 Hamiltonian simulation with random Taylor-series sampling

In this section, I consider Hamiltonian simulation by decomposing real-time evolution to a com-

bination of simple realisable unitaries. Let us consider an n-qubit Hamiltonian in the form,

H =

L󰁛

l=1

Hl =

L󰁛

l=1

αlPl (9.1)

where the coefficients {αl}l are all positive as the signs have been absorbed into the corresponding

Pauli matrices. The following characters of the Hamiltonian is defined,

nL := ⌈log2 L⌉

λ :=

L󰁛

l=1

αl

Λ := max
l

αl

wt(H) :=

L󰁛

l=1

wt (Pl)

wtm(H) := max
l

wt (Pl) ,

(9.2)

which are used in this chapter. Here, wt(Pl) indicates the weight (or called support) of the Pauli

operator Pl, i.e., the number of {X,Y, Z} terms in Pl.

Next, I introduce a construction of (µ, ε)-random-sampling linear-combination-of-unitary

(RLCU) formula in Definition 3.

Definition 3. A (µ, ε)-random-sampling linear-combination-of-unitary (RLCU) formula of a

unitary U is defined to be

Ũ = µ
󰁛

i

Pr(i)Ui, (9.3)

such that the spectral norm distance 󰀂U − Ũ󰀂 ≤ ε. Here, ε ≤ 1, µ > 0 is a real number indicating

the normalisation cost, Pr(i) is a probability distribution of i, and {Ui}i is a group of unitaries.

As our method uses random sampling, the state cannot be prepared deterministically. How-

ever, in terms of the expectation of observables, our scheme is similar to other schemes that

can prepare eigenstates deterministically. In order to compare the performance of our methods

and the other deterministic schemes, I introduce Proposition 7, which indicates that once we

have a (µ, ε)-RLCU formula, we can estimate the expectation Tr(UρU †O) with the following

performance guarantee. As such, the performance of our method in observable estimation can
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be estimated by the error in the construction of the RLCU formula. One can thus compare our

method with the other deterministic schemes at the same level.

Proposition 7 (Observable estimation using the RLCU formula). For a target unitary U and

its (µ, ε)-random-sampling formula defined in Definition 3, if we estimate the value 〈O〉U :=

Tr(UρU †O) with an initial state ρ and observable O using the variant of Hadamard test circuit

for N = 2µ4 ln(2/δ)/ε2n times, then the distance between the mean estimator value Ô and the

true value 〈O〉U is bounded by

|Ô − 〈O〉U | ≤ 󰀂O󰀂(3ε+ εn), (9.4)

with success probability 1− δ and 󰀂O󰀂 being the spectral norm of O.

From Proposition 7 we can see that the normalisation factor µ affects the sample complexity,

and the accuracy factor ε introduces an extra bias in the observable estimation. In what follows, I

will discuss different RLCU formulae and compare their performance by the normalisation factor

µ and accuracy ε.

The most natural and direct Hamiltonian simulation method is to apply the Lie-Trotter-

Suzuki (Trotter) formulae, which approximate the real-time evolution operator U(t) by the

product of the evolution of the summands eitHl which are relatively easy to implement. The

Trotter formulae have been discussed in Section 2.4.

The major drawback of Trotter methods is their polynomial gate-number dependence on the

inverse accuracy 1/ε, O(Poly(1/ε)). The polynomial gate complexity with respect to ε is due to

a large remainder of the Trotter formula. This inspires us that we may reduce the complexity by

compensating the Trotter error, as discussed in Section 2.4. Below, I show how to compensate

the Trotter error with a linear-combination-of-unitary (LCU) method.

To motivate the discussion, I first expand U(x) by the Taylor series,

U(x) =

∞󰁛

s=0

(−ixH)s

s!

=

∞󰁛

s=0

xs

s!

󰁛

l1,...,ls

αl1αl2 ...αls(−i)sPl1Pl2 ...Pls ,

=

Γ−1󰁛

j=0

βjVj ,

(9.5)

which is an LCU formula with a finite truncation at the third equation. To realise U(x) coherently

on a quantum circuit, one can first prepare ancillary systems with the dimension Γ and amplitude

{βj}, and then perform oblivious amplitude amplification to make U(x) nearly deterministic [38].

However, this requires many ancillary qubits and a large number of multi-controlled Toffoli gates,
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which is challenging for near-term devices. Alternatively, we can rewrite Eq. (9.5) as follows,

U(x) =

∞󰁛

s=0

(λx)s

s!

󰁛

l1,...,ls

pl1pl2 ...pls(−i)sPl1Pl2 ...Pls

= µ0(x)

∞󰁛

s=0

Poi(s;λx)
󰁛

l1,...,ls

pl1pl2 ...pls(−i)sPl1Pl2 ...Pls

= µ0(x)

∞󰁛

s=0

󰁛

l1,...,ls

Pr(s; l1:s)U
(s)
0 (l1:s),

(9.6)

where µ0(x) = eλx is the normalisation coefficient, and

Poi(s;x) := e−xx
s

s!
, (9.7)

is the Poisson distribution with average x, l1:s stands for {l1, l2, ..., ls}, Pr(s; l1:s) := Poi(s;λx)pl1pl2 ...pls ,

and U
(s)
0 (l1:s) := (−i)sPl1Pl2 ...Pls . Eq. (9.6) is then a µ0(x)-RLCU formula satisfying Definition 3.

If we consider the whole time-evolution U(t) with ν time segments, from Eq. (9.6) we can

also obtain a random-sampling formula

U(t) = U(x)ν = µ0(x)
ν

󰀳

󰁃
∞󰁛

s=0

󰁛

l1,...,ls

Pr(s; l1:s)U
(s)
0 (l1:s)

󰀴

󰁄
ν

, (9.8)

with the normalisation factor µ0,tot = µ0(x)
µ = eλt. Recall that the normalisation factor µ will

determine the sample complexity to learn observable information of the target state σ. When

µ0,tot = eλt, this indicates that the sample cost scales exponentially with respect to the simulation

time t. This is reasonable, otherwise we could efficiently simulate the quantum dynamics on a

classical computer, as the circuit using the LCU formula in Eq. (9.6) is composed of Clifford

gates, which can be simulated classically.

To understand the reason why the direct Taylor-series expansion leads to a divergent normal-

isation formula, one can rewrite Eq. (9.6),

U(x) =

∞󰁛

s=0

(−iλx)s

s!

󰁛

l1,...,ls

pl1pl2 ...plsPl1Pl2 ...Pls

=

∞󰁛

s=0

F
(s)
0 (x),

(9.9)

where F
(s)
0 (x) = (−iλx)s

s!

󰁓
l1,...,ls

pl1pl2 ...plsPl1Pl2 ...Pls collects all the s-order Pauli terms related

to xs. Since the Pauli terms with different order of x are sampled separately, we can individually

estimate the contribution of the terms with different order of x in the overall normalisation factor

of U(x),

µ0(x) = µ(U(x)) =

∞󰁛

s=0

µ(F
(s)
0 (x))

=

∞󰁛

s=0

(λx)s

s!
= eλx.

(9.10)
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Here, µ(·) denotes the normalisation factor of a specific LCU formula satisfying Definition 3.

Eq. (9.9) indicates that the normalisation contributions from Pauli terms with different x

orders are distinct. When λx ≪ 1, the major contribution to the normalisation factor µ0(x) comes

from terms with small s. Based on this observation, a prescription to suppress the normalisation

formula is to eliminate the low-order terms with respect to x in the LCU formula. The overall

normalisation factor for ν time segments is then upper bounded by

µk,tot = µk(x)
ν ≤ (eex

k+1
)ν = e

e tk+1

νk . (9.11)

In this instance, if the segment number is set as ν = O(t
k+1
k ), the normalisation factor will then

become a constant.

In what follows, I mainly discuss two ways to eliminate the low-order x-expansion terms,

inspired by Ref. [242] and [243], which are illustrated in Figure 9.1.

1. Pairing the terms with different expansion orders. The major observation comes from the

following fact: for any Pauli operator P and x ∈ R,

I + ixP =
󰁳

1 + x2 eiθP , (9.12)

where θ = tan−1(x). Then, the normalisation factor is suppressed from (1+x) to
√
1 + x2 ≤

1 + 1
2x

2.

2. Insert Trotter formulae before the Taylor-series expansion. Instead of expanding U(x)

directly, we can implement Trotter formulae first and then expand the remainder of the

Trotter formula Vk(x) defined in Eq. (2.50). If we expand Vk(x) by the order of x,

Vk(x) =

∞󰁛

s=0

F
(s)
k (x), (9.13)

where F
(s)
k (x) collects all the Pauli terms related to xs, then based on the Trotter formula

results in Eq. (2.51), we have

F
(s)
k (x) = 0, s = 1, 2, ..., k. (9.14)

As a result, the low x-order terms are automatically cancelled.

Several different random Taylor-series expansion formulae for real-time evolution U(t) =

e−itH and the corresponding sampling algorithms could be considered. The key idea is to first

split the controlled-U(t) evolution to ν segments, each of which is a controlled-U(x) evolution

with x = t/ν. Each segment is composed of Kth-order Trotter circuits UL
K(x) and UR

K(x) and

controlled random Taylor-series sampling circuit Ṽ
(P )
K (x). Here, K = 0, 1, or 2k (k ∈ N+). The

superscript P indicates the specific Taylor-series sampling method to be used, which could be D
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Table 9.1: Properties of different RLCU formulae for U(x) = e−ixH based on Taylor series
expansion, including direct and paired Taylor-series sampling (TS). ck < 0.3 is a small positive

number defined as ck := 1
2

󰀓
e

2k+1

󰀔2k+1
.

Trotter order Direct TSS µ Paired TSS µ Truncated formula accuracy ε

0th order µ ≤ eλx µ ≤ e
3
2
(λx)2 ε ≤ 2

󰀓
eλx
sc+1

󰀔sc+1

1st Trotter µ ≤ e(2λx)
2

N/A ε ≤ 2
󰀓

2eλx
sc+1

󰀔sc+1

2kth Trotter µ ≤ ee(2λx)
2k+1

µ ≤ e(e+ck)(2λx)
2(2k+1)

ε ≤ 2
󰀓

2eλx
sc+1

󰀔sc+1

(direct sampling) or L (leading-order pairing). The characteristics of these RLCU formulae are

summarised in Table 9.1.

The gate complexity of the overall algorithm can then be estimated. To construct controlled-

U(t), we split it to ν segments. In each segment, we need to implement Kth-order Trotter circuits

and random Taylor-series sampling circuits. The number of gates in the random Taylor-series

sampling circuit is O(sc). Therefore, the gate complexity of the overall algorithm using Kth

Trotter formula (K = 0, 1, 2k) is given by

NK = O(ν(κKL+ sc))

= O
󰀕
ν(κKL+

log(1/ε)

log log(1/ε)
)

󰀖
,

(9.15)

where

κK =

󰀫
K, K = 0, 1

2 · 5K/2−1, K = 2k, k ∈ N+.
(9.16)

Detailed gate complexity of zeroth-order and 2kth-order leading-order-pairing algorithm are

summarised in Proposition 8 and Proposition 9, respectively.

9.2.2 Gate complexity

In this section, I discuss the gate complexity of ground state property estimation using different

algorithms. The time complexity to prepare the ground state up to precision ε using a Gaussian

cooling function (discussed in Chapter 4) is given by

t =
1

∆

󰁶

ln

󰀕
18

ηε

󰀖󰁶

ln

󰀕
9

π2ηε

󰀖
. (9.17)

We can find that the time complexity scales linearly to the energy gap ∆, and logarithmically to

the error ε and the lower bound of the initial state overlap η.

The following question is how to realise the Hamiltonian simulation in which the scaling

advantage is preserved, and it is ancilla free. If we use the pth order Trotter method to realise

e−iHt, the error is 󰀐󰀐󰀐U (p)
HS − e−itH

󰀐󰀐󰀐 ≤ Cpt
p+1ν−p (9.18)
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Figure 9.1: Two ways to suppress the normalisation factor of Taylor-series expansion formula,
discussed in Ref. [242] and [243]. (a) In the Taylor-series expansion formula, the normalisation
factor µ = eλx diverges. For a small time x, the major contribution to µ comes from the low-
order term, especially the first-order term. (b) By pairing the expansion order, I introduce Pauli
rotation gates while suppressing the normalisation factor quadratically from O(x) to O(x2).
(c) By inserting the Trotter formula before we implement the Taylor-series expansion, we can
eliminate the corresponding low-order terms in the expansion.

The requirement for the segment number ν isO(C
1
p
p (t)

1+ 1
p ε

− 1
p ) up to precision ε with an overhead,

which can be found in Lemma 1. Therefore, Trotter formulae are undesirable for the high-

precision simulation. To address this problem, I employ the random Taylor series sampling

method introduced in Section 9.2.1 in this context. The gate complexity of the zeroth-order

leading-order-pairing algorithm is summarised in the following proposition.

Proposition 8 (Gate complexity of the zeroth-order leading-order-pairing algorithm). In the

zeroth-order leading-order pairing algorithm in Algorithm 6, if we set the time segment number

to be

ν ≥ 3

2

(λt)2

lnµ
, (9.19)

and the truncation order to be

sc ≥ max

󰀻
󰀿

󰀽

󰀵

󰀹󰀹󰀹

ln
󰀓
3µ(λt)2

ln(µ)ε

󰀔

W0

󰀓
3λt

2e ln(µ) ln
󰀓
3µ(λt)2

ln(µ)ε

󰀔󰀔 − 1

󰀶

󰀺󰀺󰀺
, 1

󰀼
󰁀

󰀾 , (9.20)

we can realise a (µ, ε)-RLCU formula where µ > 1, 1 > ε > 0 are two constants.

We can find that the zeroth-order leading-order-pairing formula has no dependence on L, while

the gate complexity scales quadratically to t, which is undesirable for long-time simulation. The

RLCU formula for the zeroth-order leading-order-pairing formula is presented in Proposition 21
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in Appendix F. To improve the dependence on t, we can use the 2kth-order leading-order-

pairing algorithm which inserts the 2kth-order Trotter formula to compensate the error. The

gate complexity of the 2kth-order leading-order-pairing algorithm is summarised in the following

proposition.

Proposition 9 (Gate complexity of the 2kth-order leading-order-pairing algorithm). In the

second-order leading-order-pairing algorithm or general 2kth-order leading-order-pairing algo-

rithm, if the time segment number is set to be

ν ≥ max
󰁱
ν
(L)
2k (t), 2λt

󰁲
, (9.21)

and the truncation order to be

sc ≥ max

󰀻
󰀿

󰀽

󰀵

󰀹󰀹󰀹

ln
󰀓
2µ
ε ν

(L)
2k (t)

󰀔

W0

󰀓
1

2eλtν
(L)
2k (t) ln

󰀓
2µ
ε ν

(L)
2k (t)

󰀔󰀔 − 1

󰀶

󰀺󰀺󰀺
, 4k + 1

󰀼
󰁀

󰀾 , (9.22)

we can realise a (µ, ε)-RLCU formula where µ > 1, 1 > ε > 0 are two constants. Here, ν
(L)
2k (t) :=

󰀓
2(e+ck)λt

lnµ

󰀔 1
4k+1

2λt, ck := 1
2

󰀓
e

2k+1

󰀔2k+1
.

We can find that the time dependence is improved from O(λt)2 (zeroth-order leading-order-

pairing) to O(λt)1+
1

4k+1 (2kth-order leading-order-pairing). However, compared to the zeroth-

order pairing, it requires inserting the Trotter formula in each segment, and thus the gate com-

plexity depends on L. The formal proofs of Proposition 8 and Proposition 9 were mainly carried

out by my collaborator Pei Zeng, which involves many technical details. I direct the interested

reader to [92] for more detailed discussion and the proof.

The gate complexities of the algorithms with random direct and paired Taylor-series sam-

pling implementation are summarised in Table 9.2. More detailed discussions can be found in

Section F.4.

Table 9.2: Summary of the random-sampling Trotter-LCU Hamiltonian simulation protocols and
corresponding gate complexities. Here, ˜log(x) := log(x)/ log log(x).

Trotter order Direct Taylor-series expansion Paired Taylor-series expansion

0th-order N/A O((λt)2 ˜log(1/ε))

1st-order O((λt)2(L+ ˜log(1/ε))) N/A

2kth-order O((λt)1+
1
2k (L+ ˜log(1/ε))) O((λt)1+

1
4k+1 (L+ ˜log(1/ε)))

9.2.3 Main results

Now, I summarise the main theoretical results in this chapter. Our results rely on Assumption

1 and 2.
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Theorem 6 (Eigenstate energy estimation). To estimate the ground-state energy E0 with a

precision κ and a success probability 1 − δ using the RLCU scheme, the maximal time in the

Hamiltonian simulation e−iHt is O(κ−1 log(η−1)). The repeated query (sample) complexity is

O(η−2 log(δ−1)). The total circuit complexity is O(η−2κ−1 log(η−1) log(δ−1)). Suppose we di-

vide the time slice into 2k segments and use 2kth-order leading-order-pairing algorithm, the

gate complexity in each sample is O(L(λκ−1)1+
1

4k+1 log(η−1)). The total gate complexity is

O(Lη−2(λκ−1)1+
1

4k+1 log(η−1) log(δ−1)).

Theorem 7 (Observable estimation on the eigenstate with known eigenenergy). To estimate

the observable expectation on the eigenstate 〈u0|Ô|u0〉 with a precision ε and a success prob-

ability 1 − δ using RLCU scheme, the maximal time in the Hamiltonian simulation e−iHt is

O(∆−1 log(η−1ε−1)). The repeated query (sample) complexity is O(ε−2η−2 log(δ−1)). The to-

tal circuit complexity is O(ε−2η−2∆−1 log(η−1ε−1) log(δ−1)). Suppose we divide the time slice

into 2k segments and use 2kth-order leading-order-pairing algorithm, the gate complexity in each

sample is O(L(λ∆−1)1+
1

4k+1 log(η−1ε−1)). The total gate complexity is

O(Lη−2ε−2(λ∆−1)1+
1

4k+1 log(η−1ε−1) log(δ−1)).

Compared to other universal quantum algorithms, the total gate complexity has a worse scal-

ing with respect to the initial state overlap, which is due to the random sampling implementation

in our scheme. A comparison between the time complexity of our scheme and a variety of typical

methods is depicted in Table B.1 and Table B.2.

9.3 Circuit compilation

9.3.1 Stage Setting

In this section, I briefly introduce and estimate the gate cost of the three typical Hamiltonian

simulation algorithms, including Trotter formulae, qubitised quantum walk, and quantum signal

processing (QSP). After that, I summarise the gate cost of our method which combines RLCU

and RTS.

To estimate the gate cost of each algorithm, we synthesise the circuits to CNOT gates, single-

qubit Clifford gates and T gates. The CNOT gate number is more important for a near-term

application with no or limited fault tolerance; while the T-gate number is more critical for a

long-term application on a fully fault-tolerant quantum computer.

In some subroutines of the above algorithms, a direct estimation of the T-gate number is hard

to obtain. In these events, we first synthesise the circuits to CNOT gates, single-qubit Clifford

gates and single-qubit Z-axis rotation gates Rz(θ). Then the T-gate number nT is estimated

using the Rz(θ) gate number nRz. We could consider the optimal ancilla-free gate synthesis

algorithm in Ref. [244], which requires 3 log2(1/ε) +O(log log(1/ε)) T -gates to approximate the
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Rz(θ) gate to a precision ε. Here, the gate synthesis error of each Rz(θ) εCS is set to be a small

value compared to the total error. In practice, we should determine the resource overhead cT

based on the number of Rz gates in the quantum algorithm.

If extra ancillary qubits and entangling Clifford gates are allowed, we can further reduce the

required T gates to

1.15 log2(1/ε) + 9.2, (9.23)

using a repeat-until-success strategy [245]. However, this will introduce extra ancillary qubit

requirements and more CNOT gate cost.

9.3.2 Basis operations

In this section, I discuss the basis operations involved in the circuit compilation. The implemen-

tation is composed of the following operations. In the standard block encoding procedure, the

n-qubit Hamiltonian H is encoded in a (nL + n)-qubit unitary, select(H)

select(H) :=

L󰁛

l=1

|l〉〈l|⊗Hl. (9.24)

If we denote,

|G〉 := PREP |0〉nL =
1√
λ

L󰁛

l=1

√
αl|l〉, (9.25)

then we have

H = λ(〈G|⊗ I) select(H)(|G〉 ⊗ I), (9.26)

which indicates that H is block-encoded into select(H). Here, PREP encodes the amplitude into

the state on the ancillary space, and it is also referred to as the amplitude-encoding unitary or

PREPARE operation in literature.

The reflection unitary R can be expressed as

R := (I − 2|0〉〈0|)⊗ I, (9.27)

where the operation (I − 2|0〉〈0|) is defined on the ancillary space with dimension nL.

9.3.3 Gate cost in the index enumeration circuit

In this section, I follow the circuit construction in Ref. [239] to build the amplitude encoding

operation B(x) and controlled select operation C-select(H). Let us first consider the gate cost

of the following operation,

C−select(X) =

1󰁛

a=0

|a〉〈a|⊗
L󰁛

l=1

|l〉〈l|⊗ (Xl)
a , (9.28)

which is a a major component of both B(x) and C-select(H), where Xl ∈ {I,X} is a single-qubit

Pauli operator. The value of Xl depends on the value of l stored in the classical register. We can
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regard C-select(X) as a simplified version of C-select(H), where H =
󰁓L

l=1Xl is a single-qubit

Hamiltonian where Xl is either I or X, based on the storage in the classical register.

A ’sawtooth’ circuit is constructed to realise the C-select(X) gate, which is called indexed

operation in Sec. III in Ref. [239]. In the fully simplified circuit of C-select(X) in Fig. 7 in

Ref. [239], we need (L− 1) computing AND operations, (L− 1) uncomputing AND operations,

L control-Xl gates, and (L− 1) extra CNOT gates. If we decompose the computing and uncom-

puting AND operations based on Fig. 4 in Ref. [239], and synthesise all the gates to Clifford +T

gates, we will have the following observation.

Proposition 10 (Gate cost in the index enumeration circuit). If we construct the index enu-

meration circuit C-select(X) defined in Eq. (9.28) following the sawtooth way in Ref. [239] and

synthesise all the gates to CNOT gates, single-qubit Clifford gates and T gates, then we can

realise C-select (X) using (6L− 5) CNOT gates, (4L− 4)T gates, and (2L− 2) Hadamard gates.

9.3.4 Gate cost in amplitude encoding, select gates, and reflection gates

At this point the gate cost in amplitude encoding, select gates, and reflection gates can be

estimated. The amplitude-encoding unitary B realises the following transformation,

B|0〉 =
L󰁛

l=1

√
ωl|l〉 |templ〉

where

ωl = αl/λ,

is the normalised amplitude of the Hamiltonian. Following Ref. [239], it is assumed that it is

allowed to introduce temporary storage |templ〉 during the amplitude encoding. This will not

cause problems so long as we finally disentangle |templ〉 during the implementation of B†.

The dominant subroutine of the PREPARE circuit is the SUBPREPARE circuit defined in

Eq. (48) in Ref. [239], which realises the amplitude encoding to different orbitals, ignoring the

spin information first. Let us first ignore the detailed structure of the HamiltonianH with respect

to different spins. Given this, we can now treat the SUBPREPARE circuit as the PREPARE

circuit. The essential idea is to first prepare ancillaries with uniformly distributed coefficients over

indices l and then use a pre-determined binary representation of a probability keepl, to perform

a controlled-swap on the amplitude register l and another predetermined amplitude location altl.

With well-designed values of swap probability keep send swap location altl, we can use the circuit

in Fig. 11 in Ref. [239] to realise the SUBPREPARE circuit.

Suppose we want to realise the amplitude encoding with an accuracy of εAE , that is, to realise

the following transformation,

BεAE |0〉 =
L󰁛

l=1

󰁳
ω̃l|l〉 |templ〉 (9.29)
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where ω̃l is an nAE bit approximation to the true value ωl

|ω̃l − ωl| ≤ εAE , l = 1, . . . , L.

and we require

nAE := ⌈− log2 εAE⌉ .

Due to the relation of the rescaled spectrum by block encoding, we have the relation

εPREP =
ε

λ
. (9.30)

The relation of the amplitude encoding error and PREP error could be derived by considering

the norm of the Hamiltonian. A simple relation is given by

εAE ∼ εPREP

L
. (9.31)

As shown in Fig. 11 in Ref. [239], we need to introduce at least 2nAE+2nL+1 extra ancillary

qubits, with nL := ⌈log2 L⌉. To simplify the gate cost, we assume L is a power of 2. In this case,

the first layer of the circuit in Fig. 11 in Ref. [239] can be realised using Hadamard gates. If L

is not a power of 2, additional quantum resources are required.

The second and the third layer of the circuit requires the QROM circuit in Fig. 10 in Ref. [239],

which is a modified version of the index enumeration circuit C-select(X) defined in Eq. (9.28).

Based on Proposition 10, the second layer of date loading requires 5(L − 1) + L(nL + nAE)

CNOT gates, 4(L − 1) T gates. The third layer is a coherent inequality test, which requires

(nAE − 1) AND and uncomputing-AND operations, and additional 6(nAE − 1) CNOT gates plus

1 Toffoli gate. Thus, it requires 11nAE − 5 CNOT gates and 4nAE + 3 T gates.

The fourth layer is a Fredkin gate, which is a controlled swap gate. This gate can be synthe-

sised into Clifford + T gates using 8nL CNOT gates and 7nLT gates (see Fig. 5 in [246]).

Proposition 11 (Ancillary qubit and gate cost in the second-type amplitude encoding oper-

ation). If the unitary BεAE defined in Eq. (9.29) is synthesised to CNOT gates, single-qubit

Clifford gates and T gates, the ancillary qubits and gate cost of BεAE are listed as follows:

1. 2nAE + 2nL + 1 extra ancillary qubits;

2. nL(L+ 8) + nAE(L+ 11) + 5L− 10 CNOT gates;

3. 4 (L+ nAE) + 7nL + 3 T gates;

Here, nAE := ⌈− log2 εAE⌉ and nL := ⌈log2 L⌉.

Now, let us analyse the gate cost of the C-select(H) gate. A straightforward implementation

of the C-select(H) gate is to replace of Xl gate in C-select(X) defined in Eq. (9.28) to multi-qubit

Pauli gates Pl. The gate cost for the lattice Hamiltonian is shown in Corollary 3.
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Corollary 3 (Gate cost in the C-select(H) operation of the lattice model). If we construct the

controlled-select circuit C-select(H) of the lattice model following the ’sawtooth’ way in Ref. [239]

and synthesise all the gates to CNOT gates, single-qubit Clifford gates and T gates, then the

approximate gate cost of C-select(H) is using 5(L − 1) + wt(H) CNOT gates and (4L − 4) T

gates.

For instance, consider the transverse-field Ising model

H = J
󰁛

i

σz
i σ

z
i+1 + h

󰁛

i

σx
i+1, (9.32)

with a periodic boundary condition. Corollary 3 directly applies here.

Next, I consider the gate cost for fermionic Hamiltonians, which admit a general form in

second quantisation,

H =
󰁛

pq

Tpqa
†
paq +

󰁛

pqrs

Vpqrsa
†
pa

†
qaras (9.33)

with the creation and annihilation operator a† and a. The fermionic Hamiltonian can be mapped

to a qubit form by the Jordan-Wignar transformation. To further improve the gate cost in a

fermionic Hamiltonian, Ref. [239] introduces an accumulator during the Pauli gate query process

(Sec. IIIB and Fig. 8 in Ref. [239]). The accumulator will ’accumulate’ the effect of the Pauli

operators accessed in the previous data queries and consequently save the CNOT gate cost. Using

this improved select operation, we are able to reduce the CNOT cost for each Pauli operator Pl

to a constant independent of the weight of Pl. I will use an optimistic estimate of the CNOT

gate cost for controlled-Pl operations, which is 5(L− 1) + 3L = 8L− 5. Finally, gate cost in the

reflection operation is presented in Proposition 12.

Proposition 12 (Ancillary qubit and gate costs in the reflection operation [247]). If we construct

reflection operation I − 2|0〉〈0| on n qubits following methods in Proposition 4 in [247] and syn-

thesis all the gates to CNOT gates, single-qubit Clifford gates and T gates, then the approximate

ancillary qubit and gate costs are listed as follows:

1.
󰀉
n−3
2

󰀊
ancillary qubits,

2. (6n− 12) CNOT gates,

3. (8n− 17)T gates.

9.3.5 Gate cost for Trotter formulae

The basic setup for the first-order and higher-order Trotter formula has been presented in Sec-

tion 2.4. In the following, the gate cost for Trotter formulae is provided.
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9.3.5.1 Simple Trotter error bound

Lemma 1 (Simple Trotter error bound for the 2kth-order Trotter formula [144]). Let H =
󰁓L

l=1Hl be a Hamiltonian consisting of L summands and t ≥ 0. We denote

a2k(ν) := 2

󰀃
2 · 5k−1LΛt

󰀄2k+1

(2k + 1)!ν2k+1
e2·5

k−1LΛt/ν

b2k(ν) :=
L2k

󰀃
2 · 5k−1Λt

󰀄2k+1

(2k − 1)!ν2k+1
e2·5

k−1LΛt/ν ,

(9.34)

where k ≥ 1, ν is the time segment number. If we set the segment number ν to be

νdet2k = min
󰁱
ν ∈ N :

ν

2
a2k(ν) ≤ ε

󰁲
(9.35)

for the deterministic first-order Trotter formula, or set ν to be

νrandom2k = min
󰁱
ν ∈ N :

ν

2

󰀃
a2k(ν)

2 + 2b2k(ν)
󰀄
≤ ε

󰁲
, (9.36)

for the randomised first-order Trotter formula, then the spectral norm distance of the resulting

simulation channel to the unitary channel of e−iHt is at most ε.

From Eq. (9.35), the time segment can be roughly approximated by

ν2k ≤
󰀃
2 · 5k−1LΛt

󰀄1+ 1
2k

((2k + 1)!)
1
2k ε

1
2k

(9.37)

and a more tight segment number can be calculated by Eq. (9.35).

9.3.6 Overview of ground state property estimation by quantum signal pro-
cessing

In this section, I introduce the key ingredient of the near-optimal ground state preparation

algorithm proposed by [31]. Their method relies on the block encoding of a nonunitary matrix in

the quantum circuit. For ease of explanation, I follow the notation and convention used in [31].

A matrix A ∈ CN×N where N = 2n can be encoded in the upper-left corner of an (nL + n)-

qubit unitary matrix if

󰀂A− α(〈0nL |⊗ I)U(|0nL〉 ⊗ I)󰀂2 ≤ ε. (9.38)

and U is referred to as an (α, nL, ε)-block-encoding of A. In this chapter, I consider the Hamil-

tonian written in a linear combination of unitaries as

H =

L󰁛

l=1

αlHl

In the standard block encoding procedure, the n-qubit Hamiltonian H can be explicitly block-

encoded into UH := PREP† · select(H) · PREP,

H = λ(〈G|⊗ I) select(H)(|G〉 ⊗ I). (9.39)
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To simplify the results, let us denote the number of CNOT gates and T gates required for

C-select operation as SCNOT and ST, and the number of CNOT gates and T gates required for

PREP operation as PCNOT and PT, respectively.

I summarise the state preparation based on QSP below.

1. Obtain the (λ, nL, 0)-block-encoding of a Hermitian matrix H =
󰁓

k Ek |ψk〉 〈ψk| ∈ CN×N ,

N = 2n, Ek ≤ Ek+1. This block encoding is constructed by UH .

2. Construct a (λ + |µ|, nL + 1, 0)-block-encoding of matrix H − µI using of [34, Lemma 29]

for any µ ∈ R.

3. Construct an (1, nL + 2, ε)-block-encoding of

R<µ =
󰁛

k:Ek<µ

|ψk〉 〈ψk|−
󰁛

k:Ek>µ

|ψk〉 〈ψk| .

This is realised by constructing a block encoding of the sign function −S(H−µI
α+|µ| ; δ, ε) for

any δ and ε where S(·, δ, ε) is the sign function of degree d = e
2δ ln(32π

−1/2ε−1). Note that

if we further assume that ∆/2 ≤ mink |µ − Ek |, then let δ = ∆
4λ , all the eigenvalues of

−S(H−µI
λ+|µ| ; δ, ε) are ε-close to either -1 or 1, and thus −S(H−µI

λ+|µ| ; δ, ε) is ε-close, in operator

norm, to the reflector about the direct sum of eigen-subspaces corresponding to eigenvalues

smaller than µ:

4. Using the block encoding of R<µ, we can construct an (1, nL + 3, ε/2) block encoding of

the projection operator P<µ := 1
2(R<µ + I).

5. Obtain the ground state with success probability close to 1 by amplitude amplification.

6. Observable estimation.

Here, I apply the amplitude amplification by using the Reflector R instead of the Projector

P , which introduces the cost from the reflection operation by Proposition 12.

The gate cost using quantum signal processing is shown in Section F.2 in Appendix F.

9.4 Resource estimations

9.4.1 Compilation to standard gates

In this section, I elaborate on compilation of the quantum circuit to standard quantum gates

that are easy to implement. A controlled-Pauli-rotation gate can be realised by 2(wt(H) − 1)

CNOT gates, a controlled single-qubit Pauli rotation gate, and some single-qubit Clifford gates.

Furthermore, we can decompose the controlled single-qubit Pauli rotation gate to two single-

qubit Z-axis rotation gates and two CNOT gates. Therefore, we need (s+2)wt(H) CNOT gates

and 2 single-qubit Pauli rotation gates for each time segment.
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Note that the RLCU algorithm is not a deterministic state preparation that cannot prepare

the target state σ. However, when we focus on the property estimation of the target state, the

estimator has a similar performance in relation to the normal Hamiltonian simulation methods:

the sample complexities of the former algorithms and RCLU algorithm to learn the observable

properties of the state are similar, as long as the norm of the estimator is a constant. This

is guaranteed by Proposition 7. To estimate the gate costs of RLCU algorithm, we set the

normalisation factor µ = 2 to ensure that the sample complexity of the RCLU algorithm is

similar to other quantum simulation algorithms.

When considering a real physical model, such as a chemistry problem, the coefficient of the

Hamiltonian is constructed by calculating an integral and represents a feature of the quantum

system. Due to finite precision, there will be an amplitude encoding error when we perform the

PREP operation. To ensure that the amplitude encoding error is less than a threshold, more

qubits are required to encode the coefficients.

Here, the amplitude encoding error is included in the analysis when aiming at realistic appli-

cation. That is the reason why we require more qubits for the algorithms that involve amplitude

amplification. It is worth noting that in several cases, the absolute value of the coefficients may

not be highly important for capturing the actual physics, and hence the amplitude encoding error

does not have to be taken into account.

9.4.2 Numerical results

As a numeric test, I choose the transverse-field Ising model and the one-dimensional Fermi-

Hubbard model. The quantum circuit is synthesised to CNOT gates, single-qubit Clifford gates

and non-Clifford gate (including single-qubit Z-axis rotation Rz gates and T gates). The re-

quirements for the gate number in the representative algorithms are estimated. Since the central

objective is for application in the early FTQC or NISQ era, I mainly focus on the circuit depth

in a single-run experiment. The amplitude amplification is therefore not considered in the algo-

rithms, which can deterministically prepare the state closer to true ground state yet at the cost

of a deeper circuit.

The algorithms compared in this section can be divided into three classes: phase estimation,

quantum signal processing, and our method based on random linear combination of unitaries

(RLCU) and random paired Taylor series sampling (RTS). The phase estimation method relies on

Hamiltonian simulation, which can be realised by Trotter formulae methods (first-order, second-

order, fourth-order, qDRIFT and the randomised version), the Taylor-series method, and the

qubitisation method. For our method, I consider using the zeroth-order pairing, second-order

pairing, and fourth-order pairing for Hamiltonian simulation. In the following, I first consider

the comparison with Trotter-based methods, which are oracle-free and ancilla-free. We shall find

that the fourth-order random Trotter has the optimal performance out of all the other Trotter
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Figure 9.2: Resource estimation for the ground state property estimation for the 50-site Ising
Hamiltonian, compared to the phase estimation combining Trotterisation. The gate count is
estimated for realising a target precision ε. The energy gap is set as ∆ = 0.01 and the initial
state overlap is set as p0 = 0.5.
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Figure 9.3: Resource estimation for the ground state property estimation for the 50-site Ising
Hamiltonian. (a-d) show the ancillary qubit number, the number of CNOT gates, non-Clifford
(single-qubit Rz rotation) gates, T gates, respectively. The parameter setup is the same as that
in Figure 9.3.

methods in this scenario, which is consistent with the results in [37]. Then, I show a comparison

between our method and more advanced methods, with a particular focus on the qubitisation
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method, which achieves near optimal scaling in the task of ground state property estimation.
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Figure 9.4: Resource estimation (the number of CNOT gates and T gates) for the ground state
property estimation for the 1D Ising Hamiltonian. The gate count is estimated for realising a
fixed precision ε = 10−3. (a-b) shows the number of CNOT gates and T gates with an increasing
system size with a fixed energy gap ∆ = 0.01. (a-b) shows the number of CNOT gates and T
gates with a decreasing energy gap on 50 sites.

I first consider the task of ground state property estimation of a 50-site transverse-field Ising

model. The comparison to Trotter-based methods are presented in Figure 9.2. We can find

that our method shows a clear advantage over the phase estimation combining Trotterisation.

The comparison for resource estimation with more advanced methods is shown in Figure 9.3.

Figure 9.3(a,b,c,d) show the CNOT gate count, T gate count, total number of qubits, and the

non-Clifford Z-axis rotation Rz gate count, respectively. Here, I consider synthesising Rz gates

into T gates using a repeat-until-success strategy in Eq. (9.23). The second-order RTS shows

advantages with respect to the CNOT gate count, while the fourth-order RTS shows advantages

with respect to the T gate count. This aligns with our expectation, since the T gate mainly

comes from the segment number. In the fourth-order pairing, the segment number is less than

the zeroth-order or second-order pairing, while the usage of higher-order Trotter formula results

in more CNOT gates. In the numerical simulation, I set the energy gap ∆ = 0.01 and the lower

bound of the initial state overlap η = 0.5.
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Figure 9.5: Resource estimation (the number of CNOT gates and T gates) for the ground state
property estimation for the 1D Fermi-Hubbard model. (a-b) shows the number of CNOT gates
and T gates with an increasing system size with a fixed energy gap ∆ = 0.01. (a-b) shows the
number of CNOT gates and T gates with a decreasing energy gap with 50 sites.

Next, I study the resource scaling with respect to the system size and energy gap. Fig-

ure 9.4(a,b) show the CNOT gate count and T gate count with an increasing system size.

Figure 9.4(c,d) show the CNOT gate count and T gate count with a decreasing energy gap,

respectively.

The above results clearly show the advantages of our method over the existing methods in

a wide range of problems of physical interest. Results for the one-dimensional Fermi-Hubbard

Hubbard model are shown in Figure 9.5.

9.5 Outlook and discussion

In this chapter, I focus on the tasks of eigenenergy estimation and observable estimation on the

eigenstate using a combination of RLCU and RTS. The paired Taylor-series with leading-order-

rotation method for Hamiltonian simulation is employed such that it preserves the advantage

of logarithmic dependence on the error, without requiring additional ancillary qubits. I further

show a concrete gate count analysis on CNOT gate and T gate concerning the circuit synthesis.

For systems with a certain symmetry, we can directly measure the state overlap without a
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Hadamard test circuit, and thus our method could be ancilla free. This is particularly useful

for implementation on hardware since, in most algorithms, due to the restriction of connectivity,

there could be a large overhead when compiling it into a nearest-neighbour operation.

One can also think of the resource requirement when considering certain topological layout

of the qubits, such as the 2D lattice. The gate complexity could be reduced by fermionic swap

networks or fast fermionic Fourier transform (FFFT) [43,188]. The optimal variant for quantum

chemistry simulation is by using a split-operator formula with a fast fermionic Fourier transform

[187]. We may embed these methods in the simulation of correction operations to avoid the use

of long-range gate.

A more interesting direction is to apply the technique developed in this chapter to realistic

molecules or materials. For instance, we may choose different bases, such as plane wave basis,

to encode the Hamiltonian, which gives the number of terms in the Hamiltonian quadratically

increasing with the system size N , L = O(N2) [43]. This will essentially answer the question of

quantum advantages in realistic applications.

The dependence on sparsity of the Hamiltonian, which appears due to the leading-order

rotation, may be removed by considering a composite simulation strategy. In addition, we may

consider measuring commuting terms simultaneously by basis rotation for observable estimation,

such that the complexity of observable estimation could be further reduced.

Author contributions. This chapter is relevant to a manuscript under preparation [92]. In

this work, P.Z. and J.S. initiated the project. J.S. and P.Z. developed the theoretical framework of

eigenstate preparation. P.Z. developed Hamiltonian simulation by Trotter-LCU with input from

J.S.. J.S. developed the framework of resource estimation and carried out numerical simulation.

J.S. and P.Z. wrote the manuscript with input from V.V. and X.Y..
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Chapter 10

Mitigating quantum process error
and statistical error

In preceding chapters, I mainly discuss the algorithmic error, while the error from device imper-

fections and shot noise from finite measurement samples are neglected. Those errors appearing

in the practical implementation could accumulate and affect the simulation accuracy. As pointed

out in Section 1.4, in this NISQ era, we face severe challenges due to the limitation of quantum

hardware technology. In this chapter, I discuss how to address these challenges in dealing with

the device error due to unwanted interactions with environment and the statistical error when it

comes to the practical implementation with imperfect noisy quantum devices in the NISQ era.

The error mitigation part is relevant to a published work [97], while the quantum state

measurement part is relevant to the theoretical part in published works [87, 98].

10.1 Quantum process error mitigation

10.1.1 Background

With the experimental demonstration of quantum supremacy [11], whether current or near-future

noisy intermediate-scale quantum (NISQ) devices are sufficient for realising quantum advantages

in practical problems becomes one of the most exciting challenges in quantum computing [71].

Since NISQ devices have insufficient qubits to implement fault-tolerance, effective quantum error

mitigation (QEM) schemes are crucial for suppressing errors to guarantee the calculation accuracy

to surpass the classical limit. Among different QEM schemes via different post-processing mech-

anisms [81,82,116,117,149,150,238,248–267], the probabilistic QEM method is one of the most

effective techniques [149,150], which fully inverts noise effect by requiring a full tomography of the

noise process and assuming noise independently appears either before or after each gate in a digi-

tal gate-based quantum computer. While these assumptions are adopted for many QEM schemes,

realistic noise is more complicated. Specifically, since every gate is experimentally realised via

the time evolution of quantum controls [8, 11, 192, 193, 268–273], noise happens along with the

evolution, whose effect inevitably mixes with the gate or process and even scrambles nonlocally.
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For example, as one of the major noises in superconducting qubits, crosstalk of multi-qubit gates

originates from the imperfect time evolution with unwanted interactions [8, 192, 268, 273–275].

Therefore, such inherent dynamics-based and nonlocal noise effects make conventional QEM

schemes less effective for practical NISQ devices. Meanwhile, a more natural and noise-robust

computation model is via analogue quantum simulators [50–57, 57, 58, 234, 276–283], which di-

rectly emulate the target system without even implementing gates. It also remains an important

open challenge to suppress errors for reliable medium- or large-scale analogue quantum simula-

tors [7, 284–286].

In this chapter, I present QEM schemes without assumptions of gate-based circuits or sim-

plified local noise models of each gate. Specifically, I introduce stochastic error mitigation for

a continuous evolution with noise described by imperfections of the engineered Hamiltonian or

super-operators induced from the interaction with the environment [7, 280, 286, 287]. Compared

to existing methods, such as dynamical decoupling, which are generally limited to low frequency

noise and small simulations [288–291], our work introduces a universal way to mitigate realistic

noise under experiment-friendly assumptions. Our work considers continuous evolution of the

system and assumes accurate single-qubit operations, which is applicable to all digital quantum

simulators and various analogue simulators. Our method is compatible with existing QEMs,

and its combination with Richardson extrapolation can be further leveraged to suppress errors

in inaccurate model estimations and recovery operations. I numerically test our scheme for

various Hamiltonians with energy relaxation and dephasing noise and a quantum circuit with

two-qubit crosstalk noise. A resource estimation for near-term devices involving up to 100 qubits

is conducted, which shows the feasibility of our QEM scheme in the NISQ regime.

10.1.2 Framework

In this section, I introduce the background of analogue quantum simulation (AQS) and digital

quantum simulation (DQS) with noisy operations. In a digital gate-based quantum computer,

the effect of noise is usually simplified as a quantum channel appearing either before or after

each gate, whereas realistic noise occurring in the experimental apparatus is more complicated.

Specifically, every gate in digital circuits or every process in analogue simulation is physically

realised via a continuous real time evolution of a Hamiltonian and therefore errors can either

inherently mix with the evolution — making it strongly gate or process dependent, or act on

a multiple number of qubits — leading to highly nonlocal correlated effects (crosstalks). For

instance, dominant errors in superconducting qubits are inherent system dephasing or relaxation,

and coherent errors (or crosstalk) when applying entangling gates. While AQS are believed to

be less prone to noise, this holds true mostly in comparison to DQS, and when considering an

intermediate simulation scale [284], outcomes of AQS could be sensitive to noise (for example,
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see theoretical studies on the sensitivity to errors [285, 286] and noisy simulation result [234] of

AQS).

Since conventional quantum error mitigation methods are restricted to gate-based digital

quantum computers and over-simplified noise models, they fail to work for realistic errors and

general continuous quantum processes. For instance, owing to the restricted set of allowed

operations in analogue quantum simulators, it is challenging to suppress or correct errors of a

continuous process in this context [285] and it remains an open challenge to suppress errors for

reliable medium- or large-scale quantum simulators [284]. Our work addresses this problem by

considering a more general scenario of a continuous process with realistic noise models occurring

in quantum simulators.

In particular, I introduce the model that describes either gate syntheses or continuous pro-

cesses in digital or analogue simulation. We consider the ideal evolution of state ρI(t) with a

target Hamiltonian Hsys as

dρI(t)

dt
= −i[Hsys(t), ρI(t)]. (10.1)

In practice, we map Hsys to a noisy controllable quantum hardware Hsim, whose time evolution

is described by the Lindblad master equation of the noisy state ρN (t) as

dρN (t)

dt
= −i[Hsim(t), ρN (t)] + λLexp

󰀅
ρN (t)

󰀆
. (10.2)

Here, Hsim = Hsys + δH corresponds to coherent errors (such as crosstalk or imperfections of

Hamiltonian) and Lexp[ρ] =
1
2

󰁓
k(2LkρL

†
k − L†

kLkρ − ρL†
kLk) is the noise superoperator with

error strength λ that describes inherent coupling with the environment (such as dephasing and

damping) [7,280]. Instead of assuming a local single-qubit noise channel of each gate in conven-

tional QEM, we consider a local noise model by assuming local Lindblad terms. Note that local

noise operators at instant time t can easily propagate to become global noise after integrating

time, which may cause nonlocal noise effects in reality.

Suppose we are interested in measuring the state at time T with an observable O. The

task of QEM is to recover the noiseless measurement outcome 〈O〉I = Tr[OρI(t)] via noisy

process. In general, it would be difficult to efficiently mitigate arbitrary noise with any noise

strength. Here, it is assumed that the noise operators act weakly, locally and time-independently

on small subsystems. Note that even though the coherent error δH and the Lindblad operators

Lk act locally on the quantum system, the effect of errors propagates to the entire system after

the evolution. Therefore, such global effects of noise cannot be effectively mitigated using the

conventional quasi-probability method, which assumes a simple gate-independent error model

described by single- or two-qubit error channels before or after each gate. We also assume that

accurate individual single-qubit controls are allowed, which holds for digital NISQ devices where
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single-qubit operations can achieve averaged fidelity of 99.9999% [292] whereas the record for two-

qubit fidelity is three orders lower [11, 75, 293–295]. While not all analogue quantum simulators

support individual single-qubit controls, they can indeed be achieved in various platforms with

superconducting qubits [8, 296–299], ion trap systems [9, 234, 300], and Rydberg atoms [301].

Therefore, our framework is compatible with various practical NISQ devices. In the following,

I focus on qubit systems and assume time-independent noise. The discussion can be naturally

generalised to multi-level systems, as well as general time-dependent noise (See Section G.1.1).

10.2 Continuous quantum error mitigation

Quantum gate in digital circuits or joint evolution process in analogue simulation is physi-

cally realised via a continuous real time evolution of a Hamiltonian. This section extends the

QEM method to a more practical scenario, and shows how to mitigate errors for these inherent

dynamics-based and nonlocal noise in practical noisy quantum devices. To motivate the discus-

sion, I first introduce ‘continuous’ QEM as a preliminary scheme, as shown in Figure 10.1(a).

Consider a small time-step δt, the discretised evolution of Eq. (10.1) and Eq. (10.2) can be

represented as

ρα(t+ δt) = Eα(t)ρα(t). (10.3)

Here α = I,N and Eα(t) denotes the ideal (α = I) or noisy (α = N) channel that evolves the

state from t to t + δt within a short time period δt. We can find a recovery operation EQ that

approximately maps the noisy evolution back to the noiseless one as

EI(t) = EQEN (t) +O(δt2). (10.4)

The operation EQ is in general not completely positive, hence cannot be physically realised by

a quantum channel. Nevertheless, similar to probabilistic QEM for discrete gates [149, 150], we

can efficiently decompose EQ as a linear sum of a polynomial number of physical operators {Bj}
that are tensor products of qubit operators,

EQ = c
󰁛

j

αjpjBj , (10.5)

with coefficients c = 1 + O(δt), αj = ±1, and a normalised probability distribution pj . The

decomposition and its optimisation via linear programming is shown in Section G.1.4 and Sec-

tion 2.5.3. Under this decomposition, the whole ideal evolution from 0 to T can be mathematically

decomposed as

n−1󰁜

k=0

EI(kδt) = C
󰁛

󰂓j

α󰂓jp󰂓j

n−1󰁜

k=0

BjkEN (kδt) +O(T δt), (10.6)
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Figure 10.1: (a) Continuous QEM. With discretised time step δt, each recovery operation is
weakly and ‘continuously’ acted after each noisy evolution of time δt. Here different colours
represent different recovery operations. The output state is measured and repeated to obtain Ns

outcomes {Om}, and their average corresponds to the error mitigated outcome. (b) Stochastic
QEM. We can equivalently realise (a) by δt → 0+ and randomly applying a small number nm of

strong recovery operations as in Algorithm 7. The time {tm,k
jp }m to apply recovery operations of

the mth run are predetermined, which can be further pre-engineered into the original evolution
via a noisy time evolution of a modified Hamiltonian.

where n = T/δt, C = cn, α󰂓j =
󰁔n−1

k=0 αjk , p󰂓j =
󰁔n−1

k=0 pjk , and
󰂓j = (j1, . . . jn−1). Denote the

ideally evolved state as ρI(T ) =
󰁔n−1

k=0 EI(kδt)ρ(0) and the noisily evolved and corrected state

as ρQ,󰂓j(T ) =
󰁔n−1

k=0 BjkEN (kδt)ρ(0), we can approximate the ideal state ρI(T ) as a linear sum of

noisy states as

ρI(T ) = C
󰁛

󰂓j

α󰂓jp󰂓jρQ,󰂓j(T ) +O(T δt). (10.7)

When measuring an observable O of the ideal state, the ideal measurement outcome 〈O〉I =

Tr[ρI(T )O] is also approximated as a linear sum of the noisy measurement outcomes 〈O〉Q,󰂓j =

Tr[ρQ,󰂓j(T )O] as

〈O〉I = C
󰁛

󰂓j

α󰂓jp󰂓j 〈O〉Q,󰂓j +O(T δt).
(10.8)

In practice, we can randomly prepare ρQ,󰂓j(T ) with probability p󰂓j , measure the observable O, and

multiply the outcome with the coefficient Cα󰂓j . Then the average measurement outcome 〈O〉Q,󰂓j

of the noisy and corrected states ρQ,󰂓j approximates the noiseless measurement outcome.
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To measure the average outcome to an additive error ε with failure probability δ, we need

Ns ∝ C2 log(δ−1)/ε2 samples according to the Hoeffding inequality. Since the number of samples

needed given access to ρI(T ) is N0 ∝ log(δ−1)/ε2, the error mitigation scheme introduces a

sampling overhead C2, which can be regarded as a resource cost for the stochastic QEM scheme.

The overhead scales as C2(T ) = exp(O(λT )) given noisy strength λ and evolution time T . Here, a

normalisation λ is chosen so that the contribution from Lexp is bounded by a constant. Therefore,

the condition that the scheme works efficiently with a constant resource cost is λT = O(1). By

regarding λ as the error rate, the condition can be intuitively interpreted as that the total noise

rate is a constant, aligning with the result for conventional QEM.

This error mitigation scheme works for general errors, such as correlated stochastic noise

and unwanted interactions between (a small number of) multiple qubits. In Section G.1.1, we

provide more details of the continuous error mitigation, including the decomposition of recovery

operations and the resource cost for this method. In addition, this scheme can be naturally

applied to multi-level systems when we can prepare the basis operations {Bj} for them.

10.3 Stochastic quantum error mitigation

In practice, it could be challenging to ‘continuously’ interchange the noisy evolution and the

recovery operation within a sufficiently small time-step δt. Since EI(t) ≈ EN (t) and the recovery

operation at each time is almost an identity operation

EQ = (1 + q0δt)I +
󰁛

j≥1

qjδtBj

= c

󰀕
p0I +

󰁛

j≥1

αj p̃jδtBj

󰀖
,

(10.9)

with B0 being the identity channel I. The probability to generate the identity operation I and

Bi (i ≥ 1) is p0 = 1−
󰁓

j≥1 p̃jδt = 1−O(δt) and p̃j = pj/δt = O(1), c = 1+(q0+
󰁓

j≥1 |qj |)δt. In
addition, the parity α0 for B0 = I is always unity, and the parity αi corresponding to Bj (i ≥ 1)

is equal to sign(qj).

We can further apply the Monte Carlo method to stochastically realise the continuous recovery

operations, as shown in Figure 10.1(b). Specifically, we initialise α = 1 and randomly generate

q ∈ [0, 1] at time t = 0. Then evolve the state according to the noisy evolution EN until time

tjp by solving p(tjp) = q with p(t) = exp (−Γ(t)) and Γ(t) = t
󰁓

j≥1 p̃j . At time tjp, we generate

another uniformly distributed random number q′ ∈ [0, 1], apply the recovery operation Bj if

q′ ∈ [sj−1, sj ], and update the coefficient as α = αjα. Here sj(t) = (
󰁓j

i=1 p̃i)/(
󰁓Nop

i=1 p̃i), Nop

is the number of basis operations, and the sum omits the identity channel. Then, we randomly

initialise q, and repeat this procedure until time reaches T . On average, we can prove that

the stochastic QEM scheme is equivalent to the ‘continuous’ one (see the author’s paper [97]
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for the proof). In contrast, the stochastic QEM does not assume time discretisation, and only

requires to randomly apply a few recovery operations, scaling linearly to the total noise strength

as O(λT ) (See Section G.1.1). We can insert the recovery operations by ‘pausing’ the original

noisy evolution. Alternatively, since we can determine the time tjp and the recovery operations

before the experiment, they can be pre-engineered into the original evolution. Therefore, we can

effectively implement stochastic QEM via the noisy time evolution of Eq. (10.2) with an adjusted

Hamiltonian.

The stochastic error mitigation scheme is summarised in Algorithm 7 in Appendix G.

At the jump time tjp, we apply the basis operation other than the identity operation. We

can determine the basis operation by generating another uniformly distributed random number

q′ ∈ [0, 1]. If q′ ∈ [sk−1, sk], we set the basis operation to Bk, where sk(t) = (
󰁓k

j=1 p̃j)/(
󰁓Nop

j=1 p̃j)

and Nop is the number of the basis operations.

For time-independent noise, the jump time can be simply determined as tjp = − log(q)/
󰁓

i≥1 p̃i

with q randomly generated from [0, 1], and thus we can generate the sequence of jump time a pri-

ori. Given evolution time T , the average number of recovery operations is proportional to O(λT ).

In the numerics, the average number of recovery operations is about 0.3 times per evolution on

average given a realistic noise model and simulation task.

I will discuss its implementation for both analogue quantum simulation and digital gate-based

quantum simulation in Section 10.4.

10.4 Implementation of the scheme with analogue and digital
quantum simulators

In this section, I discuss the implementation of our scheme with analogue and digital quantum

simulators. To implement stochastic error mitigation with an analogue quantum simulator,

we insert the single-qubit recovery operations at each jump time, which is pre-determined by

Algorithm 7. As the evolution of most quantum simulators is based on external pulses, such

as trapped ions and superconducting qubits, it would be practically feasible to interrupt the

continuous evolution by simply turning off the external pulses and then turning on the single-

qubit recovery pulses. The joint evolution and the single-qubit dynamics can be pre-engineered

as a modified evolution of AQS, as shown in Figure 10.2. In practice, when turning on/off the

joint evolution cannot be realised in a short time, we can alternatively apply single-qubit recovery

pulses with a short duration and a sufficiently strong intensity compared to the parameters of

the AQS Hamiltonian, as shown in Figure 10.2(b) II. This is similar to the banged analogue-

digital quantum computing protocol introduced in Refs. [302, 303], which implements single-

qubit gates without turning off the background Hamiltonian. In this case, when single-qubit

rotations are performed in a time δt that is much smaller than the timescale of the joint evolution,

the additional error per single-qubit rotation introduced by the background evolution of the
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Hamiltonian is on the order of O(δt3). Therefore, errors induced from the error mitigation

procedure could be very small, and they could be further mitigated via the hybrid approach in

the Section 10.5.

…
… … …≡

Original pulse

Modified pulse

Exp[ℋ!&]

Exp[ ℋ + ℒ &]
Joint evolution

(a)

(b)

Error mitigated AQS (DQS)

(I)

(II)

Figure 10.2: (a) Schematic diagram of the error mitigated AQS or DQS with controllable single-
qubit operations. The AQS or DQS is realised by a continuous process under the ideal driving
Hamiltonian. We denote the noisy unitary and stochastic processes by H and L with the super-
operator formalism. Our work considers joint dynamics of all qubits sandwiched with a small
number (O(1)) of pre-engineered single-qubit dynamics to mitigate the errors accumulated in
the evolution, which can also be regarded as a modified evolution H′. (b) Two schemes of the
error-mitigated process or gate with modified pulse sequences. Dashed lines represent the original
pulse that constructs the target process or multi-qubit gates. Provided controllable drive that
could be freely turned on/off, we can synthesise the error mitigated process/gate by modifying
the original pulse sequence as shown in scheme I, which corresponds to (a). In the case of re-
stricted driving operations, we can alternatively apply a strong and fast single-qubit pulse to the
original pulse to mitigate either process errors or gate errors as shown in scheme II. Note that
scheme II could similarly be applied in (a), which introduces a negligible error of O(δt3) when
each single-qubit gate is implemented in δt ≪ T .

On the other hand, the stochastic error mitigation scheme could be naturally implemented on

a digital gate-based quantum computer. Digital gates are experimentally realised via continuous

pulse sequences [8, 11, 192, 193, 268–273], thus we can construct the error mitigated gates by

modifying the original pulse sequence with the pre-determined pulses (recovery operations). A

similar process has been experimentally demonstrated in Ref. [271], where the effect of the new

pulse sequence is to effectively mitigate the unwanted terms in the driving Hamiltonian. Our
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QEM method can be used to eliminate the general coherent and incoherent errors of the gates

to achieve high gate fidelity. Therefore, provided control of pulse sequence, we can engineer the

pulse sequence as shown in Figure 10.2(b), and prepare the error mitigated gates to perform

quantum computing or quantum simulation tasks. If the driving operations are restricted, we

can similarly apply the fast single-qubit pulse to the original pulse to mitigate the errors, where

the additional error induced in this process is on the order of O(δt3), as shown in the bottom of

Figure 10.2(b).

As shown in Figure 10.2, the exact quantum hardware that we need to implement our error

mitigation scheme actually lies in between fully analogue simulation (we can control only all

qubits with a predetermined Hamiltonian) and a fully digital quantum computer (we can apply

any operation on a small number of qubits). The scenario can be regarded as a modified analogue-

digital quantum simulator, where we need only to apply strong local gates along the background

dynamics (no matter whether it is digital or analogue). In contrast to a fully AQS, single-

qubit operations are inserted into real-time dynamics. The joint evolution and the single-qubit

dynamics can be pre-engineered by using Algorithm 7. The readers could regard it as analogue-

digital quantum simulation or a time-dependent Hamiltonian dynamics (although we only require

controllable single-qubit operations instead of arbitrary Hamiltonian simulation). Compared to

a fully DQS, our scheme does not need to apply any two-qubit gate and hence it significantly

avoids crosstalks. It is worth noting that given evolution time T in AQS or pulse sequence of the

target gate in DQS, the average number of recovery operations is linear in λT . In practice, the

average number of recovery operations could be a small number (for instance, less than 1 in our

numerical simulation), and therefore easy to implement in reality. To summarise, our scheme

can be implemented on all digital and most analogue quantum simulators, and analogue-digital

quantum simulators described above, as long as accurate and fast single-qubit operations are

allowed.

10.5 Reduction of model estimation error

For systems with finite-range interactions, local Markovian dynamical process can be recon-

structed by using only local measurements, which can be found in Refs. [304, 305] for details.

Given a prior knowledge of the noise model, the above stochastic QEM schemes can eliminate the

physical errors by applying basis operations at jump time. Nonetheless, the realistic noise Lexp

and the estimated noise Lest may differ due to imprecise estimation of the noise model. Here we

combine the extrapolation QEM method [116, 150] to mitigate model estimation error and the

errors associated with imperfect recovery operations.

I first show how to boost model estimation error, which will be used for its mitigation. Assume
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that the evolution of the quantum system is described by the open-system master equation

d

dt
ρλ = −i[H(t), ρλ] + λLexp [ρλ] . (10.10)

I show in the Section G.2.1 that by evolving the state ρ′λ under the re-scaled Hamiltonian 1
rH

󰀃
t
r

󰀄

for time rt, we can effectively boost physical errors of quantum systems, which can be expressed

as ρ′λ(rt) = ρrλ(t). Here, it is assumed that the noise superoperator L is invariant under rescaling,

and the initial conditions holds ρ′λ(0) = ρrλ(0).

The effective evolution after applying the error mitigation method with Lest is

d

dt
ρ
(Q)
λ (t) = −i[H(t), ρ

(Q)
λ (t)] + λ∆L

󰀅
ρ
(Q)
λ (t)

󰀆
, (10.11)

where ρ
(Q)
λ (t) is the effective density matrix and ∆L = Lexp−Lest. By re-scaling H(t) → 1

rH( tr ),

the evolution for rescaled time rt is

d

dt
ρ
(Q)
rλ (t) = −i[H(t), ρ

(Q)
rλ (t)] + rλ∆L

󰀅
ρ
(Q)
rλ (t)

󰀆
, (10.12)

which can be implemented by rerunning the error-mitigated experiment for a re-scaled time rt

under the re-scaled Hamiltonian.

As the value of r ≥ 1 can be tuned, we choose several values of r and suppress the model

estimation error via Richardson extrapolation. Specifically, with more than two values of r

denoted as {rj} and constants βj =
󰁔

l ∕=j rl(rl − rj)
−1, we have

〈O〉I =

n󰁛

j=0

βj 〈O〉rjλ +O
󰀣
γn (rmaxλT 󰀂∆L󰀂1)

n+1

(n+ 1)!

󰀤
, (10.13)

where 〈O〉rλ is the measurement outcome after stochastic error mitigation, corresponding to

ρ
(Q)
rλ (T ), γn =

󰁓
j |βj |, rmax = maxj rj , and 󰀂∆L󰀂1 = maxρTr|L(ρ)|. Therefore, in addition to

λT = O(1), the scheme is efficient provided

rmax󰀂∆L󰀂1 = O(1). (10.14)

The derivation of Eq. (10.13) is shown in Section G.2.2.

From Eq. (10.13), the deviation between the ideal measurement outcome and the error-

mitigated one is bounded independently with the to-be-simulated Hamiltonian. The bound only

relies on the noise model, the evolution time, the number of samples, and the parameters used

in extrapolation. Moreover, since imperfections of the basis operations Bi lead to deviation of

Lest, which can be regarded as another type of model estimation error, they can be corrected via

the extrapolation procedure. Note that noise could have fluctuations or drift in the experimental

apparatus, which in practice could be challenging to obtain the precise noise model. Our hybrid

QEM incorporating extrapolation is therefore practically useful, as this method alleviates the

requirement of precise estimation of the noise model and can be robust to the error of recovery

operations. Analysis of error mitigation for the model estimation is shown in Section G.2.
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10.6 Numerical simulation

As have been shown in the previous section, the variation of the performance of our error mitiga-

tion methods in terms of different Hamiltonians and noise models is theoretically well bounded,

which indicates that the theory does apply for general Hamiltonian simulation with NISQ devices.

In this section, I test the QEM schemes for both analogue quantum simulators and gate-based

digital quantum circuits.

10.6.1 Analogue quantum simulation

I first consider a 2D anisotropic Heisenberg model

H = J
󰁛

〈ij〉

󰀅
(1 + γ)σ(i)

x σ(j)
x + (1− γ)σ(i)

y σ(j)
y + σ(i)

z σ(j)
z

󰀆
− γh

4󰁛

i=1

σ(i)
y (10.15)

on a 2 × 2 square lattice, where 〈ij〉 represents nearest neighbour pairs. This model has been

extensively used to investigate the quantum magnetism and criticality [306–310]. I then consider

analogue simulation via a noisy superconducting quantum simulator with energy relaxation L1

and dephasing L2 noise [191,280,311,312]. Here the Lindblad operator takes the form of

Lβ [ρ] =
󰁛

j

λβ

󰀃
L
(j)
β ρL

(j)†
β − 1

2
{L(j)†

β L
(j)
β , ρ}

󰀄
(10.16)

for β = 1, 2, L
(j)
1 = σ

(j)
− = |0〉 〈1|, and L

(j)
2 = σ

(j)
z . Such a noise model is also relevant for other

quantum simulators such as trapped ions [9,50–52], NMR [55–57], ultracold atoms [53,54], optical

lattices apparatus [58], etc. The noise can be characterised by measuring energy relaxation time

T1 and dephasing time T2 without full process tomography [191,287,312,313], and more generally

via local measurements [304, 305]. I also consider physical errors for the single-qubit recovery

operations as single-qubit inhomogeneous Pauli error, Einh = (1−px−py−pz)I+pxX+pyY+pzZ
with I,X ,Y,Z being the Pauli channel and pα being the error probability. In our simulation, we

set J = h = 2π × 4 MHz, γ = 0.25, and the noise strength λ1 = λ2 = 0.04 MHz [191, 192, 287].

We set the estimated physical errors as px = py = 0.25% and pz = 0.5%, which can be achieved

with current superconducting simulators [8, 49], and consider the real noise strength to be 10%

greater than the estimated one, i.e., λexp = 1.1λest. The initial state is set as |+〉⊗4 with

|+〉 = (|0〉+ |1〉)/
√
2. We evolve it to time T = 16π/J , and measure the expectation value of the

normalised nearest-neighbour correlation function
󰁓

〈ij〉 σ
(i)
x σ

(j)
x /4 with 106 samples.

The numerical result without model estimation error is shown in Figure 10.3 (a)(b)(c). Specif-

ically, we compare the time evolution of the expectation value of the correlation operator in

Figure 10.3 (a)(b) and the fidelity F (ρI , ρeff) = Tr

󰁴
ρ
1/2
eff ρIρ

1/2
eff of the effective density matrix ρeff

and the ideal one ρI in Figure 10.3 (c). We can see that Richardson extrapolation and stochastic
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Figure 10.3: Numerical test of the QEM schemes without ((a)(b)(c)) and with 10% model esti-
mation error λexp = 1.1λest ((d)(e)(f)(g)). Consider the dynamics of 2D anisotropic Heisenberg
Hamiltonian with energy relaxation and dephasing noise. (a)−(f) consider a four-qubit Hamilto-
nian with finite (106) number of samples. (a) and (d) compare the time evolved nearest-neighbour

correlation function
󰁓

〈ij〉 σ
(i)
x σ

(j)
x /4. (b) and (e) show the error between the exact value and the

error-mitigated value. (c) and (f) show the fidelity of the effective density matrix ραeff and the
ideal one ρI under different error mitigation scheme α. (g) considers an eight-qubit Hamiltonian
with an infinite number of samples. The hybrid error mitigation scheme suppresses the error up
to about four orders of magnitude even with 10% model estimation error.

QEM improve the accuracy by one and two orders, respectively. The result with model esti-

mation error is shown in Figure 10.3 (d)(e)(f). Here, we also consider the hybrid method with

both stochastic QEM and linear extrapolation, with optimised r0 = 1 and r1 = 1.8. We can

see that stochastic QEM still outperforms Richardson extrapolation with large evolution time,

and the hybrid method can be further used to improve the simulation accuracy. The simulation

result thus indicates that the hybrid QEM scheme can be robust to the drift of noise [314–316].

The performance of the QEM schemes can be made clearer without considering sampling errors.

Figure 10.3(g) shows simulations of the eight-qubit anisotropic Heisenberg model on 2×4 lattice

under different QEM schemes with infinite samples. The result indicates that both stochastic

and hybrid QEM can effectively eliminate the accumulation of errors during the evolution.

10.6.2 Digital quantum simulation

Finally, I consider an eight-qubit, d-depth parameterised quantum circuit (Figure 10.4(c)) and

show how stochastic QEM can suppress coherent errors in multi-qubit operations. Here, the

controlled-NOT (CNOT) gate in the quantum circuits is generated by cross-resonance (CR)

gates, which are experimentally realised by using microwaves to drive the control qubit (c) at

the frequency of the target qubit (t), resulting in a driving Hamiltonian H ≈ Ω(−σ
(c)
z σ

(t)
x +

γI(c)σ(t)
x ) [192, 193, 271–273]. Here, Ω is the effective qubit-qubit coupling and γ represents the

effect of crosstalk between qubits [271]. We consider inherent environmental noise and recovery
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Figure 10.4: Stochastic QEM for eight-qubit superconducting quantum circuits with environ-
mental and crosstalk noise. (a) considers a d-depth parameterised quantum circuits with single-
qubit rotations Rα (α ∈ {X,Y, Z} and CNOT gates. The rotation angles are randomly generated

from [0, 2π]. (b) shows the realisation of the CNOT gate via the CR gate UCR = exp(iπσ
(c)
z σ

(t)
x /4)

and single-qubit gates R
π/2
z and R

π/2
x up to a global phase eiπ/4. (c) shows the fidelity dependence

of circuit depth d with/without QEM.

operation error as in the above analogue simulator, and additional coherent crosstalk errors

γ = 1%. We set Ω = 2π MHz, the evolution time T = π/4Ω, and run 105 samples. We

mitigate the noisy two-qubit pulse sequence by inserting basis operations, and shows the fidelity

dependence of circuit depth d with/without QEM in Figure 10.4(c). The result clearly shows

that stochastic QEM improves the computing accuracy by two orders.

10.7 Resource cost estimation

In this section, I estimate the resource cost for stochastic error mitigation with NISQ devices.

Given a precise noise model, the stochastic error mitigation method in principle enables exact

recovery of the ideal evolution. However, to achieve the same accuracy of the measurement on

the ideal evolution, we need C2 times more samples or experiment runs with the error-mitigated

noisy evolution. The overhead C2 is likely to be prohibitively large due to large noise on a NISQ

device. Nevertheless, I show that the overhead can be reasonably small (less than 100) when
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the total error (defined below) is less than 1. In particular, we consider a noisy superconducting

simulator with up to N = 100 qubits, which suffers from single-qubit relaxation and dephasing

noise with equal noise strength λ1 = λ2. While the noise strength is defined as the noise rate at

instant time, we define the total noise strength

Λ = NT (λ1 + λ2) (10.17)

as the noise strength of the whole N -qubit system within time T . The dependence of the overhead

C2 on the total noise strength Λ and number of qubits is shown in Figure 10.5(a). For a practical

case with T = 1 µs, λ1 + λ2 = 0.01 MHz, N = 100, the cost C2(Λ = 1) = 30 and I further show

the number of measurements needed to achieve a given simulation accuracy in Figure 10.5(b).

Note that the overhead C2 is independent of the Hamiltonian Hsim, so the results apply for

general NISQ devices (see Section G.1.1).
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Figure 10.5: (a) Cost versus total noise strength Λ = NT (λ1 + λ2). Consider a general N -qubit
Hamiltonian Hsim with single-qubit energy relaxation (λ1) and dephasing noise (λ2 = λ1), and
evolution time T . The inset shows the cost versus a different number of qubits with (λ1+λ2)T =
0.01. (b) Simulation accuracy ε ∝ C/

√
Ns with different number of samples Ns with T = 1 µs,

λ1 + λ2 = 0.01 MHz, N = 100 (red) and N = 50 (blue). We consider a pessimistic estimation of
the overhead, C/

√
Ns, and the error ε can be much smaller in practice.

10.8 Statistical fluctuation in measurements

In the above discussion, I discuss how to mitigate the errors in the quantum simulation process due

to undesired interactions with the environment. Another primary error comes from the statistical

fluctuation due to finite samples. This kind of shot noise could be reduced by exploiting more

advanced measurement schemes. The basic idea is to either exploit observable compatibility,

importance sampling, or additional quantum circuit to more efficiently measure observables. In

this section, I propose a unified framework for quantum state measurement with no increase in

the circuit depth, and show explicit measurement schemes to estimate observables with fewer

measurements.
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10.8.1 A unified framework for quantum state measurement

Suppose that the target observable can be decomposed into the Pauli basis O =
󰁓

l αlOl with

Ol ∈ {I,X, Y, Z}⊗n. Here, the bold format is used to represent the n-qubit Pauli operators Ol

and the subscript l of Ol to represent the lth n-qubit Pauli operators in the decomposition. With-

out loss of generality, denote an n-qubit Pauli operator as Q = ⊗n
i=1Qi with Qi ∈ {I,X, Y, Z}

being the single-qubit Pauli operator that acts on the ith qubit. The expectation value of Q can

be obtained by measurements in any Pauli basis P = ⊗n
i=1Pi whenever Qi = Pi or Qi = I for any

i, which we refer to as P hits Q and denote by Q ⊲P. In this case, Q element-wisely commutes

with P.

Provided the target observable and the measurement scheme, we first determine a measure-

ment basis set {P} and the corresponding probability distribution {K}, and then generate an

estimation of Tr(ρO) by measuring ρ with P selected from the basis set over the distribution

K(P). The estimator for the observable O with measurement P is given by

ô(P) =
󰁛

l

αlf(P,Ol,K)µ(P, supp(Ol)), (10.18)

where µ(P, supp(Ol)) :=
󰁔

i∈supp µ(Pi) with µ(Pi) being the single-shot outcome by measuring

the ith qubit of state ρ with the Pauli basis Pi, and the support of Q defined by supp(Q) :=

{i|Qi ∕= I}. Below, I will show the explicit forms of the probability distribution K(P) and function

f for importance sampling, grouping and classical shadow algorithms, which give an unbiased

estimation

E[ô] = Tr(Oρ). (10.19)

The variance of the estimator in Eq. (10.18) for a single sample could be calculated by the

definition as

Var[ô] = EP

󰁛

l,l′

αlαl′Tr(ρOlOl′)f(P,Ol,K)f(P,Ol′ ,K)− Tr(ρO)2, (10.20)

where the following equality is used,

Eµ(P)µ(P, supp(Ol))µ(P, supp(Ol′)) = Eµ(P)µ(P, supp .(OlOl′)) = Tr(ρOlOl′)

The detailed proof can be found in Refs. [87,200]. In the following, I will discuss the relations of

these representative measurement algorithms within this framework.

10.8.2 Importance sampling

Importance sampling is also referred to as l1 sampling. The measurement {Pl} is chosen to be the

observable {Ol}, and the corresponding probability is determined by the weight of the observable
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as K(Pl) = |αl|/ 󰀂α󰀂1. Here, 󰀂α󰀂1 is the l1 norm of α = (α1, . . . ,αL) as 󰀂α󰀂1 =
󰁓L

l=1 |αl|. The
function f is defined by

fl1(P,Ol,K) = K(P)−1δP,Ol
. (10.21)

From Eq. (10.20), the variance of the estimator obtained using importance sampling could be

calculated by

Var[ô] = 󰀂α󰀂2 − Tr(ρO)2, (10.22)

which is directly related to the l1 norm of the coefficients.

10.8.3 Grouping

The key idea of the grouping measurement strategies is that we first allocate observables Ol to

several non-overlapping sets, which satisfies that any two observables Ol and Ol′ in each set are

compatible with each other, i.e., Ol ⊲ Ol′ or Ol′ ⊲ Ol. Note that when the Pauli observables

are compatible with each other, their expectation values can be simultaneously obtained by

measuring in one basis. While finding the optimal measurement basis sets for the observables is

NP-hard, several heuristic methods for finding a measurement basis have been proposed that run

in a polynomial time [87,198]. Here, I focus on the largest degree first (LDF) grouping method,

whereas other grouping methods can be analysed in a similar way. We can divide O = {Ol} into

several groups Sj such that ∪jSj = O, Sj ∩ Sj′ = ∅, ∀j ∕= j′. For each group Sj , a measurement

Pj is assigned such that we can measure any observable Q in the jth set Sj with measurement

Pj , i.e., Q ⊲Pj , ∀Q ∈ Sj . The probability K(Pj) can be chosen either uniformly or based on the

total weight of the observables in the jth set, i.e. K(Pj) = 󰀂Sj󰀂1 /(
󰁓

j 󰀂Sj󰀂1). The function f

of the grouping method integrated with the importance sampling is chosen by

fgroup(Pj ,Q,K) = K(Pj)
−1δQ∈Sj . (10.23)

From Eq. (10.20), the variance of the estimator obtained using the grouping method could be

calculated by

Var[ô] =
󰁛

j

K(Pj)
−1

󰁛

l,l′:Ol,Ol′∈Sj

αlαl′Tr(ρOlOl′)− Tr(ρO)2. (10.24)

This uses the definition of fgroup, which is nonzero only if Ol ∈ Sj .

10.8.4 Classical shadow

The basic idea of the classical shadow (CS) scheme [199,200] is that we first perform randomised

measurements on each qubit and then post process these classical outcomes to estimate the target

observables. The probability distribution Ki(Pi) that performs Pauli measurement Pi on ith qubit

is independent on each site, and therefore the probability distribution for one measurement P is

a product of the distribution on each site K(P) =
󰁔

iKi(Pi). The uniform CS method consider a
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uniform distribution over the Pauli basis as Ki(Pi) = 1/3, irrespective of the target observables.

In Ref. [200], the authors proposed that the local probability distribution Ki could be optimised

to reduce the number of samples, termed as locally biased classical shadow method. The function

is defined by

fCS(P,Q,K) =
󰁜

i

fi(Pi, Qi,Ki) (10.25)

with fi(Pi, Qi,Ki) = δQi,I2 + Ki(Pi)
−1δQi,Pi . Note that the variance for the CS method can be

bounded by

Var[ô] ≤
󰁛

l,l′

αlαl′fCS (Ol,Ol′ ,K) Tr (ρOlOl′) ≤ 3supp(O)

󰀣
L󰁛

l=1

αl

󰀤2

(10.26)

with supp(O) := maxl supp(Ol). From Eq. (10.26), the variance for the uniform CS method

scales exponentially with the support of the target observable, and the uniform CS method hence

could be inefficient for the estimation of nonlocal observables with large support.

Huang et al. further proposed a derandomised CS algorithm, in which the measurement basis

P is deterministically selected [317]. The derandomisation algorithm first assigns a collection of

Ns completely random n-qubit Pauli measurements, and iteratively identifies the measurement

basis that minimises the conditional expectation value over all remaining random measurement

assignments. As argued in the Ref. [317], the derandomised measurement procedure has no as-

surance to be globally optimal, or close to optimal. Nevertheless, it shows significant performance

for realistic molecular Hamiltonians, ranging from 8 to 16 qubits in the author’s paper [87].

It is worth noting that once the measurement bases are determined, it could be regarded as

a special grouping method. The difference is that the observables are permitted to be assigned

in different groups, as opposed to conventional grouping methods introduced above. We can find

its underlying relations to the grouping method within the measurement framework described

by Eq. (10.18).

10.8.5 Comments on quantum state measurements

Several other relevant works that do not introduce entangling gates for measurements were posted

(see [87, 318, 319]). Hadfield et al. [318] proposed an adaptive Pauli shadow algorithm, and

Hillmich et al. [319] proposed a decision diagrams method to generate an estimation. The author

proposed the overlapped grouping method that exploits the spirit of Pauli grouping and clas-

sical shadows. These measurement schemes improve the performance of energy estimation by

optimising measurement bases and probability distributions. The overlapped grouping method

shows significant measurement cost reductions over the works that are discussed in this chapter,

supported by numerical simulation [87].
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It is worth noting that these methods can be described within the framework introduced in

Section 10.8.1. One can compare the performance of different methods by the variance as

Var[ô] =
󰁛

j,k

αlαl′g(Ol,Ol′)Tr(ρOlOl′)− Tr(ρO)2 (10.27)

where g(Ol,Ol′) =
󰀓󰁓

P:Ol⊲P
K(P)

󰀔−1 󰀓󰁓
P:Ol′⊲P

K(P)
󰀔−1󰁓

P:Ol⊲P∧Ol′⊲P
K(P). Here, we use

the definition in Eq. (10.18), and the denominator in Eq. (10.27) indeed represents the probability

that the observable Ol (Ol′) is effectively measured with the measurement basis P (See Lemma 1

in Ref. [87]). One can check that it reduces the conventional grouping method in Eq. (10.24) if we

restrict that each observable can only be assigned into one group. Moreover, if the measurement

bases are deterministically selected from the probability distribution and then fixed, it has the

same spirit as that in derandomisation. One can similarly compare the performance of these

methods using the experimental data and the corresponding post-processing method. I refer

to [98] for the experimental demonstration of different quantum state measurement strategies.

10.9 Discussion

In this chapter, I first introduce stochastic and hybrid quantum error mitigation schemes to mit-

igate noise in a continuous process. While previous error mitigation methods designed for DQS

regard noise as an error channel before or after the gate, such a description becomes inadequate

with multi-qubit quantum gates, and when the noise is inherently mixed in the realisation of the

quantum gate. By regarding the implementation of each quantum gate as a continuous process,

our error mitigation methods can thus be applied to mitigate errors for realisation of multi-qubit

gates (which generally have large errors). Since the dominant noise in NISQ devices is from im-

plementing multi-qubit operations or inherent noise with finite coherence time, our scheme can

effectively suppress these noise sources, and thus extend the computation capability of analogue

quantum simulators and digital gate-based quantum computers in solving practical problems [8].

Our QEM methods are numerically tested for mitigating errors occurring in analogue simulators

for several Hamiltonian simulations under incoherent errors (energy relaxing and dephasing er-

rors) and a parameterised quantum circuit under both incoherent errors and coherent crosstalk

errors. In addition, the requirements for mitigating errors in general NISQ devices with up to

100 qubits are discussed. The proposed QEM schemes work for all digital and many analogue

quantum simulators with accurate single-qubit controls.

Furthermore, resolving the drift or temporal fluctuations of noise is challenging for conven-

tional QEM methods. Our hybrid scheme incorporating extrapolation can mitigate model esti-

mation error and the error of recovery operations, which alleviates the requirement of precise to-

mography of the error model and precise control of the quantum simulators. Our method is tested

to be robust to the drift of noise. Although the discussion focused on local time-independent
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noise, our scheme can be potentially generalised to general non-local time-dependent noise by

employing the time dependent recovery operation EQ(t).
Efficient quantummeasurement is crucial for many quantum algorithms and quantum process-

ing. To alleviate statistical errors in quantum measurements, I propose efficient quantum state

measurement scheme that significantly reduces the measurement cost and speeds up the quan-

tum computation, especially when we aim to realise quantum advantage for realistic problems.

I start by introducing a unified framework for quantum state measurements. The underlying

mechanism of the advanced measurement strategies, including importance sampling, grouping,

and classical shadows, which are seemingly distinct from each other, is revealed. The numerical

and experimental results in the author’s papers [87, 98] suggest a significant measurement cost

reduction when applying more advanced measurement methods.

Author contributions. The error mitigation part is relevant to a published work [97].

S.E., X.Y., and J.S. initiated the project. S.E., V.V., and X.Y. supervised the project. S.E. and

J.S. conceived the idea of stochastic error mitigation. S.E. conceived the idea of hybrid error

mitigation. J.S. carried out numerical verification of QEM with input from X.Y., S.E., and V.V..

All the authors contributed to the discussion and writing the manuscript.

The state measurement part is relevant to published works [87, 98]. J.S. was responsible

for the theoretical aspects of the work [98]. X.Y. and H.L. supervised the project. X.Y. and

J.S. proposed the experiment. T.Z., X.F., and H.L. performed the experiments. J.S. and T.Z.

performed analysis of the experimental data. J.S. proposed the framework for quantum state

measurements in [87]. J.S. and X.Y. initiated the project. X.Y. supervised the project. B.W.

developed OGM with input from J.S., and carried out numerical simulation with input from

Q.H..
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Chapter 11

Conclusion and outlook

Interesting phenomena usually emerge from nontrivial quantum correlations, which make it chal-

lenging to compute a quantum system and predict its behaviour using classical computing. Quan-

tum computing holds the promise of solving quantum many-body problems and assisting in the

discovery of new and interesting phenomena. The focus of this thesis has been on quantum

many-body problems along with quantum computing and spectroscopy. A unified and useful

framework is established for these topics.

I first give a summary of the contents of this thesis. Part I provided a background introduction

to quantum computing, quantum simulation, and quantum many-body problems, as well as an

overview of the key ideas at the heart of the methods developed in this thesis. The focus

of Part II was on two general classes of quantum many-body problems: static and dynamic

problems. I proposed a series of quantum computing approaches to address these two types of

problems. In Part III, I expanded the scope of these methods to explore interesting quantum

phenomena of many-body systems, such as interacting bosons, fermions, and quantum spin

systems. In addition, I investigated the out-of-equilibrium dynamics and spectroscopic properties

of model quantum systems. In Part IV, I developed a framework for estimating the quantum

resources requirements of quantum algorithms, involving both eigenstate property estimation and

Hamiltonian simulation. This forms a good application test bed for the methods developed in this

thesis. With this framework, I estimated the resources required for typical applications in respect

of both near-term noisy quantum processors and error-corrected quantum computers in the spin

systems, condensed-phase electrons, and molecular systems. In Chapter 10, I addressed the two

challenges when it comes to the practical implementation of quantum algorithms with noisy

quantum devices. I demonstrated how errors can be suppressed in practical applications. More

specifically, I showed how to mitigate errors of quantum processes due to inevitable interactions

with the environment and how to suppress statistical errors in quantum state measurements with

an efficient grouping measurement scheme.

It is arguably constructive to view spectroscopy, analogue quantum simulation, and pro-

grammable digital quantum simulation as techniques that can complement the power of quan-
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tum computing of quantum many-body systems. From a theoretical perspective, spectroscopic

methods provide valuable insights into quantum computing. Drawing on the spectroscopic meth-

ods introduced in Chapter 7, I demonstrated how to probe spectroscopic features of quantum

many-body systems, and obtain the interacting quasiparticle spectra using the out-of-equilibrium

dynamics information. In Chapter 8, I applied the spectroscopy and perturbative approaches de-

veloped in this thesis to explore excitation spectra and dynamical properties of several typical

many-body systems.

The best scheme for a given physical problem depends on the nature of the task itself as

well as what we expect to learn from the results. Quantum computing not only plays a role

of computing, but more importantly, is able to uncover the structure of quantum problems. It

essentially tells us whether the problems are quantum and what the role of quantum correlation

plays in its behaviour. Within the realm of physics, the ultimate success of quantum computing

is built upon a comprehensive, deep understanding of the quantum aspects of quantum problems.

With the ongoing investigation in quantum systems, I believe that the development of quantum

computing methods will ultimately advance the understanding of the underlying relation between

different descriptions of correlation effects in many-body systems at a fundamental level, and vice

versa.

To conclude, I will briefly touch on some potentially promising future research directions

generated by this thesis.

Understanding quantum correlations. Quantum many-body systems normally incorpo-

rate both weak and strong correlations at different levels of segments of the system [320]. A

typical method of achieving this is through partitioning the quantum system into a fragment

and a bath, and treating each part using different levels of theories, also known as quantum

embedding theories [210,211]. The effective Hamiltonian of the original system can be obtained

through the projection of the original many-body system onto the reduced fragment-bath quan-

tum state basis. However, embedding theories rely on the knowledge of the target materials and

in general they are an inadequate way to represent strongly correlated systems. It is desirable to

develop a framework which is able to represent the quantum correlations faithfully. The hybrid

tensor network framework that has been established in Chapter 3 could accommodate such a

procedure in a natural way. In contrast to the suppression of quantum fluctuations through

imposing classical mean-field descriptions in conventional quantum embedding theories, the hy-

brid tensor network approach could better account for quantum fluctuation effects beyond the

mean-field approximation. Moreover, this concatenation of tensor network representation, either

using classical and quantum tensors, could significantly save quantum resources in terms of the

qubit number and circuit depth.

We can further compare different embedding approaches such as density matrix embed-

ding theory (DMET) [216–218, 321–326], dynamical mean-field theory [212, 214, 215, 327–329],
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DFT [163, 330, 331], and other classical methods such as tensor networks and perturbation ap-

proaches, which differ in their approximation for correlations between the fragment and the

bath. The outcomes could advance the understanding of underlying relations between different

descriptions of the correlation effects in quantum many-body systems.

Quantum circuit expressivity and quantum solver. At a fundamental level, the quan-

tum advantage flows from the assumption that quantum circuits may be sufficiently powerful to

express quantum states. Therefore, the power of shallow (noisy) quantum circuits, i.e., expressiv-

ity, is an important criterion for realising quantum advantages [332]. Previous methods, in which

the circuit expressivity is defined as the distance to random unitaries [333] or the covering num-

ber of the hypothesis space of quantum circuits [334], might be inappropriate for understanding

the essential power of quantum circuits. Here, we can consider entanglement as a measure for

the circuit expressivity [335, 336]. Advanced quantum information and complexity theories will

be used to define the measure for noisy circuit expressivity.

With the established measure, we can study varied circuit structures, such as coupled-cluster

ansatz [119, 337–341], commonly used in quantum chemistry, or Hamiltonian ansatz for the

Hubbard model. These results provide insights to understand the superiority of quantum circuits

in practical computation. For solving the eigenstates of the effective Hamiltonian, I conceive of

applying advanced quantum algorithms such as variational algorithms, adaptive Hamiltonian

simulation to further improve the efficiency and accuracy of the quantum-solver. Alternative

approaches that have been developed and tested in this thesis, such as quantum algorithmic

cooling and quantum subspace expansion, could supplement the power of the quantum-solver.

Implementation on quantum devices. Several critical challenges still need to be ad-

dressed when it comes to the practical implementation on near-term quantum devices. For

that, one can apply the error mitigation protocols developed in Chapter 10 to ensure simulation

accuracy, and employ the classical shadow approach [87, 199, 200] to reduce the measurement

complexity during the measurement and post-selection processes in order to preserve quantum

advantage along the whole quantum computing pipeline. Task-specific circuit depth reduction

methods could additionally be applied along these lines to improve the feasibility of practical im-

plementation. For instance, the quantum resources could be reduced by considering the symmetry

of the target problems [342–344]. With these advanced methods, together with my collaborators,

we have demonstrated the feasibility of performing quantum simulation of complex quantum

systems and we have achieved the largest scale quantum simulation of chemical systems [321]

and periodic solids [345] to date. In these works, we numerically simulated this quantum process

(to be more precise, we simulated variational quantum eigensolvers) by a state-vector form, and

the simulation of a large-scale problem is enabled by density matrix embedding theories, which

greatly reduces the quantum resources required.

209



Applicable domains of this quantum computing pipeline are broad, potentially encompassing

chemistry, condensed matter physics, quantum field theories, and general many-body problems.

These include solving electronic structures and predicting transport properties of functional ma-

terials, such as high-temperature superconductivity and topological materials, which face an

inherent computational complexity that must be overcome. The computational tasks which

currently appear intractable could potentially be addressed by my compendium of quantum

protocols. The outcome of my proposed projects enables us to scale up quantum simulations

of materials, and potentially demonstrates a clear quantum advantage in quantum many-body

problems.
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Appendix A

Entanglement and correlation in
hybrid tensor networks

In this section, I discuss entanglement and correlation properties of hybrid tree tensor networks

with two layers. I consider three cases with local or non-local correlations, each being represented

by either a classical or quantum tensor. The discussion can be generalised to trees with multiple

layers.

A.1 Local quantum correlation and non-local classical correla-
tion

I will first discuss hybrid tensor networks with local quantum correlation and non-local classical

correlation, which were introduced in Section 3.2.3. To expand on the terminology used here, in

such a hybrid tensor network, quantum tensors are used to represent quantum correlations of local

subsystems, and classical tensors are used to represent correlations between subsystems. In this

context, ’local’ concerns correlations in each subsystem, whilst ’non-local’ relates to correlations

between different subsystems. By way of illustration, let us take the classical tensor as MPS.

As shown in Figure A.1(a), we separate the whole kn qubits into two subsystems with a blue

boundary line, and denote the left and the right parts to be A and Ā, respectively. Without loss

of generality, we choose two kinds of boundaries — one is in the bulk of the classical tensor at

the first layer, where the boundary is between indices il and il+1 (in the same time between jn of

ψil
󰂓j

and j1 from ψ
il+1

󰂓j
); the other is in the bulk of the quantum tensor at the second layer, where

the boundary is between indices jl′ and jl′+1.

For the first type of bipartition between il and il+1, the entanglement of a subsystem is upper

bounded by the bond dimension of the index sl of the MPS, which is normally a constant number

that is independent of subsystem size. As a result, the correlation between these n-qubit clusters

is weak. The second type of bipartition between jl′ and jl′+1 is inside the quantum tensor ψi1
󰂓j
,

which is represented by a general quantum state. The entanglement entropy can in principle be

proportional to min{l′, n− l′}, that is, proportional to the subsystem size of the quantum tensor.
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The entanglement can also be revealed by the correlation functions. If we select two local

observables O1 and O2 inside the bulk of any local quantum tensors, the correlation function

〈O1O2〉 could even be a constant. However, if they are located in different local quantum tensors,

the correlation suffers exponential decay 〈O1O2〉 ∼ exp(−a|l2 − l1|), where a is some constant

depending on the chosen MPS, and |l2− l1| labels the distance between the two quantum tensors

where O1 and O2 are inside. As shown in Figure A.2, this scaling can be obtained by first

contracting the local observables O1 and O2 with the quantum tensors, and then the total result

becomes two new observables, say M1 and M2 in the MPS tensor network.

(a)

Figure A.1: Illustration of hybrid tensor networks with bipartition. (a) quantum-classical tensor
stricture (ansatz) with the classical tensor being MPS introduced in Section 3.2.3; (b) classical-
quantum tensor stricture introduced in Section 3.2.4. Here we separate the whole Kn-qubit
system into two parts, that is, the left and the right subsystems, with the boundary being
denoted by the blue dotted-line. Without loss of generality, we choose two kinds of boundaries:
one is in the bulk of the (classical or quantum) tensor at the first level, where the boundary is
between indices il and il+1; the other is in the bulk of the tensor at the second level, where the
boundary is between indices jl′ and jl′+1.
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Figure A.2: The contraction process to extract the correlation function of the quantum-classical
hybrid tensor network introduced in 3.2.3. Here, the classical tensor is an MPS. The two
observables O1 and O2 are in two local quantum tensors ψil1... and ψil2... , respectively, with il1 and
il2 being two classical indices. Similar to the extraction of expectation values in Figure 3.2 (a),
we first contract O1 and O2 with the local quantum tensors to get two new observables M1 and
M2 for the classical MPS. Here we assume that 〈ψi′l...|ψil

...〉 = δ{ili′l} for simplicity, that is, the
quantum states indexed by il are orthogonal to each other. In this way, the contraction result is
the identity for other quantum tensors which do not contain O1 or O2. As a result, the correlation
function shows 〈O1O2〉 = 〈M1M2〉{MPS}, where the second expectation value is on the MPS and
shows an exponential decay.

A.2 Local classical correlation and non-local quantum correla-
tion

Next, let us examine the hybrid tensor network introduced in Section 3.2.4, which uses classical

tensors to represent local correlations in the subsystems and uses a quantum tensor to represent

non-local quantum correlation between the subsystems. As shown in Figure A.1 (b), the whole

kn-qubit is separated into two parts by the blue boundary line. We also choose two kinds of

boundaries — one is in the bulk of the quantum tensor between indices il and il+1; the other is

in the bulk of the classical tensor between indices jl′ and jl′+1.

For the bipartition between il and il+1 inside the global quantum tensor ψi1,i2,···ik , the en-
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tanglement can be proportional to min{l, k − l}, with the subsystem size being |A| = nl and

|Ā| = n(k − l). As a result, when k ≫ 1 and n = O(1), the hybrid tensor network could have

a volume law of entanglement, due to the contribution from the quantum tensor. In the regime

n ∼ k, the entanglement is weaker but still stronger than the area law of entanglement. From this

point of view, the hybrid tree tensor network could represent more complicated entanglement

than pure classical tensor networks. For the second kind of bipartition between jl′ and jl′+1,

the entanglement of the subsystem is upper bounded by the bond dimension of the index sl′ of

the local MPS, which is normally a constant number independent of the subsystem dimension.

Consequently, the correlations inside these n-qubit clusters are weak.

If two local observables O1 and O2 are inside the bulk of any local classical tensor, the

correlation function 〈O1O2〉 decays exponentially. However, if they are located in different local

classical tensors, the correlation could be some constant or decay polynomially. One can first

contract the local observables O1 and O2 with the classical tensors, and then the total result

becomes two new observables for the general quantum tensor.

A.3 Local quantum correlation and non-local quantum correla-
tion

Let us now turn to the hybrid tensor network introduced in Section 3.2.5, in which both local and

non-local correlations are represented by quantum tensors. It could possess a strong correlation

both for local and global correlation. The entanglement entropy and correlation function can be

analysed in the same way as detailed above.

For the entanglement of a general hybrid tree structure, one just needs to check if the bound-

ary is in the bulk of a quantum tensor or a classical tensor. The decaying behaviour of the

correlation function can be obtained by iterative contractions and identifying whether the final

new observables are in a quantum or classical tensor.

A.4 Comments on resources

The classical MPS tensors in the hybrid TTN may be replaced with various classical tensors, such

as, a g-qubit classical tree tensor, Multi-scale Entanglement Renormalisation Ansatz (MERA)

[346], or Projected Entangled Pair State (PEPS) [347]. For example, one can substitute the

MPS block for a (g′, D′) tree classical tensor [348]. By contracting the local observable from the

deepest layer, one layer at a time, the classical cost will be g′D
′−1

g′−1 (g′+1)κ(g
′+2). In this instance,

this tree tensor is a vertex in the whole hybrid TTN, and consequently, we have g = g′D
′
and

the cost for contraction is O(gκ(g
′+2)). The classical costs for different types of classical tensors

are depicted in Table 3.1. Considering the MERA, the classical contraction cost is O(log(g)κ9)

for the 1D MERA with ternary indices [349]. The cost of MERA for 2D systems scales as κ16
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in some cases [350]. For the generalisation of MPS to the 2D case, PEPS, there is no efficient

way of exact tensor contraction. There is approximate algorithm running in O(gκ8κ̃2) based

on the contraction of 1D MPS inside the 2D PEPS, where κ̃ is the bond dimension used to

approximately truncate the original tensor. The comparison is shown in Table 3.1.

A.5 Additional numerical tests
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Figure A.3: Numerical simulation for a 2D spin system on a square lattice using hybrid TTNs.
(a) Sketch for the 2D spin lattice with nearest-neighbour couplings on the boundary. The inter-
actions between subsystems are represented by the thick jagged lines. 3× 3 qubits are grouped
on a square sublattice as subsystems. The grouping strategy is the same as that in Figure 3.6.
(b)-(d) Simulation results of the ground state energy compared to the results from PEPS EPEPS.
The relative error 1−E/EPEPS is used to characterise the calculation accuracy. The blue dash-
dotted line corresponds to the energy when using a tensor product of the ground state of each
local subsystem. The blue triangles correspond to the results obtained with hybrid TNs. (b)
Convergence towards the ground state energy for the 2D 9 × 4 systems with λ = 1. (c) Error
versus different coupling strength of subsystems λ for 9 × 4 systems. (d) Errors with different
numbers of local subsystems with 9 × k qubits and λ = 1. Here k = Nx × Ny is considered for
the 2D system.

To further test the validity of our method, I numerically test a spin lattice model with

uniform nearest-neighbour interactions on the boundary, as opposed to the model with random

interactions between subsystems discussed in Chapter 3. I consider uniform interactions between

subsystems by setting the coupling strengths as a constant fj,i = λ. The parameters of the local

interactions and external fields, and the quantum circuits for the simulation are used the same as

those in Figure 3.6. The lattice model and the partitioning strategy are shown in Figure A.3(a).

Figure A.3(b) shows the convergence of the ground state energy, both with coupling strength

λ = 1 on 9 × 4 qubits. Figure A.3(c, d) show how the coupling strength or the number of

subsystems affect the efficacy of hybrid TTN, respectively. The simulation results again support

the effectiveness of our method.
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Appendix B

Eigenstate energy and property
estimation

In this chapter, I first show the comparison of ground state energy estimation and observable

estimation on the ground state with other representative methods discussed in Chapter 4 and

Chapter 9. Then, I provide complexity analysis of the eigenstate energy and property estimation

to support the results in Chapter 4 and Chapter 9. The projection methods and phase estimation

methods may be further improved in terms of the initial state dependence.

Estimation Max time Repetition Extra qubits Total time complexity

This work O(log(p−1
0 )󰂃−1) O(p−2

0 ) 1 O(log(p−1
0 )p−2

0 󰂃−1)

Lin & Tong 21 [48] O(log(p−1
0 󰂃−1)󰂃−1) O(p−2

0 ) 1 O(log(p−1
0 󰂃−1)p−2

0 󰂃−1)

Time series [182] O(Polylog(p−1
0 󰂃−1)󰂃−1) O(󰂃−3p−2

0 ) 1 Õ(p−2
0 󰂃−4)

Phase estimation Õ(p−1
0 󰂃−1) O(p−1

0 ) log(󰂃−1) + log(p−1
0 ) Õ(p−2

0 󰂃−1)

Projection [29] Õ(p
−1/2
0 󰂃−3/2) Õ(p

−1/2
0 ) log(󰂃−1) Õ(p−1

0 󰂃−3/2)

Table B.1: Comparison of ground state energy estimation. The result of this work in the table
is based on Theorem 1 using the Gaussian cooling function. Our work is mainly compared with
the oracle-free methods.

Estimation Max time Repetition Extra qubits Total time complexity

This work O(log(p−1
0 󰂃−1)∆−1) O(p−2

0 󰂃−2) 1 Õ(p−2
0 󰂃−2∆−1)

Phase estimation (known E0) Õ(p−1
0 󰂃−1∆−1) O(p−1

0 󰂃−2) log(󰂃−1) + log(∆−1) Õ(p−2
0 󰂃−3∆−1)

Projection (known E0) [29] Õ(p
−1/2
0 ∆−1) Õ(p

−1/2
0 󰂃−2) log log(󰂃−1) + log(∆−1) Õ(p−1

0 󰂃−2∆−1)

Projection (Unknown E0) [29] Õ(p
−1/2
0 ∆−3/2) Õ(p

−1/2
0 󰂃−2∆−1/2) log log(󰂃−1) + log(∆−1) Õ(p−1

0 󰂃−2∆−2)

Table B.2: Comparison of observable estimation on the ground state. The result of this work
in the table is based on Theorem 2 using Gaussian cooling function. The methods are mainly
compared to those without the block encoding of Hamiltonian.

B.1 Eigenenergy estimation

In Section B.1.1, the distance between Dτ (E) and pjg(τ(E − Ej))
2 caused by finite τ when

E ∈ [Ej − ∆
2 , Ej +

∆
2 ] is bounded. In Section B.1.2, the estimation error of the normalisation

factor Dτ (E) caused by a normalised cutoff time xm is bounded. In Section B.1.3, based on the
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measurement using Hadamard test, the statistical error of the estimation of D
(xm)
τ (E) caused by

the finite sampling error NM is bounded. Finally, in Section B.1.4, I consider the peak-value

search problem using the estimator and analyse the eigenenergy accuracy dependence to the

circuit depth and sample complexity. We shall see how the cooling bandwidth g−1(1− ε) affects

the accuracy of the peak-value search.

B.1.1 Finite imaginary evolution time

I first demonstrate how the distance between Dτ (E) and pjg(τ(E−Ej))
2 caused by finite τ when

E ∈ [Ej − ∆
2 , Ej +

∆
2 ] can be bounded.

Proposition 13 (Error of the normalisation function introduced by finite imaginary time).

When E ∈ [Ej − ∆
2 , Ej +

∆
2 ], we have

|Dτ (E)− pjg(τ(E − Ej))
2| ≤ ε(1)τ , (B.1)

when τ ≥ 2
∆g−1( ε

(1)
τ
2 ). When E = Ej, we can improve the requirement to τ ≥ 1

∆g−1( ε
(1)
τ
2 ).

The basic idea is that the imaginary time evolution drives the initial state exponentially faster

to the target state, as that have been shown in Section 2.3. Here, I simply give an intuition for

the proof and refer to the author’s paper [93] for the formal proof.

B.1.2 Finite normalised cutoff time

I then demonstrate how the estimation error of Dτ (E) caused by a normalised cutoff time xm

can be bounded. The estimation formula is given in Eq. (4.14),

D(xm)
τ (E) =

󰁝 xm

−xm

dyp̃(y)e−iτyEj 〈ψ0|eiτyH |ψ0〉 . (B.2)

Here, p̃(y) =
󰁕∞
−∞ p(t− y)p(t)dt = [p 󰂏 p](y).

Proposition 14 (Error of the normalisation factor introduced by finite normalised cutoff time).

The truncated estimation D
(xm)
τ (E) defined in Eq. (B.2) is related to the normalisation factor

defined in Eq. (4.13) by

|D(xm)
τ (E)−Dτ (E)| ≤ ε(1)x , ∀E ∈ R, (B.3)

when the normalised cutoff time xm ≥
√
2L( ε

(1)
x
2 ). Here, L(ε) is the tail function of the cooling

function g(h) defined in Definition 2.

The basic idea is to analyse the error dependence on the cutoff of the tail function. We

can find that the error exponentially decays with an increasing cutoff xm for Gaussian cooling

function. Again, I refer to [93] for the formal proof.
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B.1.3 Finite sampling number

In this section, I consider the statistical fluctuation when estimating the values of D
(xm)
τ (E)

using Eq. (B.2). In the single-shot version of Hadamard test in Algorithm 4, we can describe

the independent and identical distribution (i.i.d.) of single-round estimators for D
(xm)
τ (E) as

{d̂p(E)}NM
p=1. Each single-round estimator d̂p(E) is a random variable defined as follows,

d̂p =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

Re(2 e−iτyE), (b, a) = (0, 0), y : |y| ≤ xm

Re(−2 e−iτyE), (b, a) = (0, 1), y : |y| ≤ xm

Re(2i e−iτyE), (b, a) = (1, 0), y : |y| ≤ xm

Re(−2i e−iτyE), (b, a) = (1, 1), y : |y| ≤ xm

0, y : |y| > xm.

(B.4)

The final estimation of D
(xm)
τ (E) is given by

D̂(xm)
τ (E) =

1

NM

NM󰁛

p=1

d̂p(E). (B.5)

Based on Eq. (B.2), we know that

E(y,b,a)

󰀓
D̂(xm)

τ

󰀔
= D(xm)

τ . (B.6)

To analyse the statistical fluctuation, we apply the Hoeffding bound.

Lemma 2 (Hoeffding bound). For n independent random variables {X̂i}ni=1 which are bounded

by [a, b], the average value

X̄ :=
1

n

n󰁛

i=1

X̂i, (B.7)

satisfies

Pr(
󰀏󰀏X̄ − E(X̄)

󰀏󰀏 ≥ ε) ≤ 2 exp

󰀕
− 2nε2

(b− a)2

󰀖
. (B.8)

Proposition 15 (Error of the normalisation factor introduced by finite sampling number). The

estimator D̂
(xm)
τ (E) defined in Eq. (B.5) is related to the truncated estimation D̂

(xm)
τ (E) defined

in Eq. (B.2) by

|D̂(xm)
τ (E)−D(xm)

τ (E)| ≤ ε(1)n , ∀E ∈ R, (B.9)

with a failure probability δ(1) := 2 exp
󰀓
−2K(ε

(1)
n )2/16

󰀔
, when the sample number NM ≥ K(ε

(1)
n )−2.

Proof. Note that the estimators {d̂p(E)}NM
p=1 are independent, whose values are bounded by

[−2, 2]. Using the Hoeffding bound in Lemma 2 with the bound [−2, 2], we finish the proof.
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B.1.4 Accuracy of the eigenenergy estimation

Ideally, the eigenenergy Ej satisfies,

Ej = argmaxE∈[EL
j ,EU

j ]Dτ (E). (B.10)

In practice, what we can solve is the following problem,

Êj = argmaxE∈[EL
j ,EU

j ] D̂
(xm)
τ (E). (B.11)

We now can show that when [EL
j , E

U
j ] ⊂ [Ej − ∆

2 , Ej + ∆
2 ], Êj is a good estimation of

Ej with precision κ when the finite imaginary time τ = O(κ−1), finite normalised cutoff time

xm = O(L(pj)), and sample number NM = O(p−2
j ).

Theorem 8 (Accuracy of the eigenenergy estimation). When [EL
j , E

U
j ] ⊂ [Ej − ∆

2 , Ej +
∆
2 ], the

eigenenergy estimation Êj defined in Eq. (B.11) is related to the eigenenergy Ej by

|Êj − Ej | ≤ κ, (B.12)

with a failure probability of 2δ(1) = 4 exp (−K/8), when the finite imaginary time τ ≥ 1
κg

−1(1−g(1)
6 pj),

the normalised cutoff time xm ≥
√
2L

󰀓
1−g(1)

6 pj

󰀔
, and the sample number NM ≥ 9K

(1−g(1))2
p−2
j .

Proof. From Eq. (B.11) we know that,

D̂(xm)
τ (Êj) ≥ D̂(xm)

τ (Ej). (B.13)

Now, we take xm =
√
2L(

εxpj
2 ) and NM = (εnpj)

−2K. Using Proposition 14 and 15, we have

|D̂(xm)
τ (Êj)−Dτ (Êj)| ≤ |D(xm)

τ (Êj)−Dτ (Êj)|+ |D̂(xm)
τ (Êj)−D(xm)

τ (Êj)| ≤ pj(εx + εn),

|D̂(xm)
τ (Ej)−Dτ (Ej)| ≤ |D(xm)

τ (Ej)−Dτ (Ej)|+ |D̂(xm)
τ (Ej)−D(xm)

τ (Ej)| ≤ pj(εx + εn)

,
(B.14)

each with a failure probability δ(1). Furthermore, when τ = 2
∆g−1(

pjετ
2 ), from Proposition 13 we

have
|Dτ (Êj)− pjg(τ(Ej − Êj))

2| ≤ pjετ ,

|Dτ (Ej)− pj | ≤ pjετ .
(B.15)

Combine Eq. (B.13), Eq. (B.14), and Eq. (B.15), we have

pj ≤ Dτ (Ej) + ετ ≤ D̂(xm)
τ (Ej) + pj(εx + εn) + pjετ

≤ D̂(xm)
τ (Êj) + pj(εx + εn) + pjετ

≤ Dτ (Êj) + 2pj(εx + εn) + pjετ ,

≤ pjg(τ(Ej − Êj))
2 + 2pj(ετ + εx + εn),

(B.16)
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with a failure pribability 2δ(1). Therefore,

g(τ(Êj − Ej))
2 ≥ 1− 2(ετ + εx + εn). (B.17)

Denote κ := Êj − Ej , we further simplify the expression above,

κ ≤ 1

τ
g−1(

󰁳
1− 2(ετ + εx + εn))

≤ 1

τ
g−1(1− (ετ + εx + εn))

=
1

τ
g−1

󰀣
1− 2

pj
g(

∆

2
τ)− 2

pj
L−1(

xm√
2
)−

󰁶
K

p2jNM

󰀤 (B.18)

In the second inequality, we use the property that g−1(p) is a decreasing function when p > 0.

Therefore, the following requirement is sufficient to make sure the eigenenergy error is smaller

than κ,

τ ≥ 1

κ
,

2

pj
g(

∆

2
τ) +

2

pj
L−1(

xm√
2
) +

󰁶
K

p2jNM
≤ 1− g(1).

(B.19)

Let 2
pj
g(∆2 τ) =

2
pj
L−1(xm√

2
) =

󰁴
K

p2jNM
, we have

τ ≥ 2

∆
g−1(

1− g(1)

6
pj),

xm ≥
√
2L

󰀕
1− g(1)

6
pj

󰀖

NM ≥ K

󰀕
3

1− g(1)

󰀖2 1

p2j
.

(B.20)

In the above derivation, we require τ ≥ 1
κ and τ ≥ 2

∆g−1(1−g(1)
6 pj). In practice, κ ≪ ∆

2 .

Then it suffices to have τ ≥ 1
κg

−1(1−g(1)
6 pj).

From Theorem 8 we can see that, the (maximal) circuit depth and sample complexity of

Algorithm 4 are τxm = O(κ−1g−1(pj)L(pj)) and NM = O(p−2
j ), respectively, for a given accuracy

κ and initial state overlap pj . This achieves the Heisenberg limit 1
κ for the eigenenergy searching.

B.2 Algorithms

In this section, I show the algorithms for eigenenergy estimation and normalisation factor esti-

mation in Algorithm 4. Other algorithms can be found in [93].
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Algorithm 4 Eigenenergy and normalisation factor estimation

Require: An n-qubit Hamiltonian H; initial state |ψ0〉 with nonzero overlap with jth eigenstate
of H: pj = | 〈uj |ψ0〉 |2; the energy interval [EL

j , E
U
j ] for the jth eigenstate; cooling function

g(h) and the corresponding sampling probability p(x); proper choice of imaginary time τ ,
normalised cutoff time xm.

Ensure: Estimation of the eigenenergy Ej and the corresponding normalisation factor D̂
(xm)
τ .

1: for p = 1 to NM do
2: Sample a normalised evolution time yp from p̃(y) := 1

2

󰁕∞
−∞ p( z+y

2 )p( z−y
2 )dz.

3: if yp > xm then ⊲ Exceed the preset cutoff value

4: Set the estimation d̂p = 0.
5: else ⊲ Normal single-shot quantum sampling by Hadamard test
6: Prepare an ancillary qubit on |+〉 state and the initial state |ψ0〉.
7: Implement a controlled-unitary C-U from the ancillary qubit to the state |ψ0〉. Here,

U = eiτypH .
8: Generate a random bit bp with a uniform distribution of values {0, 1}. Perform a gate

W bp on the ancillary qubit. Here, S = diag(1,−i) is a π
4 -rotation gate.

9: Measure the ancillary qubit on X-basis, and record the binary result ap. Then record

the values {yp, bp, ap} and set the temporal estimation value d̂p := 2(−1)ap ibp .
10: end if
11: end for
12: Set the estimated normalisation factor D̂

(xm)′
τ = 0.

13: for E′
j in [EL

j , E
U
j ] do ⊲ Try different possible eigenenergy value

14: Calculate the estimated normalisation factor D̂
(xm)′
τ := Re

󰀓
1

NM

󰁓NM
p=1 e

−iτypE′
j d̂p

󰀔
.

15: if D̂
(xm)′
τ then

16: Set D̂
(xm)
τ = D̂

(xm)′
τ and Ej = E′

j .
17: end if
18: end for

B.3 Eigenstate property estimation

In this section, I analyse the complexity of eigenstate property estimation in a similar vein to

eigenenergy estimation in Section B.1.

In Section B.3.1, the effect of finite imaginary time τ is considered; in Section B.3.2, the

estimation error caused by a normalised cutoff time xm is bounded. The two factors above

determine the actual maximum evolution time. In Section B.3.3, based on the measurement

using Hadamard test, we determine the statistical error caused by finite sampling number NM .

Finally, I summarise the finite sampling effect in Section B.3.4, and show the dependence of

circuit depth tm and sampling number NM with respect to the initial state |ψ0〉, Hamiltonian H,

and observable O.

B.3.1 Finite imaginary evolution time

Recall that

〈O〉 = 〈uj |O|uj〉 =
N(O)

D
, (B.21)
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where
D = D(Ej) = 〈ψ0|P̂j |ψ0〉 = pj ,

N(O) = 〈ψ|P̂jOP̂j |uj〉 = pj 〈O〉 ,
(B.22)

are, respectively, the normalisation factor and the unnormalised expectation value. Here, P̂j :=

|uj〉 〈uj | is the projector to the jth eigenstate.

When the imaginary time τ is finite, we have the approximated value

〈O〉τ =
Nτ (O)

Dτ
, (B.23)

where
Dτ = 〈ψ0|g2(τ(H − Ej))|ψ0〉 ,

Nτ (O) = 〈ψ0|g(τ(H − Ej))O g(τ(H − Ej))|ψ0〉 .
(B.24)

are, respectively, the normalisation factor and the unnormalised expectation value with finite τ .

In Proposition 13 in Section B.1.1, the distance between Dτ (E) and D(E) when |E−Ej | ≤ ∆
2

is shown. Similarly, the distance between Nτ (O) and N(O) can be bounded.

Proposition 16 (Error of the unnormalised expectation value introduced by finite imaginary

time). The unnormalised expectation value Nτ (O) defined in Eq. (B.24) is related to the ideal

N(O) defined in Eq. (B.22) by

|Nτ (O)−N(O)| ≤ 󰀂O󰀂∞ε(2)τ , (B.25)

when the imaginary time τ ≥ 1
∆g−1( ε

(2)
τ
2 ). Here, 󰀂O󰀂∞ is the spectral norm of O.

The idea of bounding the distance between Nτ (O) and N(O) is that the distance between

P̂j and g(τ(H −Ej)) can be bounded, and then the difference between Nτ (O) and N(O) can be

bounded naturally.

B.3.2 Finite normalised cutoff time

In Proposition 14, I demonstrate how the estimation error of Dτ (O) caused by a finite xm can

be bounded. Following similar methods in Section B.1, I bound the estimation errors of Nτ (O)

caused by a finite xm. The estimation formula is given in Eq. (4.14),

N (xm)
τ (O) = 󰀂O󰀂1

󰁝 (xm)

−xm

dx

󰁝 xm

−xm

dx′p(x)p(x′)
󰁛

l∈Pn

PrO(l)e
−iτ(x−x′)Ej 〈ψ0|e−iτx′HPle

iτx′H |ψ0〉 ,

(B.26)

where

O =
󰁛

l∈Pn

olPl = 󰀂O󰀂1
󰁛

l∈Pn

PrO(l)Pl, (B.27)

󰀂O󰀂1 is the l1-norm of Pauli coefficients of O,

󰀂O󰀂1 =
󰁛

l∈Pn

ol. (B.28)
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Note that the coefficients {ol}l are all positive, since we put the signs into the Pauli matrices

{Pl}. The probability distribution PrO(l) is defined to be,

PrO(l) =
ol󰁓

l∈Pn
ol

=
1

󰀂O󰀂1
ol. (B.29)

Proposition 17 (Error of the unnormalised expectation value introduced by finite normalised

cutoff time). The truncated estimation N
(xm)
τ (O) defined in Eq. (B.26) is related to the normal-

isation factor Nτ (O) defined in Eq. (B.24) by

|N (xm)
τ (O)−Nτ (O)| ≤ 󰀂O󰀂∞ε(2)x , (B.30)

when the normalised cutoff time xm ≥ L( ε
(2)
x
2 ). Here, L(ε) is the tail function of the cooling

function g(h) defined in Definition 2.

Proof. We have,

|N (xm)
τ (O)−Nτ (O)| ≤

󰁝󰁝

S̄
dxdx′ p(x)p(x′)

󰀏󰀏󰀏e−iτ(x−x′)Ej 〈ψ0|e−iτx′HOeiτx
′H |ψ0〉

󰀏󰀏󰀏

≤
󰁝󰁝

S̄
dxdx′ p(x)p(x′)

󰀏󰀏󰀏〈ψ0|e−iτx′HOeiτx
′H |ψ0〉

󰀏󰀏󰀏

≤ 󰀂O󰀂∞
󰁝󰁝

S̄
dxdx′ p(x)p(x′) =: 󰀂O󰀂∞ε(2)x ,

(B.31)

where S̄ implies the complement area of S : {(x, x′)||x| ≤ xm, |x′| ≤ xm}.
The error term ε

(2)
x is related to the tail probability by

ε(2)x = 1−
󰁝󰁝

S
dxdx′ p(x)p(x′) = 1− (1− L−1(xm))2 ≤ 2L−1(xm)

⇒ xm ≥ L(
ε
(2)
x

2
).

(B.32)

Therefore, when we choose the xm to be L(ε
(2)
x ), we can achieve the estimation of Nτ (O) with

a precesion of 󰀂O󰀂∞ε
(2)
x .

B.3.3 Finite sample number

In Proposition 14, I bound the estimation error of D
(xm)
τ (O) caused by finite sampling error NM .

Following similar methods in Section B.1, I bound the statistical error of N
(xm)
τ (O).

In the single-shot version of Hadamard test, we can describe these independent and identi-

cal distribution (i.i.d.) of single-round estimators for N
(xm)
τ (O) as {n̂q}NM

q=1. Each single-round

estimator n̂q is a random variable defined as follows,

n̂q(O) =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

Re(2󰀂O󰀂1 e−iτ(x−x′)Ej ), (b, a) = (0, 0), (x, x′) : |x| ≤ xm, |x′| ≤ xm

Re(−2󰀂O󰀂1 e−iτ(x−x′)Ej ), (b, a) = (0, 1), (x, x′) : |x| ≤ xm, |x′| ≤ xm

Re(2i󰀂O󰀂1 e−iτ(x−x′)Ej ), (b, a) = (1, 0), (x, x′) : |x| ≤ xm, |x′| ≤ xm

Re(−2i󰀂O󰀂1 e−iτ(x−x′)Ej ), (b, a) = (1, 1), (x, x′) : |x| ≤ xm, |x′| ≤ xm

0, (x, x′) : |x| > xm or |x′| > xm.

(B.33)
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The final estimation of N
(xm)
τ (O) is given by

N̂ (xm)
τ (O) =

1

NM

NM󰁛

q=1

n̂q(O). (B.34)

Based on Eq. (B.26), we know that

E(x,x′,P,b,a)

󰀓
N̂ (xm)

τ (O)
󰀔
= N (xm)

τ (O). (B.35)

Now I bound the statistical error of N̂
(xm)
τ (O) using Lemma 2.

Proposition 18 (Error of the observable expectation value introduced by finite sampling num-

ber). The estimator N̂
(xm)
τ (O) defined in Eq. (B.34) is related to the truncated estimation N̂

(xm)
τ (O)

defined in Eq. (B.26) by

|N̂ (xm)
τ (O)−N (xm)

τ (O)| ≤ 󰀂O󰀂1ε(2)n , (B.36)

with a failure probability δ(2) := 2 exp
󰀓
−2K(ε

(2)
n )2/16

󰀔
, when the sample number NM ≥ K(ε

(2)
n )−2.

Here, 󰀂O󰀂1 =
󰁓

l |ol| is the sum of the Pauli coefficients of O.

Proof. Note that the estimators {n̂q(O)}NM
q=1 are independent, whose values are bounded by

[−2󰀂O󰀂1, 2󰀂O󰀂1]. Here, 󰀂O󰀂1 =
󰁓

l |ol|. Using the Hoeffding bound in Lemma 2 with the

bound [−2󰀂O󰀂1, 2󰀂O󰀂1], we finish the proof.

B.3.4 Accuracy of the observable estimation

The final observable estimation is given by

〈Ô〉(xm)

τ =
N̂

(xm)
τ

Ô
(xm)
τ

. (B.37)

In Proposition 13, 14, 15, 16, 17, and 18, we estimate the errors caused by finite τ , xm, and

NM on Dτ and Nτ (O), respectively. Combining the results together, we have the following result.

Proposition 19. For the initial state |ψ0〉, target eigenstate |uj〉 and cooling function g(h), if

we set the imaginary time τ , normalised cutoff time xm, and sample number N to be

1. τ = 1
∆ max{g−1( ε

(1)
τ
2 , g−1( ε

(2)
τ
2 )};

2. xm = max{
√
2L( ε

(1)
x
2 ), L( ε

(2)
x
2 )};

3. NM = max{K(ε
(1)
n )−2,K(ε

(2)
n )−2};

then the estimated observable expectation value 〈Ô〉(xm)

τ defined in Eq. (B.37) is related to the

real observable expectation value 〈O〉 by,

| 〈Ô〉(xm)

τ − 〈O〉 | ≤ p−1
j (〈O〉+ 1)(ε(1)τ + ε(1)x + ε(1)n ) + p−1

j (ε(2)τ 󰀂O󰀂∞ + ε(2)x 󰀂O󰀂∞ + ε(2)n 󰀂O󰀂1),
(B.38)

with a failure probability δ(1) + δ(2) = 4e−
K
2 .
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Proof. Following Proposition 13, 14, 15, 16, 17, and 18, when we choose τ , xm, and NM to be

the values mentioned above, then the following bound holds at the same time
󰀏󰀏󰀏D̂(xm)

τ −D
󰀏󰀏󰀏 ≤ ε(1)τ + ε(1)x + ε(1)n ,

󰀏󰀏󰀏N̂ (xm)
τ (O)−N(O)

󰀏󰀏󰀏 ≤ (ε(2)τ 󰀂O󰀂∞ + ε(2)x 󰀂O󰀂∞ + ε(2)n 󰀂O󰀂1),
(B.39)

with a failure probability δ(K) = 4e−
K
8 . To simplify the notation, denote ε(1) := ε

(1)
τ + ε

(1)
x + ε

(1)
n

and ε(2)(O) := ε
(2)
τ 󰀂O󰀂∞ + ε

(2)
x 󰀂O󰀂∞ + ε

(2)
n 󰀂O󰀂1.

Based on Eq. (B.39), difference between the quotients 〈Ô〉(xm)

τ and 〈O〉 is bounded as

| 〈O〉 − 〈Ô〉(xm)

τ | ≤ (N(O) +D)ε(1) +Dε(2)(O))

D2

= p−1
j (〈O〉+ 1)(ε(1)τ + ε(1)x + ε(1)n ) + p−1

j (ε(2)τ 󰀂O󰀂∞ + ε(2)x 󰀂O󰀂∞ + ε(2)n 󰀂O󰀂1).
(B.40)

Based on Proposition 19, we can estimate the circuit depth and sample complexity for the

observable estimation.

Theorem 9 (Accuracy of the observable estimation). The expectation value estimation 〈Ô〉(xm)

τ

defined in Eq. (B.37) is related to the real observable expectation value 〈O〉 by

| 〈Ô〉(xm)

τ − 〈O〉 | ≤ ε

󰀕
1

2
(〈O〉+ 1) +

1

3
󰀂O󰀂∞ +

1

6
󰀂O󰀂1

󰀖

≤ ε(󰀂O󰀂1 + 1)

(B.41)

with a failure probability of δ(1) + δ(2) = 4 exp(−K/8), when the finite imaginary time τ ≥
1
∆g−1

󰀃 εpj
12

󰀄
, the normalised cutoff time xm ≥

√
2L

󰀃 εpj
12

󰀄
, and the sample number NM ≥ K (

εpj
6 )−2.

Here, 󰀂O󰀂1 =
󰁓

l |ol| is the sum of the Pauli coefficients of O, ∆ is a known lower bound of

min{|Ej − Ej−1|, |Ej − Ej+1|}.

Proof. From Proposition 19 we know that, if we set τ = 1
∆ max{g−1( ε

(1)
τ
2 ), g−1( ε

(2)
τ
2 )} xm =

max{
√
2L( ε

(1)
x
2 ), L( ε

(2)
x
2 )} and NM = max{K(ε

(1)
n )−2,K(ε

(2)
n )−2}, then

| 〈O〉 − 〈Ô〉(xm)

τ | ≤ p−1
j (〈O〉+ 1)(ε(1)τ + ε(1)x + ε(1)n ) + p−1

j (ε(2)τ 󰀂O󰀂∞ + ε(2)x 󰀂O󰀂∞ + ε(2)n 󰀂O󰀂1)

≤ p−1
j (󰀂O󰀂1 + 1)(ε(1)τ + ε(1)x + ε(1)n ) + p−1

j 󰀂O󰀂1(ε(2)τ + ε(2)x + ε(2)n ))

(B.42)

If we set

ε(1)τ = ε(2)τ = ε(1)x = ε(2)x = ε(1)n = ε(2)n =
εpj
6

, (B.43)

which corresponds to

τ ≥ 1

∆
g−1

󰀓εpj
12

󰀔

xm ≥
√
2L

󰀓εpj
12

󰀔
,

NM ≥ K
󰀓εpj

6

󰀔−2
,

(B.44)
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then Eq. (B.42) becomes,

| 〈Ô〉(xm)

τ − 〈O〉 | ≤ ε

󰀕
1

2
(〈O〉+ 1) +

1

3
󰀂O󰀂∞ +

1

6
󰀂O󰀂1

󰀖

≤ ε(󰀂O󰀂1 + 1).

(B.45)

From Theorem 9 we can see that, the circuit depth and sample complexity of the observable

estimation are τxm = O( 1
∆g−1 (εpj)L(εpj)) and NM = O(ε−2p−2

j ), respectively.

For the Gaussian cooling, we have

g−1(ε) = O
󰀃
log(ε−1)

󰀄
, (B.46)

which is exponentially better than the phase estimation algorithm.
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Appendix C

Error analysis of the adaptive
strategy

C.1 Error analysis

Proof of Proposition 4. To start with, we first express the algorithmic error of a circuit with 󰂓O

and 󰂓Λ in a finite time step δt as

ε̃ =

󰁴
󰀂e−iHδtG( 󰂓O, 󰂓Λ) |Ψ0〉 −G( 󰂓O, 󰂓Λ+ 󰂓λδt) |Ψ0〉 󰀂2. (C.1)

Denote the differential operator on Λj as ∂j ≡ ∂/∂Λj and ∂jj′ ≡ ∂j∂j′ . We can expand G( 󰂓O, 󰂓Λ+

󰂓λδt) as

G( 󰂓O, 󰂓Λ+ 󰂓λδt) = G( 󰂓O, 󰂓Λ) +
󰁛

j

λj∂jG( 󰂓O, 󰂓Λ)δt+
1

2

󰁛

jj′

λjλj′∂j∂j′G( 󰂓O, 󰂓Λ)δt2 +O(δt3) (C.2)

Therefore, we have

e−iHδtG( 󰂓O, 󰂓Λ)−G( 󰂓O, 󰂓Λ+ 󰂓λδt)

=− iHG( 󰂓O, 󰂓Λ)δt−
󰁛

j

λj∂jG( 󰂓O, 󰂓Λ)δt− 1

2
H2G( 󰂓O, 󰂓Λ)δt2 − 1

2

󰁛

jj′

λjλj′∂
2
jj′G( 󰂓O, 󰂓Λ)δt2 +O(δt3)

(C.3)

and

󰀂(e−iHδtG( 󰂓O, 󰂓Λ)−G( 󰂓O, 󰂓Λ+ 󰂓λδt)) |Ψ0〉 󰀂2

=󰀂 − (iH +
󰁛

j

λj∂j)G( 󰂓O, 󰂓Λ) |Ψ0〉 δt−
1

2
(H2 +

󰁛

jj′

λjλj′∂
2
jj′)G( 󰂓O, 󰂓Λ) |Ψ0〉 δt2 +O(δt3)󰀂2

=󰀂 |ψ1〉 δt+ |ψ2〉 δt2 +O(δt3)󰀂2 = |ψ1〉 〈ψ1| δt2 + 2Re (|ψ1〉 〈ψ2|) δt3 +O(δt4)

(C.4)

where

|ψ1〉 ≡ −(iH +
󰁛

j

λj∂j)G( 󰂓O, 󰂓Λ) |Ψ0〉 , |ψ2〉 ≡ −1

2
(H2 +

󰁛

jj′

λjλj′∂
2
jj′)G( 󰂓O, 󰂓Λ) |Ψ0〉 (C.5)
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Substituting the above expansion into Eq. (C.1), we have

ε̃ =
󰁴

∆2δt2 +∆2
2δt

3 +O(δt4) ≤ ∆δt+∆2δt
3/2 +O(δt2). (C.6)

The first-order order error ∆ can be expressed as

∆2 = |ψ1〉 〈ψ1| = 〈H2〉+
󰁛

jj′

Ajj′λjλj′ − 2
󰁛

j

Cjλj , (C.7)

where we denote

Ajj′ = Re
󰀓
〈Ψ0| ∂jG†( 󰂓O, 󰂓Λ)∂j′G( 󰂓O, 󰂓Λ) |Ψ0〉

󰀔
, Cj = Im

󰀓
〈Ψ0|∂jG†( 󰂓O, 󰂓Λ)HG( 󰂓O, 󰂓Λ)|Ψ0〉

󰀔
,

(C.8)

and

〈H2〉 = 〈Ψ0|G†( 󰂓O, 󰂓Λ)H2G( 󰂓O, 󰂓Λ)|Ψ0〉 . (C.9)

C.1.1 Error from the finite time step

In this section, the errors due to the finite time step is analysed, which is quantified by ∆2.

According to Eq. (5.12), to suppress the effect of the algorithmic error to εtotal with ∆(max)T =

εtotal/2 and ∆
(max)
2

√
δtT = εtotal/2, we need to ensure ∆(max) ≤ εtotal/(2T ), and also set the

time step δt ≤ ε2total/(4∆
2(max)
2 T 2). Hence we require the number of steps to be N = T/δt ≥

4∆
2(max)
2 T 3/ε2total.

Proposition 20. ∆2
2 is upper bounded as ∆2

2 ≤ 󰀂󰂓λ󰀂21󰀂H󰀂+ 󰀂󰂓λ󰀂1󰀂H󰀂2 + 󰀂󰂓λ󰀂31.

Proof. From Eq. (C.4), the error of the finite time step, ∆2, can be expanded as

∆2
2 =2Re (|ψ1〉 〈ψ2|)

=− Re

󰀳

󰁃〈Ψ0|
󰀃
iG†( 󰂓O, 󰂓Λ)H −

󰁛

j

λj∂jG
†( 󰂓O, 󰂓Λ)

󰀄󰀃
H2 +

󰁛

jj′

λjλj′∂
2
jj′

󰀄
G( 󰂓O, 󰂓Λ) |Ψ0〉

󰀴

󰁄

=Im

󰀳

󰁃〈Ψ0|G†( 󰂓O, 󰂓Λ)H
󰁛

jj′

λjλj′∂
2
jj′G( 󰂓O, 󰂓Λ) |Ψ0〉

󰀴

󰁄+Re

󰀳

󰁃〈Ψ0|G†( 󰂓O, 󰂓Λ)H2
󰁛

j

λj∂jG( 󰂓O, 󰂓Λ) |Ψ0〉

󰀴

󰁄

+Re

󰀳

󰁃〈Ψ0|
󰁛

j

λj∂jG
†( 󰂓O, 󰂓Λ)

󰁛

j′j′′

λj′λj′′∂
2
j′j′′G( 󰂓O, 󰂓Λ) |Ψ0〉

󰀴

󰁄 .

(C.10)

In the third equality, we use the fact that 〈ψ|H3 |ψ〉 is always real.
In our special case where G( 󰂓O, 󰂓Λ) is a product formula consisting of e−iP t operators, we have

󰀂∂jG( 󰂓O, 󰂓Λ) |Ψ0〉 󰀂 = 1. (C.11)
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Thus, we can simplify ∆2 as

∆2
2 ≤ 󰀂󰂓λ󰀂21󰀂H󰀂+ 󰀂󰂓λ󰀂1󰀂H󰀂2 + 󰀂󰂓λ󰀂31, (C.12)

where the norm 󰀂 · 󰀂 is the operator norm induced by the norm of quantum states, so that

󰀂H󰀂 = sup
|ψ〉

󰀂H |ψ〉 󰀂, (C.13)

and the 1-norm of the vector is defined as

󰀂󰂓λ󰀂1 =
󰁛

j

|λj |. (C.14)

It is also worth noting that 󰀂H󰀂 ≤ 󰀂H󰀂F =
󰁴󰁓

j a
2
j given that H =

󰁓
j ajPj , where 󰀂 · 󰀂F

is the Frobenius norm. We can thus estimate the appropriate time step length during the run of

the algorithm provided the parameters 󰂓λ.
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Appendix D

Perturbative quantum simulation

D.1 Equivalence between the two Monte Carlo methods

In this section, I prove the equivalence between the stochastic approach and the discrete time

Monte Carlo approach with δt → 0. Following the above discussion, we can regard the discrete

time Monte Carlo approach as a decaying process. Specifically, at each time step, it has proba-

bility p≥1 to apply an additional operation Φ̃. Starting at time t = 0 with the limit of δt → 0,

the probability that there is no ‘decay’ event until time t is

Q(t) = lim
δt→0

t/δt󰁜

i=0

󰀕
1−

󰁛

k≥1

p̃kδt

󰀖
= e−tα, (D.1)

where α =
󰁓

k |αk|. The probability to have a decay event in the time interval [t, t+ dt] is

P (t)dt = αe−tαdt. (D.2)

For the stochastic method, we generate a uniformly distributed random variable q ∈ [0, 1]

and solve

q = e−tjpα, (D.3)

to determine the jump time tjp. Then the probability that jump happens at time tjp or in

particular between [tjp, tjp + dt] is

|dq| = αe−tjpαdt = P (tjp)dt, (D.4)

which agrees with Eq. (D.2). We can thus use the uniformly distributed random variable q to

determine the jump time to equivalently simulate the discrete time Monte Carlo approach.

Now, at the jump time tjp, we apply the quantum operations other than the identity operation.

We can determine the quantum operation by generating another uniformly distributed random

number q′ ∈ [0, 1]. If q′ ∈ [sk−1, sk], we set the quantum operation to Bk, where sk(t) =

(
󰁓k

j=1 p̃j)/(
󰁓Nop

j p̃j) and Nop is the number of the quantum operations during the evolution.
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D.2 Expansion by Dyson series

I show in this section that the above explicit expansion method could be reformulated via the

Dyson series expansion.

D.2.1 Method description

I first introduce the general method. Consider the time evolution with Hamiltonian H = H loc +

V int, 󰁫
H loc + V int

󰁬
|ψ(t)〉 = i

∂|ψ(t)〉
∂t

, (D.5)

with H loc =
󰁓

l Hl and V int =
󰁓

j λjV
int
j =

󰁓
j λj

󰁔
l V

int
l,j . It becomes

λeiH
loc(t−t0)V inte−iHloc(t−t0) |ψI(t)〉 = i

∂ |ψI(t)〉
∂t

(D.6)

under the interaction picture with

|ψ(t)〉 = e−iHloc(t−t0) |ψI(t)〉 . (D.7)

A solution with Dyson series is

|ψI(t)〉 =
󰀗
1− i

󰁝 t

t0

dt1e
iHloc(t1−t0)V inte−iHloc(t1−t0)

−
󰁝 t

t0

dt1

󰁝 t1

t0

dt2e
iHloc(t1−t0)V inte−iHloc(t1−t0)eiH

loc(t2−t0)V inte−iHloc(t2−t0) + . . .

󰀘
|ψ (t0)〉

(D.8)

To measure any observable O =
󰁑

l Ol with OI = eiH
loc(t−t0)Oe−iHloc(t−t0), we have

〈ψI(t)|OI |ψI(t)〉 = 〈ψ (t0) |eiH
loc(t−t0)Oe−iHloc(t−t0)|ψ (t0)〉 ,

− 2(t− t0)

󰁝 t

t0

dt1
t− t0

ℜ
󰀗
i 〈ψ (t0) |eiH

loc(t−t0)Oe−iHloc(t−t1)V inte−iHloc(t1−t0)|ψ (t0)〉
󰀘
,

(D.9)

up to the first order expansion. Suppose |ψ(t0)〉 = |ψ1(t0)〉 . . . |ψL(t0)〉, the first term is

〈ψ (t0) |eiH
loc(t−t0)Oe−iHloc(t−t0)|ψ (t0)〉 =

󰁜

l

〈ψl (t0) |eiHl(t−t0)Oe−iHl(t−t0)|ψl (t0)〉 , (D.10)

where each term can be easily measured by evolving each subsystem state with the Hamiltonian

Hl and measure Ol. To measure the second term, we can uniformly sample t1 from t0 to t and

use the following circuit

(|0〉+ |1〉)/
√
2 X,Y

|ψl (t0)〉 e−iHl(t1−t0) V int
l,j e−iHl(t−t1) O
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to get 〈O〉l,j,t1 = 〈ψl (t0) |eiHl(t−t0)Ole
−iHl(t−t1)V int

l,j e−iHl(t1−t0)|ψ (t0)〉. Then we have

〈ψ (t0) |eiH
loc(t−t0)Oe−iHloc(t−t1)V inte−iHloc(t1−t0)|ψ (t0)〉 =

󰁛

j

λj 〈O〉1,j,t1 〈O〉2,j,t1 · · · 〈O〉L,j,t1 .

(D.11)

We can also randomly measure the first term or the second term, as well as each term of the

above summation. The cost is now

C1 = 1 + 2Tλ, (D.12)

with λ =
󰁓

j |λ|. Due to the first order expansion, the approximation error is

ε1 = O
󰀓
e|V

int|T (|V int|T )2
󰀔
. (D.13)

We can similarly consider expansion to the kth order, then the cost and the expansion error are

Ck =

k󰁛

n=0

(2Tλ)n/n!,

εk = O
󰀓
e|V

int|T (|V int|T )k+1/(k + 1)!
󰀔
.

(D.14)

With the limit of k → ∞, we have
C∞ = e2Tλ,

ε∞ = 0.
(D.15)

In this case, note that the cost is the same as the one for the explicit expansion. In the next

subsection, I show that they are actually equivalent. Several posted work has proposed the

quantum simulation with truncated Dyson series on a universal quantum computer in Refs. [351,

352].

D.2.2 Relation of perturbative expansion and Dyson series

The algorithm using Dyson series implements each expanded term (trajectory) with a quantum

computer and sums over the expansion via the average of different trajectories. This is very

similar to the above perturbative quantum simulation method. I prove that they are actually

equivalent.

Theorem 10. The infinite-order Dyson series method is equivalent to the perturbative quantum

simulation method with the explicit decomposition.

Proof. To see the equivalence, we first consider a pure state formalism for the perturbative

quantum simulation method with the explicit decomposition. Suppose the interaction term

V int(δt) is decomposed as follows,

V int(δt)[ρ] = I(ρ)− iδt
󰁛

j

λj(V
int
j ρ− ρV int

j ) +O(δt2). (D.16)
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Suppose ρ is a pure state ρ = |ψ〉 〈ψ|, then

V int(δt)[|ψ〉 〈ψ|] =I(ρ)− iδt
󰁛

j

λj(V
int
j |ψ〉 〈ψ|− |ψ〉 〈ψ|V int

j ) +O(δt2),

=

󰀕
I − iδt

󰁛

j

λjV
int
j

󰀖
|ψ〉 〈ψ|

󰀕
I + iδt

󰁛

j

λjV
int
j

󰀖
+O(δt2).

(D.17)

Then the whole time evolution with a pure input state |ψ(t0)〉 is

U(T ) |ψ(t0)〉 =
󰀗
e−iHlocδt

󰀕
I − iδtV int

󰀖󰀘T/δt
|ψ(t0)〉+O(δt2), (D.18)

and we have

U(T )[ψ(t0)] = U(T ) |ψ(t0)〉 〈ψ(t0)|U(T )†. (D.19)

Then each expanded term in U(T )[ψ(t0)] corresponds to the expanded terms in U(T ) |ψ(t0)〉 and
〈ψ(t0)|U(T )†. Now we expand the product of Eq. (D.18) and group the terms according to the

number of V int as

U(T ) |ψ(t0)〉 =
󰀗
e−iHlocT − iδt

T/δt󰁛

i=1

e−iHloc(T−iδt)V inte−iHlociδt,

− δt2
T/δt󰁛

i1≥i2=1

e−iHloc(T−i1δt)V inte−iHloc(i1−i2)δtV inte−iHloci2δt

󰀘
|ψ(t0)〉+O(δt2).

(D.20)

Multiplying eiH
locT and taking the limit of δt → 0 we have

lim
δt→0

eiH
locTU(T ) |ψ(t0)〉 =

󰀗
1− i

󰁝 T

t0

dt1e
iHloc(t1−t0)V inte−iHloc(t1−t0)

−
󰁝 T

t0

dt1

󰁝 t1

t0

dt2e
iHloc(t1−t0)V inte−iHloc(t1−t0)eiH

loc(t2−t0)V inte−iHloc(t2−t0) . . .

󰀘
|ψ (t0)〉 ,

(D.21)

which coincides with the Dyson series expansion.

Remark that the expansion is universal and avoids the computational cost in diagrammatic

perturbation theory. The algorithm with explicit decomposition in Eq. (6.35) effectively imple-

ments each expanded term (trajectory) and realise the joint time evolution by summing over the

expansion via the average of different trajectories.

D.3 Algorithm

The detailed algorithm of PQS is shown in Algorithm 5.
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Algorithm 5 Perturbative quantum simulation. Input: initial state ρ(0) =
󰁑

l ρl(0), number of
samples Ns, local evolution Ul, decomposition of the interaction V int(δt) = I + δt

󰁓
k αkΦ1,k ⊗

Φ2,k ⊗ · · ·⊗ ΦL,k with quantum operations Φl,j , measurement O =
󰁑

l Ol. Output: Ō.

1: Get C, {αj}, {p̃j = |αk|}, and θi = −i ln(αk/|αk|) from interaction channel V, set
󰀝
sj =

󰁓j
i=1 p̃i󰁓
i p̃i

󰀞
and Γ(t) = t

󰁓
k p̃k.

2: for m = 1 to Ns do
3: Randomly generate q0 ∈ [0, 1], set t = 0, n = 0, θ = 0.
4: while t ≤ T do

5: Get tnjp by solving exp
󰀓
−Γ(tnjp)

󰀔
= qn.

6: Randomly generate q′n ∈ [0, 1].
7: Set jn = j if q′n ∈ [sj−1, sj ] and update θ = θjn + θ.
8: Update t = t+ tnjp and n = n+ 1.
9: end while

10: for l = 1 to L do
11: Set ρl = ρl(0) and Ō = 0.
12: for k = 0 : n− 1 do
13: Evolve ρl under Ul for time tkjp and apply Φl,jk .
14: end for
15: Evolve ρl under Ul for time T −

󰁓n−1
k=0 t

k
jp.

16: Measure O of ρl to get Ol,m.
17: end for
18: Update Ō = Ō + Ceiθ

󰁔
l Ol,m/Ns

19: end for

D.4 Cost analysis

In this section, I provide the proof of the low bound of the cost in Section 6.2.3.

Proof or Theorem 4. Given the above decomposition, the Choi state of V int(δt) is

φint
1,1′,...,L,L′ =

󰁛

k

α̃kΦ1,k(φ1,1′)⊗ Φ2,k(φ2,2′)⊗ · · ·⊗ ΦL,k(φL,L′). (D.22)

Taking ψint
1,1′ as an example, we have

ψint
1,1′ =

󰁛

k

α̃k |Φ1,k(φ1,1′)〉 ⊗ 〈Φ2,k(φ2,2′)
∗|⊗ · · ·⊗ 〈ΦL,k(φL,L′)∗| , (D.23)

where |ΦL,k(φl,l′)〉 = Sl,l′(ΦL,k(φl,l′)) and 〈ΦL,k(φl,l′)
∗| = Tl,l′(ΦL,k(φl,l′)). Based on the triangle

inequality of the trace norm, we have

󰀂ψint
1,1′󰀂1 ≤

󰁛

k

|α̃k|
󰀐󰀐󰀐󰀐 |Φ1,k(φ1,1′)〉 ⊗ 〈Φ2,k(φ2,2′)

∗|⊗ · · ·⊗ 〈ΦL,k(φL,L′)∗|
󰀐󰀐󰀐󰀐
1

, (D.24)

The trace norm of each term is󰀐󰀐󰀐󰀐 |Φ1,k(φ1,1′)〉 ⊗ 〈Φ2,k(φ2,2′)
∗|⊗ · · ·⊗ 〈ΦL,k(φL,L′)∗|

󰀐󰀐󰀐󰀐
1

=Tr

󰀗󰁴
〈Φ1,k(φ1,1′)|Φ1,k(φ1,1′)〉 〈Φ2,k(φ2,2′)∗|Φ2,k(φ2,2′)∗〉 · · · 〈ΦL,k(φL,L′)∗|ΦL,k(φL,L′)∗〉

󰀘
.
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Note that

〈Φl,k(φl,l′)|Φl,k(φl,l′)〉 = 〈Φl,k(φl,l′)
∗|Φl,k(φl,l′)

∗〉 = Tr[Φl,k(φl,l′)
†Φl,k(φl,l′)]. (D.25)

Here we used the norms of S and T . Based on the property of generalised quantum operations

Φl,k, we have

Tr[Φl,k(φl,l′)
†Φl,k(φl,l′)] = 󰀂Φl,k(φl,l′)]󰀂22 ≤= 1. (D.26)

Combining the above results, we have

󰀂ψint
1,1′󰀂1 ≤

󰁛

k

|α̃k| = α̃. (D.27)

Since the inequality holds for any ψint
l,l′ , we have

α̃ ≥ max
l

󰀂ψint
l,l′󰀂1, (D.28)

which completes the proof.

D.5 Higher-order moments analysis

In the above discussion, I showed how to use the perturbative quantum simulation (PQS) method

to get linear observable measurements. Here, I show that the PQS method applies to measure-

ments of higher-order moments. We take the subsystem purity as an example, while the result

applies to general measurements. Without loss of generality, we consider the purity Tr[ρ1(T )
2]

of the first subsystem, and we denote the set without the first system as S = {2, .., L}. Following
the PQS method with the explicit expansion in Eq. (6.37), we have

U(T )
󰀗󰁒

l

ρl

󰀘
= C

󰁛

k

eiθkpk
󰁒

l

󰁫
Ũl,kT/δt

Ul(δt) . . . Ũl,k1Ul(δt)ρlU
†
l (δt)Ṽl,k1 . . . U

†
l (δt)Ṽl,kT/δt

󰁬
,

(D.29)

where the input state is
󰁑

l ρl, Ũl,k and Ṽl,k are either I or V int
l,j . Now we calculate the reduced

density matrix of the first subsystem,

ρ1(T ) = TrS [U(T )
󰀗󰁒

l

ρl

󰀘
],

=
󰁛

k

βkŨ1,kT/δt
U1(δt) . . . Ũ1,k1U1(δt)ρ1U

†
1(δt)Ṽ1,k1 . . . U

†
1(δt)Ṽ1,kT/δt

,
(D.30)

where

βk = Ceiθkpk
󰁜

l∈S
Tr

󰁫
Ũl,kT/δt

Ul(δt) . . . Ũl,k1Ul(δt)ρlU
†
l (δt)Ṽl,k1 . . . U

†
l (δt)Ṽl,kT/δt

󰁬
, (D.31)

which could be measured for each k. For the purity of the first subsystem, we have
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Therefore, we have

ρ21(T ) =
󰁛

k,k′

βkβk′Ũ1,kT/δt
U1(δt) . . . Ũ1,k1U1(δt)ρ1U

†
1(δt)Ṽ1,k1 . . . U

†
1(δt)Ṽ1,kT/δt

·Ũ1,k′
T/δt

U1(δt) . . . Ũ1,k′1
U1(δt)ρ1U

†
1(δt)Ṽ1,k′1

. . . U †
1(δt)Ṽ1,k′

T/δt
.

(D.32)

Suppose the initial state is pure ρ1 = |ψ1〉 〈ψ1|, we have

Tr[ρ21(T )] =
󰁛

k,k′

βkβk′ 〈ψ1|U †
1(δt)Ṽ1,k1 . . . U

†
1(δt)Ṽ1,kT/δt

Ũ1,k′
T/δt

U1(δt) . . . Ũ1,k′1
U1(δt) |ψ1〉

× 〈ψ1|U †
1(δt)Ṽ1,k′1

. . . U †
1(δt)Ṽ1,k′

T/δt
Ũ1,kT/δt

U1(δt) . . . Ũ1,k1U1(δt) |ψ1〉 .
(D.33)

We note that the two overlap terms could be evaluated with circuits that are similar to the ones

used for measuring linear observables. In practice, we can use the Monte Carlo method to estimate

the purity. The sample complexity for the purity estimation is related to
󰁓

k,k′ |βkβk′ | ∝ C2.

Other higher order moments can be derived similarly, and I leave it to the dedicated readers.

237



Appendix E

Response, neutron spectroscopy, and
quantum simulation

E.1 Response

In the discussion in Chapter 7, it is assumed that the perturbation is weak, and hence only linear

response is considered. This section concerns high-order response under external drive. Denote

the original unperturbed Hamiltonian as Ĥ0, and the perturbation as V̂ , and the Hamiltonian

reads

Ĥ = Ĥ0 + V̂ . (E.1)

In the Heisenberg picture, the operators are time dependent. The source of perturbation can be

mathematically written as

V̂ (t) =
󰁛

i

Ôi(t)fi(t), (E.2)

where the observable may be local as Ô(x, t). In engineered spectroscopy, the ground state of the

original Hamiltonian is initially prepared. We then apply a perturbation V̂ at time t = 0, and

measure the observable Ô at time t > 0. The perturbation drives the system out of equilibrium,

and the system will show a dynamic response to the perturbation applied.

In the interaction picture, the time-evolved state is expressed as

ρI(t) = UI(t)ρ0,I(t)U
†
I (t), (E.3)

with U(t) = U(t; t0 → ∞) and

UI(t; t0) := T exp(−i

󰁝 t

t0

V̂ (t1)dt1). (E.4)
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The expectation of observable can be expanded through the generalised susceptibility as

〈Ôi(t)〉 =Tr ρI(t)Ôi(t)

=Tr ρ0,I(t)U
†
I (t)Ôi(t)UI(t)

=〈Ôi(t)〉|f=0 − i

󰁝 t

−∞
dt1〈[Ôi(t), V̂ (t1)]〉+

󰁝 t

−∞
dt1dt2〈[[Ôi(t), V̂ (t1)], V̂ (t2)]〉+ . . . .

=〈Ôi(t)〉|f=0 − i

󰁝 t

−∞
dt1

󰁛

j

〈[Ôi(t), Ôj(t1)]〉fj(t1)

−
󰁝 t

−∞
dt1dt2

󰁛

jk

〈[[Ôi(t), Ôj(t1)], Ôk(t2)]〉fj(t1)fk(t2) + . . . .

:=〈Ôi(t)〉|f=0 +

󰁝 ∞

−∞
dt1

󰁛

j

χ
(1)
ij (t; t1)fj(t1) +

󰁝 ∞

−∞
dt1

󰁝 ∞

−∞
dt2

󰁛

jk

χ
(2)
ijk(t; t1, t2)fj(t1)fk(t2)+

+

󰁝 ∞

−∞
dt1

󰁝 ∞

−∞
dt2

󰁝 ∞

−∞
dt3

󰁛

jkl

χ
(3)
ijkl(t; t1, t2, t3)fj(t1)fk(t2)fl(t3) + ...

(E.5)

Here we have defined

χ
(1)
ij (t; t1) = −iθ(t− t1)〈[Ôi(t), Ôj(t1)], χ

(2)
ijk(t; t1, t2) = θ(t− t1)θ(t− t2)〈[[Ôi(t), Ôj(t1)], Ôk(t2)]〉.

(E.6)

The nested correlation function can be extracted from the dynamics of the observables.

In the weak perturbative regime, where linear response holds, we have

〈Ôi(t)〉 =Tr ρ0U
−1(t)Ôi(t)U(t)

=〈Ôi(t)〉|f=0 − i

󰁝 t

−∞
dt1〈[Ôi(t), V̂ (t1)]〉+O(󰀂V̂ 󰀂2).

(E.7)

Suppose that we have a delta-like pulse as V̂ (t) = −Ôjδ(t), and then the resulting change of

observables is

δ 〈Ôi(t)〉 = −i

󰁝 t

−∞
dt1〈[Ôi(t), V̂ (t1)]〉+O(󰀂V̂ 󰀂2)

= i〈[Ôi(t), Ôj ]〉+O(󰀂V̂ 󰀂2).
(E.8)

This indicates that we can infer the unequal-time correlator [Ôi(t), Ôj ] by directly measuring the

local observables. We have

〈[Ôi(t), Ôj ]〉 =
󰁛

µ,ν

〈0|µ〉 〈µ|Ôi|ν〉 〈ν|Ôj |0〉 ei(Eµ−Eν)t, (E.9)

from which energy differences can be obtained through spectroscopic analysis, which is introduced

in Chapter 7. Note that in equilibrium, the density matrix of the quantum state commutes with

the Hamiltonian, [ρ, H] = 0.

Non-linear response can be used to distinguish some phenomena, such as strong quenched

disorder and fractionalisation. Both mechanisms broaden the excitation spectrum and cannot be

distinguished from linear response spectroscopy [353].
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E.2 Relation to the projection operation

In this section, I show how the spectroscopy methods introduced in Chapter 7 relate to algorithmic

cooling introduced in Chapter 4. Recall that we have introduced the function G(t), which can

be equivalently written in the Schrödinger picture as

G(t) = 〈ψ0|eiHtÔe−iHt|ψ0〉 . (E.10)

This definition can be extended as

G(t, t′) = 〈ψ0|eiHtÔe−iHt′ |ψ0〉 . (E.11)

Let us define a weighted Fourier transform of G(t, t′) as

G(ω,ω′) =
c2

(2π)2

󰁝 ∞

−∞
G(τ t, τ t′)g(t)g(t′)eiθte−iθt′e−iτωteiτω

′t′dtdt′. (E.12)

We have

G(ω,ω′) =
󰁛

n,=0

Tr[Ô |n〉 〈n|ψ0〉 〈ψ0|n′〉 〈n′| p(τ(En − ω))p(τ(En′ + ω′))], (E.13)

with the function p(τω) is the dual Fourier transform of g(t) related by p(τω) = c
2π

󰁕
g(t)eiθte−iτωtdt.

Now the energies of |n〉 and |n′〉, which are originally connected by the energy selection rule,

are decoupled, and thus one can directly evaluate the energies instead of the energy gaps by

tuning the parameters ω,ω′: A special case is when we consider Ô = I and t′ = 0, where

G(ω, 0) =
c

2π

󰁝 ∞

−∞
G(t, 0)e−iτωtdt.

=
c

2π

󰁝 ∞

−∞
〈ψ0|eiτHt|ψ0〉 g(t)e−iτωtdt

=
c

2π

󰁛

j

|cj |2
󰁝 ∞

−∞
g(t)eiτ(Ej−ω)tdt

=
󰁛

j

|cj |2p(τ(Ej − ω)).

(E.14)

To see why G(ω, 0) could select the eigenvalues, let us consider a matrix function acting on the

Hamiltonian as

p̂(H) :=

N−1󰁛

i=0

p(Ei) |ui〉 〈ui| , (E.15)

where p(h) : R → C is a generic continuous-variable function determining the transformation of

the spectrum of the Hamiltonian. We find that G(ω, 0) effectively realises the projection operator

p̂ on the initial state as

G(ω, 0) = 〈ψ0|p̂(τ(H − ω))|ψ0〉 . (E.16)
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For instance, the projection operator could be p̂(τH) = e−τ2H2
, which projects out the

contribution of other eigenstates with an increasing τ . The eigenvalue information could, in

addition, be expressed by

P (ω) =
󰁛

j

|cj |2δ(ω − Ej), (E.17)

and one can find that

G(ω, 0) = (p 󰂏 P )(ω), (E.18)

which is because

(p 󰂏 P )(ω) =

󰁝 ∞

−∞
p(t)P (ω − t)dt =

󰁛

j

|c2j |
󰁝 ∞

−∞
δ(ω − Ej − t)dt =

󰁛

j

|cj |2p(Ej − ω). (E.19)

E.3 Learning from neutron scattering spectroscopy

As has been intensively discuss in previous section, scattering spectroscopy is a well-established

technique that has been widely used to explore properties of quantum materials. Nevertheless,

spectroscopy has inherent limitations; for instance, it can only probe properties of materials in

equilibrium phases. In addition, it could be difficult to explain the experimental data produced

in spectroscopy experiments due to a lack of effective models, or the computational complexity

involved in solving effective models. In this section, I discuss how to learn the effective physics

of quantum materials from the measurement outcomes of neutron scattering with the assistance

of quantum computing.

E.3.1 Motivation

Understanding quantum many-body phenomena of materials is a key research direction, as has

previously been stated in this thesis. However, it is largely limited by the contrast between the

finite computational resource and highly demanding complexity in the description and solution of

these systems. Neutron scattering provides a powerful tool for probing many-body phenomena,

and has achieved great success in the detection of magnetic structure, deepening our under-

standing in the fields of magnetism and superconductivity. As an example, in magnetic neutron

scattering, neutrons interact with spins of electrons, and the collected neutron intensities reflect

the magnetic response of electrons in the materials, which contain certain information about the

magnetic interaction in the materials under probe. Analysing the scattering data usually requires

the construction of a simple effective theory that contains the essential ingredients of the system

and makes some assumptions for the interacting models, for instance, static lattice and dipole

approximations. By fitting the experimental data, we can come up with a corresponding effective

Hamiltonian description of the phenomena of the materials.

However, several issues persist when attempting an accurate description of the materials.

First, the fitting of the experimental data relies on the assumptions and the effective model. At a
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fundamental level, we require a mean-field description of the model a priori; this usually involves

coarse-graining the details of the microscopic interactions, or downfolding the interactions [329],

to make it classically computable. We additionally require certain assumptions in order to capture

the physics during the scattering process. Indeed, the construction of a universal macroscopic

theory generally calls for a large set of parameters; however, experiments can only probe a

limited number of observables, thus limiting the flexibility of improving the description of a

given system [354]. In the case of a general many-body system, we may consequently fail to

accurately describe its essential features. More importantly, simulating the physics with a given

model and parameters can be classically hard to achieve. In principle, we may be unable to

reproduce the experimental data for a general system described in a quantum mechanical way,

even if we know the Hamiltonian. Furthermore, the experimental data may be subjected to non-

negligible errors, such as imperfections of samples, or large statistical variances of the intensity

from the neutron scattering experiment.

Quantum computing may provide an alternative means through which to address these chal-

lenging problems. Quantum computing has long been considered to be a promising solution for

solving many-body problems due to its ability to simulate a quantum problem with a quantum

system in a quantum mechanical way. In theory, quantum computing renders the possibility to

simulate the scattering process in spectroscopy experiments. Given sufficient experimental data,

we could learn the effective Hamiltonian by comparing the simulated results of the pre-assumed

Hamiltonian and experimental results. We could consequently predict experimental phenomena

in other scenarios. Simulated results from controllable quantum computers also offer the pos-

sibility of compensating for errors arising from imperfections in experiments, and could. thus

potentially provide more accurate results.

In this section, I provide a concrete demonstration of how dynamic correlations and associated

magnetic neutron cross-section can be efficiently estimated, and extract the effective physics from

neutron spectroscopy data. The tasks here are divided into two parts: simulation of the cross-

section that is measurable in neutron scattering, and the learning process. For the first task, I

first discuss how the problem can be encoded into a task for quantum computing. This is followed

by a discussion on the simulation of the observables that can be detected by neutron scattering.

I propose quantum algorithms for quantum spectroscopy simulation, in which several quantum

technologies that are compatible to near-term quantum devices are developed to promote its

practical implementation.

In the second part, I propose to learn the effective model from experimental data, which is

supported by efficient simulation of neutron spectroscopy using quantum computing techniques.

One first solves the microscopic dynamics of a system exactly, and computes the the magnetic

response. The effective description of the system could be identified by comparing the dynam-

ical response function, and the fitting of experimental results could be demonstrated with the
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assistance of a quantum computer. Finally, the reconstruction of the experimental outcomes is

demonstrated. It is expected that our protocol could provide some insights in explaining and

understanding the experimental results, and provide an additional comparison and solution to

spectroscopy.

E.3.2 Methods

The neutron scattering intensity measured at the detector can be written as a convolution of the

differential scattering cross-section d2σ
dΩ′dE′ as

I(Q, E) =

󰁝
d2σ

dΩ′dE′R(Q′, E′,Q, E)dQ′dE′ (E.20)

where the instrument resolution function R(Q′, E′,Q, E) is mainly determined by parameters

related to the instrument set-up, and Q and E are the wave-vector and energy transfer [355].

When the interaction between a neutron and the sample, V , is weak, standard perturbation

theory can be used to show that the partial differential cross-section is given by

d2σ

dΩdEf
=

kf
ki

󰀓mn

2π

󰀔2 󰁛

λiσi

pλi

󰁛

λfσf

|〈σfλf |V (Q)|σiλi〉|2 δ
󰀃
Eλf

− Eλi
− ω

󰀄
, (E.21)

where V (Q) is the Fourier transform of the interaction potential between the neutron and the

scattering system, |σiλi〉 represents the incident state before the scattering with energy Ei, mo-

mentum ki and spin polarisation σi, |σfλf 〉 represents the final state after the scattering with

energy Ef , momentum kf and spin polarisation σf , and pλi
is the thermal distribution.

For magnetic materials, the interaction potential contains the contribution from nuclear in-

teraction and magnetic interaction as

V (Q) = VN (Q) + VM (Q). (E.22)

Here, we mainly focus on pure magnetic scattering with VM (Q) = −µ0µn · M⊥(Q), µn =

−2γµNsn and M⊥(Q) := Q̂× {M(Q)× Q̂} is the projection of M onto the plane perpendicular

to normalised momentum Q̂ := Q/|Q|. The cross-section of magnetic scattering has the relation

with S(Q,ω) as
d2σ

dΩdEf
∝

kf
ki

S(Q,ω) (E.23)

where S(Q,ω) is the magnetic response function,

S(Q,ω) =
󰁛

λi

pλi

󰁛

λf

|2 〈σf |sn|σi〉 · 〈λf |M⊥(Q)|λi〉|2 δ
󰀃
Eλf

− Eλi
− ω

󰀄
. (E.24)

See Eq. (6.6) in Chapter 6 in [15] for details.

As such, we can find that the intensity detected by neutron scattering is closely related to the

partial magnetic response function, from which we may be able to detect the magnetic structure
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of the sample material and construct an effective model to describe the interesting many-body

behaviour. From the experimental data produced by neutron spectroscopy, we can build up

an effective model of the magnetic structures of the materials being probed. Essentially, it can

be reduced to a learning problem of the magnetic form factor and the effective Hamiltonian,

provided the intensity data collected from experiments.

However, it could be challenging to fully learn and compare the effective model in classical

methods. The challenges include the following:

1. Certain assumptions have to be made to obtain the form of interactions and hence M(Q).

For instance, under static lattice approximation and dipole approximation with a quenched

orbital angular momentum, we have M(Q) ≃ −gµBf(Q)S, which is a product of a form

factor and a spin operator.

2. The computational complexity of spectroscopy simulation may be considerable. Given a

general form of M(Q), the simulation complexity of neutron spectroscopy scales exponen-

tially with the system size.

3. The experimental data may have large statistical errors, and errors occurring as a result of

imperfect samples, and sample mounting1.

Here, I address these challenges with the assistance of quantum computers. I will first set up

a formal description of the problem. To make a connection in a quantum computing setup, let

us consider the time-resolved response function. The partial magnetic response functions can be

alternatively expressed as the time Fourier transform of a correlation function

Sαβ(Q,ω) =
1

2π

󰁝 ∞

−∞

󰁇
M †

α(Q)Mβ(Q, t)
󰁈
exp(−iωt)dt. (E.25)

We can see from Eq. (E.25) that the partial response function is the Fourier transform of the

dynamic correlation function Gαβ(Q, t) at momentum Q

Gαβ(Q, t) = 〈M †
α(Q)Mβ(Q, t)〉 = Tr

󰁫
M †

α(Q)eiHtMβ(Q)e−iHtρ
󰁬
, (E.26)

where we have used the density matrix representation.

The Hamiltonian and the magnetic form factor can be expressed as H := H(󰂓θ1) and M :=

M(󰂓θ2) with parameters 󰂓θ1 and 󰂓θ2. From the experimental data, we can derive the measured

response function Sαβ(Q,ω), and hence we can get {Gαβ(Q, t)}. The problem is now transformed

into a learning problem: given a series of {Gαβ(Q, t)}, how to learn the parameters of the effective

model.

Intuitively, we can compare the measured observables, i.e., the dynamic correlation function

Gαβ(Q, t), from the neutron scattering with that simulated from the a priori Hamiltonian, which

1Here, it is worth pointing out that imperfections of samples can also be regarded as a true property of the
sample being studied, and thus are not errors.
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we denote as Ḡαβ(Q, t) and Gαβ(Q, t|θ), respectively. Here, Ḡαβ(Q, t) serves as the reference.

Formally, we can minimise the distance between Ḡαβ(Q, t) and Gαβ(Q, t|θ)

min
θ

|Gαβ(Q, t|θ)− Ḡαβ(Q, t)| (E.27)

or the measured spectrum

min
θ

|Sαβ(Q,ω|θ)− S̄αβ(Q,ω)|, (E.28)

over the parameters.

It is worth noting that the response function in the frequency domain may not be directly

simulated on a quantum computer. Instead, we can first simulate the time-resolved G and then

Fourier transform it to estimate the response. Since we have to set a cutoff for the maximum

evolution time, this will bring about a systematic error in the spectrum, especially in the low

energy spectrum. Moreover, there is a limitation of finite size, which may be alleviated by

imposing a periodic boundary condition. Quantum simulation of neutron spectroscopy will be

discussed in the following section.

E.4 Quantum simulation strategy

E.4.1 Stage setup

To learn the effective model, we must be able to efficiently simulate the dynamic correlation

function Gαβ(Q, t|θ). Therefore, we first discuss how to simulate the dynamic correlation function

Gαβ(Q, t) provided an effective model. While simulating the neutron scattering spectroscopy

may not be efficient for a general effective model, we can leverage quantum computing in this

context to make the simulation efficient. The key procedure for the quantum computing can be

summarised as follows:

1. Map the target systems of interest to qubits;

2. Prepare the initial state;

3. Evolve the initial state governed by the Hamiltonian for time t;

4. Obtain the time-resolved correlation function by measuring the observable.

This strategy fits within the framework developed in this thesis, and therefore, quantum

simulation strategies developed in this thesis naturally applies in this context. I am sure that the

reader is now already very familiar with it when coming to this point, so I will not over-elaborate

on this specific application. However, I will briefly discuss thermal state preparation, which may

also find application in other areas.

To compute the expectation of an observable, the first step is to prepare a thermal state [1],

which is QMA-hard in general. There are several proposals to prepare the thermal stats, such
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as purification, quantum metropolis sampling, and a minimally entangled typical thermal state

(METTS) algorithm [356]. This sections focuses on the METTS and discusses its implementation

on a quantum computer. In contrast to purification, we only require operating on a single system

as opposed to two copies of systems. More concretely, in the standard purification method, the

thermal state can be written as ρ = TrE |Φ〉 〈Φ| with

|Φ〉 = 1√
Z

󰀓
e−

1
2
βH ⊗ IE

󰀔
|Φ+〉 (E.29)

where |Φ+〉 = 1
√
d
󰁓

AE |i〉A |i〉E is the maximal entangled state, A and E represents the system

and the environment, respectively. Therefore, we can input a maximally entangled state |Φ+〉 of
the whole system (AE) and evolve the whole system with Hamiltonian H ⊗ I under imaginary-

time τ . Then, the state of system A at time τ = β/2 will be the thermal state with temperature

T . This method requires an ancillary system on which to operate.

The minimally entangled typical thermal state algorithm calculates thermal properties by

sampling the state obeying the thermal equilibrium condition. I will first discuss the main

algorithm, and then show how to implement the subroutine of the sampling process based on

imaginary-time evolution.

The thermal average can be expressed as

〈Ô(t)〉 = 1

Z
Tr

󰁫
e−βHÔ(t)

󰁬
=

1

Z

󰁛

i

〈i|e−
β
2
HÔ(t)e−

β
2
H |i〉 (E.30)

where {|i〉} is an orthonormal basis set. Define

|φi〉 = P
−1/2
i e−

β
2
H |i〉, (E.31)

and we have

〈Ô(t)〉 = 1

Z

󰁛

i

Pi〈φi|Ô(t)|φi〉 =
1

Z

󰁛

i

Pi〈φi|Mαe
iHtMβe

−iHt|φi〉 (E.32)

where we define Ô(t) := Mαe
iHtMβe

−iHt. The summation can be estimated by sampling |φi〉
with probability Pi/Z and then sum the sampled expectation value 〈Ô(t)〉 which can be measured

by a Hadamard test circuit. The procedure can be summarised as follows.

1. Prepare a product state |i〉.

2. Prepare |φi〉 by quantum imaginary-time evolution (QITE) and measure the observables of

interest.

3. Collapse the state |φi〉 to a new state |i′〉 by quantum measurement.
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The central idea of QITE is to approximate the nonunitary operator by a sequence of unitary

operators,

|φi〉 = P
−1/2
I e−

β
2
H |i〉 ≈ U |i〉 . (E.33)

Various methods can be used for this approximation, such as the variational methods introduced

in Section 2.2.3.3 or the QITE methods introduced and developed in [177, 357]. I will elaborate

on the QITE method in Section E.4.3. Note that observables of interest are measured on the

ancillary qubit, and the state will not collapse after the measurement. We can consequently

perform measurements on the state to decide the new initial basis for the next iteration.

E.4.2 Mapping to qubits

The spins of electrons under consideration need to be encoded into qubits. For the case of

spin-1/2 particles, this mapping takes a simple form

󰀏󰀏󰀏󰀏
1

2

󰀠
:= |0〉,

󰀏󰀏󰀏󰀏−
1

2

󰀠
:= |1〉, (E.34)

which leads to a natural mapping of the spin operators to Pauli operators

Sα =
1

2
σα, (E.35)

with α = x, y, z. The generalisation to spin-S systems can be realised using qudits or using a

symmetric encoding. The latter one is conceptually simple and could be easy to implement,

although it requires more qubits for the encoding (see [65] for details).

E.4.3 Thermal state preparation

The subroutine of the METTS relies on the preparation of the state under imaginary-time evo-

lution as |φi〉 = P
−1/2
i e−

β
2
H |i〉. The following is a brief review of state preparation by quantum

imaginary-time evolution. Suppose the Hamiltonian has the decomposition H =
󰁓L

l=1 ĥl, where

the Hamiltonian contains L local terms and each ĥl acts on at most k neighbouring sites. The

goal here is to simulate quantum states under imaginary-time evolution,

|Ψ〉 = e−βH |Ψ0〉 / 〈Ψ0|e−2βH |Ψ0〉 (E.36)

Using the first-order Trotterization, the evolution operator can be represented as

e−βH =

󰀣
L󰁜

l=1

e−δτH

󰀤n

+O(δτ) (E.37)

with the total number of steps n = β
δτ .

The evolved state after applying a nonunitary operator e−δτ ĥl within imaginary-time δτ is

given by

|Ψ(τ + δτ)〉 = c−1/2e−δτH |Ψ(τ)〉 ≈ e−iδτÂ|Ψ(τ)〉, (E.38)
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where c is the normalisation factor and Â is a Hermitian operator that acts on a domain of D

qubits around the support of ĥl as

Â =
󰁛

i1i2...iD

ai1i2...iD σ̂i1 σ̂i2 . . . σ̂iD =
󰁛

I

aI σ̂I , (E.39)

where I denotes a set of indices i1, i2, ..., iD. The unitary operator e−iδτÂ can be determined by

minimising the approximation error in Eq. (E.38) as

min 󰀂c−1/2e−δτH |Ψ(τ)〉 − e−iδτÂ|Ψ(τ)〉󰀂2. (E.40)

Up to O(δτ), the coefficients a are defined by the linear system

Sa = b, (E.41)

where the elements of S and b are expectation values over k qubits, defined by

SI,J = Re(〈Ψ|σ̂†
I σ̂J |Ψ〉), bI = −c−1/2 Im(〈Ψ|Hσ̂I |Ψ〉). (E.42)

For a local Hamiltonian with nearest-neighbour interactions on a d-dimensional cubic lattice,

the domain sizeD is bounded byO(Cd), where C is the correlation length. The circuit complexity

is shown in the following result. More details about the algorithm complexity can be found in

Ref. [177].

Theorem 11 (in [177]). For a d-dimensional system, for every ε > 0, there are unitaries U

each acting on Nq = k(2C)d lnd
󰀃
2
√
2nLε−1

󰀄
qubits, such that 󰀂 |ΨLn〉− |ΦLn〉 󰀂 ≤ ε, where |ΨLn〉

represents the exact state while |ΦLn〉 represents the approximated state after the nonunitary

operations, and C is the correlation strength.

Instead of realising the nonunitary operator e−βH in the Trotter decomposition one-by-one, we

can utilise the representation of the quantum circuit, and train the parameters to effectively realise

the imaginary-time evolution. It is assumed that the time-evolved state can be approximated by

a parameterised trial state |ψ(󰂓θ(τ))〉 , with variational parameters 󰂓θ(τ). As mentioned in [120], by

minimising the distance between the ideal evolution and the evolution of the parameterised trial

state, the evolution of the target state |ψ(τ)〉 under the Schrödinger equation can be mapped to

the trial state manifold as the evolution of parameters 󰂓θ. This has been discussed in Section 2.2.

The next step is to realise the time evolution Ô(t) := Mαe
iHtMβe

−iHt. Various Hamiltonian

simulation algorithms which are introduced in Chapter 2 can be used; for instance, product

formulae, and the methods developed in Chapter 5, Chapter 6, and Chapter 9. In addition,

variational algorithms introduced in Section 2.2 can also be used.
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E.4.4 Low-temperature and high-temperature limit

In the experiment, we are interested in the phases at low-temperature or high-temperature,

which correspond to the ground state and the normal state, respectively. For these two phases,

we can prepare the initial state more efficiently. The following elaborates and expands on the

implementation.

In the high-temperature limit, the density matrix is roughly a maximally mixed state

ρ ≈ I

D
, (E.43)

with D = Tr[I] = 2n being the system size. In this case, the observable dynamics is thus given

by

〈Ô(t)〉 =
Tr[MαMβ(t)]

D
. (E.44)

This indeed contains some information of the Hamiltonian. However, high-temperature spec-

troscopy in neutron scattering is usually used as the background, and is subtracted by the low-

temperature data.

In the low-temperature limit, the initial state is the ground state, which can be obtained by

many means. For instance, we can use the variational approach

|Ψ〉 = U(θ) |Ψ0〉 , (E.45)

or by QITE as

|Ψ〉 = lim
β→∞

c−1/2eβH |Ψ0〉 , (E.46)

as extensively discussed in the above section.

E.4.5 Phase correction by sum rules

Some useful relations are imposed by the spectral properties, which can be used to calibrate the

results from noisy quantum computers. Here, I have listed some examples of useful relations as

a reference for interested readers, and would direct the interested reader to [15] for more details

on this topic.

The thermal average of spins evolution

󰀍
S2
i

󰀎
= Si (Si + 1) =

󰁛

α

Gαα
ii (0). (E.47)

The dynamic part of the response function is

S̃(Q,ω) = S(Q,ω)− | 〈M⊥(Q)〉 |2δ(ω), (E.48)

which is related to the generalised susceptibility by the fluctuation-dissipation theorem as

󰁨Sαβ(Q,ω) = {1 + n(ω)} 1
π
χ′′
βα(Q,ω). (E.49)
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The general sum rule related to the uniform static susceptibility can be expressed by

󰁨Sαβ(0,ω) = ω{1 + n(ω)}χ′
βα(0, 0)Fβα(ω) (E.50)

where Fαβ(ω) is a spectral-weight function that has unit normalisation,

󰁝 ∞

−∞
Fαβ(ω)dω = 1. (E.51)
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Appendix F

Ground state property estimation

In this chapter, I first demonstrate an efficient measurement scheme that is ancilla-free in Sec-

tion F.1. There follows a demonstration of ground state property estimation by using quantum

signal processing and phase estimation.

F.1 Ancilla-free measurement

An important component of many quantum algorithms is the ability to measure the expectation

value of a unitary operation, such as those discussed in Chapter 4, Chapter 6 and Chapter 9.

This quantity can be measured by using a Hadamard test circuit, which, however, introduces an

additional ancillary qubit to control the unitary operation, and hence involves more controlled

gates.

In many practical cases, the target problem has certain symmetries Ŝ satisfying [H, Ŝ] = 0.

Consequently, the state can be divided into state space with different symmetry sectors. For

instance, for fermionic problems, the Hamiltonian has particle number symmetry, [H, N̂ ] = 0

with N =
󰁓

i a
†
iai. In this case, the state can be divided into different sectors in the Hilbert

space with different particle numbers, H : span{|i〉} with |i〉 representing the state with i particles.

Suppose we aim to evaluate 〈ψ0|U |ψ0〉, and in our scenario the unitary is either U = e−iHt

or U = e−iHt1Ôe−iHt2 . The expectation value 〈ψ0|U |ψ0〉 can be written in complex polar coor-

dinates as 〈ψ0|U |ψ0〉 = reiθ. In general, fidelity estimation for a general overlap 〈φi|φj〉 can be

implemented by a SWAP test or destructive SWAP test. However, if ψ0 is a product state, such

as a mean-field state, the amplitude of the expectation value r = | 〈ψ0|U |ψ0〉 | can be obtained

by measuring in the computational basis. The next step is to obtain the phase θ, for which we

can make use of the fact that the unitary operation conserves the symmetry of Ŝ, [U, Ŝ] = 0. It

is assumed that we can find a reference state |R〉, which lies in a different sector of the initial

state, and thus we have 〈R|U |ψ0〉 = 0 [358]. If we take the reference state as the vacuum state

with zero number of particle, |R〉 = |vac〉, then the reference amplitude rR = 1, and the phase

θR = −t 〈R|H|R〉.
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Suppose the following state can be prepared

|φ0〉 = Us |ψ0〉 =
1√
2
(|R〉+ |ψ0〉). (F.1)

Denote the amplitude and phase of 〈R|U |R〉 as rR and θR, respectively, and we have 〈R|U |R〉 :=
rRe

iθR . We can readily find that

θ = arccos

󰀕
4r2s − r2 − r2R

2rRr

󰀖
+ θR (F.2)

where

rs = | 〈ψ0|U †
sUUs|ψ0〉 | (F.3)

can be similarly measured in the computational basis.

One of the key requirements of this protocol is the preparation of the superposition state.

Taking the fermionic problem as an example, the Hartree-Fock state takes the simple product-

state form |ψ0〉 = |0〉⊗N−Ne |0〉⊗Ne ∈ {|Ne〉}, where the first Ne qubits are prepared in the one

state and the rest of the qubits remain in the zero state. To prepare the target superposition

state, |φ0〉, the Hadamard gate is applied to the first qubit, followed by a ladder of CNOT gates

applied up to the Neth qubit, resulting in a total of Ne − 1 CNOT gate operations.

To further reduce the gate count in the state preparation, we may choose |R〉 ∈ {|Ne ± 1〉},
so that only one additional CNOT gate is required.

F.2 Ground state property estimation by quantum signal pro-
cessing

In this section, I discuss ground state preparation by quantum signal processing, proposed in [31],

which achieves near-optimal asymptotic scaling in this task. The following is an overview of the

resource requirements for each step in their protocol, with the quantum circuit compiled at an

elementary gate level. Denote the resource as (·, ·, ·, ·) with the three elements representing the

ancillary qubits, the number of CNOT gates, the number of T gates, and single-qubit Rz rotation.

1. Block encoding: (nL, SCNOT + 2PCNOT, ST + 2PT, 0)

2. Controlled select(H) and two PREP operations: (nL + 1, SCNOT + 2PCNOT, ST + 2PT, 2)

3. QSP of the sign function and hence the R operator: (nL+2, d(SCNOT+2PCNOT)+2d, d(ST+

2PT), 3d) with d = [2eλ∆ ln(32π−1/2ε−1)]

4. Projector, which is a controlled version of R: (nL + 3, d(4 + 6SCNOT + 2PCNOT + 2ST +

2L), d(7SCNOT + 5ST + 2PT + 4L), 4d).

5. Amplitude amplification. (nL + 3 + ⌈n−3
2 ⌉, dγ−1(SCNOT + 2PCNOT + 6n − 10), dγ−1(ST +

2PT + 8n− 17), 3dγ−1) with d = [2eλ∆ ln(32π−1/2γ−1ε−1)].
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The gate cost is elaborated upon in the 4th step. The controlled gates in each block are

compiled as follows:

1. Controlled phase iterate operations: 2 CNOT + 2 single-qubit rotation. Thus, the total

single-qubit Pauli rotation gate is 4d.

2. Controlled C-select(H) and 2 PREP. CNOT: 6SCNOT + 2PCNOT + 2ST. The thrid 2ST is

from that one controlled T gate can be synthesised by 2 CNOT and 2
√
T gates.

T gate: 7SCNOT + 5ST + 2PT, where the first 7 comes from Toffolis gates, the second 5

is from that one controlled T gate can be synthesised by 2 CNOT and 2
√
T gates, and

we simply assume that 2
√
T may be catalysed by 5 T gats using the Hamming weight

strategy introduced in [187].

Note that the select(H) has the Hadamard gates: each controlled Hadamard gives 2 T

gates and 1 CNOT gate. At least, we have 2L+ nL Hadamard gates in select(H).

3. The other operations are symmetric.

Step 5 accrues an additional cost from the reflection operation, whose cost can be estimated

from Proposition 12. Here, since only circuit depth in a single run is compared, the cost of

amplitude amplification is not taken into account.

Ground state preparation errors are composed of two parts: an error from the approximation

of the sign function, and a block-encoding error of the PREP operation

ε = εsgn + εtot,PREP. (F.4)

Here, one may take εsgn = εtot,PREP = ε/2. Considering 2d repetitions of the PREP operation

and the relation between εPREP and 󰂃 by εPREP = ε
4dλ , one may choose to set the amplitude

encoding error as

εAE =
ε

4λLd
, (F.5)

and nAE = ⌈− log2 nAE⌉.

F.2.1 Methods

In this section, I review the methods used in ground state preparation by QSP in [31]. The QSP

theorem is presented below.

Lemma 3 (QSP for polynomials of definite parity [31,33]). Let U be an (α, nL, 0)-block-encoding

of a Hermitian matrix A. Let P ∈ R[x] be a degree-d even or odd real polynomial and |P (x)| ≤ 1

for any x ∈ [−1, 1]. Then there exists a (1, nL+1, 0)-block-encoding 󰁨U of P (A/α) using d queries

of U , U †, and O((nL + 1)d) other primitive quantum gates.
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A key component of this method is a polynomial approximation of the sign function in the

domain [−1,−δ] ∪ [δ, 1]. Similarly to [31], one can use an explicit construction of a polynomial

with the same error scaling, as shown in Lemma 9. The construction is provided in [359] based

on an approximation by the Gaussian error function. A more detailed complexity analysis is

presented in Lemma 7.

Lemma 4 (Polynomial approximation to the sign function sgn(x)). For any δ < 1, ε ≤
󰁳

2/πe,

the polynomial S(x, δ, ε) = psgn,δ,n(x) = perf,k,n(x) of odd degree d =
󰀅
e
2δ ln(32π

−1/2ε−1)
󰀆
=

O(δ−1 log (ε−1)) satisfies

εsgn,δ,n = max
x∈[−1,−δ]∪[δ,1]

|psgn,δ,n(x)− sgn(x)| ≤ ε. (F.6)

Below, I reviewed the key results of ground state preparation in [31].

When we have the (λ, nL, 0)-block-encoding of a Hermitian matrix H =
󰁓

k Ek |uk〉 〈uk| ∈
CN×N , N = 2n, Ek ≤ Ek+1, we can construct a (λ + |µ|, nL + 1, 0)-block-encoding of matrix

H − µI using [34, Lemma 29] for any µ ∈ R.

|0nL〉 PREP
select(H)

PREP†

|φ〉

Figure F.1: Block encoding of H.

|0〉 Rµ • R†
µ

|0nL〉
UH|φ〉

Figure F.2: Block encoding of H − µI. Rµ |0〉 =
󰁴

λ
λ+|µ| |0〉+

󰁴
|µ|

λ+|µ| |1〉

Then using the QSP theorem in Lemma 3, we can obtain a (1, nL + 2, 0)-block-encoding of

−S(H−µI
λ+|µ| ; δ, ε) for any δ and ε. If it is assumed that ∆/2 ≤ mink |µ− Ek|, then let δ = ∆

4λ . We

know that all the eigenvalues of−S(H−µI
λ+|µ| ; δ, ε) are ε-close to either 0 or 1, and thus−S(H−µI

λ+|µ| ; δ, ε)

is ε-close, in operator norm, to the reflector about the direct sum of eigen-subspaces corresponding

to eigenvalues smaller than µ:

R<µ =
󰁛

k:Ek<µ

|uk〉 〈uk|−
󰁛

k:Ek>µ

|uk〉 〈uk| ,

and thus the block-encoding is also a (1, nL + 2, ε)-block-encoding of R<µ. Denote this block-

encoding by REF(µ, δ, ε).
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Lemma 5 (Reflector and projector [31]). Given a Hermitian matrix H with its (λ, nL, 0)-block-

encoding UH , with the guarantee that µ ∈ R is separated from the spectrum of H by a gap of at

least ∆/2, we can construct a (1, nL + 2, ε)-block-encoding of R<µ, and a (1, nL + 3, ε/2)-block-

encoding of P<µ, both using O( λ
∆ log(1ε )) applications of UH and U †

H , and O(nLλ
∆ log(1ε )) other

one- and two-qubit gates.

The essential component of the QSP protocol here is projector P<µ, which projects the original

space into the direct sum of eigen-subspaces corresponding to eigenvalues smaller than µ

P<µ =
󰁛

k:Ek<µ

|uk〉 〈uk|=
1

2
(I +R<µ).

A block-encoding of the projector can be constructed by using the controlled REF(µ, δ, ε) as

|0〉 H • H

|0nL+2〉
REF(µ, δ, ε)|φ〉

(F.7)

where H is the Hadamard gate, and denote this circuit as PROJ(µ, δ, ε). Using the relation of

P<µ = 1
2(R<µ + I), PROJ(µ, δ, ε) is a (1, nL + 3, ε/2)-block-encoding of P<µ.

The result for ground state preparation is summarised in Lemma 6.

Lemma 6 (Ground state preparation with known ground energy bound [31]). Suppose we have

Hamiltonian H =
󰁓

k Ek |uk〉 〈uk| ∈ CN×N , where Ek ≤ Ek+1, given through its (λ, nL, 0)-block-

encoding UH . Also suppose we have an initial state |φ0〉 prepared by the circuit UI , as well as

the promises of a nonvanishing overlap and a nonvanishing gap. Then the ground state |ψ0〉 can
be prepared to fidelity 1− ε with the following costs:

1. Query complexity: O( λ
η1/2∆

log( 1
η1/2ε

)) queries to UH and O( 1
η1/2

) queries to UI ,

2. Number of qubits: O(n+ nL),

3. Other one- and two- qubit gates: O( nLλ
η1/2∆

log( 1
η1/2ε

)).

Lemma 7 (Polynomial approximation to the sign function sgn(x)). For ∀ κ > 0 there exists the

polynomial psgn,κ,n(x) = perf,k,n(x) of odd degree n =
󰁫
e
κ ln 32√

πε

󰁬
= O( 1κ log (1/ε)) such that

εsgn,κ,n = max
x∈[−1,−κ/2]∪[κ/2,1]

|perf,k,n(x)− sgn(x)| ≤ ε, (F.8)

where perf,k,n(x) is the Gaussian error function erf(kx) truncated at order n defined in Eq. (F.9),

and k = 1
κ

󰁴
2W ( 8

πε2
) with W being the Lambert-W function.

Following the convention in [359], perf,k,n(x) is the Gaussian error function erf(kx) truncated

at order n defined as

perf,k,n(x) =
2ke−k2/2

√
π

󰀳

󰁃I0(k
2/2)x+

(n−1)/2󰁛

j=1

Ij(k
2/2)(−1)j

󰀕
T2j+1(x)

2j + 1
− T2j−1(x)

2j − 1

󰀖󰀴

󰁄 , (F.9)
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where Ij(·) are modified Bessel functions of the first kind. In what follows, we show the explicit

form of the degree, following [359] rather closely.

Proof of Lemma 7. As shown in Ref. [359], the starting point is to express the exponential decay

function using the Jacobi-Anger expansion as

fexp,β(x) = e−β(x+1) = e−β

󰀳

󰁃I0(β) + 2

∞󰁛

j=1

Ij(β)Tj(−x)

󰀴

󰁄 , (F.10)

where Ij(β) are modified Bessel functions of the first kind, Tj is the Chebyshev function, and

the domain of this function is assumed to be x ∈ [−1, 1]. By truncating the expansion at a finite

order, j > n, we can obtain a degree n polynomial approximation pexp,β,n(x) with truncation

error εexp,β,n:

pexp,β,n(x) = e−β

󰀳

󰁃I0(β) + 2

n󰁛

j=1

Ij(β)Tj(−x)

󰀴

󰁄 , (F.11)

εexp,β,n = max
x∈[−1,1]

|pexp,β,n − fexp,β | = 2e−β
∞󰁛

j=n+1

|Ij(β)|. (F.12)

By solving εexp,β,n, one can in principle obtain the required degree n as a function of β, ε.

As proven in [359, Lemma 13], ∀β > 0, ε ∈ (0, 1/2], there exists a polynomial pn of degree

n = ⌈
󰁳

2⌈max[βe2, log (2/ε)]⌉ log (4/ε)⌉ (F.13)

such that maxx∈[−1,1] |pn(x)− e−β(x+1)| ≤ ε. A polynomial approximation to the Gaussian func-

tion follows by noticing its relation to the exponential decay function

pgauss,γ,n(x) = pexp,γ2/2,n/2(2x
2 − 1) = e−γ2/2

󰀳

󰁃I0(γ
2/2) + 2

n/2󰁛

j=1

Ij(γ
2/2)(−1)jT2j(x)

󰀴

󰁄 , (F.14)

For ∀γ ≥ 0, ε ∈ (0, 1/2] by choosing even degree n = ⌈
󰁳

⌈max[γ2e2/2, log (2/ε)]⌉ log (4/ε)/2⌉,
the approximation error is bounded by

εgauss,γ,n = max
x∈[−1,1]

|pgauss,γ,n(x)− e−(γx)2 | ≤ ε. (F.15)

which uses the relation εgauss,γ,n = εexp,γ2/2,n/2.

From the definition of the error function erf(kx) = 2
π

󰁕 kx
0 e−x2

= 2k√
π

󰁕 x
0 e−(kx)2dx, the poly-

nomial perf,k,n(x) = k
󰁕 x
0 pgauss,k,n−1(x)dx follows from integrating Eq. (F.14) term-by-term. The

error of the remaining terms is bounded as

εerf,k,n ≤ 4ke−k2/2

√
πn

∞󰁛

j=(n+1)/2

|Ij(k2/2)| =
4k√
πn

εgauss,k,n−1. (F.16)
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We thus have the following result [359, Corollary 4]. For ∀k > 0, ε ∈ (0,O(1)] the odd

polynomial perf,k,n,

perf,k,n(x) =
2ke−k2/2

√
π

󰀳

󰁃I0(k
2/2)x+

(n−1)/2󰁛

j=1

Ij(k
2/2)(−1)j

󰀕
T2j+1(x)

2j + 1
− T2j−1(x)

2j − 1

󰀖󰀴

󰁄 , (F.17)

of odd degree n =
󰁫󰁴

t
2 ln

16r√
πε

󰁬
and t = ⌈max{k2

2 e
2, ln 8r√

πε
}⌉, suffices to bound the error up to ε

as

εerf,k,n = max
x∈[−1,1]

|perf,k,n(x)− erf(kx)| ≤ ε. (F.18)

which uses εerf,k,n ≤ 4k√
πn

εgauss,k,n−1 ≤ ε.

The equation for k comes from Lemma 8, which shows the relation of the sign function and

the error function. We have k = 1
κ

󰁴
2W ( 2

πε2
) ≥ 1

κ

󰁴
2 ln( 2

πε2
), with W being the Lambert-W

function.

In the above equation of n, we defined r = k/n which is dependent of n. The degree is of the

order n = Ω(k ln1/2 (1/ε)), and hence r = k/n = O(ln−1/2(1/ε)) = O(1), which does not change

the asymptotic scaling. Since n has a logarithmic dependence of r, we set r = 1 for the sake

of simplification. To obtain a more accurate estimation, one may calculate n self consistently.

Under this simplification, the polynomial approximation of odd degree n =
󰁫
e
κ ln 16√

πε

󰁬
suffices to

bound the approximation error of the error function to ε.

Lemma 8 relates the error function and the sign function. To suppress the error of approxi-

mation to the sign function, εsgn,κ,n = max|x|≥κ/2 |perf,κ,n(x)− sgn(x)| ≤ ε, we can split the error

into two parts; the polynomial perf,κ,n of odd degree

n =

󰀗
e

κ
ln

32√
πε

󰀘
(F.19)

and k ≥ 1
κ

󰁴
2 ln( 8

πε2
) suffices to suppress the approximation error less than ε.

Lemma 8 (Approximation to the sign function sgn(x), Lemma 10 in [359]). ∀ κ > 0, x ∈ R, ε ∈
(0,

󰁳
2/eπ], let k = 1

κ

󰁴
2 log ( 2

πε2
). Then the function fsgn,κ,ε(x) = erf(kx), defined by the error

function, satisfies

max
|x|≥κ/2

|fsgn,κ,ε(x)− sgn(x)| ≤ ε, |fsgn,κ,ε(x)| ≤ 1. (F.20)

Lemma 9 (Time complexity of quantum eigenvalue transformation of unitary matrices). The

polynomial approximation to the shifted sign function of degree d =
󰀅
e
δ ln(32π

−1/2ε−1)
󰀆
= O(δ−1 log (ε−1))

satisfies

εsgn,δ,n = max
x∈[−1,−δ]∪[δ,1]

|psgn,δ,n(x)− sgn(x)| ≤ ε. (F.21)
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The time complexity of quantum eigenvalue transformation of unitary matrices with real polyno-

mials, termed QET-U, is determined by d.

F.3 Ground state property estimation with phase estimation

In this section, ground state property estimation with phase estimation is reviewed. For the

canonical QPE algorithm, we apply a series controlled U , U2, ..., U2k−1 and an inverse quantum

Fourier transform on the ancillary k qubits, such that the state becomes

󰁛

i

ci |0⊗k〉 |Ei〉 →
󰁛

i

pi |bin(Ei)〉 |Ei〉 . (F.22)

I discuss ground state property estimation with phase estimation using Hamiltonian simula-

tion as a subroutine.

F.3.1 Complexity of phase estimation

Observation 1 (Ground state energy estimation with phase estimation). To obtain a binary

estimate of the energy precise to n = ⌈log2 ε−1⌉ bits, we require k = O(log2 ε
−1 + log2 c

−1
0 )

ancillary qubits. The coherent runtime for each phase estimation is 2k+1π = O(ε−1c−2
0 ), and the

number of calls to phase estimation is O(c−1
0 ). The total gate complexity is

O(Cgatec−3
0 ε−1). (F.23)

To obtain a binary estimate of the energy precise to n = ⌈log2 ε−1⌉ bits, we require k =

O(log2 ε
−1 + log2 c

−1
0 ) ancillary qubits.

The total error is composed of three parts: the error of phase estimation, Hamiltonian simu-

lation, and circuit synthesis,

εtot = εPE + εHS + εCS .

The coherent runtime for each phase estimation is lower bounded by

tEn
PE =

π

2c20εPE
. (F.24)

Observation 2 (Ground state preparation with phase estimation for known ground energy).

Using the canonical phase estimation, the state can be prepared ε close to ground state using

k = O(log2 ε
−1 + log2∆

−1 + log2 c
−1
0 ). The runtime for each phase estimation is 2k+1π =

O(ε−1∆−1c−1
0 ), and the number of calls to phase estimation is O(c−1

0 ) using fixed point search.

The total gate complexity is

O(
Cgate
c20∆ε

) (F.25)
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The coherent runtime for each phase estimation is lower bounded by

tprepPE =
π

2c0∆εPE
. (F.26)

The error of estimation of an observable Ô consists of three components:

ε = εPE + εHS + εCS + εobserv.

The error of estimating observables using Ns samples is given by

εobserv =
Cobserv√

Ns
. (F.27)

Suppose we use importance sampling to estimate the observable Ô =
󰁓

l olPl. The measurement

overhead is Cobserv = 󰀂o󰀂1, and we may apply other methods to reduce Cobserv, such as Pauli

grouping or the classical shadow methods introduced in Chapter 10.

In our resource analysis, to streamline the comparison, we exclude the observable estimation

error, and solely consider the state preparation error, guaranteed by Proposition 7.

A key element in phase estimation is to realise controlled operations C − U2m−1
with m =

1, ..., k. These operations can be realised using Hamiltonian simulation methods, such as Trotter

formulae, quantum signal processing, and others. In the following, I give an optimistic estimation

by only considering the dominant cost from the last controlled operations C − U2k−1
. The gate

cost for QFT is neglected as well, which scales as O(k).

F.3.2 Hamiltonian simulation by Trotterisation

Now, I discuss resource cost of Hamiltonian simulation by Trotterisation which is introduced in

Section 2.4. The overall circuit complexity for 2k order achieves minima when εPE = εHS = ε/2

󰀃
π · 5k−1LΛc−2

0

󰀄1+ 1
2k

((2k + 1)!)
1
2k ε

1+ 1
2k

PE ε
1
2k
HS

. (F.28)

Its minimum is obtained at

εPE =
2k + 1

2(k + 1)
ε, εHS =

1

2(k + 1)
ε.

The total gate complexity using higher-order Trotter is determined by the following procedure

Gate count for eigenenergy estimation.

1. Get the runtime tPE/2 with εPE = ε/2 in Eq. (F.24).

2. Determine the number of segment ν using Lemma 1.

3. CNOT gates: 2 · 5k−1νc−1
0 (2wt(H) − L + 2). Single-qubit z-axis Pauli rotation gate: 4 ·

5k−1νc−1
0 L.
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Gate count for observable estimation.

1. Get the measurement overhead Cobserv, runtime tPE/2 as a function of εobserv and εPE ,

respectively.

2. Determine the number of segment ν using Lemma 1 as a function of εHS . An approximation

of ν is given by Eq. (9.37).

3. CNOT gates: 2 ·5k−1νc−1
0 Cobservε

−2
observ(2wt(H)−L+2). Single-qubit z-axis Pauli rotation

gate: 4 · 5k−1νCobservε
−2
observc

−1
0 L.

4. Get the gate count by optimising over the distribution of ε.

F.3.3 Hamiltonian simulation by qubitised quantum walk

Phase estimation combining the qubitised quantum walk methods have been discussed in [101,

239]. The key idea is that the spectrum of H can be obtained by performing phase estimation

on the Szegedy quantum walk operator, defined as

W := (2 |G〉 〈G|⊗ I − I) · select(H), (F.29)

with |G〉 = PREP |0̄〉. The spectrum has the relation

spectrum(H) = λ cos(arg[spectrum(W)]), (F.30)

with arg(eiφ) = φ.

Their results suggest that we can estimate the phase to a number of bits given by

k =

󰀩
log

󰀣√
2πλ

2εPE

󰀤󰀪
(F.31)

with k extra ancillary qubits. Here, we further assume a small error of gate synthesis in PREP

and QFT . Using phase estimation, the query number is

d := 2k ≤
√
2πλ

2εPE
+ 1. (F.32)

We set εPREP = εPE = ε/2. The state preparation error εPREP for a single application of W is

εtot,PREP ≤ 󰀂ei arccos(H/λ) − ei arccos(H̃/λ)󰀂 (F.33)

It is related to the amplitude encoding error εAE by

εPREP ≤ LεAE

λ

󰀣
1−

󰀕
󰀂H󰀂+ LεAE

λ

󰀖2
󰀤−1/2

(F.34)

Suppose that we require the preparation error to be εPREP. The preparation error is set to be

εPREP ≤
√
2

2λ

εPE

2k
=

√
2εPE

λ2k+1
(F.35)
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and hence for a single block

εAE =

√
2ε

4Lλd
(F.36)

and we have 2 preparation in one block. Again, the cost from the QFT is ignored, which scales

as O(k log k).

The overall gate complexity of the eigenenergy estimation is

O(
λL

ε
). (F.37)

The total gate count can be estimated by using Proposition 11, Proposition 12, and the Hamil-

tonian dependent select(H), given by Corollary 3.

Each block requires: 1 controlled select(H), 2 PREP and 1 Reflection on nL qubits, which

has the gate count

(nL +max(k, nL + 2nAE + 1), SCNOT + 2PCNOT + 6(nL − 2), ST + 2PT + (8nL − 17), 0). (F.38)

and additional k repetition of controlled reflection, each block (2 preparation) has the cost:

(0, 2PCNOT + 6(nL − 1), 2PT + (8nL − 9), 0) (F.39)

We require d queries and η−1∆−1 repetitions

(nL +max(k, (nL + 2nAE + 1),η−1∆−1 (d(SCNOT + 2PCNOT + 6(nL − 2)) + k(2PCNOT + 6(nL − 1))) ,

η−1∆−1 (d(ST + 2PT + (8nL − 17)) + k(2PT + (8nL − 9))) , 0).
(F.40)

F.4 Paired Taylor-series sampling with zeroth- and higher-order
Trotter formulae

This section discusses Hamiltonian simulation by paired Taylor-series sampling with zeroth and

higher-order Trotter formulae, which were introduced in Chapter 9, in more detail.

F.4.1 Leading-order pairing

We can expand the 0th and 1st order terms in Eq. (9.9) and group them as,

U(x) =

∞󰁛

s=0

F
(s)
0 (x)

= I − iλx

L󰁛

l=1

plPl +

∞󰁛

s=2

F
(s)
0 (x)

=

L󰁛

l=1

pl(I − iλxPl) +

∞󰁛

s=2

F
(s)
0 (x).

(F.41)
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Then, we can apply Eq. (9.12) on Eq. (F.41) to convert the leading-order terms to Pauli rotation

unitaries

U(x) =
󰁳

1 + (λx)2
L󰁛

l=1

ple
iθ0Pl +

∞󰁛

s=2

F
(s)
0 (x), (F.42)

where θ0 = tan−1(−λx). Taking out the normalisation factor, we can write Eq. (F.42) as a RLCU

formula,

U(x) = µ
(L)
0 (x)

󰀣
Pr

(L)
0 (1)

L󰁛

l=1

ple
iθ0Pl +

∞󰁛

s=2

Pr
(L)
0 (s)U

(s)
0,L

󰀤
, (F.43)

where

µ
(L)
0 (x) :=

󰁳
1 + (λx)2 +

∞󰁛

s=2

µ(F
(s)
0 (x))

=
󰁳

1 + (λx)2 +
󰀓
eλx − 1− λx

󰀔
,

Pr
(L)
0 (s) :=

1

µ
(L)
0 (x)

󰀫󰁳
1 + (λx)2, s = 1,

µ(F
(s)
0 (x)) = (λx)s

s! , s ≥ 2,
(F.44)

U
(s)
0,L :=

󰁛

l1,l2,...,ls

pl1pl2 ...pls(−i)sPl1Pl2 ...Pls .

After “pairing” the terms with s = 0 and s = 1, we obtain Eq. (F.43) which is a new RLCU

formula with the normalisation factor µ
(L)
0 (x).

In practice, to limit the number of gates in U
(s)
0,L as well as avoiding sampling over infinite

orders, we set a truncation integer sc > 2 to the expansion order s. When s > sc, we do not

implement any gate. The truncated RLCU formula is then,

Ũ
(L)
0 (x) = µ

(L)
0 (x)

󰀣
Pr

(L)
0 (1)

L󰁛

l=1

ple
iθ0Pl +

sc󰁛

s=2

Pr
(L)
0 (s)U

(s)
0,L +

󰁛

s>sc

Pr
(L)
0 (s)I

󰀤
. (F.45)

After the introduction of the truncation, we can equivalently regard the probability distribution

Pr
(L)
0 (s) as a distribution with finite number of possible values,

Pr
(L)
0 (s) :=

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

1

µ
(L)
0 (x)

󰁳
1 + (λx)2, s = 1,

1

µ
(L)
0 (x)

(λx)s

s! , 2 ≤ s ≤ sc,

1−
󰁓sc

r=1 Pr
(L)
0 (r), s = sc + 1.

(F.46)

Sampling s from Eq. (F.46), the same Ũ
(L)
0 (x) will be obtained as the one in Eq. (F.45).

The following proposition gives the performance characterization of Ũ
(L)
0 (x) to approximate

U(x).

Proposition 21 (Random-sampling LCU using the zeroth-order leading-order-pairing formula).

For x > 0 and sc ≥ 1, Ũ
(L)
0 (x) in Eq. (F.45) is a (µ

(L)
0 (x), ε

(L)
0 (x))-RLCU formula of U(x) with

µ
(L)
0 (x) ≤ e

3
2
(λx)2 ,

ε
(L)
0 (x) ≤ 2

󰀕
eλx

sc + 1

󰀖sc+1

.
(F.47)
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The sampling procedure of Ũ
(L)
0 (x) in Eq. (F.45) is summarised in Algorithm 6. This algo-

rithm is called leading-order-rotation algorithm in Ref. [242]; Hereafter, it is referred to as the

leading-order-pairing algorithm.

Algorithm 6 Random gate-sequence sampling using zeroth-order leading-order-pairing formula
in Eq. (F.45) [242]

Require: an n-qubit Hamiltonian H = λ
󰁓L

l=1 plPl with pl ≥ 0 ∀l and
󰁓

l pl = 1, evolution time
x > 0, Taylor-series expansion truncation order sc ∈ N.

Ensure: A random unitary sequence Uw.
1: Set the gate sequence Uw = I.
2: Calculate the rotation angle θ0 := tan−1(−λx).

3: Sample a positive integer s with the probability Pr
(L)
0 (s) defined in Eq. (F.44).

4: if s = 1 then ⊲ Leading order case
5: Sample an index l with the probability {pl}Ll=1.

6: Append the gate V
(1)
0,L := eiθ0Pl to Uw.

7: else if s ≤ sc then ⊲ Normal high-order case
8: Independently sample s indices l1, ..., ls with the probability {pl}Ll=1.
9: Append the Pauli gates Pls , ..., Pl1 to Uw.

10: Append (−i)sI to Uw.
11: else ⊲ Truncated high-order case
12: Append the gate I to Uw.
13: end if
14: return Uw.

The overall RLCU formula for U(t) is to repeat the sampling procedure in Algorithm 6 for ν

times, Ũ
(L)
0 (t) = Ũ

(L)
0 (x)ν . Using Proposition 21, we conclude that Ũ

(L)
0 (t) is a (µ

(L)
0,tot(t), ε

(L)
0,tot(t))-

RLCU formula of U(t) with

µ
(L)
0,tot(t) = µ

(L)
0 (x)ν ≤ e

3
2

(λt)2

ν ,

ε
(L)
0,tot(t) ≤ νµ

(L)
0,tot(t)ε

(L)
0 (x) ≤ 2νe

3
2

(λt)2

ν

󰀕
eλx

sc + 1

󰀖sc+1

.
(F.48)

F.4.2 Higher-order pairing

One can consider an alternative way to suppress the normalisation factor by inserting the Trotter

formula before the random sampling. That is, instead of sampling the time evolution U(x)

directly, one now considers to sample the (multiplicative) remainder Vk(x) of the Trotter formulae

defined in Eq. (2.50). If we construct a good RLCU formula Ṽk(x) for the remainder Vk(x), then

the overall circuit with k-th Trotter formula will be a RLCU for U(x). The gate complexity of

inserting the higher-order Trotter formula is summarised in Proposition 9 and Table 9.2.
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Appendix G

Quantum error mitigation

G.1 Stochastic error mitigation

In this section, I show the intuition of continuous error mitigation and stochastic error mitigation.

G.1.1 Continuous error mitigation scheme

I first illustrate the detailed procedure of continuous error mitigation. We can rewrite the evolu-

tion of noisy and ideal quantum states by using infinitesimal δt as

ρN (t+ δt) = ρN (t) + δt
󰀋
− i[H(t), ρN (t)] + λL

󰀅
ρN (t)

󰀆󰀌

ρI(t+ δt) = ρI(t) + δt
󰀋
− i[H(t), ρI(t)]

󰀌
,

(G.1)

where H(t) denotes the ideal Hamiltonian with L corresponding to the noisy evolution. In the

presence of Markovian stochastic noise involved with environment,

L[ρ] = 1

2

󰁛

k

(2LkρL
†
k − L†

kLkρ− ρL†
kLk), (G.2)

while the dynamics induced with the undesired Hamiltonian HC(t) which causes coherent errors

can be described as

L[ρ] = −i[HC(t), ρ]. (G.3)

The latter case occurs due to the imperfection of the analogue quantum simulators and implemen-

tation of quantum logic gates from physical Hamiltonians [192,286]. For systems with finite-range

interactions, Bairey et al. and Silva et al. proposed methods that use only local measurements

to reconstruct local Markovian dynamical process [304,305]. I show how to eliminate these errors

by using a continuous error mitigation method.

By using the Pauli transfer matrix representation, Eq. (G.1) is mapped to |ρα(t+ δt)〉〉 =

(I+Eα(t)δt) |ρα(t)〉〉 where |ρα(t)〉〉 (α = N, I) is the vectorised density matrix of ρα(t) and Eα(t)

corresponds to the second term of Eq. (G.1). Equivalently, the superoperartor representation of

the evolution gives ρα(t+ δt) = Eα(t)ρα(t). In the following, we will use these two equivalent
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representations interchangeably. Note that the evolution induced by Eα in the main text becomes

I + Eαδt in the Pauli transfer representation. We introduce the recovery operation I + EQδt to

obtain the ideal dynamics, which can be expressed as

(I + EQδt)(I + ENδt) = I + EIδt+O(δt2) (G.4)

such that EQ = EI − EN . Note that (I + EQδt) corresponds to EQ in the main text. Due to

the linearity of the representation, we can see that EQ corresponds to the Pauli transfer matrix

representation of −λL
󰀅
ρN (t)

󰀆
. In this framework, EI(t) ≈ EN (t) holds within a sufficiently small

timestep δt.

The experimental errors including the interactions with the open environment, undesired

couplings and imperfections in the quantum simulators are generally local. We therefore assume

EQ can be decomposed into local operators as EQ =
󰁓NS

S=1 E
(S)
Q , where E(S)

Q operates on polynomial

subsystems of the N -qubit quantum system. We now decompose the operation EQ into the set

of basis operations as

E(S)
Q =

󰁛

j≥0

q
(S)
j B(S)

j , (G.5)

where q
(S)
j is the quasi-probability and B(S)

j is the basis operation for compensating the errors.

Note that B(S)
j only acts on the same small subsystem as E(S)

Q . By performing basis operations

for E(S)
Q with corresponding quasi-probability distributions in Eq. (G.5), we can implement the

overall quasi-probability operations corresponding to EQ as shown below. Therefore, we can

extend the quasi-probability operations into a large-scale system. In addition, this argument can

be naturally applied to multi-level systems when we can prepare basis operations for them.

In particular, the quasi-probability operation at time t takes the form of

EQ = (1 + q0δt)I +
󰁛

i≥1

qiδtBi,

= c

󰀳

󰁃p0I +
󰁛

i≥1

αipiBi

󰀴

󰁄
(G.6)

where B0 is an identity operation and the superscript (S) is omitted for simplicity. The probability

to generate the identity operation I and Bi (i ≥ 1) is p0 = 1−
󰁓

i≥1 pi and pi = |qi|δt/c (i ≥ 1),

where c =
󰁓

i≥0 pi = 1+(q0+
󰁓

i≥1 |qi|)δt. In addition, the parity α0 for B0 = I is always unity,

and the parity αi corresponding to Bi (i ≥ 1) equals to sign(qi).

The overhead coefficient c corresponding to E(S)
Q is given by c = 1 + C

(S)
1 δt, with C

(S)
1 :=

(q
(S)
0 +

󰁓
i≥1 |q

(S)
i |). As discussed above, this coefficient introduces a sampling overhead. The

overhead coefficient from t = 0 to t = T within infinitely small discretisation δt is

C(T ) = lim
δt→0

󰁜

S

T/δt󰁜

k=0

(1 + C
(S)
1 δt) =

󰁜

S

exp
󰀓
C

(S)
1 T

󰀔
. (G.7)
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Note that |qi| ∝ λ, therefore we have C1 ∝ λ, and the overall overhead is

C(T ) = exp(O(λT )). (G.8)

A proper normalisation λ is chosen so that the contribution of L is bounded by a constant l:

󰀂Lexp󰀂1 ≤ l. Here, we define the super-operator norm by 󰀂Φ󰀂1 = supA{󰀂Φ(A)󰀂1/󰀂A󰀂1 : A ∕= 0}
with 󰀂A󰀂1 = Tr|A|. Therefore, given a finite number of samples in experiments, the condition

that the scheme works efficiently with a constant resource cost is λT = O(1). By interpreting

λT as the total noise strength, the requirement is thus consistent with the case of DQS.

It is also possible to consider time-dependent recovery operation for suppressing time-dependent

noise. In this case, the quasi-probability becomes time-dependent and can be obtained by

Eq. (G.5). Therefore, the overall overhead for time-dependent noise is

C(T ) = lim
δt→0

󰁜

S

T/δt󰁜

k=0

(1 + C
(S)
1 (kδt)δt) =

󰁜

S

exp

󰀕󰁝 T

0
C

(S)
1 (t)dt

󰀖
. (G.9)

G.1.2 Algorithm

I show the stochastic error mitigation as follows.

Algorithm 7 Stochastic error mitigation. Input: initial state ρ(0), number of samples Ns, noisy
evolution EN , basis operations Bj . Output: Ō.

1: Get C, {αj}, and {p̃j}, set
󰀝
sj =

󰁓j
i=1 p̃i󰁓Nop
i=1 p̃i

󰀞
.

2: for m = 1 to Ns do
3: Randomly generate q0 ∈ [0, 1], set t = 0, n = 0, α = 1.
4: while t ≤ T do

5: Get tnjp by solving exp
󰀓
−Γ(tnjp)

󰀔
= qn.

6: Randomly generate q′n ∈ [0, 1].
7: Set jn = j if q′n ∈ [sj−1, sj ] and update α = αjn · α.
8: Update t = t+ tnjp and n = n+ 1.
9: end while

10: Set ρQ = ρ(0) and Ō = 0.
11: for k = 0 : n− 1 do
12: Evolve ρQ under EN for time tkjp and apply Bjk .
13: end for
14: Evolve ρQ under EN for time T −

󰁓n−1
k=0 t

k
jp.

15: Measure O of ρQ to get Om.
16: Update Ō = Ō + CαOm/Ns

17: end for

G.1.3 Comparison with conventional error mitigation

Errors, occurring in the continuous time evolution, can inherently mix and propagate along time

evolution, leading to highly nonlocal correlated effects. For instance, dominant errors in super-

conducting qubits are inherent system dephasing or relaxation, and coherent errors (or crosstalk)
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when applying entangling gates. analogue quantum simulators may not even implement discre-

tised quantum gates. Therefore, conventional quantum error mitigation methods fail to work for

realistic errors and general continuous quantum processes. This problem is addressed by first

considering a more general scenario of a continuous process with realistic noise models. More

concretely, I consider the time-independent Lindblad master equation

dρ

dt
= (H+ L)(ρ) (G.10)

with dynamics of Hamiltonian (including coherent errors) and incoherent Markovian process

H(ρ) = −i[H + δH, ρ]

L(ρ) = 1

2

󰁛

k

(2LkρL
†
k − L†

kLkρ− ρL†
kLk),

(G.11)

which describes either gate synthesis in digital quantum computing or the continuous evolution

of an analogue quantum simulator. Here δH and L describe coherent errors (such as crosstalk or

imperfections of Hamiltonian) and inherent coupling with the environment (such as dephasing

and damping), respectively. Even though the coherent error δH and the Lindblad operators Lk

act locally on the quantum system, the effect of errors propagates to the entire system after

the evolution. Therefore, such global effects of noise cannot be effectively mitigated using the

conventional quasi-probability method, which assumes a simple gate-independent error model

described by single- or two-qubit error channels before or after each gate.

G.1.4 Decomposition of the recovery operation and optimisation

In this section, I discuss the decomposition of the recovery operation into local basis operations.

Denote the complete basis operations as {Bi}. For multiple qubit systems, tensor products of

single-qubit operations, e.g., Bi ⊗ Bj , also form a complete basis set for composite systems.

Therefore, if we can implement the complete basis operations for a single-qubit, we can also

emulate arbitrary operations for multiple qubits systems. In Section 2.5.3, it is shown that every

single-qubit operation can be emulated by using 16 basis operations. Table 2.1 of Section 2.5.3

shows one efficient set of basis operations for a single-qubit.

I show in the Section G.1.1 that the recovery operations without Hamiltonian error can be

analytically expressed as

EQ = I − λLδt, (G.12)

where L represents the noise superoperator and λ is the noise strength. From Eq. (G.12), we

can analytically decompose the general noise into local basis operations. In the Section 2.5.3, we

provide the recovery operations for several typical Markovian processes, including depolarising,

dephasing and amplitude damping, during the quantum simulation. It is worth mentioning that

by using only observables within the spatial domain, we can recover the Lindbladian acting on

this domain and reconstruct the local Markovian dynamics [304,305].
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Over-complete basis can be used to further reduce the resource cost for the stochastic error

mitigation scheme. In general, the target quasi-probability operation EQ can be decomposed as

a linear combination of unitary channels and projective measurements by using Pauli transfer

matrix representation. The quasi-probability operation EQ can be decomposed into a complete

basis {Bi} as

EQ =
󰁛

i

qiBi, (G.13)

where we set B0 = I. Given the target quasi-probability operation EQ, the overall resource cost

for the quasi-probability scheme is given by C(T ) = exp (C1T ) with C1 = q0 +
󰁓

i≥1 |qi|.
In order to minimise the resource cost, we aim to reduce C1. Consider an over-complete

basis, {B′
i} which includes the complete basis {Bi} and also other randomly generated unitary

operators and projective measurements. Then the quasi-probability operation EQ is decomposed

into this over-complete basis {B′
i} as

EQ =
󰁛

i

q′iB′
i. (G.14)

Minimising C1 = q0 +
󰁓

i≥1 |qi| can be further rewritten as a linear programming as follows,

minC1 = q0 +
󰁛

i≥1

(q+i − q−i ),

s.t. EQ =
󰁛

i

(q+i − q−i )B
′
i,

q+i , q
−
i ≥ 0.

(G.15)

The overall resource cost C(T ) for stochastic error mitigation scheme can therefore be reduced

by this linear programming optimisation method.

G.1.5 Decomposition of Lindbladian

By using only observables within the spatial domain, we can recover the Lindbladian acting on

this domain and reconstruct the local Markovian dynamics [304]. Here, I provide the recovery

operations for several typical Markovian processes during the quantum simulation and coherent

errors in implementing CNOT gates.

The recovery operations can be analytically expressed as EQ = I − λLδt, where L represents

the noise superoperator and λ is the noise strength. For depolarising, dephasing and amplitude

damping, the recovery operations EQ can be, respectively, decomposed as

Edepolarise
Q = (1 +

3

4
λδt)I − λ

4
(X + Y + Z)δt

Edephase
Q = (1 + λδt)I − λZδt

Eamp
Q = (1 +

1

4
λδt)I + λ(−1

2
X − 1

2
Y − 1

4
Z + [Rxy] + [πxy])δt.

(G.16)
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In the parameterised quantum circuits, the CNOT gates or more general entangling gates are

prepared by cross-resonance drive, with the drive Hamiltonian

H = Ω(σ(c)
z σ(t)

x + γI(c)σ(t)
x +H∆) (G.17)

where Ω is the effective qubit-qubit coupling, γ represents the effect of crosstalk between qubits

and H∆ corresponds to additional errors whose strengths can be revealed by Hamiltonian tomog-

raphy. On the IBM’s quantum devices, for example, H∆ includes µσ
(c)
z I(t) with µ corresponding to

the drive-induced Stark-shift. In the cross-resonance drive, one dominant error is from crosstalk,

and the corresponding recovery operation is

EQ = (1 + λδt)I + λδtX − 2λδt[Rx] (G.18)

with λ = γΩ. The additional error, for example, the drive-induced Stark-shift can be mitigated

by the recovery operation EQ = (1 + λδt)I + λδtZ − 2λδt[Rz].

G.2 Hybrid error mitigation

In this section, I show how to apply the extrapolation method to mitigate model estimation error

and the errors associated with imperfect recovery operations. Combined with stochastic error

mitigation, I propose a hybrid error mitigation method for errors in practical NISQ devices.

G.2.1 Boosting model estimation error

I first show how to boost model estimation error, which will be used for its mitigation. Assume

that the evolution of the quantum system is described by the open-system master equation

d

dt
ρλ = −i[H(t), ρλ] + λLexp [ρλ] . (G.19)

The evolution of the system under a scaled Hamiltonian drive 1
rH

󰀃
t
r

󰀄
takes the form of

d

dt
ρ′λ = −i

󰀗
1

r
H

󰀕
t

r

󰀖
, ρ′λ

󰀘
+ λLexp

󰀅
ρ′λ

󰀆
. (G.20)

Assuming the noise superoperator L is invariant under rescaling, we have

d

dt
ρ′λ(rt) =

dt′

dt

∂

∂t′
ρ′λ

󰀃
t′
󰀄󰀏󰀏󰀏󰀏

t′=rt

= r

󰀝
−i

󰀗
1

r
H

󰀕
t′

r

󰀖
, ρ′λ

󰀃
t′
󰀄󰀘

+ λL
󰀅
ρ′λ

󰀃
t′
󰀄󰀆󰀞󰀏󰀏󰀏󰀏

t′=rt

= −i
󰀅
H(t), ρ′λ(rt)

󰀆
+ rλL

󰀅
ρ′λ(rt)

󰀆
.

(G.21)

On the other hand, the density matrix ρrλ(t) with enhanced noise strength rλ is given by

d

dt
ρrλ(t) = −i [H(t), ρrλ(t)] + rλL [ρrλ(t)] . (G.22)
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Comparing Eq. (G.21) and Eq. (G.22), one finds that ρ′λ(rt) and ρrλ(t) follow the same differential

equation, and thus with the initial conditions ρ′λ(0) = ρrλ(0) we prove ρ′λ(rt) = ρrλ(t). This

indicates that we can effectively boost physical errors of quantum systems by evolving the re-

scaled Hamiltonian for time rt.

Now, I discuss how to boost the model estimation error. By applying stochastic error miti-

gation, we obtain

d

dt
ρ
(Q)
λ (t) = −i[H(t), ρ

(Q)
λ (t)] + λ∆L

󰀅
ρ
(Q)
λ (t)

󰀆
, (G.23)

where ρ
(Q)
λ (t) is the error mitigated effective density matrix after stochastic error mitigation.

Assuming ∆L = Lexp − Lest is invariant under re-scaling of the Hamiltonian, we can similarly

obtain

d

dt
ρ
(Q)
rλ (t) = −i[H(t), ρ

(Q)
rλ (t)] + rλ∆L

󰀅
ρ
(Q)
rλ (t)

󰀆
. (G.24)

This can be experimentally achieved by applying stochastic error mitigation for a re-scaled time

rt under the re-scaled Hamiltonian.

It is worth noting that even if the noise model is time dependent, this method can still work

as long as the evolution can be described by a Lindblad equation and its dependence on time is

known.

For example, consider a time dependent noisy process with stochastic error mitigation de-

scribed by

dρ
(Q)
λ (t)

dt
= −i[H(t), ρ

(Q)
λ (t)] + λt∆L0[ρ

(Q)
λ (t)], (G.25)

where ∆L0 is time independent. Then, the re-scaled dynamical equation becomes

dρ
′(Q)
λ (rt)

dt
= −i[H(t), ρ

′(Q)
λ (rt)] + r2λt∆L0[ρ

′(Q)
λ (rt)]. (G.26)

In this case, we can interpret that the noise rate is boosted by a factor of r2.

G.2.2 Richardson’s extrapolation for physical errors and model estimation
errors

In this section, I briefly review the extrapolation method proposed in Ref. [116, 150]. I assume

the open system evolution is described by

dρN (t)

dt
= −i[Hsim(t), ρN (t)] + λLexp

󰀅
ρN (t)

󰀆
. (G.27)

In Ref. [150], it is shown that the expectation value of an observable O can be expressed as

〈O(λ)〉 = 〈O(0)〉+
n󰁛

k=1

αkλ
k +Bn+1(λ,L, T ), (G.28)
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where αk ≈ O(NkT k) and Bn+1(λ,L, T ) is upper bounded by

Bn+1(λ,L, T ) ≤ 󰀂O󰀂an+1
λn+1Tn+1

(n+ 1)!
, (G.29)

where 󰀂O󰀂 = maxψ 〈ψ|O|ψ〉 is the spectra norm of O. Here, in the case that L is a Lindblad

type operator, one can have the bound for an+1 as

an+1 ≤ 󰀂Lexp󰀂n+1
1 . (G.30)

Now, we have

Bn+1(λ,L, T ) ≤ 󰀂O󰀂(λT󰀂Lexp󰀂1)n+1

(n+ 1)!
. (G.31)

In order to employ the extrapolation method, we need to obtain the expectation value of

observable 〈O(rjλ)〉 (j = 0, 1, .., n, r0 = 1) at time t = T corresponding to the equation,

d

dt
ρλ(t) = −i [H(t), ρλ(t)] + rjλL (ρλ(t)) , (G.32)

which can be obtained by using the re-scaling of the Hamiltonian as described in section G.2.1.

Then we can obtain the approximation of the noise free expectation value of the observable O as

〈O(0)〉∗n =

n󰁛

j=0

βj 〈O〉′rjλ , (G.33)

where 〈O(0)〉∗ is the estimated noise free expectation value up to an error of order O(λn+1), and

〈O〉′rλ are the measurement outcome corresponding to the state ρrλ(T ). Here, the coefficients

βj =
󰁔

l ∕=j rl(rl − rj)
−1 are defined by the solution of the following equations

n󰁛

j=0

βj = 1,

n󰁛

j=0

βjr
k
j = 0, k = 1, ..., n. (G.34)

In Ref. [150], it has been shown that the difference between the estimator and the error free

expectation value is bounded by

| 〈O(0)〉∗n − 〈O〉I | ≤ γn

󰀕
rn+1
max∆max󰁳
Nsample

+ 󰀂O󰀂(rmaxλT󰀂Lexp󰀂1)n+1

(n+ 1)!

󰀖
, (G.35)

where γn =
󰁓n

j=0 |βj |, rmax = maxj rj , and ∆max/
󰁳

Nsample is the largest experimental errors

due to shot noises with Nsample being the number of samples. From Eq. (G.35), we can see that

extrapolation methods requires

rmaxλT󰀂Lexp󰀂1 = O(1). (G.36)

Now, under the stochastic error mitigation for a continuous process, Eq. (G.27) is modified

to

d

dt
ρ
(Q)
λ (t) = −i[H(t), ρ

(Q)
λ (t)] + λ∆L

󰀅
ρ
(Q)
λ (t)

󰀆
, (G.37)
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where ∆L = Lexp − Lest. Similar to the mitigation of physical errors via Richardson’s extrapo-

lation, we can obtain the approximation of the noise free expectation value of the observable O

as

〈O(0)〉∗n =

n󰁛

j=0

βj 〈O〉rjλ , (G.38)

where 〈O(0)〉∗ is the estimated noise free expectation value up to an error of order O(λn+1), and

〈O〉rλ is the measurement outcome after stochastic error mitigation, corresponding to ρ
(Q)
rλ (T ).

Hence, under stochastic error mitigation, the inequality of Eq. (G.35) is modified to

| 〈O(0)〉∗n − 〈O〉I | ≤ γn

󰀕
C(rmaxT )r

n+1
max∆max󰁳

Nsample

+ 󰀂O󰀂(rmaxλT󰀂∆L󰀂1)n+1

(n+ 1)!

󰀖
, (G.39)

with Eq. (G.36) changed into

rmaxλT󰀂∆L󰀂1 = O(1). (G.40)

Here, we used the fact that the variance of the error-mitigated expectation value of the observable

is amplified with the overhead coefficient C.

From Eq. (G.39), the deviation between the ideal measurement outcome and the error-

mitigated one is bounded independently with the Hamiltonian, i.e., the to-be-simulated problem.

The bound only relies on the noise model, the evolution time, the number of samples, and the

parameters used in extrapolation.
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[106] R. Balian, M. Vénéroni, Static and dynamic variational principles for expectation values
of observables. Annals of Physics 187, 29 - 78 (1988).

[107] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, S. Stringari, Theory of bose-einstein condensation
in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999).

[108] J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pižorn, H. Verschelde, F. Verstraete, Time-
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[152] S. Rommer, S. Östlund, Class of ansatz wave functions for one-dimensional spin systems
and their relation to the density matrix renormalization group. Phys. Rev. B 55, 2164–2181
(1997).
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