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Spectre is a program for calculating spectroscopic and magnetic prop-
erties of rare-earth ions in crystals. The calculation employs intermediate-
coupling basis states, and allows mixing of all terms within the fn configu-
ration. The various electrostatic and spin–orbit parameters in the free ion
Hamiltonian are taken from Carnall et al. [1]. The program includes a facil-
ity for fitting crystal field parameters to sets of energy levels and transition
intensities for one or more ions.

The core routines in Spectre are based on a program called Shell,
which was developed at Argonne National Laboratory by G. L. Goodman and
colleagues. Further revisions were made by R. Osborn. Spectre uses nu-
merical minimization and matrix diagonalisation subroutines from the NAG
Fortran Library [2].

How to cite the program:

A. T. Boothroyd, Spectre— a program for calculating spectroscopic prop-
erties of rare earth ions in crystals (1990-2014).

Please report bugs to A. T. Boothroyd (a.boothroyd@physics.ox.ac.uk).

Disclaimer

Spectre is distributed in the hope that it will be useful, but without any guarantee

that it is error-free. In no event will the author or his institution be liable to you

for damages, including any general, special, incidental or consequential damages

arising out of the use or inability to use the program. The author is not responsible

for erroneous results obtained with the program.

1



Contents

1 Installation 3

2 Theoretical background 3

3 Getting started 5

4 Calculations 8

4.1 Eigenvalues, eigenvectors and transition matrix elements . . . 9
4.2 Scale CEF parameters to different rare-earth ion . . . . . . . . 13
4.3 Neutron cross-section . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Fit to observed energies and intensities . . . . . . . . . . . . . 15
4.5 Specific heat capacity . . . . . . . . . . . . . . . . . . . . . . . 18
4.6 Magnetic susceptibility . . . . . . . . . . . . . . . . . . . . . . 18
4.7 Magnetisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.8 Magnetic moment . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.9 Matrix elements of magnetic moment operator . . . . . . . . . 19

5 References 19

2



1 Installation

The current version was compiled under Windows 7 and works on Windows.
For Mac OS you’ll need to install a Windows emulator. The suite comprises
a single executable file

Spectre.exe

compiled from fortran source code, together with a number of ascii files which
contain single-ion parameters and input data. All files must be located in
the same folder. The ascii files should under no circumstances be modified
because if the formatting is changed then Spectre will not be able to read
them.

To launch the program, double-click on the file spectre.exe.

2 Theoretical background

We assume the magnetism of the rare earth ion derives from n equivalent f
electrons (i.e. we work within an fn configuration). The effective single-ion
Hamiltonian has the form

H = H0 +HCF +Hex +HZ, (1)

where H0 is the free-ion Hamiltonian and

HCF =

2l
∑

k=0

+k
∑

q=−k

Bk
qC

(k)
q (2)

Hex = 2Hex · S (3)

HZ = −µ ·B. (4)

Term (3) describes an interaction with an exchange field Hex, and term (4)
is the Zeeman interaction between the magnetic moment µ = −µB(L + 2S)
and an external magnetic field of flux density B.

Equation (2) defines the crystal field Hamiltonian. The Bk
q are crystal

field parameters, and the C
(k)
q are the Wybourne tensor operators, which are

given by

C(k)
q (θ, φ) =

√

4π

2k + 1
Yk,q(θ, φ), (5)

where Yk,q(θ, φ) are the spherical harmonic functions. There are several
slightly different definitions in use for the spherical harmonics. We use the
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Condon–Shortley phase convention,

Yk,q(θ, φ) = (−1)q
[

2k + 1

4π

(k − q)

(k + q)

]
1

2

P q
k (cos θ) exp(iqφ) (q ≥ 0), (6)

and

Yk,−q = (−1)qY ∗
k,q (q ≥ 0). (7)

The P q
k (cos θ) are the associated Legendre polynomials.

If the multi-electron basis states can be restricted to either a single L
term with weak spin–orbit coupling, or a single J level, then HCF can be
expressed in an alternative form which is often simpler to use in practice:

HCF =

2l
∑

k=0

+k
∑

q=−k

Bq
kO

q
k, (8)

where l is the orbital quantum number of the one-electron orbital (l = 3 for
f electrons), and the Oq

k are known as Stevens operator equivalents and are
functions of angular momentum operators: Oq

k = Oq
k(J) in the SLJMJ basis,

or Oq
k = Oq

k(L) in the SLMSML basis. Note that the crystal field parameters
Bk

q in (2) and Bq
k in (8) are not the same. The indices are interchanged.

It is often convenient to group the spherical operators into real combina-
tions. From (6) and (7) it can be seen that a suitable basis of real functions
is

Zc
k,q = 1√

2
{Yk,−q + (−1)qYk,q} ∝ cos qφ

Zs
k,q = i√

2
{Yk,−q − (−1)qYk,q} ∝ sin qφ

}

q > 0,

Zk,0 = Yk,0. (9)

The Zk,q are known as Tesseral harmonics.
Similar real and imaginary combinations of the Wybourne tensors (but

without the 1/
√
2 pre-factor) are defined:

HCF =
2l
∑

k=0

Bk
0C

(k)
0 +

2l
∑

k=2

k
∑

q=1

[

Bk
q (c){C

(k)
−q + (−1)qC(k)

q }+ iBk
q (s){C

(k)
−q − (−1)qC(k)

q }
]

=

2l
∑

k=0

Bk
0C

(k)
0 +

2l
∑

k=2

k
∑

q=1

Bk
q (c)C

(k)
q (c) +Bk

q (s)C
(k)
q (s). (10)

The operators associated with Bk
q (c) and Bk

q (s) parameters have cosφ and
sinφ angular dependence, respectively, as can be seen from (9). Likewise, in
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Table 1: Multiplicative factors λkq in the relation Bq
k(c, s) = λkqθkB

k
q (c, s)

between the Stevens crystal field parameters in (11) and the corresponding
Wybourne parameters in (10). The θk are numerical coefficients which have
been tabulated for the ground states of the trivalent 4f ions — see Tables
VI & VII of M.T. Hutchings, Solid State Physics 16 (1964) 227.

q

0 1 2 3 4 5 6

2
1
2

√
6

1
2

√
6

k 4
1
8

1
2

√
5

1
4

√
10

1
2

√
35

1
8

√
70

6
1
16

1
8

√
42

1
16

√
105

1
8

√
105

3
16

√
14

3
8

√
77

1
16

√
231

terms of Stevens operators,

HCF =

2l
∑

k=0

B0
kO

0
k +

2l
∑

k=2

k
∑

q=1

Bq
k(c)O

q
k(c) +Bq

k(s)O
q
k(s). (11)

Note that in the LSJMJ basis the matrix elements of the C
(k)
q operators are

real, so the matrix elements of the “sine” operators as defined in (10) and
(11) are imaginary.

The crystal field parameters that appear in (10) are not the same as
those in (11). It is unfortunate that B is used for both the Wybourne and
Stevens parameters in the literature, but note that the positions of the k
and q indices are reversed. Within the reduced basis of states on which the
Stevens operators act, the Stevens and Wybourne parameters are related by
Bq

k(c, s) = λkqθkB
k
q (c, s). The λkq coefficients are given in Table 1.

The parameterisation of the crystal field Hamiltonian in Spectre is that
given in eqn (10).

3 Getting started

After launching the program you get the following screen, which is the point
to which the program returns after completion of any task:

CEF Parameters (meV):

1 B(2,0) = 0.533E+01 2 B(4,0) = -0.157E+03 3 B(6,0) = 0.000E+00

4 B(2,1)c = 0.000E+00 16 B(2,1)s = 0.000E+00

5 B(2,2)c = 0.000E+00 17 B(2,2)s = 0.000E+00

6 B(4,1)c = 0.000E+00 18 B(4,1)s = 0.000E+00
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7 B(4,2)c = 0.000E+00 19 B(4,2)s = 0.000E+00

8 B(4,3)c = 0.000E+00 20 B(4,3)s = 0.000E+00

9 B(4,4)c = 0.000E+00 21 B(4,4)s = 0.000E+00

10 B(6,1)c = 0.000E+00 22 B(6,1)s = 0.000E+00

11 B(6,2)c = 0.000E+00 23 B(6,2)s = 0.000E+00

12 B(6,3)c = 0.000E+00 24 B(6,3)s = 0.000E+00

13 B(6,4)c = 0.000E+00 25 B(6,4)s = 0.000E+00

14 B(6,5)c = 0.000E+00 26 B(6,5)s = 0.000E+00

15 B(6,6)c = 0.000E+00 27 B(6,6)s = 0.000E+00

Exchange field (He) and applied field (B):

28 Hex = 0.000E+00 29 Hey = 0.000E+00 30 Hez = 0.192E+02 meV

31 Bx = 0.000E+00 32 By = 0.000E+00 33 Bz = 0.000E+00 Tesla

34 No. f electrons = 5. (select 34 to check free-ion levels also)

number ... new value (<CR> to end) :

The B(k,q) (1. . . 27) are crystal field parameters defined in eqn (10). Param-
eter numbers 28. . . 30 are the three orthogonal components of the internal
exchange (or molecular) field Hex defined in eqn (3), and 31. . . 33 are the
equivalent components of an externally applied magnetic field B.

To change the value of a parameter, enter the parameter number followed
by a space then the new value:

number ... new value (<CR> to end) : 1 530.5 <CR>

Typing the ENTER or Carriage Return key (here denoted by <CR>) allows
you to change another parameter. Typing <CR> without any new data brings
up the revised list of all the parameters.
Parameter number 34 gives you the following menu:

Free ion and submatrix information

Sm3+

1 Truncate free ion basis set ? (0=No, 1=Yes) : 1

2 Number of CF submatrices (if unsure use 1) : 1

3 q min for CF submatrices (if unsure use 1) : 1

4 No. submatrices per mu (if unsure use 1) : 1

5 Orbital reduction factor (if unsure use 1) : 1.000

number ... new value (<CR> to end) :
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The first option allows you to reduce the number of basis states from that in
the complete fn basis. This is necessary if the number of basis states exceeds
300, which is the maximum size of the arrays in the routine that diagonalises
the Hamiltonian. Truncation means restricting the number of 2S+1LJ terms
in the basis. Reducing the number of basis states speeds up the calculations.

If the truncation flag is 1 then when you hit <CR> you get the following:

Use intermediate coupling basis states (N or <CR>)?

Normally you will want to use intermediate coupling free-ion basis states,
in which case hit <CR>. However, if you want to ‘switch off’ intermediate
coupling and use pure LSJ basis states then answer N. Whichever answer
you give you see the next output:

J no. J multiplets to keep and skip

0 0.5 1 0

1 1.5 1 0

2 2.5 2 0

3 3.5 2 0

4 4.5 2 0

5 5.5 2 0

6 6.5 1 0

7 7.5 1 0

8 8.5 0 0

9 9.5 0 0

10 10.5 0 0

11 11.5 0 0

12 12.5 0 0

number ... N(keep), ( N(skip), ( N(keep) ...)) <CR> to end :

This table makes sense if you look at the energy level scheme of Sm3+ [3].
In the energy range up to 1.3 eV there are 2 terms, 6F and 6H , containing
a total of 12 J multiplets. The table contains a list of the 12 J values.
Whenever a J value exists in both the 6F and the 6H terms the number of
kept J multiplets in the table is given as 2. If the J value occurs only once
then the entry is 1.

One can now change the number of kept J multiplets in the table. For
example, if you want to perform the calculations in the intermediate coupling
ground state multiplet 6H5/2 then you will set the J = 2.5 ‘keep’ flag to 1
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(enter: 2 1<CR>) and set all the other ‘keep’ flags to 0 (0 0<CR>, 1 0<CR>,
etc). Note, however, that when there are two or more terms with the same
J they are not always indexed in order of energy. There are two situations
when this occurs. One is when there is no truncation of the free-ion basis,
i.e. the truncate free ion basis set flag is set to 0, and the other is
when there is truncation (the ‘truncate’ flag is set to 1) but the user chooses
not to use intermediate coupling basis states. In these two cases the pure
LS-coupling basis states are indexed in order of increasing L starting with
those of largest S. For example, the 4f 2 configuration (Pr3+) has three terms
that include J = 4 and these are indexed in the order (1) 3F , (2) 3H and (3)
1G. The 3H is the ground state term, so if you want to do the calculations
in 3H then you can select this by setting the J = 4 ‘keep’ flag to 2 and the
‘skip’ flag to 1. If the ‘truncate’ flag is set to 1 and intermediate coupling
basis states are chosen then the intermediate coupling states are indexed in
order of increasing energy. In the case of 4f 2, the intermediate coupling term
which derives predominantly from 3H would then be first.

One application of the keep/skip functionality is to perform a calculation
that is identical to the Stevens’ operator method. Taking 4f 2 (Pr3+) as
an example, you would set the ‘truncate’ flag to 1 and answer N to the
question Use intermediate coupling basis states (N or <CR>)?. You
would then set the ‘keep’ flags for all J 6= 4 to 0. For J = 4 you would set
the ‘keep’ flag to 2 and the ‘skip’ flag to 1.

Options 2 to 4 in the Free ion and submatrix information menu al-
low the user to take advantage of symmetry to transform the crystal field ma-
trix into block diagonal form and hence to diagonalise 2 or more sub-matrices
rather than the entire matrix. For example, time reversal symmetry causes
the crystal field matrix of all Kramers’ ions to have two blocks. Changing
the number of CF sub-matrices to 2 means that sub-matrices corresponding
to each block are diagonalised separately. This is faster than diagonalising
the complete CF matrix. Note: make sure you know what you are doing if
you decide to take advantage of this facility!

Option 5 in the Free ion and submatrix information menu makes it
possible to take into account covalency effects which effectively reduce the
orbital quantum number relative to that of the free ion. For example, the
magnetic moment is calculated from −µB(xL + 2S), where 0 < x < 1 is the
orbital reduction factor.

4 Calculations

When you have finished changing parameters, hit <CR>. You get the menu:
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Calculations:

1 Eigenvalues, eigenvectors and transition matrix elements

2 Scale CEF parameters to different RE ion.

3 Neutron cross-section.

4 Fit to observed energies and intensities

5 Specific heat.

6 Susceptibility.

7 Magnetisation.

8 Magnetic moment.

9 Matrix elements of mu.

99 Quit.

Option number (default = 1) :

You can choose between 9 different calculations, or exit the program by
typing:

Option number (default = 1) : 99 <CR>

4.1 Eigenvalues, eigenvectors and transition matrix el-

ements

If you chose 1 or hit <CR>, you will first be asked to enter an eigenvector
range (see below) and then you will see the following series of outputs —
here corresponding to the crystal field splitting of Pr3+ in Pr2Sn2O7 [4]:

1 1936.900 EAVE

2 8536.400 F2

3 6239.800 F4

4 4077.600 F6

5 2011.500 1000ALPHA

6 -70.220 BETA

7 169.900 GAMMA

8 93.160 ZETA

9 0.258 M0

10 0.144 M2

11 0.080 M4

12 -11.000 P2

13 -5.490 P4

14 -1.100 P6
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1 2

2 1

3 3

4 1

5 3

6 1

7 2

1 1 2

2 3 5

3 5 20

4 7 27

5 9 54

6 11 65

7 13 91

MATRIX 1 HAS 9152 COEFFICIENTS

SUB MTX COEFS COEFS

MTX DIM READ WRITTEN

1 91 9152 0

0 COEFFICIENTS READ

VECTORS CALCULATED (REAL PART)

1 638.27 53 0.87363733

2 638.27 50 0.87363733

3 656.29 29 0.95890379

:

etc

LOWEST LEVEL MADE 0.0 BY SUBTRACTING 638.

Eigenvalues relative to ground state:

0.0 0.0 18.0 57.6 57.6 82.3 100.2 100.2 114.9

I 2J 2M Eigenvectors (real part):

.

:

1 8 0 0.000 0.000-0.040 0.000 0.000 0.015 0.000 0.000 0.000

2 8 0 0.000 0.000 0.959 0.000 0.000 0.200 0.000 0.000 0.000
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3 8 0 0.000 0.000 0.165 0.000 0.000 0.024 0.000 0.000 0.000

1 8 -2 0.001 0.015 0.000-0.034 0.007 0.000 0.001-0.009 0.000

2 8 -2 -0.038-0.409 0.000 0.851-0.174 0.000-0.006 0.089 0.000

3 8 -2 -0.006-0.069 0.000 0.147-0.030 0.000-0.001 0.021 0.000

1 8 2 -0.015 0.001 0.000-0.007-0.034 0.000 0.009 0.001 0.000

2 8 2 0.409-0.038 0.000 0.174 0.851 0.000-0.089-0.006 0.000

3 8 2 0.069-0.006 0.000 0.030 0.147 0.000-0.021-0.001 0.000

1 8 -4 -0.017 0.002 0.000 0.003 0.013 0.000-0.044-0.003 0.000

2 8 -4 -0.141 0.013 0.000 0.031 0.151 0.000 0.932 0.059 0.000

3 8 -4 -0.015 0.001 0.000 0.003 0.016 0.000 0.164 0.010 0.000

1 8 4 -0.002-0.017 0.000-0.013 0.003 0.000 0.003-0.044 0.000

2 8 4 -0.013-0.141 0.000-0.151 0.031 0.000-0.059 0.932 0.000

3 8 4 -0.001-0.015 0.000-0.016 0.003 0.000-0.010 0.164 0.000

1 8 -6 0.000 0.000 0.011 0.000 0.000 0.029 0.000 0.000-0.029

2 8 -6 0.000 0.000-0.142 0.000 0.000 0.683 0.000 0.000 0.679

3 8 -6 0.000 0.000-0.027 0.000 0.000 0.093 0.000 0.000 0.115

1 8 6 0.000 0.000-0.011 0.000 0.000-0.029 0.000 0.000-0.029

2 8 6 0.000 0.000 0.142 0.000 0.000-0.683 0.000 0.000 0.679

3 8 6 0.000 0.000 0.027 0.000 0.000-0.093 0.000 0.000 0.115

1 8 -8 -0.003-0.031 0.000-0.020 0.004 0.000 0.001-0.023 0.000

2 8 -8 0.082 0.874 0.000 0.366-0.075 0.000-0.011 0.179 0.000

3 8 -8 0.014 0.147 0.000 0.065-0.013 0.000-0.003 0.043 0.000

1 8 8 -0.031 0.003 0.000 0.004 0.020 0.000-0.023-0.001 0.000

2 8 8 0.874-0.082 0.000-0.075-0.366 0.000 0.179 0.011 0.000

3 8 8 0.147-0.014 0.000-0.013-0.065 0.000 0.043 0.003 0.000

:

etc

M N Eigenvalue(N) Lgst EVec. comp. 2nd Lgst EVec. comp.

ST I 2J 2M ST I 2J 2M

1 1 0.000 53 ( 0.874) 2 8 8 35 ( 0.409) 2 8 2

1 2 0.000 50 ( 0.874) 2 8 -8 32 (-0.409) 2 8 -2

1 3 18.014 29 ( 0.959) 2 8 0 30 ( 0.165) 3 8 0

:

etc

|<n/Muperp/m>|2:

0.0 0.0 18.0 57.6 57.6 82.3 100.2 100.2 114.9

0.0 4.3101 0.1528 1.1440 0.0900 0.3022 0.7153 0.3580 0.3820 0.4718
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0.0 0.1528 4.3101 1.1440 0.3022 0.0900 0.7153 0.3820 0.3580 0.4718

18.0 1.1440 1.1440 0.0000 2.5667 2.5667 0.0000 0.1354 0.1354 0.1094

57.6 0.0900 0.3022 2.5667 0.7837 0.1437 0.8107 3.1798 0.4620 0.0619

57.6 0.3022 0.0900 2.5667 0.1437 0.7837 0.8107 0.4620 3.1798 0.0619

82.3 0.7153 0.7153 0.0000 0.8107 0.8107 0.0000 0.7621 0.7621 3.2197

100.2 0.3580 0.3820 0.1354 3.1798 0.4620 0.7621 1.4283 0.0227 2.1629

100.2 0.3820 0.3580 0.1354 0.4620 3.1798 0.7621 0.0227 1.4283 2.1629

114.9 0.4718 0.4718 0.1094 0.0619 0.0619 3.2197 2.1629 2.1629 0.0000

:

etc

CEF Parameters (meV):

1 B(2,0) = 0.579E+02 2 B(4,0) = 0.433E+03 3 B(6,0) = 0.145E+03

4 B(2,1)c = 0.000E+00 16 B(2,1)s = 0.000E+00

5 B(2,2)c = 0.000E+00 17 B(2,2)s = 0.000E+00

6 B(4,1)c = 0.000E+00 18 B(4,1)s = 0.000E+00

7 B(4,2)c = 0.000E+00 19 B(4,2)s = 0.000E+00

8 B(4,3)c = 0.161E+03 20 B(4,3)s = 0.000E+00

9 B(4,4)c = 0.000E+00 21 B(4,4)s = 0.000E+00

10 B(6,1)c = 0.000E+00 22 B(6,1)s = 0.000E+00

11 B(6,2)c = 0.000E+00 23 B(6,2)s = 0.000E+00

12 B(6,3)c = -0.108E+03 24 B(6,3)s = 0.000E+00

13 B(6,4)c = 0.000E+00 25 B(6,4)s = 0.000E+00

14 B(6,5)c = 0.000E+00 26 B(6,5)s = 0.000E+00

15 B(6,6)c = 0.192E+03 27 B(6,6)s = 0.000E+00

Exchange field (He) and applied field (B):

28 Hex = 0.000E+00 29 Hey = 0.000E+00 30 Hez = 0.000E+00 meV

31 Bx = 0.000E+00 32 By = 0.000E+00 33 Bz = 0.000E+00 Tesla

34 No. f electrons = 2. (select 34 to check free-ion levels also)

number ... new value (<CR> to end) :

The printout contains the following information (in the order it appears):

• List of 14 parameters of the atomic Hamiltonian; Pr3+ has 13 J levels
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• Diagnostics relating to the Hamiltonian matrix, which for Pr3+ has
dimension 91

• List of eigenvalues of the Hamiltonian, in order of increasing energy

• Horizontal list of eigenvalues in ascending order from level Min to level
Max, where Min and Max are user-specified. The ground state (E = 0)
eigenvalue corresponds to level 1. If Min and Max are not specified then
for most (but not all) ions the default values are Min = 1, Max = 2J+1,
where J is for the Hund’s rules ground state.

• Eigenvectors of levels Min to Max, in the |IJMJ〉 basis, where I is an
index that labels the three J = 4 levels of the 4f 2 configuration of
Pr3+. Note that I = 2 corresponds to the J = 4 level which is lowest
in energy.

• List of energy levels in order of increasing energy, giving the largest
two eigenvector components

• Table of the squared dipole matrix elements of µ⊥ — these give the
transition probabilities for neutron scattering from a powder sample

• Finally the program returns to the list of crystal field and exchange
and magnetic field parameters.

During the calculation, the program writes the eigenvectors, eigenvalues
and dipole matrix elements to the file CF Levels.dat in the same format
as the screen output. Note that the file CF Levels.dat must already exist
in the folder, and is overwritten each time the calculation is performed. So
remember to copy the results from CF Levels.dat to a separate text file if
you want to save them.

The program also write some diagnostic data to files called fort.8, fort.16
and fort.21. These files contain lists of intermediate coefficients and can be
deleted.

4.2 Scale CEF parameters to different rare-earth ion

This option transforms the crystal field parameters from one tripositive rare
earth ion to another, assuming the crystal field parameters can be expressed
in the form

Bk
q = 〈rk〉Ak

q , (12)

where 〈rk〉 is the kth radial moment of the 4f electron distribution, and Ak
q

are intrinsic crystal-field parameters independent of the lanthanide ion.
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4.3 Neutron cross-section

This option calculates the neutron spectrum in the dipole approximation.
The transition intensities are given in absolute units of cross section. The
program asks for the temperature, then diagonalises the Hamiltonian and
outputs a list of transition energies and their cross sections for neutron scat-
tering:

Neutron cross-section:

double diff. X-section = kf/ki.|F(Q)|2.exp(-2W).S(Q,w)

from to w /meV S(Q,w) /mb(sr ion)-1

2 1 0.00 5.53

2 2 0.00 156.03

1 1 0.00 156.03

1 2 0.00 5.53

2 3 18.01 41.41

1 3 18.01 41.41

2 4 57.56 10.94

2 5 57.56 3.26

1 4 57.56 3.26

1 5 57.56 10.94

2 6 82.30 25.89

1 6 82.30 25.89

2 7 100.21 13.83

1 7 100.21 12.96

2 8 100.21 12.96

1 8 100.21 13.83

2 9 114.89 17.08

1 9 114.89 17.08

:

etc

The program also gives you the option to simulate the spectrum and write
it to a file. The transition lines are modelled by Gaussian peaks, all with
the same width. You are asked to enter the energy range for the simulation
(Emin and Emax), the number of points (≤ 501), and the full width at half
maximum (FWHM) of the Gaussian line shape. You are also asked for a file
name. Note: there must not already exist a file with the name you choose.
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4.4 Fit to observed energies and intensities

This option allows you to fit a CF model to a set of experimental transition
energies and relative intensities. If you select this option the first thing you
will be asked is

Fit with existing data ? (N):

If you haven’t entered any experimental observables then answer no (N or
<CR>). If you have entered the experimental observables then answering yes
(Y) saves you from entering the observables again and proceeds directly to
the fit. This allows you to vary the starting parameters and fit to the same
set of observables.

Next, you will have the following options for fitting:

Enter option (E,C,R,V,G,M,S,X,Q,H(elp),<CR> to fit):

Each letter has a different function. If you select H you get a basic statement
of what they mean:

E - to input transition energies

C - to combine peak intensities

R - to input peak intensity ratios

V - to vary one of the B coefficients

G - to fix the ratio of 2 parameters

(1st determined by 2nd; both .TRUE. in V)

M - to fit to magnetic moment

S - to include data from >= 2 lanthanide ions

X - to change the B coefficient normalising factor

Q - to quit the fitting program

H - Help; this menu

<CR> to fit

• E — this allows you to enter a set of observed transition energies.
The energy levels are are number in order of ascending energy, starting
with 1 (the ground state). For example, suppose experiments have
established that the ground state is a doublet, the first excited state
is a singlet at 18 ± 0.5meV, the second excited state is a doublet at
58± 1meV, etc., you would enter E <CR> then

Level 1, level 2, energy, uncertainty: 1 2 0.0 0.5

Level 1, level 2, energy, uncertainty: 1 3 18 0.5

Level 1, level 2, energy, uncertainty: 1 4 58 1

Level 1, level 2, energy, uncertainty: 1 5 58 1

Level 1, level 2, energy, uncertainty: <CR>
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This input implies that you can number the transitions in order of
energy, which is not always the case. For example, if you suspected
another singlet between the 18 and 58meV levels then the above num-
bering would be incorrect. There is no simple way round this problem.
You would have to try fitting again with the 58meV doublet numbered
as levels 5 and 6.

• C — if there are overlapping peaks in the experimental spectrum then
you can combine their intensities. For example, if you suspect unre-
solved transitions from the ground state (level 1) to singlet levels at 18
and 19meV (levels 3 and 4) then you can combine their intensities as
follows:

Enter option (E,C,R,V,G,M,S,X,Q,H(elp),<CR> to fit): C

Type in transitions which are to be grouped together (<CR> to finish)

Level 1, level 2: 1 3

Level 1, level 2: 1 4

Level 1, level 2: <CR>

• R — This allows you to enter experimentally-determined ratios of tran-
sition intensities. For example, suppose the intensity of the 18meV
transition (from the ground state doublet to level 3) is 4 ± 1 times
larger than the transition from the ground state to the 58meV doublet
(levels 4 and 5), both transitions measured at a temperature of 5K.
First you would select option C and combine the intensities of transi-
tions 1 to 3 and 2 to 3, and levels 1 to 4, 1 to 5, 2 to 4 and 2 to 5.
Then

Enter option (E,C,R,V,G,M,S,X,Q,H(elp),<CR> to fit): R

1st peak: Temp., level 1, level 2 : 5 1 3

2nd peak: Temp., level 1, level 2 : 5 1 4

Ratio, uncertainty : 4 1

1st peak: Temp., level 1, level 2 : <CR>

• V — This is how you enter which parameters you want to vary in the
fitting procedure. If you don’t specify that a parameter is to be varied
then it will remain fixed at its initial value. Suppose you want to fit
the parameters B4

0 , B
6
0 , B

4
3 and B6

3 . Do the following:

Enter option (E,C,R,V,G,M,S,X,Q,H(elp),<CR> to fit): V

Vary which B coeff. ? : 2
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Vary which B coeff. ? : 3

Vary which B coeff. ? : 8

Vary which B coeff. ? : 12

Vary which B coeff. ? : <CR>

You can fit the exchange and magnetic field components, as well as the
crystal field parameters.

• G— This allows you to fix the ratio of two parameters. This function is
needed if the symmetry of the crystal field constrains two parameters
to be in a fixed ratio. For example, in cubic symmetry B4

4/B
4
0 =

±
√
70/14 = ±0.5976 and B6

4/B
6
0 = ∓

√
14/2 = ∓1.871. You would

first use the V option to specify that the variable parameters are B4
0 ,

B4
4 , B

6
0 and B6

4 , then

Enter option (E,C,R,V,G,M,S,X,Q,H(elp),<CR> to fit): G

Coeff.1, coeff.2, Ratio 1:2 : 9 2 0.5976

Coeff.1, coeff.2, Ratio 1:2 : 13 3 -1.871

Coeff.1, coeff.2, Ratio 1:2 : <CR>

• M — This allows you to fit to the magnitude of a magnetic moment
induced by an exchange or external magnetic field at a given tempera-
ture.

• S — With this option you can fit observables from two or more rare
earth ions simultaneously. After specifying the second ion and giving
the single-ion levels to include in the basis, you enter the observables
for the second ion. You can repeat for a third ion, and so on.

• X — The minimisation routine works most efficiently if the variables
are kept in the range [−1,+1]. This is achieved with a normalisation
factor, which by default is set to 200meV. If a larger or small factor
would be better then it can be changed via this option.

• Q — Quits without performing the fit.

• H — Prints out the list of fitting options described above.

Be aware that you can only fit as many parameters as you have observ-
ables. Once you have input all the information for the fit and hit <CR> you
will see an iterative improvement in the parameters step by step until the
final set of parameters is reached. The quality of the fit is gauged by the
usual χ2 function, and on completion the routine writes out the converged
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values of the fitting parameters and χ2. There is also a parameter called
IFAIL. If the fit reaches a global minimum in χ2 then IFAIL=0. If not, then
IFAIL=1...5 and you might want to change the starting parameters and
re-run the fit.

The results of the fit are written into a file called RESULTS.DAT. A file
with this name must exist already before performing the fit. If you perform
another fit then the contents of RESULTS.DAT will be overwritten with the
results of the new fit. So if you want to keep the results, copy them into
another file.

At the end of the fit you will see the following on the screen:

Details of fit written to file RESULT.DAT

Save these best-fit parameters ? (N) :

If you answer Y then the program will replace the parameters in the
starting menu by those calculated here. Otherwise, the original parameters
are kept as they were.

4.5 Specific heat capacity

With this option you can calculate (but not fit) the specific heat capacity
as a function of temperature. The calculation makes use of the eigenvalues
but not the eigenfunctions. You need to specify the temperature interval for
the calculation [Tmin, Tmax] and the number of points Npts. You are asked
whether you wish to save the results to a file.

4.6 Magnetic susceptibility

This option calculates the magnetic susceptibility as a function of temper-
ature over the interval [Tmin, Tmax], where Tmin and Tmax are user-specified,
as is also the number of temperature points Npts. The susceptibility is given
in units of cm3mol−1 (equivalently emumol−1), and is calculated from the
expression

χα =
NA

10

1

Z

∑

m

e−βEm

{

β
∑

n
(En=Em)

∣

∣〈n|µα|m〉
∣

∣

2
+ 2

∑

n
(En 6=Em)

∣

∣〈n|µα|m〉
∣

∣

2

En −Em

}

, (13)

where µα = −(Lα + 2Sα)µB is the magnetic moment operator for an applied
field in the α direction, β = 1/kBT , Z =

∑

m e−βEm is the partition function,
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NA = 6.022 × 1023 is Avagadro’s number, and energies are defined relative
to the ground state.

The program calculates the susceptibility in the directions parallel and
perpendicular to the crystal field axis, χz and (χx + χy)/2, respectively, and
the powder-averaged susceptibility χpowder. You are asked whether you wish
to save the results to a file.

4.7 Magnetisation

This option calculates the magnetisation (in µB) as a function of applied
field at a specified temperature. The direction of the applied field is specified
by values Bx, By, Bz along the crystal field axes. The magnetisation is
calculated at 21 field values from 0 to Bmax, where Bmax =

√

B2
x +B2

y +B2
z .

You are asked whether you wish to save the results to a file.

4.8 Magnetic moment

This option calculates the value of the magnetic moment (in µB) at a given
temperature. The magnetic moment could be induced by an applied field or
by an exchange field (or both), but note that if it is induced by an exchange
field then the moment calculated here is not necessarily the same as the
ordered moment that would be observed in an ordered phase. In an ordered
phase one should solve the self-consistent mean-field equation.

4.9 Matrix elements of magnetic moment operator

This function writes out a list of certain matrix elements used by the program.
The type of matrix element is chosen from a menu. The function is is mainly
for diagnostic purposes, but the default option (option 1: matrix elements of
µ) is useful for calculating the scattering cross-section from single crystals.
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